EP3521650A1 - Hybrid torque tube - Google Patents
Hybrid torque tube Download PDFInfo
- Publication number
- EP3521650A1 EP3521650A1 EP19154322.2A EP19154322A EP3521650A1 EP 3521650 A1 EP3521650 A1 EP 3521650A1 EP 19154322 A EP19154322 A EP 19154322A EP 3521650 A1 EP3521650 A1 EP 3521650A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube portion
- metal alloy
- forming
- stator
- leg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 claims abstract description 88
- 239000000654 additive Substances 0.000 claims abstract description 51
- 230000000996 additive effect Effects 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims description 91
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 43
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 238000005266 casting Methods 0.000 claims description 11
- 238000001125 extrusion Methods 0.000 claims description 11
- 238000005242 forging Methods 0.000 claims description 11
- 238000003754 machining Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910001040 Beta-titanium Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- NCRHYAJHJHKMLB-UHFFFAOYSA-N chromium molybdenum nickel vanadium Chemical compound [V][Mo][Cr][Ni] NCRHYAJHJHKMLB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/005—Components of axially engaging brakes not otherwise provided for
- F16D65/0056—Brake supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D55/00—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
- F16D55/24—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
- F16D55/26—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
- F16D55/36—Brakes with a plurality of rotating discs all lying side by side
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/32—Alighting gear characterised by elements which contact the ground or similar surface
- B64C25/42—Arrangement or adaptation of brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D55/00—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
- F16D2055/0004—Parts or details of disc brakes
- F16D2055/0008—Brake supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D2065/13—Parts or details of discs or drums
- F16D2065/134—Connection
- F16D2065/1356—Connection interlocking
- F16D2065/1364—Connection interlocking with relative movement axially
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D2065/13—Parts or details of discs or drums
- F16D2065/134—Connection
- F16D2065/1356—Connection interlocking
- F16D2065/1368—Connection interlocking with relative movement both radially and axially
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D2065/13—Parts or details of discs or drums
- F16D2065/134—Connection
- F16D2065/1388—Connection to shaft or axle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D2065/13—Parts or details of discs or drums
- F16D2065/134—Connection
- F16D2065/1392—Connection elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0004—Materials; Production methods therefor metallic
- F16D2200/0008—Ferro
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0004—Materials; Production methods therefor metallic
- F16D2200/0026—Non-ferro
- F16D2200/003—Light metals, e.g. aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0082—Production methods therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2250/00—Manufacturing; Assembly
- F16D2250/0007—Casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2250/00—Manufacturing; Assembly
- F16D2250/0023—Shaping by pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2250/00—Manufacturing; Assembly
- F16D2250/0038—Surface treatment
- F16D2250/0046—Coating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2250/00—Manufacturing; Assembly
- F16D2250/0061—Joining
- F16D2250/0076—Welding, brazing
Definitions
- the present disclosure relates to brake systems, and more specifically, to torque tubes for aircraft brake systems.
- Aircraft typically have brakes on the wheels to slow the aircraft during aborted takeoffs, landings, and while taxiing.
- Aircraft brake systems generally employ a brake stack comprised of a series of friction disks, which may be forced into contact with one another to stop the aircraft.
- the brake systems may include a torque tube (also referred to as a torque plate).
- the torque tube is generally machined from a single piece of metal which tends to generate a large amount of material waste and which forms a solid metal torque tube with increased weight.
- the present disclosure provides a method of making a hybrid torque tube for a brake assembly.
- the method may comprise forming a tube portion having a centerline axis using a first manufacturing process, forming and a conical back-leg extending from the tube portion in a radially outward angled orientation relative to the centerline axis, forming a stator spline on a radially outward surface of the tube portion, and forming a foot extending from a radially inward surface of the tube portion.
- At least one of the conical back-leg, the stator spline, or the foot may be formed using a second manufacturing process different from the first manufacturing process.
- the second manufacturing process may comprise an additive manufacturing technique.
- a portion of the stator spline may be hollow.
- a cross-section of the stator spline may comprise a lattice structure.
- forming the stator spline may comprise depositing a base material with a coating located over the base material.
- the method may further comprise forming the tube portion using a first metal alloy, and forming, at least, a portion of the conical back-leg using a second metal alloy different from the first metal alloy.
- the method may further comprise forming the tube portion using a first metal alloy, and forming the foot using a second metal alloy different from the first metal alloy.
- the second metal alloy may comprise a greater resistance to creep as compared to the first metal alloy.
- a method of making a hybrid torque tube for a brake assembly comprising forming a tube portion having a centerline axis using a first manufacturing process, forming a conical back-leg extending from a first end of the tube portion, forming a flange at a second end of the tube portion opposite the first end of the tube portion, forming a foot extending from a radially inward surface of the tube portion, and forming a stator spline on the tube portion.
- At least one of the conical back-leg, the flange, the foot, or the stator spline may be formed using a second manufacturing process.
- the second manufacturing process may comprise an additive manufacturing technique.
- the first manufacturing process may comprise at least one of forging, extrusion, casting, machining, stamping, or subtractive manufacturing.
- the flange, the foot, or the stator spline may be formed using the second manufacturing process, and the conical back-leg may be formed using at least one of forging, extrusion, casting, machining, stamping, subtractive manufacturing, welding, or swaging.
- forming the stator spline may comprise depositing a base material with a wear coating located over the base material. In various embodiments, a portion of the stator spline may be hollow.
- the tube portion may comprise a first material and the foot may comprise a second material different from the first material.
- the hybrid torque tube may comprise a tube portion having a centerline axis.
- the tube portion may comprise a first metal alloy.
- a conical back-leg may extend from the tube portion in a radially outward angled orientation relative to the centerline axis.
- a stator spline may be formed on a radially outward surface of the tube portion.
- a foot may be formed on a radially inward surface of the tube portion. At least one of the conical back-leg, the stator spline, or the foot may comprise a second metal alloy different from the first metal alloy.
- a portion of the stator spline is hollow. In various embodiments, a portion of the stator spline comprises a lattice structure. In various embodiments, an end of the stator spline proximate the conical back-leg may be tapered.
- the first metal alloy may comprise a first non-ferrous material
- the second metal alloy may comprise a second non-ferrous material different from the first non-ferrous material.
- the second non-ferrous material may have a greater resistance to creep as compared to the first non-ferrous material.
- the first metal alloy may comprise, by weight, 6% aluminum, 4% vanadium, a maximum of 0.2% oxygen, a maximum of 0.25% iron, and at least 89% titanium.
- the second metal alloy may comprise, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, and at least 85% titanium.
- the first metal alloy may comprise a first ferrous material
- the second metal alloy may comprise a second ferrous material different from the first ferrous material
- a first component that is "radially outward" of a second component means that the first component is positioned at a greater distance away from a common axis than the second component.
- a first component that is “radially inward” of a second component means that the first component is positioned closer to the common axis than the second component.
- a first component that is radially inward of a second component rotates through a circumferentially shorter path than the second component.
- distal refers to the direction outward, or generally, away from a reference component.
- proximal and/or “proximate” refer(s) to a direction inward, or generally, towards the reference component.
- Multi-disk brake system 20 may include a wheel 10 supported for rotation around axle 12 by bearings 14. Wheel 10 includes rims 16 for supporting a tire, and a series of axially extending rotor splines 18 (one shown). Rotation of wheel 10 is modulated by multi-disk brake system 20.
- Multi-disk brake system 20 includes a piston housing 22, torque tube 24, a plurality of pistons 26 (one shown), pressure plate 30, end plate 32, and plurality of friction disks 38 located between pressure plate 30 and end plate 32.
- the plurality of friction disks 38 includes at least one non-rotatable friction disk 40, also known as a stator, and at least one rotatable friction disk 42, also known as a rotor.
- Each of the friction disks 38 includes an attachment structure.
- each of the four non-rotatable friction disks 40 includes a plurality of stator lugs 44 at circumferentially spaced positions around the non-rotatable friction disk 40 as an attachment structure.
- each of the five rotatable friction disks 42 includes a plurality of rotor lugs 46 at circumferentially spaced positions around the rotatable friction disk 42 as an attachment structure.
- Pressure plate 30, end plate 32, and friction disks 38 are each annular structures and may be made at least partially from a carbon composite material.
- torque tube 24 is an elongated annular structure that includes a cylindrical tube portion 100 having a centerline axis 102, a conical back-leg 104 (also referred to as a pressure flange web) extending from tube portion 100, and a series of axially extending stator splines 106 (also referred to as torque lugs) formed on a radially outward surface, or outer diameter, 108 of tube portion 100.
- the conical back-leg 104 extends radially outward from tube portion 100 and towards wheel 10 at an angled orientation relative to centerline axis 102.
- conical back-leg 104 has a frustoconical shape.
- Torque tube 24 may further include a flange 110 (also referred to as a piston housing flange) and a foot 112 (also referred to as an inner support flange).
- Flange 110 may be formed at an end of tube portion 100 that is opposite conical back-leg 104.
- Flange 110 may extend radially inward from tube portion 100.
- Flange 110 may be coupled to piston housing 22, with momentary reference to FIG. 1 , via a fastener 111.
- Fastener 111 may comprise a screw, bolt, rivet, pin, or other suitable securement mechanism.
- foot 112 may be formed on a radially inward surface, or inner diameter, 114 of tube portion 100. Foot 112 may contact an axle 12, with momentary reference to FIG. 1 .
- a lip 116 may be formed on a radially outward end of conical back-leg 104. Lip 116 may extend axially from conical back-leg 104 such that lip 116 is parallel radially outward surface 108 of tube portion 100. In various embodiments, lip 116 may be oriented at angle of up to 90° relative to a plane parallel with radially outward surface 108 of tube portion 100.
- torque tube 24 is hybrid torque tube.
- a “hybrid torque tube” refers to a torque tube having at least one component (e.g., stator splines 106, flange 110, foot 112, lip 116, etc.) formed using an additive manufacturing technique, for example, wire arc additive manufacturing or electron beam additive manufacturing, and at least one component (e.g., tube portion 100) formed using a non-additive manufacturing technique, for example, forging, extrusion, machining, casting, stamping, or subtractive manufacturing.
- an additive manufacturing technique for example, wire arc additive manufacturing or electron beam additive manufacturing
- a non-additive manufacturing technique for example, forging, extrusion, machining, casting, stamping, or subtractive manufacturing.
- piston housing 22 is mounted to axle 12.
- Flange 110 of torque tube 24 is bolted or otherwise coupled to piston housing 22 with conical back-leg 104 of torque tube 24 proximate an axial center of wheel 10.
- End plate 32 is connected or mounted to lip 116 of torque tube 24.
- lip 116 may define one or more holes extending through lip 116 and configured to receive a fastener 120.
- Fastener 120 may comprise a bolt, pin, anchor, lug, or other suitable securement mechanism.
- Stator splines 106 support non-rotatable friction disks 40.
- Stator splines 106 may also support pressure plate 30 such that pressure plate 30 is also non-rotatable.
- Non-rotatable friction disks 40 engage stator splines 106 via gaps formed between stator lugs 44.
- rotatable friction disks 42 engage rotor splines 18 via gaps formed between rotor lugs 46.
- Rotatable friction disks 42 are rotatable by virtue of their engagement with rotor splines 18 of wheel 10.
- Rotatable friction disks 42 are arranged with end plate 32 on an end proximate wheel 10, with pressure plate 30 on an end distal wheel 10 and proximate pistons 26, and with non-rotatable friction disks 40 interleaved so that rotatable friction disks 42 are adjacent to non-rotatable friction components (e.g., interleaved rotors and stators).
- Pistons 26 are connected to piston housing 22 at circumferentially spaced positions around piston housing 22. Pistons 26 face axially toward wheel 10 and contact a side of pressure plate 30 opposite rotatable friction disks 42. Pistons 26 may be powered electrically, hydraulically, or pneumatically.
- a force is exerted on the rotatable friction disks 42 and the non-rotatable friction disks 40 towards conical back-leg 104.
- the rotatable friction disks 42 and the non-rotatable friction disks 40 may thus be pressed together between pressure plate 30 and end plate 32.
- torque tube 24 Under various braking conditions, a large amount of torque may be applied to friction disks 38 and an extreme amount of heat may be generated.
- various components and/or areas of torque tube 24 may experience increased mechanical stresses at elevated temperatures, which may cause these components and/or areas to "creep.” Stated differently, the mechanical stresses and increased heat generated during various braking events may lead to deformation of one or more components of torque tube 24.
- the present disclosure provides a hybrid torque tube which is both light weight and resistant to creep.
- a hybrid torque tube may be manufactured using both additive and non-additive manufacturing techniques whereby the components and/or areas of the torque tube that are more susceptible to creep may be formed using materials that have an increased creep resistance, while other components and/or areas of the torque tube that are less susceptible to creep may be formed using other less creep resistant materials. Minimizing and/or reducing the amount of material having increased creep resistance tends to reduce manufacturing costs. Additionally, employing additive manufacturing techniques to form various components of the torque tube tends to decrease material waste and allow for geometries that may not otherwise be possible with other manufacturing processes.
- tube portion 100 of torque tube 24 may be formed using a first manufacturing process which employs non-additive manufacturing techniques.
- tube portion 100 may be formed by forging, extrusion, machining, casting, stamping, subtractive manufacturing, and/or other suitable non-additive manufacturing techniques.
- Tube portion 100 may comprise a non-ferrous material, for example, titanium or titanium alloy.
- tube portion 100 may comprise a titanium alloy conforming to the unified numbering system standard (UNS) R56400, also referred to as Grade 5 titanium, which may also be referred to as Ti-6A1-4V (Ti64), and which is comprised of, by weight, 6% aluminum, 4% vanadium, a maximum of 0.2% Oxygen, a maximum of 0.25% iron, and at least 89% titanium.
- tube portion 100 may comprise a ferrous material, for example, a chromium-molybdenum steel, a nickel-chromium-molybdenum steel, or a nickel-chromium-molybdenum-vanadium steel.
- Stator splines 106 may be formed on radially outward surface 108 of tube portion 100 using a second manufacturing process that employs an additive manufacturing technique.
- tube portion 100 may be formed by forging, extrusion, casting, and/or machining
- stator splines 106 may be formed by wire arc additive manufacturing, electron beam additive manufacturing, or other suitable additive manufacturing technique. Forming stator splines 106 using additive manufacturing allows the geometries and materials of stator splines 106 to be uniquely tailored.
- FIG. 3A illustrates a perspective view of a stator spline 106, in accordance with various embodiments.
- FIG. 3B illustrates a cross-sectional view of stator spline 106 taken along the line 3B-3B in FIG. 3A and generally parallel to the R-axis in FIG. 1 .
- additive manufacturing may be employed to form stator spline 106 having a hollow portion.
- stator spline 106 may be formed by depositing a material 128, for example, a metal or metal alloy, on radially outward surface 108 of torque tube 24 using, for example, wire arc or electron beam additive manufacturing.
- Stator spline 106 comprises an internal portion or cavity 130 that is devoid of material 128.
- material 128 defines an internal cavity 130 within stator spline 106. While FIGs. 3A and 3B illustrate internal cavity 130 having a square or rectangular cross-sectional geometry, it should be understood that internal cavity 130 may be formed having a cross-sectional geometry that is circular, oval, triangular, polygonal, or any other shape.
- torque tube 24 may be formed having one or more stator splines 136 with multiple hollow portions.
- Stator spline(s) 136 may be formed on tube portion 100 using additive manufacturing.
- a material 138 for example, a metal or metal alloy, is deposited on radially outward surface 108 of tube portion 100 using wire arc or electron beam additive manufacturing to form stator spline 136.
- Stator spline 136 comprises a plurality of internal portions or cavities 140 that are devoid of material 138. Stated differently, material 138 defines a plurality of internal cavities 140 within stator spline 136. While FIG.
- stator spline 136 may comprise a cross-sectional geometry that is different from the cross-sectional geometry of a second hollow portion 144 of stator spline 136.
- the stator splines on tube portion 100 may comprise any mix of hollow splines and non-hollow splines in any type of arrangement.
- stator splines may be arranged to allow directional heat flow to leave the wheel or may provide alternative type of cooling paths, as heat dissipation from the hollow stator splines will differ from heat dissipation from solid stator splines.
- torque tube 24 may be formed having one or more stator splines 146 with portions of varying material.
- Stator spline(s) 146 may be formed on tube portion 100 using additive manufacturing.
- a first portion 148 of stator spline 146 may be formed by depositing a metal or metal alloy 154 on radially outward surface 108 using wire arc or electron beam additive manufacturing.
- a second portion 150 of stator spline 146 may be formed by depositing a metal or metal alloy 156, which is different from the metal or metal alloy 154, on radially outward surface 108 using wire arc or electron beam additive manufacturing.
- first portion 148 may comprise a material having a greater heat resistance (i.e., higher melting point), a greater tensile strength, and/or a greater creep resistance as compared to the material of second portion 150.
- first portion 148 may comprise a material having a different thermal conductivity as compared to the material of second portion 150 to provide variable heat conduction during braking.
- a third portion 152 of stator spline 146 may be formed by depositing a metal or metal alloy 158, which is different from metal or metal alloy 156, on radially outward surface 108 using wire arc or electron beam additive manufacturing.
- Metal or metal alloy 158 may be the same or different from metal or metal alloy 154.
- first portion 148 and second portion 150 and/or the transition between second portion 150 and third portion 152 may be a gradient transition. While stator spline 146 is shown having axially adjacent portions 148, 150, and 152 comprised of varying materials, it should be understood that stator spline 146 may be formed having radially adjacent, circumferentially adjacent, and/or diagonally adjacent portions of varying materials.
- FIG. 3E illustrates a perspective view of a stator spline 166 having a lattice structure, in accordance with various embodiments.
- FIG. 3F illustrates a cross-sectional view of stator spline 166 taken along the line 3F-3F in FIG. 3E and generally parallel to the R-axis shown in FIG. 1 .
- torque tube 24 may be formed having one or more stator splines 166 comprised of a lattice structure.
- Stator spline(s) 166 may be formed on tube portion 100 using additive manufacturing.
- a material 168 for example, a metal or metal alloy, may be deposited on radially outward surface 108 of tube portion 100 using wire arc or electron beam additive manufacturing to form the lattice structure of stator spline 166. While stator spline 166 is shown having a lattice structure with square or diamond shape openings defined by material 168, it should be understood that stator spline 166 may have a lattice structure of any geometry, for example, in various embodiments, material 168 may define honeycomb-shaped openings. While FIG.
- FIG. 3F illustrates a cross-sectional view of stator spline 166 taken along a radial plane (i.e., along a plane parallel to the R-axis in FIG. 1 ), in various embodiments, a cross-section of stator spline 166 taken along an axial plane (i.e., a plane parallel to the A-axis in FIG. 1 ) may comprise a lattice structure.
- FIG. 3G illustrates a perspective view of a stator spline 176 having a wear coating, in accordance with various embodiments.
- FIG. 3H illustrates a cross-sectional view of stator spline 176 taken along the line 3H-3H in FIG. 3G and generally parallel to the R-axis shown in FIG. 1 .
- torque tube 24 may be formed having one or more stator spline(s) 176 including a coating 180.
- Stator spline 176 may comprise a base material 178, for example, a titanium-based alloy, and a coating 180, for example, a nickel-based superalloy, located over the base material 178.
- Stator spline(s) 176 may be formed on tube portion 100 using additive manufacturing.
- base material 178 and coating 180 located over base material 178 may be deposited using wire arc or electron beam additive manufacturing.
- coating 180 may be located over some portions of base material 178 and other portions of base material 178 may be devoid of coating 180.
- the portions having coating 180 may correspond to portions of stator spline 176 that engage stator lugs 44, with momentary reference to FIG 1 .
- Coating 180 may comprise a wear resistance coating, a thermal resistance coating, a corrosion resistance coating, or a combination of two or more type coatings.
- foot 112 may be formed on radially inward surface 114 of tube portion 100 using additive manufacturing. Forming foot 112 using additive manufacturing may allow, at least, a portion of foot 112 to be formed using a material having a greater resistance to creep as compared to other components of torque tube 24.
- tube portion 100 may be formed using Ti64 and foot 112 may be formed using a titanium alloy conforming to UNS R54620, which may be referred to as Ti-6Al-2Sn-4Zr-2Mo (Ti6242), and which is comprised of, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, and at least 85% titanium.
- foot 112 may be formed using a titanium alloy conforming to UNS R54620, which may be referred to as Ti-6Al-2Sn-4Zr-2Mo-0.08Si (Ti6242S), and which is comprised of, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, 0.08% silicon, and at least 85% titanium, or using any other near-alpha, alpha, or alpha + beta titanium alloy.
- a titanium alloy conforming to UNS R54620 which may be referred to as Ti-6Al-2Sn-4Zr-2Mo-0.08Si (Ti6242S)
- Ti6242S Ti-6Al-2Sn-4Zr-2Mo-0.08Si
- one or more components of torque tube 24 may comprise a nickel based superalloy.
- one or more components of torque tube 24 may be formed using a nickel based superalloy conforming to UNS N07718, which is comprised of, by weight, 50%-55% nickel (plus cobalt), 17%-21% chromium, 2.8%-3.3% molybdenum, 4.75%-5.5% niobium (plus tantalum), 0.65%-1.15% titanium, 0.2%-0.8% aluminum, and a max of 1% cobalt.
- tube portion 100 may be formed using a ferrous material (e.g., a chromium-molybdenum steel or a nickel-chromium-molybdenum steel) and foot 112 may be formed using a ferrous material this different from the ferrous material of tube portion 100.
- the ferrous material of foot 112 may comprise a greater resistance to creep, as compared to the ferrous material of tube portion 100.
- a radially extending portion 112a of foot 112 may comprise a material having a greater heat resistance (i.e., higher melting point), tensile strength, and/or creep resistance as compared to the material used to form an axially extending portion 112b of foot 112.
- foot 112 may be formed using a material that provides thermal insulation, for example, a material having a decreased thermal conductivity as compared to a material of tube portion 100, in order to reduce conduction of heat to axle 12.
- foot 112 may comprise a lattice structure configured to reduce conduction of heat to axle 12. Configuring foot 112 to better insulate axle 12 from heat generated by friction disks 38 may allow other types of insulators located between foot 112 and axle to be removed.
- flange 110 and/or lip 116 may also be formed using additive manufacturing and may each comprise a material that is different from one or more of the other components of torque tube 24.
- foot 112 may be coupled to radially inward surface 114 using friction stir welding.
- both tube portion 100 and conical back-leg 104 may be formed using non-additive manufacturing techniques.
- tube portion 100 and conical back-leg 104 may be formed by forging, extrusion, casting, machining, stamping, subtractive manufacturing, or by welding conical back-leg 104 to tube portion 100.
- conical back-leg 104 may be formed by swaging or flaring an end of tube portion 100.
- tube portion 100 may be formed using a first manufacturing process comprised of non-additive manufacturing techniques and conical back-leg 104 may be formed on tube portion 100 using a second manufacturing process that employs an additive manufacturing technique.
- tube portion 100 may be formed by forging, extrusion, casting, and/or machining
- conical back-leg 104 may be formed by wire arc or electron beam additive manufacturing. Forming conical back-leg 104 using additive manufacturing may allow some or all of conical back-leg 104 to be formed using a material that is different from the material used to form one or more of the other components (e.g., tube portion 100 and/or stator splines 106) of torque tube 24.
- tube portion 100 may be formed using Ti64 and conical back-leg 104 may be formed using Ti6242.
- Forming conical back-leg 104 using additive manufacturing also allows different portions of conical back-leg 104 to be formed using different materials.
- a first portion of conical back-leg 104 may comprise a material having a greater heat resistance (i.e., higher melting point), tensile strength, and/or creep resistance as compared to the material of a second portion of conical back-leg 104.
- an end 107 of stator splines 106 may be tapered. End 107 may extend radially outward, along conical back-leg 104, at an angled orientation relative to centerline axis 102. In various embodiments, the angle of end 107 relative to centerline axis 102 is equal to the angle of conical back-leg 104 relative to centerline axis 102.
- FIG. 4A illustrates a method 200 of making a hybrid torque tube for a brake assembly, in accordance with various embodiments.
- Method 200 may comprise forming a tube portion having a centerline axis and a conical back-leg extending radially outward from the tube portion (step 202) and forming stator splines on a radially outward surface of the tube portion (step 204).
- step 202 includes forming, at least, the tube portion using a non-additive manufacturing technique, for example, forging, extrusion, casting, machining, and step 204 includes forming the stator spline using an additive manufacturing technique, for example, wire arc or electron beam additive manufacturing.
- a portion of at least one of the stator splines may be hollow.
- at least one of the stator splines may comprise a lattice structure.
- step 204 may comprise forming at least one of the stator splines by depositing a base material and a coating over the base material.
- step 202 may comprise forming a tube portion using a first manufacturing process comprising a non-additive manufacturing technique, for example, forging, extrusion, casting, machining, (step 206), and forming a conical back-leg extending from the tube portion using additive manufacturing, for example, using wire arc or electron beam additive manufacturing (step 208).
- step 206 may comprise forming the tube portion using a first material (e.g., a first metal alloy), and step 208 may comprise forming the conical back-leg using a second material (e.g., a second metal alloy) different from the first material.
- a first material e.g., a first metal alloy
- step 208 may comprise forming the conical back-leg using a second material (e.g., a second metal alloy) different from the first material.
- method 200 may further comprise forming a foot extending from a radially inward surface of the tube portion using additive manufacturing (step 210).
- step 202 may comprise forming the tube portion using a first material (e.g., a first metal alloy), and step 210 may comprise forming the foot using a second material (e.g., a second metal alloy) different from the first material.
- the second material may comprise a greater resistance to creep as compared to the first material.
- method 200 may further include forming a flange at an end of the tube portion opposite the conical back-leg (step 212).
- Step 212 may include forming the flange using additive manufacturing.
- Method 200 may further include forming a lip extending from a radially outward end of the conical back-leg (step 214).
- Step 214 may include forming the lip using additive manufacturing.
- any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented.
- any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step.
- Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that may be performed concurrently or in different order are illustrated in the figures to help to improve understanding of embodiments of the present disclosure.
- Any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts or areas but not necessarily to denote the same or different materials. In some cases, reference coordinates may be specific to each figure.
- references to "one embodiment”, “an embodiment”, “various embodiments”, etc. indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Braking Arrangements (AREA)
Abstract
Description
- The present disclosure relates to brake systems, and more specifically, to torque tubes for aircraft brake systems.
- Aircraft typically have brakes on the wheels to slow the aircraft during aborted takeoffs, landings, and while taxiing. Aircraft brake systems generally employ a brake stack comprised of a series of friction disks, which may be forced into contact with one another to stop the aircraft. The brake systems may include a torque tube (also referred to as a torque plate). The torque tube is generally machined from a single piece of metal which tends to generate a large amount of material waste and which forms a solid metal torque tube with increased weight.
- In various embodiments, the present disclosure provides a method of making a hybrid torque tube for a brake assembly. The method may comprise forming a tube portion having a centerline axis using a first manufacturing process, forming and a conical back-leg extending from the tube portion in a radially outward angled orientation relative to the centerline axis, forming a stator spline on a radially outward surface of the tube portion, and forming a foot extending from a radially inward surface of the tube portion. At least one of the conical back-leg, the stator spline, or the foot may be formed using a second manufacturing process different from the first manufacturing process. The second manufacturing process may comprise an additive manufacturing technique.
- In various embodiments, a portion of the stator spline may be hollow. In various embodiments, a cross-section of the stator spline may comprise a lattice structure. In various embodiments, forming the stator spline may comprise depositing a base material with a coating located over the base material.
- In various embodiments, the method may further comprise forming the tube portion using a first metal alloy, and forming, at least, a portion of the conical back-leg using a second metal alloy different from the first metal alloy.
- In various embodiments, the method may further comprise forming the tube portion using a first metal alloy, and forming the foot using a second metal alloy different from the first metal alloy. The second metal alloy may comprise a greater resistance to creep as compared to the first metal alloy.
- Also disclosed herein, according to various embodiments, is a method of making a hybrid torque tube for a brake assembly comprising forming a tube portion having a centerline axis using a first manufacturing process, forming a conical back-leg extending from a first end of the tube portion, forming a flange at a second end of the tube portion opposite the first end of the tube portion, forming a foot extending from a radially inward surface of the tube portion, and forming a stator spline on the tube portion. At least one of the conical back-leg, the flange, the foot, or the stator spline may be formed using a second manufacturing process. The second manufacturing process may comprise an additive manufacturing technique.
- In various embodiments, the first manufacturing process may comprise at least one of forging, extrusion, casting, machining, stamping, or subtractive manufacturing. In various embodiments, the flange, the foot, or the stator spline may be formed using the second manufacturing process, and the conical back-leg may be formed using at least one of forging, extrusion, casting, machining, stamping, subtractive manufacturing, welding, or swaging.
- In various embodiments, forming the stator spline may comprise depositing a base material with a wear coating located over the base material. In various embodiments, a portion of the stator spline may be hollow.
- In various embodiments, the tube portion may comprise a first material and the foot may comprise a second material different from the first material.
- Also disclosed herein, according to various embodiments, is a hybrid torque tube for a brake assembly. The hybrid torque tube may comprise a tube portion having a centerline axis. The tube portion may comprise a first metal alloy. A conical back-leg may extend from the tube portion in a radially outward angled orientation relative to the centerline axis. A stator spline may be formed on a radially outward surface of the tube portion. A foot may be formed on a radially inward surface of the tube portion. At least one of the conical back-leg, the stator spline, or the foot may comprise a second metal alloy different from the first metal alloy.
- In various embodiments, a portion of the stator spline is hollow. In various embodiments, a portion of the stator spline comprises a lattice structure. In various embodiments, an end of the stator spline proximate the conical back-leg may be tapered.
- In various embodiments, the first metal alloy may comprise a first non-ferrous material, and the second metal alloy may comprise a second non-ferrous material different from the first non-ferrous material. The second non-ferrous material may have a greater resistance to creep as compared to the first non-ferrous material. In various embodiments, the first metal alloy may comprise, by weight, 6% aluminum, 4% vanadium, a maximum of 0.2% oxygen, a maximum of 0.25% iron, and at least 89% titanium. The second metal alloy may comprise, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, and at least 85% titanium.
- In various embodiments, the first metal alloy may comprise a first ferrous material, and the second metal alloy may comprise a second ferrous material different from the first ferrous material.
- The forgoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
-
-
FIG. 1 illustrates a cross-sectional view of a brake assembly, in accordance with various embodiments; -
FIG. 2A illustrates a cutaway of a hybrid torque tube, in accordance with various embodiments; -
FIG. 2B illustrates a cross-sectional view of a portion of a hybrid torque tube having a conical back-leg formed by additive manufacturing, in accordance with various embodiments; -
FIGs. 3A and 3B illustrate, respectively, a perspective view and a cross-sectional view of a hollow stator spline, in accordance with various embodiments; -
FIG. 3C illustrates a perspective view of a stator spline having multiple hollow portions, in accordance with various embodiments; -
FIG. 3D illustrates a perspective view of a stator spline having portions comprised of different materials, in accordance with various embodiments; -
FIGs. 3E and 3F illustrate, respectively, a perspective view and a cross-sectional view of a stator spline comprising a lattice structure, in accordance with various embodiments; -
FIGs. 3G and 3H illustrate, respectively, a perspective view and a cross-sectional view of a stator spline having a wear coating, in accordance with various embodiments; and -
FIGs. 4A and4B illustrate a method of making a hybrid torque tube, in accordance with various embodiments. - The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
- The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the exemplary embodiments of the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation.
- Surface cross hatching lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials. Throughout the present disclosure, like reference numbers denote like elements. Accordingly, elements with like element numbering may be shown in the figures, but may not be necessarily be repeated herein for the sake of clarity.
- As used herein, a first component that is "radially outward" of a second component means that the first component is positioned at a greater distance away from a common axis than the second component. A first component that is "radially inward" of a second component means that the first component is positioned closer to the common axis than the second component. In the case of components that rotate circumferentially about a common axis, a first component that is radially inward of a second component rotates through a circumferentially shorter path than the second component. As used herein, "distal" refers to the direction outward, or generally, away from a reference component. As used herein, "proximal" and/or "proximate" refer(s) to a direction inward, or generally, towards the reference component.
- With reference to
FIG. 1 , amulti-disk brake system 20 is illustrated, in accordance with various embodiments. An A-R-C axis has been included in the drawings to illustrate the axial (A), radial (R) and circumferential (C) directions.Multi-disk brake system 20 may include awheel 10 supported for rotation aroundaxle 12 bybearings 14.Wheel 10 includesrims 16 for supporting a tire, and a series of axially extending rotor splines 18 (one shown). Rotation ofwheel 10 is modulated bymulti-disk brake system 20.Multi-disk brake system 20 includes apiston housing 22,torque tube 24, a plurality of pistons 26 (one shown),pressure plate 30,end plate 32, and plurality offriction disks 38 located betweenpressure plate 30 andend plate 32. - The plurality of
friction disks 38 includes at least onenon-rotatable friction disk 40, also known as a stator, and at least onerotatable friction disk 42, also known as a rotor. Each of thefriction disks 38 includes an attachment structure. In various embodiments, each of the fournon-rotatable friction disks 40 includes a plurality of stator lugs 44 at circumferentially spaced positions around thenon-rotatable friction disk 40 as an attachment structure. Similarly, each of the fiverotatable friction disks 42 includes a plurality of rotor lugs 46 at circumferentially spaced positions around therotatable friction disk 42 as an attachment structure.Pressure plate 30,end plate 32, andfriction disks 38 are each annular structures and may be made at least partially from a carbon composite material. - With reference to
FIG. 2A ,torque tube 24 is an elongated annular structure that includes acylindrical tube portion 100 having acenterline axis 102, a conical back-leg 104 (also referred to as a pressure flange web) extending fromtube portion 100, and a series of axially extending stator splines 106 (also referred to as torque lugs) formed on a radially outward surface, or outer diameter, 108 oftube portion 100. The conical back-leg 104 extends radially outward fromtube portion 100 and towardswheel 10 at an angled orientation relative tocenterline axis 102. In various embodiments, conical back-leg 104 has a frustoconical shape.Torque tube 24 may further include a flange 110 (also referred to as a piston housing flange) and a foot 112 (also referred to as an inner support flange).Flange 110 may be formed at an end oftube portion 100 that is opposite conical back-leg 104.Flange 110 may extend radially inward fromtube portion 100.Flange 110 may be coupled topiston housing 22, with momentary reference toFIG. 1 , via afastener 111.Fastener 111 may comprise a screw, bolt, rivet, pin, or other suitable securement mechanism. - Returning to
FIG. 2A ,foot 112 may be formed on a radially inward surface, or inner diameter, 114 oftube portion 100.Foot 112 may contact anaxle 12, with momentary reference toFIG. 1 . In various embodiments, alip 116 may be formed on a radially outward end of conical back-leg 104.Lip 116 may extend axially from conical back-leg 104 such thatlip 116 is parallel radiallyoutward surface 108 oftube portion 100. In various embodiments,lip 116 may be oriented at angle of up to 90° relative to a plane parallel with radiallyoutward surface 108 oftube portion 100. - As discussed in further detail below,
torque tube 24 is hybrid torque tube. As used herein, a "hybrid torque tube" refers to a torque tube having at least one component (e.g., stator splines 106,flange 110,foot 112,lip 116, etc.) formed using an additive manufacturing technique, for example, wire arc additive manufacturing or electron beam additive manufacturing, and at least one component (e.g., tube portion 100) formed using a non-additive manufacturing technique, for example, forging, extrusion, machining, casting, stamping, or subtractive manufacturing. - Returning to
FIG. 1 ,piston housing 22 is mounted toaxle 12.Flange 110 oftorque tube 24 is bolted or otherwise coupled topiston housing 22 with conical back-leg 104 oftorque tube 24 proximate an axial center ofwheel 10.End plate 32 is connected or mounted tolip 116 oftorque tube 24. In various embodiments,lip 116 may define one or more holes extending throughlip 116 and configured to receive afastener 120.Fastener 120 may comprise a bolt, pin, anchor, lug, or other suitable securement mechanism. Stator splines 106 supportnon-rotatable friction disks 40. Stator splines 106 may also supportpressure plate 30 such thatpressure plate 30 is also non-rotatable.Non-rotatable friction disks 40 engagestator splines 106 via gaps formed between stator lugs 44. Similarly,rotatable friction disks 42 engagerotor splines 18 via gaps formed between rotor lugs 46.Rotatable friction disks 42 are rotatable by virtue of their engagement withrotor splines 18 ofwheel 10. -
Rotatable friction disks 42 are arranged withend plate 32 on an endproximate wheel 10, withpressure plate 30 on an enddistal wheel 10 andproximate pistons 26, and withnon-rotatable friction disks 40 interleaved so thatrotatable friction disks 42 are adjacent to non-rotatable friction components (e.g., interleaved rotors and stators).Pistons 26 are connected topiston housing 22 at circumferentially spaced positions aroundpiston housing 22.Pistons 26 face axially towardwheel 10 and contact a side ofpressure plate 30 oppositerotatable friction disks 42.Pistons 26 may be powered electrically, hydraulically, or pneumatically. - In various embodiments, in response to actuation of
pistons 26, a force is exerted on therotatable friction disks 42 and thenon-rotatable friction disks 40 towards conical back-leg 104. Therotatable friction disks 42 and thenon-rotatable friction disks 40 may thus be pressed together betweenpressure plate 30 andend plate 32. - Under various braking conditions, a large amount of torque may be applied to
friction disks 38 and an extreme amount of heat may be generated. In this regard, various components and/or areas oftorque tube 24 may experience increased mechanical stresses at elevated temperatures, which may cause these components and/or areas to "creep." Stated differently, the mechanical stresses and increased heat generated during various braking events may lead to deformation of one or more components oftorque tube 24. The present disclosure, according to various embodiments, provides a hybrid torque tube which is both light weight and resistant to creep. More specifically, and according to various embodiments, a hybrid torque tube may be manufactured using both additive and non-additive manufacturing techniques whereby the components and/or areas of the torque tube that are more susceptible to creep may be formed using materials that have an increased creep resistance, while other components and/or areas of the torque tube that are less susceptible to creep may be formed using other less creep resistant materials. Minimizing and/or reducing the amount of material having increased creep resistance tends to reduce manufacturing costs. Additionally, employing additive manufacturing techniques to form various components of the torque tube tends to decrease material waste and allow for geometries that may not otherwise be possible with other manufacturing processes. - Referring to
FIG. 2A ,tube portion 100 oftorque tube 24 may be formed using a first manufacturing process which employs non-additive manufacturing techniques. For example,tube portion 100 may be formed by forging, extrusion, machining, casting, stamping, subtractive manufacturing, and/or other suitable non-additive manufacturing techniques.Tube portion 100 may comprise a non-ferrous material, for example, titanium or titanium alloy. In various embodiments,tube portion 100 may comprise a titanium alloy conforming to the unified numbering system standard (UNS) R56400, also referred to as Grade 5 titanium, which may also be referred to as Ti-6A1-4V (Ti64), and which is comprised of, by weight, 6% aluminum, 4% vanadium, a maximum of 0.2% Oxygen, a maximum of 0.25% iron, and at least 89% titanium. In various embodiments,tube portion 100 may comprise a ferrous material, for example, a chromium-molybdenum steel, a nickel-chromium-molybdenum steel, or a nickel-chromium-molybdenum-vanadium steel. - Stator splines 106 may be formed on radially
outward surface 108 oftube portion 100 using a second manufacturing process that employs an additive manufacturing technique. For example,tube portion 100 may be formed by forging, extrusion, casting, and/or machining, andstator splines 106 may be formed by wire arc additive manufacturing, electron beam additive manufacturing, or other suitable additive manufacturing technique. Formingstator splines 106 using additive manufacturing allows the geometries and materials ofstator splines 106 to be uniquely tailored. -
FIG. 3A illustrates a perspective view of astator spline 106, in accordance with various embodiments.FIG. 3B illustrates a cross-sectional view ofstator spline 106 taken along theline 3B-3B inFIG. 3A and generally parallel to the R-axis inFIG. 1 . In various embodiments, additive manufacturing may be employed to formstator spline 106 having a hollow portion. In various embodiments,stator spline 106 may be formed by depositing amaterial 128, for example, a metal or metal alloy, on radiallyoutward surface 108 oftorque tube 24 using, for example, wire arc or electron beam additive manufacturing.Stator spline 106 comprises an internal portion orcavity 130 that is devoid ofmaterial 128. Stated differently,material 128 defines aninternal cavity 130 withinstator spline 106. WhileFIGs. 3A and 3B illustrateinternal cavity 130 having a square or rectangular cross-sectional geometry, it should be understood thatinternal cavity 130 may be formed having a cross-sectional geometry that is circular, oval, triangular, polygonal, or any other shape. - With combined reference to
FIG. 2A andFIG. 3C , in various embodiments,torque tube 24 may be formed having one ormore stator splines 136 with multiple hollow portions. Stator spline(s) 136 may be formed ontube portion 100 using additive manufacturing. In various embodiments, a material 138, for example, a metal or metal alloy, is deposited on radiallyoutward surface 108 oftube portion 100 using wire arc or electron beam additive manufacturing to formstator spline 136.Stator spline 136 comprises a plurality of internal portions orcavities 140 that are devoid of material 138. Stated differently, material 138 defines a plurality ofinternal cavities 140 withinstator spline 136. WhileFIG. 3C illustratesinternal cavities 140 having a square or rectangular cross-sectional geometry, it should be understood thatinternal cavities 140 may be formed having a cross-sectional geometry that is circular, oval, triangular, polygonal, or any other shape. In various embodiments, a firsthollow portion 142 ofstator spline 136 may comprise a cross-sectional geometry that is different from the cross-sectional geometry of a secondhollow portion 144 ofstator spline 136. The stator splines ontube portion 100 may comprise any mix of hollow splines and non-hollow splines in any type of arrangement. The stator splines may be arranged to allow directional heat flow to leave the wheel or may provide alternative type of cooling paths, as heat dissipation from the hollow stator splines will differ from heat dissipation from solid stator splines. - With combined reference to
FIG. 2A andFIG. 3D , in various embodiments,torque tube 24 may be formed having one ormore stator splines 146 with portions of varying material. Stator spline(s) 146 may be formed ontube portion 100 using additive manufacturing. In various embodiments, afirst portion 148 ofstator spline 146 may be formed by depositing a metal ormetal alloy 154 on radiallyoutward surface 108 using wire arc or electron beam additive manufacturing. Asecond portion 150 ofstator spline 146 may be formed by depositing a metal ormetal alloy 156, which is different from the metal ormetal alloy 154, on radiallyoutward surface 108 using wire arc or electron beam additive manufacturing. In various embodiments,first portion 148 may comprise a material having a greater heat resistance (i.e., higher melting point), a greater tensile strength, and/or a greater creep resistance as compared to the material ofsecond portion 150. In various embodiments,first portion 148 may comprise a material having a different thermal conductivity as compared to the material ofsecond portion 150 to provide variable heat conduction during braking. Athird portion 152 ofstator spline 146 may be formed by depositing a metal ormetal alloy 158, which is different from metal ormetal alloy 156, on radiallyoutward surface 108 using wire arc or electron beam additive manufacturing. Metal ormetal alloy 158 may be the same or different from metal ormetal alloy 154. In various embodiment, the transition betweenfirst portion 148 andsecond portion 150 and/or the transition betweensecond portion 150 andthird portion 152 may be a gradient transition. Whilestator spline 146 is shown having axiallyadjacent portions stator spline 146 may be formed having radially adjacent, circumferentially adjacent, and/or diagonally adjacent portions of varying materials. -
FIG. 3E illustrates a perspective view of astator spline 166 having a lattice structure, in accordance with various embodiments.FIG. 3F illustrates a cross-sectional view ofstator spline 166 taken along theline 3F-3F inFIG. 3E and generally parallel to the R-axis shown inFIG. 1 . With combined reference toFIG. 2A andFIGs. 3E and 3F , in various embodiments,torque tube 24 may be formed having one ormore stator splines 166 comprised of a lattice structure. Stator spline(s) 166 may be formed ontube portion 100 using additive manufacturing. In various embodiments, amaterial 168, for example, a metal or metal alloy, may be deposited on radiallyoutward surface 108 oftube portion 100 using wire arc or electron beam additive manufacturing to form the lattice structure ofstator spline 166. Whilestator spline 166 is shown having a lattice structure with square or diamond shape openings defined bymaterial 168, it should be understood thatstator spline 166 may have a lattice structure of any geometry, for example, in various embodiments,material 168 may define honeycomb-shaped openings. WhileFIG. 3F illustrates a cross-sectional view ofstator spline 166 taken along a radial plane (i.e., along a plane parallel to the R-axis inFIG. 1 ), in various embodiments, a cross-section ofstator spline 166 taken along an axial plane (i.e., a plane parallel to the A-axis inFIG. 1 ) may comprise a lattice structure. -
FIG. 3G illustrates a perspective view of astator spline 176 having a wear coating, in accordance with various embodiments.FIG. 3H illustrates a cross-sectional view ofstator spline 176 taken along theline 3H-3H inFIG. 3G and generally parallel to the R-axis shown inFIG. 1 . With combined reference toFIG. 2A andFIGs. 3G and 3H , in various embodiments,torque tube 24 may be formed having one or more stator spline(s) 176 including acoating 180.Stator spline 176 may comprise abase material 178, for example, a titanium-based alloy, and acoating 180, for example, a nickel-based superalloy, located over thebase material 178. Stator spline(s) 176 may be formed ontube portion 100 using additive manufacturing. In this regard,base material 178 andcoating 180 located overbase material 178 may be deposited using wire arc or electron beam additive manufacturing. In various embodiments, coating 180 may be located over some portions ofbase material 178 and other portions ofbase material 178 may be devoid ofcoating 180. For example, theportions having coating 180 may correspond to portions ofstator spline 176 that engage stator lugs 44, with momentary reference toFIG 1 . Coating 180 may comprise a wear resistance coating, a thermal resistance coating, a corrosion resistance coating, or a combination of two or more type coatings. - Returning to
FIG. 2A , in various embodiments,foot 112 may be formed on radiallyinward surface 114 oftube portion 100 using additive manufacturing. Formingfoot 112 using additive manufacturing may allow, at least, a portion offoot 112 to be formed using a material having a greater resistance to creep as compared to other components oftorque tube 24. For example, in various embodiments,tube portion 100 may be formed using Ti64 andfoot 112 may be formed using a titanium alloy conforming to UNS R54620, which may be referred to as Ti-6Al-2Sn-4Zr-2Mo (Ti6242), and which is comprised of, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, and at least 85% titanium. In various embodiments,foot 112 may be formed using a titanium alloy conforming to UNS R54620, which may be referred to as Ti-6Al-2Sn-4Zr-2Mo-0.08Si (Ti6242S), and which is comprised of, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, 0.08% silicon, and at least 85% titanium, or using any other near-alpha, alpha, or alpha + beta titanium alloy. - In various embodiments, one or more components of
torque tube 24 may comprise a nickel based superalloy. For example, in various embodiments, one or more components oftorque tube 24 may be formed using a nickel based superalloy conforming to UNS N07718, which is comprised of, by weight, 50%-55% nickel (plus cobalt), 17%-21% chromium, 2.8%-3.3% molybdenum, 4.75%-5.5% niobium (plus tantalum), 0.65%-1.15% titanium, 0.2%-0.8% aluminum, and a max of 1% cobalt. - In various embodiments,
tube portion 100 may be formed using a ferrous material (e.g., a chromium-molybdenum steel or a nickel-chromium-molybdenum steel) andfoot 112 may be formed using a ferrous material this different from the ferrous material oftube portion 100. In various embodiments, the ferrous material offoot 112 may comprise a greater resistance to creep, as compared to the ferrous material oftube portion 100. - Forming
foot 112 using additive manufacturing also allows different portions offoot 112 to be formed using different materials. For example, aradially extending portion 112a offoot 112 may comprise a material having a greater heat resistance (i.e., higher melting point), tensile strength, and/or creep resistance as compared to the material used to form anaxially extending portion 112b offoot 112. With combined reference toFIG. 1 andFIG. 2A , in various embodiments,foot 112 may be formed using a material that provides thermal insulation, for example, a material having a decreased thermal conductivity as compared to a material oftube portion 100, in order to reduce conduction of heat toaxle 12. In various embodiments,foot 112 may comprise a lattice structure configured to reduce conduction of heat toaxle 12. Configuringfoot 112 to better insulateaxle 12 from heat generated byfriction disks 38 may allow other types of insulators located betweenfoot 112 and axle to be removed. - In various embodiments,
flange 110 and/orlip 116 may also be formed using additive manufacturing and may each comprise a material that is different from one or more of the other components oftorque tube 24. In various embodiments,foot 112 may be coupled to radiallyinward surface 114 using friction stir welding. - In various embodiments, both
tube portion 100 and conical back-leg 104 may be formed using non-additive manufacturing techniques. For example,tube portion 100 and conical back-leg 104 may be formed by forging, extrusion, casting, machining, stamping, subtractive manufacturing, or by welding conical back-leg 104 totube portion 100. In various embodiments, conical back-leg 104 may be formed by swaging or flaring an end oftube portion 100. - With reference to
FIG. 2B , in various embodiments,tube portion 100 may be formed using a first manufacturing process comprised of non-additive manufacturing techniques and conical back-leg 104 may be formed ontube portion 100 using a second manufacturing process that employs an additive manufacturing technique. For example,tube portion 100 may be formed by forging, extrusion, casting, and/or machining, and conical back-leg 104 may be formed by wire arc or electron beam additive manufacturing. Forming conical back-leg 104 using additive manufacturing may allow some or all of conical back-leg 104 to be formed using a material that is different from the material used to form one or more of the other components (e.g.,tube portion 100 and/or stator splines 106) oftorque tube 24. For example, in various embodiments,tube portion 100 may be formed using Ti64 and conical back-leg 104 may be formed using Ti6242. Forming conical back-leg 104 using additive manufacturing also allows different portions of conical back-leg 104 to be formed using different materials. For example, a first portion of conical back-leg 104 may comprise a material having a greater heat resistance (i.e., higher melting point), tensile strength, and/or creep resistance as compared to the material of a second portion of conical back-leg 104. In various embodiments, anend 107 ofstator splines 106 may be tapered.End 107 may extend radially outward, along conical back-leg 104, at an angled orientation relative tocenterline axis 102. In various embodiments, the angle ofend 107 relative tocenterline axis 102 is equal to the angle of conical back-leg 104 relative tocenterline axis 102. -
FIG. 4A illustrates amethod 200 of making a hybrid torque tube for a brake assembly, in accordance with various embodiments.Method 200 may comprise forming a tube portion having a centerline axis and a conical back-leg extending radially outward from the tube portion (step 202) and forming stator splines on a radially outward surface of the tube portion (step 204). In various embodiments,step 202 includes forming, at least, the tube portion using a non-additive manufacturing technique, for example, forging, extrusion, casting, machining, and step 204 includes forming the stator spline using an additive manufacturing technique, for example, wire arc or electron beam additive manufacturing. In various embodiments, a portion of at least one of the stator splines may be hollow. In various embodiments, at least one of the stator splines may comprise a lattice structure. In various embodiments,step 204 may comprise forming at least one of the stator splines by depositing a base material and a coating over the base material. - With reference to
FIG. 4B , in various embodiments,step 202 may comprise forming a tube portion using a first manufacturing process comprising a non-additive manufacturing technique, for example, forging, extrusion, casting, machining, (step 206), and forming a conical back-leg extending from the tube portion using additive manufacturing, for example, using wire arc or electron beam additive manufacturing (step 208). In various embodiments,step 206 may comprise forming the tube portion using a first material (e.g., a first metal alloy), and step 208 may comprise forming the conical back-leg using a second material (e.g., a second metal alloy) different from the first material. - With combined reference to
FIGs. 4A and4B , in various embodiments,method 200 may further comprise forming a foot extending from a radially inward surface of the tube portion using additive manufacturing (step 210). In various embodiments,step 202 may comprise forming the tube portion using a first material (e.g., a first metal alloy), and step 210 may comprise forming the foot using a second material (e.g., a second metal alloy) different from the first material. In various embodiments, the second material may comprise a greater resistance to creep as compared to the first material. - In various embodiments,
method 200 may further include forming a flange at an end of the tube portion opposite the conical back-leg (step 212). Step 212 may include forming the flange using additive manufacturing.Method 200 may further include forming a lip extending from a radially outward end of the conical back-leg (step 214). Step 214 may include forming the lip using additive manufacturing. - Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure.
- The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more." It is to be understood that unless specifically stated otherwise, references to "a," "an," and/or "the" may include one or more than one and that reference to an item in the singular may also include the item in the plural. All ranges and ratio limits disclosed herein may be combined.
- Moreover, where a phrase similar to "at least one of A, B, and C" is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
- The steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that may be performed concurrently or in different order are illustrated in the figures to help to improve understanding of embodiments of the present disclosure.
- Any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts or areas but not necessarily to denote the same or different materials. In some cases, reference coordinates may be specific to each figure.
- Systems, methods and apparatus are provided herein. In the detailed description herein, references to "one embodiment", "an embodiment", "various embodiments", etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
- Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. As used herein, the terms "comprises", "comprising", or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Claims (15)
- A method of making a hybrid torque tube for a brake system, comprising:forming a tube portion having a centerline axis using a first manufacturing process;forming a conical back-leg extending from the tube portion in a radially outward angled orientation relative to the centerline axis;forming a stator spline on a radially outward surface of the tube portion; andforming a foot extending from a radially inward surface of the tube portion, wherein at least one of the conical back-leg, the stator spline, or the foot is formed using a second manufacturing process different from the first manufacturing process, the second manufacturing process comprising an additive manufacturing technique.
- The method of claim 1, wherein a portion of the stator spline is hollow.
- The method of claim 1 or 2, wherein a cross-section of the stator spline comprises a lattice structure.
- The method of any preceding claim, further comprising:forming the tube portion using a first metal alloy; andforming, at least, a portion of the conical back-leg using a second metal alloy different from the first metal alloy.
- The method of any of claims 1-3, further comprising:forming the tube portion using a first metal alloy; andforming the foot using a second metal alloy different from the first metal alloy, and preferably wherein the second metal alloy comprises a greater resistance to creep as compared to the first metal alloy.
- The method of any preceding claim, wherein forming the stator spline comprises depositing a base material with a coating located over the base material.
- A method of making a hybrid torque tube for a brake assembly, comprising:forming a tube portion having a centerline axis using a first manufacturing process; andforming a conical back-leg extending from a first end of the tube portion;forming a flange at a second end of the tube portion opposite the first end of the tube portion;forming a foot extending from a radially inward surface of the tube portion; andforming a stator spline on the tube portion, wherein at least one of the conical back-leg, the flange, the foot, or the stator spline is formed using a second manufacturing process, the second manufacturing process comprising an additive manufacturing technique.
- The method of claim 7, wherein the first manufacturing process comprises at least one of forging, extrusion, casting, machining, stamping, or subtractive manufacturing.
- The method of claim 7 or 8, wherein at least one of the flange, the foot, or the stator spline is formed using the second manufacturing process, and wherein the conical back-leg is formed using at least one of forging, extrusion, casting, machining, stamping, subtractive manufacturing, welding, or swaging.
- The method of any of claims 7-9, wherein forming the stator spline comprises depositing a base material with a coating located over the base material; or wherein the tube portion comprises a first material and the foot comprises a second material different from the first material; or wherein a portion of the stator spline is hollow.
- A hybrid torque tube (24) for a brake assembly, the hybrid torque tube comprising:a tube portion (100) having a centerline axis, the tube portion comprising a first metal alloy;a conical back-leg (104) extending from the tube portion (100) in a radially outward angled orientation relative to the centerline axis;a stator spline (106) formed on a radially outward surface of the tube portion (100); anda foot (112) formed on a radially inward surface of the tube portion (100), wherein at least one of the conical back-leg (104), the stator spline (106), or the foot (112) comprises a second metal alloy different from the first metal alloy.
- The hybrid torque tube of claim 11, wherein a portion of the stator spline (106) is hollow.
- The hybrid torque tube of claims 11 or 12, wherein a portion of the stator spline (106) comprises a lattice structure.
- The hybrid torque tube of any of claims 11-13, wherein the first metal alloy comprises a first non-ferrous material, and wherein the second metal alloy comprises a second non-ferrous material different from the first non-ferrous material, the second non-ferrous material having a greater resistance to creep as compared to the first non-ferrous material, and preferably wherein the first metal alloy comprises, by weight, 6% aluminum, 4% vanadium, a maximum of 0.2% oxygen, a maximum of 0.25% iron, and at least 89% titanium, and wherein the second metal alloy comprises, by weight, 6% aluminum, 2% tin, 4% zirconium, 2% molybdenum, and at least 85% titanium.
- The hybrid torque tube of claim 14, wherein the first metal alloy comprises a first ferrous material, and wherein the second metal alloy comprises a second ferrous material different from the first ferrous material; wherein an end of the stator spline (016) proximate the conical back-leg (104) is tapered.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/887,754 US10677300B2 (en) | 2018-02-02 | 2018-02-02 | Hybrid torque tube |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3521650A1 true EP3521650A1 (en) | 2019-08-07 |
EP3521650B1 EP3521650B1 (en) | 2020-11-25 |
Family
ID=65411725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19154322.2A Active EP3521650B1 (en) | 2018-02-02 | 2019-01-29 | Hybrid torque tube |
Country Status (2)
Country | Link |
---|---|
US (2) | US10677300B2 (en) |
EP (1) | EP3521650B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110128818A1 (en) | 2009-12-02 | 2011-06-02 | Conocophillips Company | Extraction of discrete records from continuous seismic recordings |
US11092203B2 (en) * | 2018-04-25 | 2021-08-17 | Goodrich Corporation | Hybrid torque bar |
EP3888825A1 (en) * | 2020-03-30 | 2021-10-06 | Delavan, Inc. | Assembly assistance |
EP3945224B1 (en) | 2020-07-28 | 2024-04-10 | Goodrich Corporation | Piston engaging member and method of forming a piston engaging member |
US20240051660A1 (en) * | 2022-08-10 | 2024-02-15 | Goodrich Corporation | Tapered torque plate barrel for improving dynamic stability |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120325594A1 (en) * | 2011-06-24 | 2012-12-27 | Goodrich Corporation | Systems and methods for brake whirl mitigation |
US8950557B2 (en) * | 2012-02-07 | 2015-02-10 | Goodrich Corporation | Systems and methods for an improved torque tube |
EP2940340A1 (en) * | 2014-04-29 | 2015-11-04 | Goodrich Corporation | Torque bar and methods for making |
EP3184422A2 (en) * | 2015-12-21 | 2017-06-28 | Goodrich Corporation | Stiffened torque bar, wheel and brake assembly with such a bar and method for mounting such a bar to a wheel and brake assembly |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958833A (en) * | 1974-10-29 | 1976-05-25 | The Bendix Corporation | Heat shield and drive key apparatus for disc brake |
US4084857A (en) * | 1976-12-20 | 1978-04-18 | The Bendix Corporation | Drive key heat shield and support for wheel rim heat shield of multiple disc brake |
US5186521A (en) * | 1991-09-24 | 1993-02-16 | Allied-Signal Inc. | Wheel and drive key assembly |
US5310025A (en) * | 1992-07-23 | 1994-05-10 | Allied-Signal Inc. | Aircraft brake vibration damper |
US6003954A (en) * | 1997-08-25 | 1999-12-21 | Aircraft Braking Systems Corporation | Aircraft wheel and beam key attachment |
US6631793B2 (en) * | 2001-12-13 | 2003-10-14 | Aircraft Braking Systems Corporation | Torque tube and conical back plate for aircraft brake systems |
US9784134B2 (en) | 2013-09-25 | 2017-10-10 | Pratt & Whitney Canada Corp. | Gas turbine engine inlet assembly and method of making same |
US9458891B2 (en) | 2014-06-16 | 2016-10-04 | Goodrich Corporation | Contoured disc coupling |
US20160279710A1 (en) | 2015-03-25 | 2016-09-29 | Goodrich Corporation | Aircraft brake rotor clip repair methods |
US20170022614A1 (en) | 2015-07-20 | 2017-01-26 | Goodrich Corporation | Methods for repair of aircraft wheel and brake parts |
US9759278B2 (en) * | 2015-12-21 | 2017-09-12 | Goodrich Corporation | Multi-piece torque tube assembly to mitigate vibration |
US9670975B1 (en) * | 2015-12-21 | 2017-06-06 | Goodrich Corporation | Torque tube damping devices and assemblies |
US9938003B2 (en) * | 2015-12-21 | 2018-04-10 | Goodrich Corporation | Multipart torque bar for vibration suppression |
-
2018
- 2018-02-02 US US15/887,754 patent/US10677300B2/en active Active
-
2019
- 2019-01-29 EP EP19154322.2A patent/EP3521650B1/en active Active
-
2020
- 2020-05-04 US US16/865,635 patent/US10927908B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120325594A1 (en) * | 2011-06-24 | 2012-12-27 | Goodrich Corporation | Systems and methods for brake whirl mitigation |
US8950557B2 (en) * | 2012-02-07 | 2015-02-10 | Goodrich Corporation | Systems and methods for an improved torque tube |
EP2940340A1 (en) * | 2014-04-29 | 2015-11-04 | Goodrich Corporation | Torque bar and methods for making |
EP3184422A2 (en) * | 2015-12-21 | 2017-06-28 | Goodrich Corporation | Stiffened torque bar, wheel and brake assembly with such a bar and method for mounting such a bar to a wheel and brake assembly |
Also Published As
Publication number | Publication date |
---|---|
US20190242446A1 (en) | 2019-08-08 |
US10927908B2 (en) | 2021-02-23 |
EP3521650B1 (en) | 2020-11-25 |
US10677300B2 (en) | 2020-06-09 |
US20200263747A1 (en) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10927908B2 (en) | Hybrid torque tube | |
EP3480072B1 (en) | Shield attachment device | |
EP3647622B1 (en) | Segmented heat shield with reduced interlayer thermal conduction | |
EP3521161B1 (en) | Laminated dimpled foil metallic heat shield | |
US10968971B2 (en) | Multi-layer insulator for brake piston | |
JP6126342B2 (en) | Shaft assembly for gas turbine engines | |
EP3670955B1 (en) | Heat shield retainer and method | |
EP3869060B1 (en) | Rotor drive key assembly | |
US20210317880A1 (en) | Rotor drive key assembly | |
EP3418601B1 (en) | Multi-disk brake assembly with travel limit pin | |
EP0020452B1 (en) | Caliper brake rotor and method of making it | |
EP3712457A1 (en) | Segmented rivetless wear liner with structural carbon or ceramic core | |
EP4289689A1 (en) | Multi-layer aircraft brake insulator | |
US20240051660A1 (en) | Tapered torque plate barrel for improving dynamic stability | |
EP4283152A1 (en) | Stator clip for brake assembly | |
EP3715663B1 (en) | Segmented rivetless wear liner with structural carbon or ceramic core | |
US20240270019A1 (en) | Use of profiled reaction face in hybrid torque bar applications | |
US11946518B2 (en) | Slotted torque plate barrel | |
EP3925874B1 (en) | Aircraft wheel torque bar spacer | |
EP4155198A1 (en) | Heat shield panel connector | |
US20230096318A1 (en) | Rotor clip apparatus and systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191126 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F16D 55/36 20060101AFI20200505BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200618 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1338681 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019001398 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1338681 Country of ref document: AT Kind code of ref document: T Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210225 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210226 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210325 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210325 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602019001398 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210129 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
26N | No opposition filed |
Effective date: 20210826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210129 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231219 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231219 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |