EP3520170B1 - Broadband mimo antenna system for electronic device - Google Patents

Broadband mimo antenna system for electronic device Download PDF

Info

Publication number
EP3520170B1
EP3520170B1 EP18788042.2A EP18788042A EP3520170B1 EP 3520170 B1 EP3520170 B1 EP 3520170B1 EP 18788042 A EP18788042 A EP 18788042A EP 3520170 B1 EP3520170 B1 EP 3520170B1
Authority
EP
European Patent Office
Prior art keywords
antennas
antenna
rim
ground
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18788042.2A
Other languages
German (de)
French (fr)
Other versions
EP3520170A1 (en
EP3520170A4 (en
Inventor
Huanhuan Gu
Enliang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of EP3520170A1 publication Critical patent/EP3520170A1/en
Publication of EP3520170A4 publication Critical patent/EP3520170A4/en
Application granted granted Critical
Publication of EP3520170B1 publication Critical patent/EP3520170B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present disclosure relates to antennas, and in particular, to a broadband antenna and an arrangement of an antenna system in an electronic device.
  • the antennas may be printed on a Printed Circuit Board (PCB) of the device.
  • PCB Printed Circuit Board
  • the layout of the PCB may need to be substantially changed or rearranged in order to print additional antennas on the ground plane of the PCB.
  • the rim includes first and second side rim portions projecting from opposite sides of the back enclosure element.
  • the first row of antennas is located in the first side rim portion.
  • the MIMO antenna array includes a second row of antennas, and the second row of antennas is secured to the housing and located in the second side rim portion.
  • the first row of antennas and the second row of antennas each include at least four antennas.
  • the resonant frequency of the antennas is between 3 GHz and 6 GHz.
  • the resonant frequency of the antennas is substantially 3.5GHz and the antennas are configured to receive or transmit RF signals within a frequency range of 3 GHz and 6 GHz.
  • the first and second side rim portions are formed from metal, the antennas each being insert molded into the rim and having an outer surface forming part of an outer surface of the rim.
  • the rim includes a top rim portion and a bottom rim portion that extend between the first and second side rim portions at a top and bottom of the housing respectively, the electronic device further including at least one further antenna located in one of the top rim portion and the bottom rim portion, the at least one further antenna having a different resonant frequency than the resonant frequency of the antennas of the MIMO antenna array.
  • each of the antennas includes a resonating body secured to the rim, and a feed pad and a ground pad projecting from the resonating body into an inner region of the housing, the resonating body arranged substantially perpendicular with the feed pad and the ground pad.
  • the RF communications circuit includes: an RF transceiver circuit comprising at least one integrated circuit component mounted on a printed circuit board (PCB); a plurality of signal paths extending through the PCB from the RF transceiver circuit to a plurality of electrical signal path connectors, each of the signal path connectors being in electrical contact with the feed pad of a respective one of the antennas; and a plurality of ground paths extending through the PCB from a common ground to a plurality of electrical ground path connectors, each of the ground path connectors being in electrical contact with the ground pad of a respective one of the antennas.
  • PCB printed circuit board
  • each of the signal path connectors and ground path connectors are spring biased to maintain pressure contact with the feed pads and ground pads, respectively.
  • the resonating body and feed and ground pads of each of the antennas are configured to match an output impedance of the RF transceiver circuit without any intervening impedance matching circuitry.
  • an electronic device that includes a housing enclosing a radio frequency (RF) communications circuit; and at least one antenna secured to the housing.
  • the at least one antenna includes a resonating body with a feed pad and a ground pad extending from the resonating body.
  • the feed pad is connected to the RF communications circuit.
  • a ground pad is connected to a common ground as the RF communications circuit.
  • the resonating body of the antenna having a length of 1 ⁇ 4 wavelength of a resonant frequency of the antenna, wherein the feed pad and the ground pad are positioned on the resonating body to provide an antenna impedance that matches an output impedance of the RF communications circuit, the resonating body arranged substantially perpendicular with the feed pad and the ground pad, wherein the housing comprises a back enclosure element and a forward projecting rim about a perimeter of the back enclosure element, the resonating body of the antenna being located on the rim, and wherein the RF communications circuitincludes: an RF transceiver circuit comprising at least one integrated circuit component mounted on a printed circuit board (PCB); at least one signal path extending through the PCB from the RF transceiver circuit to at least one electrical signal path connector, the signal path connector being a first spring loaded pressure contact connector and in electrical contact with the feed pad of the antenna; and at least one ground path extending through the PCB from a common ground to at least one electrical ground path connector
  • the first row and the second row of antennas each include at least four of the antennas.
  • the antenna impedance has a resistance in a range of 35 to 75ohm, and a reactance about 0 to +/- 20 Ohm, in the frequency range of 3-6 GHz.
  • the output impedance of the RF communications circuit is 50ohm.
  • a S11 of the antenna is substantially less or equal to -6dB.
  • a method for installing a MIMO antenna array in an electronic device such as the one in claim 1.
  • FIG. 1 illustrates an example of an electronic device 100 according to the present disclosure.
  • the electronic device 100 may be a mobile device that is enabled to receive and/or transmit radio frequency (RF) signals including for example, a tablet, a smart phone, a Personal Digital Assistant (PDA), or an Internet of Things (IOT) device, among other things.
  • the electronic device 100 includes a housing 102 for enclosing hardware of the electronic device 100.
  • Hardware of the electronic device may include at least one Printed Circuit Board (PCB) 104, a display module 106, a battery 108, one or more antenna devices 110 including an array of antennas 200(1) to 200(8) (referred to generically as antennas 200), and other hardware 112 including various circuits formed by electronic components populated on the PCB 104, sensors, speakers, or cameras.
  • PCB Printed Circuit Board
  • PCB 104 includes a plurality of layers including at least one signal layer and at least one ground layer.
  • the signal layer includes a plurality of conductive traces that each form signal paths 116 between respective PCB pads.
  • the ground layer of the PCB 104 provides a common ground reference in the PCB 104 for current returns of the electronic components and shielding, and includes a plurality of conductive traces that each form ground paths 118.
  • Conductive vias are provided through the PCB 104 to extend the signal paths 116 and ground paths 118 to surface connection points (such as pads) on the PCB 104.
  • Electronic components are populated on the PCB 104 to form circuits capable of performing desired functions.
  • Electronic components may include, for example, integrated circuit (IC) chips, capacitors, resistors, inductors, diodes, transistors and other components.
  • transceiver circuit 120 includes components to implement transmitter circuitry that modulates baseband signals to a carrier frequency and amplifies the resulting modulated RF signals. The amplified RF signals are then sent from the transceiver circuit 120 using signal path 116 and ground path 118 to the antennas 200 which then radiate the amplified RF signals into a wireless transmission medium.
  • transceiver circuit 120 includes components to implement receiver circuitry that receives external carrier frequency modulated RF signals through signal path 116 and ground path 118 from the antennas 200.
  • the transceiver circuit 120 may include a low noise amplifier (LNA) for amplifying the received signals and a demodulator for demodulating the received RF signals to baseband.
  • LNA low noise amplifier
  • RF transceiver circuit 120 may be replaced with a transmit-only circuitry and in some examples, RF transceiver circuit 120 may be replaced with a receiver-only circuitry.
  • FIGS 2A-2C illustrate an example broadband antenna 200 that is capable of transmitting RF signals received from a transmitter of the transceiver circuit 120 of the electronic device 100 and/or receiving external RF signals for further processing by a receiver of the transceiver circuit 120 of the electronic device 100.
  • the antenna 200 comprises first and second terminals in the form of a feed pad 206, and a ground pad 208, and includes a resonating element in the form of a resonating body 204.
  • the body 204, the feed pad 206 and the ground pad 208 may be made of metal, such as copper.
  • the feed pad 206 and the ground pad 208 are electrically connected to the body 204.
  • Each of the feed pad 206 and the ground pad 208 has a first end electrically connected to the body 204, for example, on the inner side 202e and close to the bottom edge 202d of the body 204.
  • Each of the feed pad 206 and the ground pad 208 extends inwardly from inner surface 202e to a respective second distal end.
  • Each of the feed pad 206 and the ground pad 208 may have a substantially rectangular shape.
  • each of the feed pad 206 and the ground pad 208 may be a rectangular metal tab.
  • the feed pad 206 is electrically connected to transceiver circuit 120 through the signal path 116 of RF communications circuit 114.
  • the ground pad 208 is electrically connected to a common ground through the ground path 118 of the PCB 104.
  • the feed pad 206 and the ground pad 208 are substantially perpendicular with the inner side 202e of the body 204.
  • the inner side 202e of the body 204 is substantially in an XZ plane, and the feed pad 206 and the ground pad 208 are substantially in the XY plane.
  • the feed pad 206 and the ground pad 208 extend inward from the inner side 201e at the bottom edge 202d of the body 204 and are located between the first side edge 202a and the second side edge 202b of the antenna body 204.
  • the length of the antenna body 204 is substantially about 1 ⁇ 4 wavelength ( ⁇ ) of the resonant frequency of the antenna 200.
  • the length of the antenna body 204 is d1
  • the distance between the feed pad 206 and the ground pad 208 is d4
  • the distance between the second side edge 202b and the ground pad 208 is d2
  • the distance between the first side edge 202a and the feed pad 206 is d6
  • the widths of the feed pad 206 and the ground pad 208 are d5 and d3, respectively.
  • d1 d2+d3+d4+d5+d6.
  • d2 and d6 are equal and d3 is equal to d5. In some embodiments, d4 is equal to the sum of d2 and d6.
  • the antenna 200 is integrated into side edge or rim portions of device 100, and in such cases the height h of the antenna 200 is selected in accordance with the thickness of the device 100.
  • the output impedance of the RF communications circuit 114 (which includes the transceiver circuit 120 and signal and ground paths 116,118) may be purely resistive (for example, 50 Ohm).
  • the impedance Z of the antenna 200 is configured to "match" the output impedance of the RF communications circuit 114, without using any additional impedance matching circuit or impedance compensating circuit. Accordingly, in example embodiments, in the state of "impedance matching", the antenna 200 is configured to have an impedance that has negligible reactance and has a resistance that falls within a defined range of the output resistance of the RF communications circuit 114.
  • the antenna 200 is configured such that the impedance Z of the antenna 200 has a resistance R about 35 to 75ohm, and a reactance X about 0 to +/- 20 Ohm, at the resonant frequency and within the frequency range.
  • any power loss in signals exchanged between the antenna 200 and RF communications circuit 114 is within an acceptable threshold level at the resonant frequency and within the frequency range (bandwidth) of the antenna 200.
  • the power loss in signals exchanged between the antenna 200 and RF communications circuit 114 is represented by a parameter S11, which indicates the power level reflected from the antenna 200.
  • S11 is also known as the reflection coefficient gamma ⁇ or return loss.
  • the width of each of the feed pad 206 (d5) and the ground pad 208 (d3) is 2mm.
  • the antenna 200 has a high efficiency.
  • an array of such antennas may have a total and radiation Rx efficiency of above 60% across most of the frequency range of 3GHz to 6GHz.
  • the antenna 200 in this example also has a good impedance matching at the frequency range of 3GHz to 6 GHz.
  • an array of such antennas has a scattering parameter S Rx-Rx substantially less than -10 dB in most of the frequency range from 3GHz to 6GHz.
  • antenna 200 is a planar antenna having a structure that achieves impedance matching from 3 GHz to 6 GHz.
  • the antenna 200 may, for example, be a Planar Inverted-F Antenna (PIFA), an Inverted-F Antenna, a monopole antenna, or a patch antenna.
  • PIFA Planar Inverted-F Antenna
  • Inverted-F Antenna a monopole antenna
  • patch antenna a patch antenna.
  • antenna 200 does not need an extra impedance matching circuit to achieve the "impedance matching" state in order for the antenna 200 to operate at the desired resonant frequency and bandwidth, for example, at resonant frequency 3.5 GHz and within the frequency range of 3 GHz-6GHz. Therefore, antenna 200 has a compact size and may be implemented in an electronic device 100, such as a 5G electronic device, without occupying excessive free space of the electronic device 100 or substantially changing or rearranging the existing layout of the PCB 104.
  • the components of RF communications circuit 114 that connect the antenna 200 to the RF transceiver circuit 120 have negligible inductance, and the antenna 200 is configured to match the impedance of the RF transceiver circuit 120 without any intermediate RF tuning circuitry or impedance matching circuitry.
  • the configuration of the resonating element body 204 and relative positioning of feed and ground pads 206 and 208 are selected to match the impedance of RF transceiver circuit 120 to meet the criteria stated above.
  • a multiple-input and multiple-output (MIMO) antenna system may be used to increase the capacity of wireless channels.
  • MIMO antenna array that includes a plurality of antennas 200 is integrated into the housing 102 of electronic device 100, and in this regard reference is now made to the example embodiment illustrated in Figures 3 and 4 .
  • the housing 102 of electronic device 100 includes a rectangular, planar back enclosure element 302 that is surrounded by a forwardly projecting rim 301 that extends around the outer periphery of back enclosure element 302.
  • the rim 301 and back enclosure element 302 define the back and sides of an internal region 303 that contains hardware of the device 100, including PCB 104.
  • the electronic device 100 will typically also include a front enclosure element that is secured to the front of the rim 301 and covers the front of the internal region 303 to enclose the internal device hardware.
  • the front enclosure element is omitted for clarity.
  • the front enclosure element incorporates user interface elements such as a touch display screen.
  • the rim 301 includes a top rim portion 304, a bottom rim portion 306 and two opposite side rim portions 308 and 310 that extend between the top and bottom rim portions.
  • Electronic devices intended for handheld use typically have a rectangular prism configuration with a top and bottom of the device that correspond to the orientation that the device is most commonly held in during handheld use, and the terms "top”, “bottom”, “front” and “back” as used herein refer to the most common use orientation of a device as intended by the device manufacturer, while recognizing that some devices can be temporarily orientated to different orientations (for example from a portrait orientation to a landscape orientation).
  • each of the top rim 304, the bottom rim 306, and the two opposite side rims 308 and 310 has an inner surface and an outer surface.
  • the back enclosure element 302 and the rim 301 are formed from suitable material, such as metal, plastic, carbon-fiber materials or other composites, glass, or ceramics, and eight antennas 200 are secured to the rim 301 of housing 102 to form an 8x8 MIMO antenna system.
  • the feed pads 206 and the ground pads 208 of the 8 antennas 200 are arranged inside the housing 102 for electrically connecting with signal and ground paths 116, 118 of PCB 104.
  • the antennas 200 are each secured into respective openings in the side rim portions 308 and 310 using an insert molding process with an insulating dielectric material 312 (see antenna 200(4)) extending around a perimeter of the antenna feed and ground pads 206, 208 and antenna body 204 to insulate the antenna 200 from the rest of the metal of housing 102 and secure the antenna 200 in place.
  • insulating material 312 could include a plastic strip.
  • the antennas 200(1)-200(4) are evenly spaced apart in a row along side rim portion 308 and the antennas 200(5)-200(8) are evenly spaced apart in a row along opposite side rim portion 310.
  • the antennas 200(1)-200(4) are symmetrical with respect to the antennas 200(5)-200(8).
  • the inner side 202e of the metal antenna body 204 of each of the antennas 200(1)-200(8) forms part of the inner surface of the side rim portions 308 and 310
  • the outer side 202f of the metal antenna body 204 of each of the antennas 200(1)-200(8) forms part of the outer surface of the side rim portions 308 and 310.
  • the thickness of the body 204 of the antennas 200a-200h and the non-antenna portions of side rim portions 308 and 310 are substantially the same, however in some example embodiments they may be different.
  • an RF transceiver circuit 120 is mounted on PCB 104.
  • Signal paths 116 and ground paths 118 are provided in respective layers of the PCB 104 between the RF transceiver circuit 120 to provide signal and ground connections between each of the antennas 200 and the RF transceiver circuit 120.
  • Figure 4 is a partial cross-sectional illustration of the device 100 of Figure 3 , showing the connection of feed pad 206 of an antenna 200 (for example antenna 200(7)) to transceiver circuit 120 through a signal path 116 of PCB 104.
  • the body 204 of antenna 200 forms part of the rim 301 (side rim portion 310 in the case of antenna 200(7)) of housing 102, with the inner side 202e of the antenna 200 facing housing inner region 303, and the outer side 202f of the antenna 200 facing outwards.
  • the feed pad 206 of antenna 200 extends inward from the antenna body 204 and is integrated into an upper surface of the metal bottom enclosure element 302 such that a surface of the feed pad 206 is exposed in housing inner region 303.
  • dielectric insulating material 312 extends between the metal bottom enclosure 302 and the components of antenna 200 (including feed pad 206 and ground pad 208) to insulate the antenna components from the metal bottom enclosure element 302.
  • signal path 116 extends through PCB 104 between a first conductive pad 402 located on one side of the PCB 104 and a second conductive pad 404 located on the opposite side of the PCB.
  • a signal input/output pad of RF transceiver circuit 120 is electrically connected (for example through a wave soldering process) to the first conductive pad 402.
  • a connector, such as a spring loaded pressure contact connector, 212 is connected (for example through a wave soldering process) to the second conductive pad 404.
  • the spring loaded connector 212 is clamped between the PCB 104 and the antenna feed pad 206, biasing the connector 212 into electrical contact with feed pad 206, thus providing a RF signal path between the RF transceiver circuit 120 and the antenna 200.
  • the ground pad 208 of antenna 200 is similarly electrically connected by a further spring loaded connector to a ground path 118 in PCB 104.
  • the spring loaded connectors 212, PCB signal path 116 and ground path 118, RF transceiver circuit 120, and any interconnecting conductive elements such as PCB pads 402, 404 collectively provide RF communications circuit 114.
  • the impedance of antenna 200 is matched as per the criteria described above to the impedance of the RF communications circuit 114.
  • the impedance of the connectors 212, PCB paths 116 and 118 and any interconnecting conductive elements such as PCB pads 402, 404 is general negligible and can be ignored in impedance matching of the antenna 200 and the RF transceiver circuit 120.
  • Different electrical connections can be used between the antenna 200 and the PCB 104 than the spring clip style connector 212 shown in Figure 4 .
  • a spring loaded pogo-pin style connector could alternatively be used.
  • Antennas 200(1)-200(4) arranged on the inner surface of side rim portion 308 are not shown because they are hidden in the perspective view of Figure 5 .
  • the thickness of the body 204 of the metal antennas 200 (1)-200(8) and the side rim portions 308, 310 may be different or substantially the same.
  • the partial sectional view of Figure 6 illustrates the mounting an antenna 200 (for example antenna 200(7)) to the plastic side rim portion 310 of rim 301 in greater detail.
  • the body 204 of antenna 200 is secured to the inner surface of rim portion 310, with the inner side 202e of the antenna 200 facing housing inner region 303, and the outer side 202f of the antenna 200 facing the rim portion 310, which is formed from a non-conductive RF-transparent material.
  • the feed pad 206 of antenna 200 extends inward from the antenna body 204 along a non-conducting upper surface of the bottom enclosure element 302 such that a surface of the feed pad 206 is exposed in housing inner region 303.
  • the antenna 200 may be integrally formed on the rim portion 310 and bottom enclosure element 302.
  • antenna 200 can be integrated into flex PCB 312 that is secured to the rim portion 310 and bottom enclosure element 302.
  • the number, location and relative spacing of antennas 200 within the housing 102 can be different than described above.
  • one or more antennas 200 could be placed on the top rim portion 304, the bottom rim portion 306, the back enclosure element 302 and/or the front cover of the housing 102.
  • the antennas can be asymmetrically placed in some examples.
  • the number of antennas could be fewer than or greater than eight, including as few as one.
  • 4 antennas 200 may securely attach to the housing 102 to form a 4X4 MIMO antenna system, including for example 2 antennas 200 secured to each of the side rim portions 308 and 310 of the housing 102 to form a 4X4 MIMO antenna system.
  • the antennas 200 secured to the housing 102 are substantially identical to each other and have a resonant frequency with the frequency range of 3 GHz-6GHz.
  • the antennas 200 secured to the housing 102 have different resonant frequencies with the frequency range of 3 GHz-6GHz.
  • a plurality of antennas 200 securely attached to side rim 308 of housing 102 have a resonant frequency of 3.5 GHz
  • a plurality of antennas 200 securely attached to side rim 310 of housing 102 have a resonant frequency of 4.8GHz.
  • a plurality of antennas 200 securely attached to a side rim 308 or 310 of housing 102 have different resonant frequencies.
  • some of the antennas 200 have a resonant frequency of 3.5 GHz and other antennas 200 have a resonant frequency of 4.8 GHz.
  • antennas having different configurations and tuned for other frequency ranges are also secured to housing 102, including for example antennas for 3.5GHz, 4.8GHz and sub 2.6GHz legacy bands.
  • antennas secured to the housing 102 have different resonant frequencies and different frequency ranges.
  • MIMO antenna systems such as those shown in in Figures 3 and 5 have a low correlation between different pairs of antennas 200.
  • the Rx-Rx Envelope Correlation Coefficient Pearson
  • the Rx-Rx Envelope Correlation Coefficient are substantially below 0.1 on the bandwidth from 3 GHz to 6 GHz. Because of the low correlation between different pairs of antennas, each of the antennas can function independently from the others, and this in turn maximizes wireless channel capacity represented by each antenna 200.
  • MIMO antenna systems in Figures 3 and 5 can have a high efficiency in some configurations. According to measurement results of an 8X8 MIMO antenna analyzer EMITE chamber, the MIMO antenna systems in Figures 3 and 5 have a total and radiation Rx efficiency above 60% in most the frequency range from 3GHz to 6GHz.
  • the MIMO antenna systems in Figures 3 and 5 also have a good impedance matching with the output impedance of a signal circuit 214, such as a transmitting and/or receiving circuit, of the electronic device 100 at the frequency range of 3GHz to 6 GHz.
  • a signal circuit 214 such as a transmitting and/or receiving circuit
  • the MIMO antenna systems in Figures 3 and 5 have scattering parameters S Rx-Rx equal or substantially less than -6 dB from 3GHz to 6GHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Description

    FIELD
  • The present disclosure relates to antennas, and in particular, to a broadband antenna and an arrangement of an antenna system in an electronic device.
  • BACKGROUND
  • Ever more functionality and technology are being integrated into modern electronic devices, such as smart phones. Sometimes, additional hardware may need to be added to the electronic device in order to provide new functionality. For example, additional antennas will be required to support 5G technologies in a modern electronic device.
  • In a conventional mobile or wireless electronic device, the antennas may be printed on a Printed Circuit Board (PCB) of the device. There is, however, very limited additional space on the PCB for placing additional antennas, especially when the additional antennas compete with other additional hardware on the PCB. Furthermore, the layout of the PCB may need to be substantially changed or rearranged in order to print additional antennas on the ground plane of the PCB.
  • 5G frequency bands in different countries may range from 3.5 GHz to 4.8 GHz. Therefore, it is desirable to provide additional antennas in an electronic device that covers these potential 5G frequency bands.
    US 2014/0062799 A1 discloses a wireless communication device and a method with enhanced antenna farm. The method comprises: providing a double molded rear housing including a first shot module including an antenna farm located on an interior shell surface and a second shot module; providing a front housing including a user interface configured to allow a user to perform a desired function; and locating a controller between the front and the rear housing, the controller configured to control the operations of a wireless communication device.
    US 2016/0308563 A1 discloses an electronic device provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements.
    US 2014/0141731 A1 discloses a method and a system providing a multiple input multiple output (MIMO) antenna arrangement in a wireless communication device. A first antenna element and a second antenna element co-located within a same antenna volume are respectively coupled to first and second antenna feeds proximate to a base perimeter segment of a device chassis.
    US 9,001,002 B2 discloses a housing which can make use of an outer member, which can be formed of glass. The outer member can be secured with respect to other portions of the housing for an electronic device. The output member can also be protected at its edges by a protective side member.
  • SUMMARY
  • The present invention relates to an electronic device and a method for installing a MIMO antenna array in an electronic device, as defined in the appended set of claims. A broadband antenna and an arrangement of an antenna system may be conveniently implemented in an electronic device of the present invention, such as a 5G electronic device. Instead of using additional impedance matching circuit between a RF communications circuit and the antenna or the antenna system, the impedance of the antenna or the antenna system described in example embodiments of the present invention substantially matches an output impedance of the RF communications circuit. The antenna or antenna system may attach to a housing of the electronic device, and may be implemented in an electronic device without occupying excessive free space of the electronic device or substantially changing or rearranging the existing layout of the Printed Circuit Board. Hereinafter, before coming to a detailed description of the embodiments of the present invention with reference to the attached drawings, some aspects of the invention which contribute to the understanding of the invention are listed separately. However, it should be noted that the invention is defined by the attached claims, and any examples and embodiments not covered by these claims are only to be understood as aspects contributing to the understanding of the invention.
  • According to one aspect there is provided an electronic device that includes a housing enclosing a radio frequency (RF) communications circuit; and a multiple input multiple output (MIMO) antenna array. The MIMO antenna array electrically connects to the RF communications circuit, the MIMO antenna array includes a first row of antennas that are secured to the housing.
  • The housing includes a back enclosure element surrounded by a forwardly projecting rim. The first row of antennas is located in the rim.
  • Optionally, in any of the preceding aspects, the rim includes first and second side rim portions projecting from opposite sides of the back enclosure element. The first row of antennas is located in the first side rim portion. The MIMO antenna array includes a second row of antennas, and the second row of antennas is secured to the housing and located in the second side rim portion.
  • Optionally, in any of the preceding aspects, the first row of antennas and the second row of antennas each include at least four antennas.
  • Optionally, in any of the preceding aspects, the resonant frequency of the antennas is between 3 GHz and 6 GHz.
  • Optionally, in any of the preceding aspects, the resonant frequency of the antennas is substantially 3.5GHz and the antennas are configured to receive or transmit RF signals within a frequency range of 3 GHz and 6 GHz.
  • Optionally, in any of the preceding aspects, the first and second side rim portions are formed from metal, the antennas each being insert molded into the rim and having an outer surface forming part of an outer surface of the rim.
  • Optionally, in any of the preceding aspects, the first and second side rim portions are formed from plastic, the antennas each being formed on the rim using a laser direct structuring (LDS) process.
  • Optionally, in any of the preceding aspects, the first and second side rim portions are formed from plastic, the antennas each being integrated into a flex printed circuit board (PCB) secured to the rim.
  • Optionally, in any of the preceding aspects, the antennas are Planar Inverted-F Antennas (PIFAs).
  • Optionally, in any of the preceding aspects, the rim includes a top rim portion and a bottom rim portion that extend between the first and second side rim portions at a top and bottom of the housing respectively, the electronic device further including at least one further antenna located in one of the top rim portion and the bottom rim portion, the at least one further antenna having a different resonant frequency than the resonant frequency of the antennas of the MIMO antenna array.
  • In all the embodiments, each of the antennas includes a resonating body secured to the rim, and a feed pad and a ground pad projecting from the resonating body into an inner region of the housing, the resonating body arranged substantially perpendicular with the feed pad and the ground pad.
  • In all of the embodiments, the RF communications circuit includes: an RF transceiver circuit comprising at least one integrated circuit component mounted on a printed circuit board (PCB); a plurality of signal paths extending through the PCB from the RF transceiver circuit to a plurality of electrical signal path connectors, each of the signal path connectors being in electrical contact with the feed pad of a respective one of the antennas; and a plurality of ground paths extending through the PCB from a common ground to a plurality of electrical ground path connectors, each of the ground path connectors being in electrical contact with the ground pad of a respective one of the antennas.
  • In all of the embodiments, each of the signal path connectors and ground path connectors are spring biased to maintain pressure contact with the feed pads and ground pads, respectively.
  • Optionally, in any of the preceding aspects, the resonating body and feed and ground pads of each of the antennas are configured to match an output impedance of the RF transceiver circuit without any intervening impedance matching circuitry.
  • According to another aspect, there is provided an electronic device that includes a housing enclosing a radio frequency (RF) communications circuit; and at least one antenna secured to the housing. The at least one antenna includes a resonating body with a feed pad and a ground pad extending from the resonating body. The feed pad is connected to the RF communications circuit. A ground pad is connected to a common ground as the RF communications circuit. The resonating body of the antenna having a length of ¼ wavelength of a resonant frequency of the antenna, wherein the feed pad and the ground pad are positioned on the resonating body to provide an antenna impedance that matches an output impedance of the RF communications circuit, the resonating body arranged substantially perpendicular with the feed pad and the ground pad, wherein the housing comprises a back enclosure element and a forward projecting rim about a perimeter of the back enclosure element, the resonating body of the antenna being located on the rim, and wherein the RF communications circuitincludes: an RF transceiver circuit comprising at least one integrated circuit component mounted on a printed circuit board (PCB); at least one signal path extending through the PCB from the RF transceiver circuit to at least one electrical signal path connector, the signal path connector being a first spring loaded pressure contact connector and in electrical contact with the feed pad of the antenna; and at least one ground path extending through the PCB from a common ground to at least one electrical ground path connector, the ground path connector being a second spring loaded pressure contact connector and in electrical contact with the ground pad of the antenna.
  • Optionally, in any of the preceding aspects, the rim includes a top rim portion located at a top of the electronic device, a bottom rim portion, and two opposite side rims extending between the top and bottom rims, the electronic device comprises a MIMO antenna array that includes a first row of the antennas and a second row of the antennas, the resonating bodies of the first row of antennas being located on one of the side rims and the antennas of the resonating bodies of the second row of antennas being located on the other of the side rims.
  • Optionally, in any of the preceding aspects, the first row and the second row of antennas each include at least four of the antennas.
  • Optionally, in any of the preceding aspects, the antenna impedance has a resistance in a range of 35 to 75ohm, and a reactance about 0 to +/- 20 Ohm, in the frequency range of 3-6 GHz. The output impedance of the RF communications circuit is 50ohm.
  • Optionally, in any of the preceding aspects, a S11 of the antenna is substantially less or equal to -6dB.
  • According to another aspect, there is provided a method for installing a MIMO antenna array in an electronic device, such as the one in claim 1.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference will now be made, by way of example, to the accompanying drawings which show example embodiments of the present disclosure, and in which:
    • Figure 1 is a block diagram that illustrates an example of an electronic device according to example embodiments.
    • Figure 2A is a perspective view of an antenna according to example embodiments.
    • Figure 2B is a left side view of the antenna in Figure 2A.
    • Figure 2C is a right side view of the antenna in Figure 2A.
    • Figure 3 is a front perspective view of a housing of the electronic device in Figure 1, illustrating 4 antennas attached to each of two side rims, according to example embodiments.
    • Figure 4 is a partial cross-sectional view of Figure 3, illustrating an antenna with the feed pad connected to a signal circuit, according to example embodiments.
    • Figure 5 is a front perspective view of a housing of a further example embodiment of the electronic device in Figure 1, illustrating 4 antennas attached to an inner wall of each of two plastic side rims of the housing.
    • Figure 6 is a partial cross-sectional view of Figure 5, illustrating an antenna with the feed pad connected to a signal circuit, according to example embodiments.
    • Figure 7 is a front perspective view of a housing of a further example embodiment of the electronic device in Figure 1.
  • Similar reference numerals may have been used in different figures to denote similar components.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS
  • Figure 1 illustrates an example of an electronic device 100 according to the present disclosure. The electronic device 100 may be a mobile device that is enabled to receive and/or transmit radio frequency (RF) signals including for example, a tablet, a smart phone, a Personal Digital Assistant (PDA), or an Internet of Things (IOT) device, among other things. The electronic device 100 includes a housing 102 for enclosing hardware of the electronic device 100. Hardware of the electronic device may include at least one Printed Circuit Board (PCB) 104, a display module 106, a battery 108, one or more antenna devices 110 including an array of antennas 200(1) to 200(8) (referred to generically as antennas 200), and other hardware 112 including various circuits formed by electronic components populated on the PCB 104, sensors, speakers, or cameras.
  • In an example embodiment, PCB 104 includes a plurality of layers including at least one signal layer and at least one ground layer. The signal layer includes a plurality of conductive traces that each form signal paths 116 between respective PCB pads. The ground layer of the PCB 104 provides a common ground reference in the PCB 104 for current returns of the electronic components and shielding, and includes a plurality of conductive traces that each form ground paths 118. Conductive vias are provided through the PCB 104 to extend the signal paths 116 and ground paths 118 to surface connection points (such as pads) on the PCB 104. Electronic components are populated on the PCB 104 to form circuits capable of performing desired functions. Electronic components may include, for example, integrated circuit (IC) chips, capacitors, resistors, inductors, diodes, transistors and other components.
  • In example embodiments, an RF communications circuit 114 is implemented by PCB 114 and the components populated on PCB 114. By way of example, RF communications circuit 114 can include signal and ground paths 116, 118, an RF transceiver circuit 120, electrical connectors for connecting to antenna devices 110, and other circuitry required for handling RF wireless signals. In example embodiments, RF transceiver circuit 120 can be formed from one or more integrated circuits and include modulating circuitry, power amplifier circuitry, low-noise input amplifiers and other components required to transmit or receive RF signals.
  • In an example, transceiver circuit 120 includes components to implement transmitter circuitry that modulates baseband signals to a carrier frequency and amplifies the resulting modulated RF signals. The amplified RF signals are then sent from the transceiver circuit 120 using signal path 116 and ground path 118 to the antennas 200 which then radiate the amplified RF signals into a wireless transmission medium. In an example, transceiver circuit 120 includes components to implement receiver circuitry that receives external carrier frequency modulated RF signals through signal path 116 and ground path 118 from the antennas 200. The transceiver circuit 120 may include a low noise amplifier (LNA) for amplifying the received signals and a demodulator for demodulating the received RF signals to baseband. In some examples, RF transceiver circuit 120 may be replaced with a transmit-only circuitry and in some examples, RF transceiver circuit 120 may be replaced with a receiver-only circuitry.
  • As will be explained in greater detail below, the housing 102 includes a back enclosure element with a rim or side that extends around a perimeter of the back enclosure element. A front enclosure element is provided to cooperate with the housing 102. In an embodiment, the rim, the front enclosure element and the back enclosure element together securely enclose hardware of the electronic device 100. In an embodiment, the housing 102 may be formed from material such as metal, plastic, carbon-fiber materials or other composites, glass, ceramics, or other suitable materials .
  • Antenna
  • Figures 2A-2C illustrate an example broadband antenna 200 that is capable of transmitting RF signals received from a transmitter of the transceiver circuit 120 of the electronic device 100 and/or receiving external RF signals for further processing by a receiver of the transceiver circuit 120 of the electronic device 100. The antenna 200 comprises first and second terminals in the form of a feed pad 206, and a ground pad 208, and includes a resonating element in the form of a resonating body 204. The body 204, the feed pad 206 and the ground pad 208 may be made of metal, such as copper. The feed pad 206 and the ground pad 208 are electrically connected to the body 204.
  • In the example illustrated in Figure 2A, the body 204 has a substantially rectangular shape. For example, the body 204 may be formed from a rectangular metal board that includes metal formed on a planar substrate. The body 204 includes: a planar outer side 202f, a planar inner side 202e, substantially parallel top and bottom edges 202f, 202d, and substantially parallel first and second side edges 202a, 202b that extend between top and bottom edges 202f, 202d.
  • Each of the feed pad 206 and the ground pad 208 has a first end electrically connected to the body 204, for example, on the inner side 202e and close to the bottom edge 202d of the body 204. Each of the feed pad 206 and the ground pad 208 extends inwardly from inner surface 202e to a respective second distal end. Each of the feed pad 206 and the ground pad 208 may have a substantially rectangular shape. For example, as shown in Figures 2A, 2B and 2C, each of the feed pad 206 and the ground pad 208 may be a rectangular metal tab.
  • The feed pad 206 is electrically connected to transceiver circuit 120 through the signal path 116 of RF communications circuit 114. The ground pad 208 is electrically connected to a common ground through the ground path 118 of the PCB 104.
  • In an embodiment, the feed pad 206 and the ground pad 208 are substantially perpendicular with the inner side 202e of the body 204. As illustrated in the example of Figure 2A, the inner side 202e of the body 204 is substantially in an XZ plane, and the feed pad 206 and the ground pad 208 are substantially in the XY plane. In the illustrated embodiment, the feed pad 206 and the ground pad 208 extend inward from the inner side 201e at the bottom edge 202d of the body 204 and are located between the first side edge 202a and the second side edge 202b of the antenna body 204.
  • The length of the antenna body 204, illustrated as d1 in Figure 2A, is substantially about ¼ wavelength (λ) of the resonant frequency of the antenna 200. In Figure 2A, the length of the antenna body 204 is d1, the distance between the feed pad 206 and the ground pad 208 is d4, the distance between the second side edge 202b and the ground pad 208 is d2, the distance between the first side edge 202a and the feed pad 206 is d6, and the widths of the feed pad 206 and the ground pad 208 are d5 and d3, respectively. In the example of Figure 2A, d1=d2+d3+d4+d5+d6. In an embodiment, d2 and d6 are equal and d3 is equal to d5. In some embodiments, d4 is equal to the sum of d2 and d6. As will be discussed in greater detail below, in example embodiments the antenna 200 is integrated into side edge or rim portions of device 100, and in such cases the height h of the antenna 200 is selected in accordance with the thickness of the device 100.
  • The impedance of the antenna 200 may be denoted as a complex number Z, and Z = R + jX, where the real part of impedance is the resistance R of the antenna 200 and the imaginary part is the reactance X of the antenna 200. The reactance X may include capacitive reactance Xc and inductive reactance XL. The values of capacitive reactance Xc and inductive reactance XL change as the resonant frequency of the antenna 200 changes. When the value of the reactance X increases, the amount of reflected power of the signals transmitted between the antenna 200 and the transceiver circuit 120 increases. Impedance Z relates the voltage and current at the input, such as feed pad 206, to the antenna 200. The resistance R represents power that is either radiated away or absorbed within the antenna 200. The Reactance X represents non-radiated power that is stored in the near field of the antenna 200.
  • The output impedance of the RF communications circuit 114 (which includes the transceiver circuit 120 and signal and ground paths 116,118) may be purely resistive (for example, 50 Ohm). In example embodiments, the impedance Z of the antenna 200 is configured to "match" the output impedance of the RF communications circuit 114, without using any additional impedance matching circuit or impedance compensating circuit. Accordingly, in example embodiments, in the state of "impedance matching", the antenna 200 is configured to have an impedance that has negligible reactance and has a resistance that falls within a defined range of the output resistance of the RF communications circuit 114.
  • In some example embodiments, where the RF communications circuit 114 impedance R=50 ohms, in the state of "impedance matching", the antenna 200 is configured such that the impedance Z of the antenna 200 has a resistance R about 35 to 75ohm, and a reactance X about 0 to +/- 20 Ohm, at the resonant frequency and within the frequency range.
  • In another example embodiment, at the resonant frequency, the impedance Z of the antenna 200 is a pure resistance R (X of antenna 200 is "0"), where R is around 35-75 Ohm at the resonant frequency. In another embodiment, at the resonant frequency, the impedance Z of the antenna 200 is a pure resistance R, with R=50 Ohm.
  • In the state of "impedance matching", any power loss in signals exchanged between the antenna 200 and RF communications circuit 114 is within an acceptable threshold level at the resonant frequency and within the frequency range (bandwidth) of the antenna 200. In example embodiments, the power loss in signals exchanged between the antenna 200 and RF communications circuit 114 is represented by a parameter S11, which indicates the power level reflected from the antenna 200. S11 is also known as the reflection coefficient gamma γ or return loss.
  • In some example embodiments, at the resonant frequency and within the frequency range, S11 of the antenna 200 is <=-6dB, i.e., at least 75% total power has been delivered to the antenna 200, and at most 25% total power has been reflected.
  • At a specific resonant frequency, the impedance of the antenna 200 is a factor of the distance d4 between the feed pad 206 and the ground pad 208. When d4 becomes shorter, the impedance will decrease; when d4 becomes larger, the impedance will increase. The impedance of the antenna 200 can also be a factor of the locations at which the feed pad 206 and the ground pad 208 are electrically connected to the body 204. Accordingly, in example embodiments the antenna 200 is configured such that the location of the electrical connection points of ground pad 208 and the feed pad 206 to the antenna body 204 and the distance between the ground pad 208 and the feed pad 206 achieves impedance matching within the acceptable signal power loss threshold.
  • In an example, the resonant frequency of the antenna 200 is 3.5 GHz. Accordingly, the length d1 of body 204 of the antenna 200 between the first and second opposite edges 202a and 202b is d1=¼λ=24 mm. The distance d6 between the feed pad 206 and the second side edge 202a is d6=5 mm, the distance d2 between the ground pad 208 and the first side edge 202b is d2=5 mm, the distance d4 between the feed pad 206 and the ground pad 208 is d4=10 mm, and the width of each of the feed pad 206 (d5) and the ground pad 208 (d3) is 2mm. In this example, the antenna 200 has a resistance R about 35 to 75 Ohm, and a reactance X about 0 to +/- 20 Ohm, and S11 < =-6dB, in the frequency range of 3GHz to 6 GHz. In this example, the antenna 200 has a high efficiency. According to measurement results, an array of such antennas may have a total and radiation Rx efficiency of above 60% across most of the frequency range of 3GHz to 6GHz. As well, the antenna 200 in this example also has a good impedance matching at the frequency range of 3GHz to 6 GHz. According to measurement results, an array of such antennas has a scattering parameter SRx-Rx substantially less than -10 dB in most of the frequency range from 3GHz to 6GHz.
  • In example embodiments, antenna 200 is a planar antenna having a structure that achieves impedance matching from 3 GHz to 6 GHz. The antenna 200 may, for example, be a Planar Inverted-F Antenna (PIFA), an Inverted-F Antenna, a monopole antenna, or a patch antenna.
  • Because the body 204, the feed pad 206 and the ground pad 208 of the antenna 200 have an impedance that substantially matches the output impedance of the RF communications circuit 114, the antenna 200 does not need an extra impedance matching circuit to achieve the "impedance matching" state in order for the antenna 200 to operate at the desired resonant frequency and bandwidth, for example, at resonant frequency 3.5 GHz and within the frequency range of 3 GHz-6GHz. Therefore, antenna 200 has a compact size and may be implemented in an electronic device 100, such as a 5G electronic device, without occupying excessive free space of the electronic device 100 or substantially changing or rearranging the existing layout of the PCB 104. In example embodiments, the components of RF communications circuit 114 that connect the antenna 200 to the RF transceiver circuit 120 have negligible inductance, and the antenna 200 is configured to match the impedance of the RF transceiver circuit 120 without any intermediate RF tuning circuitry or impedance matching circuitry. In such a configuration, the configuration of the resonating element body 204 and relative positioning of feed and ground pads 206 and 208 are selected to match the impedance of RF transceiver circuit 120 to meet the criteria stated above.
  • MIMO Antenna System
  • 5G technologies require faster data rates and greater data streams in the air interface. A multiple-input and multiple-output (MIMO) antenna system may be used to increase the capacity of wireless channels. In example embodiments, a MIMO antenna array that includes a plurality of antennas 200 is integrated into the housing 102 of electronic device 100, and in this regard reference is now made to the example embodiment illustrated in Figures 3 and 4.
  • As illustrated in Figures 3 and 4, the housing 102 of electronic device 100 includes a rectangular, planar back enclosure element 302 that is surrounded by a forwardly projecting rim 301 that extends around the outer periphery of back enclosure element 302. The rim 301 and back enclosure element 302 define the back and sides of an internal region 303 that contains hardware of the device 100, including PCB 104. The electronic device 100 will typically also include a front enclosure element that is secured to the front of the rim 301 and covers the front of the internal region 303 to enclose the internal device hardware. However, in the illustration of Figure 3, the front enclosure element is omitted for clarity. In at least some examples the front enclosure element incorporates user interface elements such as a touch display screen.
  • The rim 301 includes a top rim portion 304, a bottom rim portion 306 and two opposite side rim portions 308 and 310 that extend between the top and bottom rim portions. Electronic devices intended for handheld use typically have a rectangular prism configuration with a top and bottom of the device that correspond to the orientation that the device is most commonly held in during handheld use, and the terms "top", "bottom", "front" and "back" as used herein refer to the most common use orientation of a device as intended by the device manufacturer, while recognizing that some devices can be temporarily orientated to different orientations (for example from a portrait orientation to a landscape orientation). In some examples, the term "top" corresponds to the top edge of a display screen on the front enclosure element of the electronic device 100, with the top edge of the screen corresponding to the readable orientation of information arranged on the screen when the screen is first turned on. In some examples, "top" and "bottom" can be relative to the location of speaker and microphone elements, with the speaker being located closer to the top rim and the microphone being closer to the bottom rim. In at least some example embodiments, the side rims 308 and 310 of the housing 102 have a greater length than the top rim 304 and bottom rim 306 of the housing 102.
  • Each of the top rim 304, the bottom rim 306, and the two opposite side rims 308 and 310 has an inner surface and an outer surface. In an example embodiment, the back enclosure element 302 and the rim 301 are formed from suitable material, such as metal, plastic, carbon-fiber materials or other composites, glass, or ceramics, and eight antennas 200 are secured to the rim 301 of housing 102 to form an 8x8 MIMO antenna system. The feed pads 206 and the ground pads 208 of the 8 antennas 200 are arranged inside the housing 102 for electrically connecting with signal and ground paths 116, 118 of PCB 104.
  • In this regard, as illustrated in Figure 3, eight antennas 200(1) - 200(8) are arranged on the side rim portions 308 and 310 of the housing 102, with four antennas 200(1)-200(4) integrated into one side rim portion 308 and four antennas 200(5) - 200(8) integrated into the opposite side rim portion 310. The antennas 200(1)-200(8) form part of the metal rim 301 of the side rim portions 308 and 310 with the inner side 202e of each antenna facing into the internal region 303 of housing 102 and the outer side 202f of each antenna facing outwards. In one example, the antennas 200 are each secured into respective openings in the side rim portions 308 and 310 using an insert molding process with an insulating dielectric material 312 (see antenna 200(4)) extending around a perimeter of the antenna feed and ground pads 206, 208 and antenna body 204 to insulate the antenna 200 from the rest of the metal of housing 102 and secure the antenna 200 in place. In some examples, insulating material 312 could include a plastic strip. In an example embodiment the antennas 200(1)-200(4) are evenly spaced apart in a row along side rim portion 308 and the antennas 200(5)-200(8) are evenly spaced apart in a row along opposite side rim portion 310. In the illustrated example, the antennas 200(1)-200(4) are symmetrical with respect to the antennas 200(5)-200(8).
  • In Figure 3, the inner side 202e of the metal antenna body 204 of each of the antennas 200(1)-200(8) forms part of the inner surface of the side rim portions 308 and 310, and the outer side 202f of the metal antenna body 204 of each of the antennas 200(1)-200(8) forms part of the outer surface of the side rim portions 308 and 310. In an embodiment, the thickness of the body 204 of the antennas 200a-200h and the non-antenna portions of side rim portions 308 and 310 are substantially the same, however in some example embodiments they may be different.
  • As noted above, an RF transceiver circuit 120 is mounted on PCB 104. Signal paths 116 and ground paths 118 (illustrated as dashed lines in Figure 3, which shows two of the eight sets of signal and ground paths 116, 118) are provided in respective layers of the PCB 104 between the RF transceiver circuit 120 to provide signal and ground connections between each of the antennas 200 and the RF transceiver circuit 120. Figure 4 is a partial cross-sectional illustration of the device 100 of Figure 3, showing the connection of feed pad 206 of an antenna 200 (for example antenna 200(7)) to transceiver circuit 120 through a signal path 116 of PCB 104. As shown in Figure 4 and discussed above, the body 204 of antenna 200 forms part of the rim 301 (side rim portion 310 in the case of antenna 200(7)) of housing 102, with the inner side 202e of the antenna 200 facing housing inner region 303, and the outer side 202f of the antenna 200 facing outwards. The feed pad 206 of antenna 200 extends inward from the antenna body 204 and is integrated into an upper surface of the metal bottom enclosure element 302 such that a surface of the feed pad 206 is exposed in housing inner region 303. In the illustrated embodiment, dielectric insulating material 312 extends between the metal bottom enclosure 302 and the components of antenna 200 (including feed pad 206 and ground pad 208) to insulate the antenna components from the metal bottom enclosure element 302.
  • In the embodiment of Figure 4, signal path 116 extends through PCB 104 between a first conductive pad 402 located on one side of the PCB 104 and a second conductive pad 404 located on the opposite side of the PCB. A signal input/output pad of RF transceiver circuit 120 is electrically connected (for example through a wave soldering process) to the first conductive pad 402. A connector, such as a spring loaded pressure contact connector, 212 is connected (for example through a wave soldering process) to the second conductive pad 404. When PCB 104 is secured within the housing 102 (which may occur through known techniques such as screws and/or clips for example), the spring loaded connector 212 is clamped between the PCB 104 and the antenna feed pad 206, biasing the connector 212 into electrical contact with feed pad 206, thus providing a RF signal path between the RF transceiver circuit 120 and the antenna 200. Although not shown in Figure 4, the ground pad 208 of antenna 200 is similarly electrically connected by a further spring loaded connector to a ground path 118 in PCB 104.
  • From the perspective of antenna 200, the spring loaded connectors 212, PCB signal path 116 and ground path 118, RF transceiver circuit 120, and any interconnecting conductive elements such as PCB pads 402, 404, collectively provide RF communications circuit 114. As noted above in example embodiments, the impedance of antenna 200 is matched as per the criteria described above to the impedance of the RF communications circuit 114. In at least some example embodiments, the impedance of the connectors 212, PCB paths 116 and 118 and any interconnecting conductive elements such as PCB pads 402, 404 is general negligible and can be ignored in impedance matching of the antenna 200 and the RF transceiver circuit 120. In example embodiments, the antenna 200 is impedance matched to the RF transceiver circuit 120 based on the configuration of the antenna body 204 and the location of the ground and feed pads 208, 206 without the need for any intermediate impedance matching circuitry on the antenna 200 or in the signal path between the antenna 200 and the transceiver circuit 120. As indicated above, in some examples the transceiver circuit 120 may be replaced with a receiver only circuit or a transmitter only circuit.
  • Different electrical connections can be used between the antenna 200 and the PCB 104 than the spring clip style connector 212 shown in Figure 4. For example, a spring loaded pogo-pin style connector could alternatively be used.
  • In the embodiment of Figures 3 and 4, housing 102 is formed from substantially metallic components. In other example embodiments, the housing 102 of electronic device 100 is formed from plastic components, and in this regard Figures 5 and 6 illustrate a further example embodiment that is substantially similar to the previously described embodiments except for differences that will be apparent form the description and the Figures. In the example of Figures 5 and 6, antennas 200(1) - 200(8) are arranged to securely attach to the inner surfaces of the side rim portions 308 and 310 of the housing 102, which is formed from a plastic material. As illustrated in Figure 5, antennas 200(5) - 200(8) are arranged on the inner surface of side rim portion 310 of the housing 102. Antennas 200(1)-200(4) arranged on the inner surface of side rim portion 308 are not shown because they are hidden in the perspective view of Figure 5. The thickness of the body 204 of the metal antennas 200 (1)-200(8) and the side rim portions 308, 310 may be different or substantially the same.
  • In example embodiments, the antennas 200(1)-200(8) are be securely attached to the inner surfaces of side rim portions 308 and 310 using a laser direct structuring (LDS) process. In another embodiment, the antennas 200(1)-200(8) are securely attached to the inner surfaces of side rim portions 308 and 310 by a flex tape process in which each of the antennas 200(1)-200(8) are mounted on a respective flex PCB that is then mounted using an adhesive with the antennas to the inner surfaces the side rim portions 308 and 310.
  • The partial sectional view of Figure 6 illustrates the mounting an antenna 200 (for example antenna 200(7)) to the plastic side rim portion 310 of rim 301 in greater detail. As shown in Figure 6, the body 204 of antenna 200 is secured to the inner surface of rim portion 310, with the inner side 202e of the antenna 200 facing housing inner region 303, and the outer side 202f of the antenna 200 facing the rim portion 310, which is formed from a non-conductive RF-transparent material. The feed pad 206 of antenna 200 extends inward from the antenna body 204 along a non-conducting upper surface of the bottom enclosure element 302 such that a surface of the feed pad 206 is exposed in housing inner region 303. In an example where an LDS process is used, the antenna 200 may be integrally formed on the rim portion 310 and bottom enclosure element 302.
  • In an example where a flex tape process is used, antenna 200 can be integrated into flex PCB 312 that is secured to the rim portion 310 and bottom enclosure element 302.
  • The electrical connection of the feed and ground pads 206 and 206 to RF signal circuit are the same as described above in respect of Figures 3 and 4.
  • In the embodiments shown in Figures 3 to 6, the PCB 104 of the electronic device 100 is generally arranged to be parallel to bottom enclosure element 302 and may be secured to standoffs that are located on the bottom enclosure element 302. The body 204 of the antenna 200 is arranged substantially perpendicular with the feed pad 206 and ground pad 208, and this arrangement facilitates connecting the antenna 200 attached to the rim 301 of housing 102 to the ground and feed paths of PCB 104 through spring loaded pressure contact connectors 212.
  • In an embodiment, antennas 200 attached to the housing 102 may be planar antennas. For example, the planar antennas may be Planar Inverted-F Antennas (PIFAs), Inverted-F Antennas, monopole antennas, and patch antennas.
  • Because the antennas in the MIMO antenna systems of Figures 3 and 5 are attached to two side rims 308 and 310 of housing 102, the MIMO antenna systems do not require additional free space from the PCB 104. As such, when additional antennas are required for the electronic devices 100 to provide additional functions or services, for example additional 5G antennas to provide 5G communications services, the additional antennas may be implemented within the electronic device 100, without occupying excessive free space of the electronic device 100 or substantially changing or rearranging the existing layout of the PCB 104.
  • In different embodiments, the number, location and relative spacing of antennas 200 within the housing 102 can be different than described above. For example, one or more antennas 200 could be placed on the top rim portion 304, the bottom rim portion 306, the back enclosure element 302 and/or the front cover of the housing 102. The antennas can be asymmetrically placed in some examples. In some examples, the number of antennas could be fewer than or greater than eight, including as few as one. In some examples, 4 antennas 200 may securely attach to the housing 102 to form a 4X4 MIMO antenna system, including for example 2 antennas 200 secured to each of the side rim portions 308 and 310 of the housing 102 to form a 4X4 MIMO antenna system. In a further example, 12 antennas 200 may be secured to the housing 102 to form a 12X12 MIMO antenna system, including for example 6 antennas 200 secured to each of the side rim portions 308 and 310 of the housing 102 to form a 12X12 MIMO antenna system.
  • In examples described above, the antennas 200 secured to the housing 102 are substantially identical to each other and have a resonant frequency with the frequency range of 3 GHz-6GHz. In some example embodiments, the antennas 200 secured to the housing 102 have different resonant frequencies with the frequency range of 3 GHz-6GHz. For example, within the frequency range of 3 GHz-6GHz, a plurality of antennas 200 securely attached to side rim 308 of housing 102 have a resonant frequency of 3.5 GHz, a plurality of antennas 200 securely attached to side rim 310 of housing 102 have a resonant frequency of 4.8GHz. In other example embodiments, a plurality of antennas 200 securely attached to a side rim 308 or 310 of housing 102 have different resonant frequencies. For example, on a side rim 308 or 310, some of the antennas 200 have a resonant frequency of 3.5 GHz and other antennas 200 have a resonant frequency of 4.8 GHz. In other example embodiments, antennas having different configurations and tuned for other frequency ranges are also secured to housing 102, including for example antennas for 3.5GHz, 4.8GHz and sub 2.6GHz legacy bands. In this regard, Figure 7 illustrates an example embodiment of a housing 102 which includes a 12X12 array of 3GHz-6GHz antennas 200(1)-200(12), and also includes a first sub 2.6GHz antenna 702(1) secured to top rim portion 304 and a second sub 2.6GHz antenna 702(2) secured to bottom rim portion 306. The antennas 702(1) and 702(2) may, in some examples, be connected to a different transceiver circuit than antennas 200, and may be secured to rim 301 in a different manner than antennas 200.
  • In some example embodiments, antennas secured to the housing 102 have different resonant frequencies and different frequency ranges.
  • Performance of the 8×8 MIMO Antenna System
  • In some examples, MIMO antenna systems such as those shown in in Figures 3 and 5 have a low correlation between different pairs of antennas 200. For example, according to measurement results of an 8X8 MIMO antenna analyzer EMITE chamber, the Rx-Rx Envelope Correlation Coefficient (Pearson) are substantially below 0.1 on the bandwidth from 3 GHz to 6 GHz. Because of the low correlation between different pairs of antennas, each of the antennas can function independently from the others, and this in turn maximizes wireless channel capacity represented by each antenna 200.
  • MIMO antenna systems in Figures 3 and 5 can have a high efficiency in some configurations. According to measurement results of an 8X8 MIMO antenna analyzer EMITE chamber, the MIMO antenna systems in Figures 3 and 5 have a total and radiation Rx efficiency above 60% in most the frequency range from 3GHz to 6GHz.
  • The MIMO antenna systems in Figures 3 and 5 also have a good impedance matching with the output impedance of a signal circuit 214, such as a transmitting and/or receiving circuit, of the electronic device 100 at the frequency range of 3GHz to 6 GHz. According to measurement results of an 8X8 MIMO antenna analyzer EMITE chamber, the MIMO antenna systems in Figures 3 and 5 have scattering parameters SRx-Rx equal or substantially less than -6 dB from 3GHz to 6GHz.
  • The present disclosure may be embodied in other specific forms without departing from the subject matter of the claims. The described example embodiments are to be considered in all respects as being only illustrative and not restrictive. Selected features from one or more of the above-described embodiments may be combined to create alternative embodiments not explicitly described, features suitable for such combinations being understood within the scope of this disclosure.

Claims (13)

  1. An electronic device (100) comprising:
    a housing (102) enclosing a radio frequency, RF, communications circuit (114); and
    a multiple input multiple output, MIMO, antenna array electrically connected to the RF communications circuit (114), the MIMO antenna array including a first row of antennas (200) that are secured to the housing (102),
    wherein the housing (102) comprises a back enclosure element (302) surrounded by a forwardly projecting rim (301), wherein the first row of antennas (200) is located in the rim (301),
    wherein each of the antennas (200) includes a resonating body (204) secured to the rim (301), and a feed pad (206) and a ground pad (208) projecting from the resonating body (204) into an inner region of the housing (102), the resonating body (204) arranged substantially perpendicular with the feed pad (206) and the ground pad (208),
    wherein the RF communications circuit (114) includes: an RF transceiver circuit (120) comprising at least one integrated circuit component mounted on a printed circuit board, PCB;
    a plurality of signal paths (116) extending through the PCB from the RF transceiver circuit (120) to a plurality of electrical signal path connectors, each of the signal path connectors being a first spring loaded pressure contact connector (212) and in electrical contact with the feed pad (206) of a respective one of the antennas (200); and a plurality of ground paths (118) extending through the PCB from a common ground to a plurality of electrical ground path connectors, each of the ground path connectors being a second spring loaded pressure contact connector and in electrical contact with the ground pad (208) of a respective one of the antennas (200).
  2. The electronic device of claim 1 wherein the rim includes first and second side rim portions (308, 310) projecting from opposite sides of the back enclosure element, the first row of antennas being located in the first side rim portion (308), the MIMO antenna array including a second row of antennas, the second row of antennas being secured to the housing and located in the second side rim portion (310).
  3. The electronic device of claim 2 wherein the first row of antennas and the second row of antennas each include at least four antennas; and/or,
    wherein the resonant frequency of the antennas is between 3 GHz and 6 GHz.
  4. The electronic device of claim 2 wherein the resonant frequency of the antennas is substantially 3.5 GHz and the antennas are configured to receive or transmit RF signals within a frequency range of 3 GHz and 6 GHz.
  5. The electronic device of any of claims 2 to 4 wherein the first and second side rim portions are formed from metal, the antennas each being insert molded into the rim and having an outer surface forming part of an outer surface of the rim.
  6. The electronic device of any of claims 2 to 4
    wherein the first and second side rim portions are formed from plastic, the antennas each being formed on the rim using a laser direct structuring, LDS, process; and/or,
    wherein the first and second side rim portions are formed from plastic, the antennas each being integrated into a flex printed circuit board, PCB, secured to the rim.
  7. The electronic device of any of claims 2 to 6 wherein the rim includes a top rim portion (304) and a bottom rim portion (306) that extend between the first and second side rim portions at a top and bottom of the housing respectively, the electronic device further including at least one further antenna located in one of the top rim portion and the bottom rim portion, the at least one further antenna having a different resonant frequency than the resonant frequency of the antennas of the MIMO antenna array.
  8. The electronic device of any of claims 2 to 7 wherein the resonating body having a length of ¼ of the resonant frequency wavelength.
  9. An electronic device (100) comprising:
    a housing (102) enclosing a radio frequency, RF, (RF) communications circuit (114); and
    at least one antenna (200) secured to the housing (102), the at least one antenna comprising a resonating body (204) with a feed pad (206) and a ground pad (208) extending from the resonating body (204), the feed pad (206) being connected to the RF communications circuit (114) and the ground pad (208) connected to a common ground as the RF communications circuit (114),
    the resonating body (204) of the antenna (200) having a length of ¼ wavelength of a resonant frequency of the antenna (200), wherein the feed pad (206) and the ground pad (208) are configured to be positioned on the resonating body (204) to provide an antenna impedance that matches an output impedance of the RF communications circuit (114), the resonating body (204) arranged substantially perpendicular with the feed pad (206) and the ground pad (208), wherein the housing (102) comprises a back enclosure element (302) and a forward projecting rim (301) about a perimeter of the back enclosure element (302), the resonating body (204) of the antenna (200) being located on the rim (301),
    wherein the RF communications circuit (114) includes: an RF transceiver circuit (120) comprising at least one integrated circuit component mounted on a printed circuit board, PCB;
    at least one signal path (116) extending through the PCB from the RF transceiver circuit (120) to at least one electrical signal path connector, the signal path connector being a first spring loaded pressure contact connector (212) and in electrical contact with the feed pad (206) of the antenna (200); and at least one ground path (118) extending through the PCB from a common ground to at least one electrical ground path connector, the ground path connector being a second spring loaded pressure contact connector and in electrical contact with the ground pad (208) of the antenna (200).
  10. The electronic device of claim 9,
    wherein the rim includes a top rim portion (304) located at a top of the electronic device, a bottom rim portion (306), and two opposite side rims (308, 310) extending between the top and bottom rims, the electronic device comprises a MIMO antenna array that includes a first row of the antennas and a second row of the antennas, the resonating bodies of the first row of antennas being located on one of the side rims and the resonating bodies of the second row of antennas being located on the other of the side rims.
  11. The electronic device of claim 10, wherein the first row and the second row of antennas each include at least four of the antennas.
  12. The electronic device of any of claims 9 to 11, wherein the antenna impedance has a resistance in a range of 35 to 75ohm, and a reactance about 0 to +/- 20 Ohm, in the frequency range of 3-6 GHz and wherein the output impedance of the RF communications circuit is 50ohm; and/or,
    wherein a S11 of the antenna is substantially less or equal to -6dB.
  13. A method for installing a MIMO antenna array (200) in an electronic device (100), the electronic device (100) comprising a radio frequency, RF, communications circuit (114) received within a housing (102) for receiving the hardware, the method comprising:
    securing a row of antennas (200) that each have a same resonant frequency to the housing (102), each antenna (200) having a feed pad (206) and a ground pad (208) extending from a resonating body (204) into an inner region of the housing (102), the resonating body (204) arranged substantially perpendicular with the feed pad (206) and the ground pad (208); and
    connecting the feed pads (206) to signal paths (116) of the RF communications circuit (114) and connecting the ground pads (208) to a common ground, wherein the housing (102) comprises a back enclosure element (302) surrounded by forwardly projecting rim (301), wherein the row of antennas (200) is located in the rim (301),
    wherein the RF communications circuit (114) includes: an RF transceiver circuit (120) comprising at least one integrated circuit component mounted on a printed circuit board, PCB;
    the signal paths extending through the PCB from the RF transceiver circuit to a plurality of electrical signal path connectors, each of the signal path connectors being a first spring loaded pressure contact connector (212) and in electrical contact with the feed pad of a respective one of the antennas; and the ground paths extending through the PCB from the common ground to a plurality of electrical ground path connectors, each of the ground path connectors being a second spring loaded pressure contact connector and in electrical contact with the ground pad of a respective one of the antennas.
EP18788042.2A 2017-04-21 2018-04-19 Broadband mimo antenna system for electronic device Active EP3520170B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/494,048 US20180309189A1 (en) 2017-04-21 2017-04-21 Broadband mimo antenna system for electronic device
PCT/CN2018/083624 WO2018192538A1 (en) 2017-04-21 2018-04-19 Broadband mimo antenna system for electronic device

Publications (3)

Publication Number Publication Date
EP3520170A1 EP3520170A1 (en) 2019-08-07
EP3520170A4 EP3520170A4 (en) 2019-10-30
EP3520170B1 true EP3520170B1 (en) 2023-05-31

Family

ID=63852411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18788042.2A Active EP3520170B1 (en) 2017-04-21 2018-04-19 Broadband mimo antenna system for electronic device

Country Status (4)

Country Link
US (1) US20180309189A1 (en)
EP (1) EP3520170B1 (en)
CN (1) CN110235308A (en)
WO (1) WO2018192538A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102364470B1 (en) * 2017-08-23 2022-02-18 삼성전자주식회사 Electronic device comprising antenna
KR102424681B1 (en) * 2017-11-27 2022-07-25 삼성전자주식회사 Arrangement structure for 5g communication device and electronic device including the same
CN108376828B (en) * 2018-01-25 2021-01-12 瑞声科技(南京)有限公司 Antenna system and mobile terminal
US11223103B2 (en) * 2018-01-26 2022-01-11 Huawei Technologies Co., Ltd. Antenna device and MIMO antenna arrays for electronic device
KR102561241B1 (en) * 2018-11-23 2023-07-28 삼성전자 주식회사 Electronic deivce having signal radiation structure to side surface
CN110289885B (en) * 2019-07-02 2021-03-02 维沃移动通信有限公司 Antenna tuning method and terminal
CN110994142A (en) * 2019-11-14 2020-04-10 广东通宇通讯股份有限公司 Microstrip line filtering radiation oscillator, filtering radiation unit and antenna
JP2023508322A (en) * 2019-12-19 2023-03-02 キョーセラ・エイブイエックス・コンポーネンツ (サンディエゴ), インコーポレーティッド Laser Direct Structure (LDS) Antenna Assembly
CN111525261B (en) * 2020-05-26 2024-08-23 广东博纬通信科技有限公司 PCB feed terminal fixing device and antenna
US20220286543A1 (en) * 2021-03-02 2022-09-08 Apple Inc. Handheld electronic device
US11677143B2 (en) * 2021-07-29 2023-06-13 Dell Products L.P. Maintaining a coupling gap using an antenna carrier in an information handling system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101340A (en) * 2001-09-21 2003-04-04 Sharp Corp Diversity antenna and radio communication device
CN2840344Y (en) * 2005-09-27 2006-11-22 哗裕实业股份有限公司 Double-frequency antenna structure
CN102136628A (en) * 2011-01-24 2011-07-27 中兴通讯股份有限公司 MIMO antenna and mobile terminal used by same
US20120299784A1 (en) * 2011-05-24 2012-11-29 Ontario, Canada) Mobile wireless communications device including an antenna having a shorting plate
US9024823B2 (en) * 2011-05-27 2015-05-05 Apple Inc. Dynamically adjustable antenna supporting multiple antenna modes
US9001002B2 (en) 2011-09-30 2015-04-07 Apple Inc. Portable electronic device housing having insert molding around antenna
US20140062799A1 (en) * 2012-08-29 2014-03-06 Motorola Mobility Llc Wireless communication device and method with an enhanced antenna farm
US9008728B2 (en) * 2012-11-21 2015-04-14 Google Technology Holdings LLC Antenna arrangement for 3G/4G SVLTE and MIMO to enable thin narrow boardered display phones
US9362621B1 (en) * 2013-05-23 2016-06-07 Airgain, Inc. Multi-band LTE antenna
KR20150145858A (en) * 2014-06-19 2015-12-31 대산전자(주) Method for manufacturing antenna module and antenna module
CN204303975U (en) * 2015-01-15 2015-04-29 南京濠暻通讯科技有限公司 Based on LDS antenna for mobile phone
US9653818B2 (en) * 2015-02-23 2017-05-16 Qualcomm Incorporated Antenna structures and configurations for millimeter wavelength wireless communications
KR102231232B1 (en) * 2015-02-27 2021-03-23 삼성전자주식회사 Antenna and electronic device having it
US9667290B2 (en) * 2015-04-17 2017-05-30 Apple Inc. Electronic device with millimeter wave antennas
US9735463B2 (en) * 2015-08-03 2017-08-15 Chiun Mai Communication Systems, Inc. Antenna assembly and wireless communication device using the same
CN105337022B (en) * 2015-10-19 2018-01-19 广东欧珀移动通信有限公司 A kind of LTE A MIMO antenna devices of full metal jacket
CN105720994B (en) * 2016-01-29 2019-05-21 努比亚技术有限公司 Mobile terminal and its communication processing method
US10205224B2 (en) * 2016-09-23 2019-02-12 Apple Inc. Electronic device with millimeter wave antenna arrays

Also Published As

Publication number Publication date
EP3520170A1 (en) 2019-08-07
EP3520170A4 (en) 2019-10-30
US20180309189A1 (en) 2018-10-25
CN110235308A (en) 2019-09-13
WO2018192538A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
EP3520170B1 (en) Broadband mimo antenna system for electronic device
US11075442B2 (en) Broadband sub 6GHz massive MIMO antennas for electronic device
US11223103B2 (en) Antenna device and MIMO antenna arrays for electronic device
US10355758B2 (en) Multi-band antennas and MIMO antenna arrays for electronic device
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US7825860B2 (en) Antenna assembly
EP2290742B1 (en) Handheld device
US6225951B1 (en) Antenna systems having capacitively coupled internal and retractable antennas and wireless communicators incorporating same
WO2007058230A1 (en) Slot antenna and portable wireless terminal
US7642966B2 (en) Carrier and device
US9343806B2 (en) Antennas integrated in shield can assembly
US20110309985A1 (en) Wideband printed circuit board-printed antenna for radio frequency front end circuit
JP2004527173A (en) Small multi-band antenna
US6563466B2 (en) Multi-frequency band inverted-F antennas with coupled branches and wireless communicators incorporating same
US20110128190A1 (en) Wireless communication terminal with a split multi-band antenna having a single rf feed node
US9293819B2 (en) Antenna apparatus and mobile terminal having the same
WO2005124924A1 (en) Compact multiband inverted-f antenna
US20110199272A1 (en) Field-confined printed circuit board-printed antenna for radio frequency front end integrated circuits
EP2727181A1 (en) Multiple input multiple output (mimo) antennas having polarization and angle diversity and related wireless communications devices
US11791540B2 (en) Signal feeding assembly, antenna module and electronic equipment
US20020123312A1 (en) Antenna systems including internal planar inverted-F Antenna coupled with external radiating element and wireless communicators incorporating same
EP1732161B1 (en) Internal antenna apparatus and mobile communication terminal having same
CN112234361A (en) Shell assembly, antenna device and electronic equipment
US20090231210A1 (en) Portable device and battery
CN215342969U (en) Antenna device and electronic apparatus

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20190930

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 9/04 20060101ALI20190924BHEP

Ipc: H01Q 21/28 20060101ALI20190924BHEP

Ipc: H01Q 1/24 20060101ALI20190924BHEP

Ipc: H01Q 21/30 20060101ALN20190924BHEP

Ipc: H01Q 5/00 20150101AFI20190924BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018050496

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0005000000

Ipc: H01Q0001240000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/30 20060101ALN20221124BHEP

Ipc: H01Q 21/28 20060101ALI20221124BHEP

Ipc: H01Q 9/04 20060101ALI20221124BHEP

Ipc: H01Q 1/24 20060101ALI20221124BHEP

Ipc: H01Q 5/00 20150101AFI20221124BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/30 20060101ALN20221201BHEP

Ipc: H01Q 21/28 20060101ALI20221201BHEP

Ipc: H01Q 9/04 20060101ALI20221201BHEP

Ipc: H01Q 1/24 20060101AFI20221201BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/30 20060101ALN20221208BHEP

Ipc: H01Q 21/28 20060101ALI20221208BHEP

Ipc: H01Q 9/04 20060101ALI20221208BHEP

Ipc: H01Q 1/24 20060101AFI20221208BHEP

INTG Intention to grant announced

Effective date: 20230103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1571523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018050496

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1571523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018050496

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240229

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

26N No opposition filed

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531