EP3508187A1 - Appareil et procédés associés de détection d'une force variable - Google Patents
Appareil et procédés associés de détection d'une force variable Download PDFInfo
- Publication number
- EP3508187A1 EP3508187A1 EP18150657.7A EP18150657A EP3508187A1 EP 3508187 A1 EP3508187 A1 EP 3508187A1 EP 18150657 A EP18150657 A EP 18150657A EP 3508187 A1 EP3508187 A1 EP 3508187A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inflatable bladder
- inflatable
- variable force
- pressure
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000004590 computer program Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 8
- 230000029058 respiratory gaseous exchange Effects 0.000 description 5
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H9/00—Pneumatic or hydraulic massage
- A61H9/005—Pneumatic massage
- A61H9/0078—Pneumatic massage with intermittent or alternately inflated bladders or cuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/30—General characteristics of devices characterised by sensor means
- A61G2203/34—General characteristics of devices characterised by sensor means for pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/01—Constructive details
- A61H2201/0119—Support for the device
- A61H2201/0138—Support for the device incorporated in furniture
- A61H2201/0142—Beds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/01—Constructive details
- A61H2201/0119—Support for the device
- A61H2201/0138—Support for the device incorporated in furniture
- A61H2201/0149—Seat or chair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5005—Control means thereof for controlling frequency distribution, modulation or interference of a driving signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5071—Pressure sensors
Definitions
- the present disclosure relates to an apparatus and associated methods for substantially matching a range of pressure within an inflatable bladder to a predefined range of a pressure sensor.
- an apparatus comprising an inflatable bladder connectable to a pressure sensor, the pressure sensor configured to detect changes in pressure within the inflatable bladder caused by a variable force applied to the inflatable bladder, wherein the inflatable bladder is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor.
- the predefined range of the pressure sensor may be a detectable range of the pressure sensor or a sub-range of the detectable range.
- the inflatable bladder may comprise one or more non-inflatable regions.
- the inflatable bladder may comprise a plurality of interconnected inflatable regions configured to enable the inflated volume of the inflatable bladder to be controlled by selectively inflating and/or deflating one or more of the plurality of interconnected inflatable regions.
- the inflatable bladder may comprise a plurality of interconnected inflatable regions separated by non-inflatable regions, and the inflated thickness and separation of the inflatable regions may be chosen to ensure that the variable force is distributed over the plurality of interconnected inflatable regions.
- the inflatable bladder may comprise a plurality of interconnected inflatable regions separated by non-inflatable regions, and the apparatus may comprise a substantially rigid structure configured to distribute the variable force over the plurality of interconnected inflatable regions.
- the plurality of interconnected inflatable regions may have substantially the same inflated thickness.
- the plurality of interconnected inflatable regions may have one or more of a substantially tubular, cylindrical, spherical or cubic inflated shape.
- the inflatable bladder may comprise two sheets of fluid-impermeable material which have been hermetically sealed together to define an inflated volume therebetween.
- the fluid-impermeable material may comprise one or more of a thermoplastic, polyvinyl chloride, thermoplastic polyurethane, a fabric impregnated with polyvinyl chloride, and a fabric impregnated with thermoplastic polyurethane.
- the apparatus may comprise the pressure sensor.
- the apparatus may be at least part of a sleep monitor.
- a method comprising: detecting a variable force applied to an inflatable bladder based on detected changes in pressure within the inflatable bladder caused by the variable force, wherein the changes in pressure are detected using a pressure sensor connected to the inflatable bladder, and wherein the inflatable bladder is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor.
- the inflatable bladder may comprise a plurality of interconnected inflatable regions configured to enable the inflated volume of the inflatable bladder to be controlled by selectively inflating and/or deflating one or more of the plurality of interconnected inflatable regions, and the method may comprise selectively inflating and/or deflating one or more of the plurality of interconnected inflatable regions to produce an inflated volume such that the range of pressure corresponding to the variable force substantially matches the predefined range of the pressure sensor.
- the method may comprise selectively inflating/deflating the one or more interconnected inflatable regions dynamically and/or automatically.
- the inflatable bladder may be positioned between a mattress and a bed such that the variable force is applied to the inflatable bladder via the mattress.
- a method comprising: forming an inflatable bladder connectable to a pressure sensor, the pressure sensor configured to detect changes in pressure within the inflatable bladder caused by a variable force applied to the inflatable bladder, wherein the inflatable bladder is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor.
- a computer program comprising computer program code instructions that, when executed by at least one processor, cause: detecting a variable force applied to an inflatable bladder based on detected changes in pressure within the inflatable bladder caused by the variable force, wherein the changes in pressure are detected using a pressure sensor connected to the inflatable bladder, and wherein the inflatable bladder is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor.
- One or more of the computer programs may, when run on a computer, cause the computer to configure any apparatus, including a battery, circuit, controller, or device disclosed herein or perform any method disclosed herein.
- One or more of the computer programs may be software implementations, and the computer may be considered as any appropriate hardware, including a digital signal processor, a microcontroller, and an implementation in read only memory (ROM), erasable programmable read only memory (EPROM) or electronically erasable programmable read only memory (EEPROM), as non-limiting examples.
- the software may be an assembly program.
- One or more of the computer programs may be provided on a computer readable medium, which may be a physical computer readable medium such as a disc or a memory device, or may be embodied as a transient signal.
- a transient signal may be a network download, including an internet download.
- the present disclosure includes one or more corresponding aspects, example embodiments or features in isolation or in various combinations whether or not specifically stated (including claimed) in that combination or in isolation.
- Corresponding means for performing one or more of the discussed functions are also within the present disclosure.
- One example is a sleep monitor configured to detect one or more of a user's heartbeat, movement and respiration.
- FIGS 1 and 2 show an existing sleep monitor in plan-view and cross-section, respectively.
- the sleep monitor comprises an inflatable bladder 101 configured to be positioned between a mattress 203 and a bed 204 such that a variable force F 1 applied to a surface area S eff of the mattress 203 by the user's heartbeat, movement or respiration is at least partially imparted to a surface area S vis of the inflatable bladder 101 in contact with the mattress 203 as force F 2 .
- the variable force F 1 and imparted force F 2 are both vector quantities having a substantially vertical direction as indicated by the downward pointing arrows in Figure 2 .
- the inflatable bladder 101 comprises two sheets of fluid-impermeable material which have been hermetically sealed together to define an inflated volume therebetween.
- the inflated volume comprises a plurality of interconnected inflatable regions 105, 205 (i.e. in fluid communication with one another), and the crosshatched areas 102 are where the sheets of fluid-impermeable material have been welded together.
- the inflatable bladder 101 also comprises a portion 106 via which a pump and pressure sensor can be connected to inflate the inflatable regions 105, 205 and detect the pressure therein, respectively.
- the variable force F 2 imparted to the inflatable bladder 101 causes corresponding changes in pressure P 1 within the inflatable bladder 101 which are detected by the pressure sensor connected thereto.
- the variable force F 1 associated with the user's heartbeat, movement or respiration can therefore be detected based on the detected changes in pressure Pi.
- FIGS 3a-3d show different examples of the present apparatus in plan-view.
- the apparatus comprises an inflatable bladder 301 connectable to a pressure sensor.
- the pressure sensor may or may not form part of the present apparatus, and is configured to detect changes in pressure within the inflatable bladder 301 caused by a variable force applied to the inflatable bladder 301.
- the inflatable bladder 301 of the present apparatus is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor.
- the predefined range of the pressure sensor may be a detectable range of the pressure sensor or a sub-range of the detectable range.
- the sub-range may be a range of pressure which is compatible with the inflatable bladder 301 (e.g. would not cause the inflatable bladder 301 to burst) or a range of pressure within which the accuracy of the pressure sensor is above a predefined threshold.
- a specific inflated volume can be achieved by configuring the inflatable bladder 301 to have a particular shape, configuration and/or dimensions when inflated.
- the inflatable bladder 301 comprises one or more non-inflatable regions 307 (although in some cases, these "non-inflatable" regions 307 may be inflatable but are not inflated, i.e. "non-inflated” regions).
- the non-inflatable regions 307 comprise two elongated channels extending parallel to one another along the length of the inflatable bladder 301; in Figure 3b , the non-inflatable regions 307 comprise two islands; and in Figure 3c , the non-inflatable region 307 comprises a single longitudinally-extending elongated channel. In each case, the non-inflatable regions 307 are at least partially surrounded by interconnected inflatable regions 305.
- Figure 4 shows the inflatable bladder 301 of Figure 3c in cross-section.
- the presence of the non-inflatable region 407 (assuming that the overall dimensions of the inflatable bladder remain the same) results in a lower inflated volume and surface area S vis in contact with the mattress 403 relative to the inflatable bladder 101 of Figures 1 and 2 .
- the force F 2 imparted to the inflatable bladder is distributed over a smaller surface area S vis and inflated volume resulting in a greater change in pressure P 1 within the inflatable bladder.
- the ratio between the surface area S vis in contact with the mattress 403 and the surface area S eff of the mattress 403 to which the variable force F 1 is applied essentially acts as a gain factor that is tuned to the predefined range of the pressure sensor.
- the inflated volume and surface area S vis in contact with the mattress may alternatively be increased rather than decreased to match the range of pressure P 1 corresponding to the variable force F 1 with the predefined range of the pressure sensor. This could be achieved, for example, by increasing the number and/or size of the interconnected inflatable regions 105, 205 of Figures 1 and 2 , and may be useful if the changes in pressure P 1 caused by the variable force F 1 are too large for the pressure sensor.
- the range of pressure corresponding to the variable force can be controlled based on one or more of the initial pressure and surface area in contact with the mattress. Furthermore, since a change in contact surface area (e.g. by increasing or decreasing the number and/or size of the inflatable regions) causes a proportional change in the inflated volume (provided that the inflatable regions have substantially the same inflated thickness), the range of pressure corresponding to the variable force can be controlled using the inflated volume of the inflatable bladder as described previously.
- FIG. 5 shows another example of the present apparatus in plan-view.
- the inflatable bladder 501 comprises a plurality of interconnected inflatable regions 505 configured to enable the inflated volume of the inflatable bladder 501 to be controlled by selectively inflating and/or deflating one or more of the plurality of interconnected inflatable regions 505.
- different inflatable regions 505 can be selected by opening or closing valves 508 connecting adjacent inflatable regions 505.
- the interconnected inflatable regions 505 in Figure 5 are substantially cubic in shape when inflated, an individual inflatable region 505 could be any three-dimensional shape (e.g. one or more of substantially tubular, cylindrical or spherical in shape).
- the plurality of interconnected inflatable regions 505 may all have substantially the same shape, may each have a different shape, or may comprise two or more different shapes with at least two of the inflatable regions having substantially the same shape.
- the inflatable bladder 501 may be adapted dynamically to account for variations in the applied force.
- the inflated volume may be initially set when the user first lies on the mattress such that the range of pressure corresponding to the variable force applied by his/her heartbeat, movement or respiration substantially matches a predefined range of the pressure sensor. If the user's heartbeat, movement or respiration then changes (e.g. as a result of a medical condition whilst they are sleeping) sufficiently to cause a relatively large change in pressure within the inflatable bladder 501, the inflated volume may be varied to ensure that the variable force remains detectable by the pressure sensor.
- the magnitude of the pressure within the inflatable bladder 501 may be monitored to determine whether or not it falls outside the predefined range of the pressure sensor, and if so, the inflated volume of the inflatable bladder 501 may be automatically adjusted such that the pressure falls within the predefined range.
- Figures 6a and 6b show how the inflated thickness e and separation d of the inflatable regions 605 can also influence the ability of the pressure sensor to detect changes in pressure caused by the variable force.
- the inflatable bladder comprises a plurality of interconnected inflatable regions 605 separated by non-inflatable regions 607.
- the inflated thickness e and separation d of the inflatable regions 605 are such that the portion 609 of the mattress 603 overlying the non-inflatable regions 607 is not supported by the inflatable bladder.
- the readings from the pressure sensor may not accurately reflect the variable force applied to the mattress 603.
- the inflated thickness e and separation d of the inflatable regions 605 have been respectively increased and decreased such that the variable force is distributed over the plurality of interconnected inflatable regions 605. This helps to ensure that the changes in pressure caused by the variable force are more accurately detected by the pressure sensor.
- the apparatus may comprise an additional substantially rigid structure (i.e. distinct from the mattress 603) to distribute the variable force over the plurality of interconnected inflatable regions 605.
- the additional structure could be positioned between the mattress 603 and inflatable bladder in use.
- the present apparatus is not limited exclusively to this application. Rather, the present apparatus could be used in any application where a pressure sensor is used to detect changes in pressure within an inflatable bladder caused by a variable force.
- the present apparatus could be installed beneath a platform positioned on a road to monitor the number of vehicles travelling on the road during a particular time period.
- the present apparatus may be advantageous in this scenario due to the variety of different possible vehicle weights (and therefore corresponding pressures) that would need to be accounted for on an average road.
- Figure 7 shows the main steps 710-711 of a method of making the present apparatus.
- the method comprises: forming an inflatable bladder connectable to a pressure sensor configured to detect changes in pressure within the inflatable bladder caused by a variable force applied to the inflatable bladder, wherein the inflatable bladder is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor 710; and connecting the inflatable bladder to the pressure sensor 711.
- the forming 710 and connecting 711 steps may be performed by different parties (e.g. manufacturer vs user). As such, the connection step 711 is optional (as indicated by the dashed box).
- the inflatable bladder may be formed by hermetically sealing two sheets of fluid-impermeable material together to define an inflated volume therebetween. This may be achieved by gluing, thermal welding and/or ultrasonic welding the two sheets of fluid-impermeable material together.
- the fluid-impermeable material may comprise one or more of a thermoplastic, polyvinyl chloride, thermoplastic polyurethane, a fabric impregnated with polyvinyl chloride, and a fabric impregnated with thermoplastic polyurethane.
- Figure 8 shows the main steps 812-813 of a method of using the present apparatus.
- the method comprises: detecting changes in pressure within an inflatable bladder caused by a variable force applied to the inflatable bladder, using a pressure sensor connected to the inflatable bladder, wherein the inflatable bladder is configured to have an inflated volume such that the range of pressure corresponding to the variable force substantially matches a predefined range of the pressure sensor 812; and detecting the variable force applied to the inflatable bladder based on the detected changes in pressure 813.
- Figure 9 illustrates schematically a computer/processor readable medium 914 providing a computer program according to one embodiment.
- the computer program may comprise computer code configured to perform, control or enable one or more of the method steps 710-711 of Figures 7 using existing manufacturing/assembling equipment.
- the computer program may comprise computer code configured to perform, control or enable one or more of the method steps 812-813 of Figure 8 using at least part of the apparatus described herein.
- the computer/processor readable medium 914 is a disc such as a digital versatile disc (DVD) or a compact disc (CD).
- DVD digital versatile disc
- CD compact disc
- the computer/processor readable medium 914 may be any medium that has been programmed in such a way as to carry out an inventive function.
- the computer/processor readable medium 914 may be a removable memory device such as a memory stick or memory card (SD, mini SD, micro SD or nano SD).
- feature number 1 can also correspond to numbers 101, 201, 301 etc. These numbered features may appear in the figures but may not have been directly referred to within the description of these particular embodiments. These have still been provided in the figures to aid understanding of the further embodiments, particularly in relation to the features of similar earlier described embodiments.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mattresses And Other Support Structures For Chairs And Beds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18150657.7A EP3508187A1 (fr) | 2018-01-08 | 2018-01-08 | Appareil et procédés associés de détection d'une force variable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18150657.7A EP3508187A1 (fr) | 2018-01-08 | 2018-01-08 | Appareil et procédés associés de détection d'une force variable |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3508187A1 true EP3508187A1 (fr) | 2019-07-10 |
Family
ID=61022108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18150657.7A Withdrawn EP3508187A1 (fr) | 2018-01-08 | 2018-01-08 | Appareil et procédés associés de détection d'une force variable |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3508187A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113101607A (zh) * | 2021-04-13 | 2021-07-13 | 怀化学院 | 一种用于舞蹈学习的肢体柔性训练装置 |
EP4173566A1 (fr) | 2021-10-28 | 2023-05-03 | Withings | Appareil de detection pour literie |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080109964A1 (en) * | 2006-11-14 | 2008-05-15 | Thierry Flocard | Control System For Hospital Bed Mattress |
US20140059781A1 (en) * | 2012-09-05 | 2014-03-06 | Stryker Corporation | Inflatable mattress and control methods |
WO2014151577A1 (fr) * | 2013-03-15 | 2014-09-25 | Stryker Corporation | Appareil de support de patient ayant des capteurs d'informations de patient |
US20150335507A1 (en) * | 2012-05-22 | 2015-11-26 | Hill-Rom Services, Inc. | Systems, methods, and devices for treatment of sleep disorders |
WO2016055992A1 (fr) * | 2014-10-11 | 2016-04-14 | Medical Compression Systems (Dbn) Ltd. | Système et procédé de détermination de conformité d'utilisation de système de prévention et de diagnostic de thrombose veineuse profonde d'un utilisateur |
WO2017003994A1 (fr) * | 2015-06-30 | 2017-01-05 | L & P Property Management Company | Chambres à air indépendamment réglables ayant une fermeté remplie d'air pour une enceinte |
-
2018
- 2018-01-08 EP EP18150657.7A patent/EP3508187A1/fr not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080109964A1 (en) * | 2006-11-14 | 2008-05-15 | Thierry Flocard | Control System For Hospital Bed Mattress |
US20150335507A1 (en) * | 2012-05-22 | 2015-11-26 | Hill-Rom Services, Inc. | Systems, methods, and devices for treatment of sleep disorders |
US20140059781A1 (en) * | 2012-09-05 | 2014-03-06 | Stryker Corporation | Inflatable mattress and control methods |
WO2014151577A1 (fr) * | 2013-03-15 | 2014-09-25 | Stryker Corporation | Appareil de support de patient ayant des capteurs d'informations de patient |
WO2016055992A1 (fr) * | 2014-10-11 | 2016-04-14 | Medical Compression Systems (Dbn) Ltd. | Système et procédé de détermination de conformité d'utilisation de système de prévention et de diagnostic de thrombose veineuse profonde d'un utilisateur |
WO2017003994A1 (fr) * | 2015-06-30 | 2017-01-05 | L & P Property Management Company | Chambres à air indépendamment réglables ayant une fermeté remplie d'air pour une enceinte |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113101607A (zh) * | 2021-04-13 | 2021-07-13 | 怀化学院 | 一种用于舞蹈学习的肢体柔性训练装置 |
EP4173566A1 (fr) | 2021-10-28 | 2023-05-03 | Withings | Appareil de detection pour literie |
FR3128621A1 (fr) | 2021-10-28 | 2023-05-05 | Withings | Appareil de detection pour literie |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1958566B1 (fr) | Appareil de mesure de la tension qui permet une mesure exacte de la tension | |
EP3508187A1 (fr) | Appareil et procédés associés de détection d'une force variable | |
RU2316249C2 (ru) | Манжета для измерителя артериального давления, измеритель артериального давления, устройство для сжатия живого тела и устройство для измерения информации о живом теле | |
JP5145930B2 (ja) | 血圧計用カフおよび血圧計 | |
RU2319440C2 (ru) | Манжета для измерителя артериального давления, способ ее изготовления (варианты) и измеритель артериального давления | |
WO2005006972A3 (fr) | Gestion des mouvements dans un dispositif de mesure rapide de la pression arterielle | |
JP5092707B2 (ja) | 動脈硬化度判定装置 | |
US20040181254A1 (en) | Sphygmomanometer cuff having double bladder | |
EP1674299A3 (fr) | Capteur de pression pneumatique avec récepteur de commande à sensibilité de réception variable | |
CN103543471B (zh) | 用于地下微地震传感器的再使用的传感器固定装置 | |
CN111386072A (zh) | 手指血压带 | |
EP1969998A3 (fr) | Sytème et dispositif pour la mesure de la pression dans les organismes vivants et les objets inanimés | |
JP2006158876A (ja) | 血圧計用カフおよびこれを備えた血圧計 | |
US11672423B2 (en) | Vibration detection apparatus | |
CN104661589B (zh) | 血压信息测量装置用袖带及血压信息测量装置 | |
JP2018535804A5 (fr) | ||
US20220015652A1 (en) | Integrated Flexible Sensor for Blood Pressure Measurements | |
EP1733928A3 (fr) | Dispositif de détection d'un occupant d'un véhicule avec acquisition de données associées à l'occupant | |
WO2005012863A3 (fr) | Capteur, dispositif et procede visant a mesurer la pression d’interface entre deux corps | |
JP2011136107A5 (fr) | ||
JP2008005926A5 (fr) | ||
US20110149685A1 (en) | Lightweight inflatable borehole receiver unit for seismic testing | |
JP2018130400A5 (fr) | ||
WO2004068094A3 (fr) | Dispositif de mesure de l'acceleration et de la pression integre et son procede de fabrication | |
CN116035544A (zh) | 穿戴式电子设备及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200111 |