EP3497430A1 - Method for monitoring the correspondence of a beer sample with a reference beer - Google Patents

Method for monitoring the correspondence of a beer sample with a reference beer

Info

Publication number
EP3497430A1
EP3497430A1 EP17751070.8A EP17751070A EP3497430A1 EP 3497430 A1 EP3497430 A1 EP 3497430A1 EP 17751070 A EP17751070 A EP 17751070A EP 3497430 A1 EP3497430 A1 EP 3497430A1
Authority
EP
European Patent Office
Prior art keywords
beer
sample
samples
factor
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17751070.8A
Other languages
German (de)
French (fr)
Other versions
EP3497430B1 (en
Inventor
Holger Klapproth
Robert Seidel
Joachim Haas
Jonathan E. GREEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QFood GmbH
Original Assignee
QFood GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QFood GmbH filed Critical QFood GmbH
Publication of EP3497430A1 publication Critical patent/EP3497430A1/en
Application granted granted Critical
Publication of EP3497430B1 publication Critical patent/EP3497430B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages
    • G01N33/146Beverages containing alcohol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages
    • G01N33/143Beverages containing sugar

Definitions

  • the invention relates to a method for checking the conformity of a beer sample with a reference beer, which are associated with the same type of beer as the beer sample.
  • this object is achieved with the features of claim 1.
  • These provide that at least 15 reference beer samples were brewed from the reference beer with the same ingredients and the same process parameters that detected by infrared absorption spectroscopy measurement signals for the absorption spectrum of the individual reference beer samples and for the measurement signals carrying out a principal component analysis in which at least 15 main components are determined and a factor charge P R (i, j) is determined for the individual reference beer samples for each main component, where i denotes the reference beer sample and j the main component that consists of the factor charges P R (i , j) one reference value for each reference beer sample and for each major component
  • n is the number of reference beer samples
  • m is the number of principal components
  • a R (j) is the standard deviation of all reference values of the j-th main component
  • k is a non-zero constant, that by infrared absorption spectroscopy, an absorption spectrum measurement signal is
  • P B this measurement signal and from these factor charges P B (Q, the mean ⁇ ⁇ (/) of the factor loadings of the reference beer samples for each Principal components and the standard deviations a P (j) of these factor charges a characteristic value
  • the reference interval is determined with the aid of normalized reference values R (i, j), in which the mean value ⁇ ⁇ (/) of all factor charges of the relevant main component is subtracted from the factor charge P R (i, j) associated with the relevant reference beer sample, and the Amount of this subtraction is divided by the standard deviation of all reference values R (i, j) of this main component.
  • the factor charges can be determined by means of a suitable, known per se software. They are also referred to as "scores.”
  • the constant k can have any value other than zero, in particular the value 1 or the reciprocal 1 / m of the number m of the main components For example, stored together with the main components and possibly the constant k in a data memory of a microcomputer.
  • the method according to the invention can be applied in a simple manner to a large number of beer samples produced in a brewery,
  • a measurement signal for the absorption spectrum is recorded from the relevant beer sample by means of a high-resolution absorption spectrometer.
  • This absorption spectrum is recorded with the same parameters as the absorption spectra of the reference beer samples.
  • the same or at least one identical absorption spectrometer is used for the measurement of the absorption spectrum of the beer sample as for the measurement of the absorption spectra of the reference beer samples.
  • characteristic value B can be determined from the measuring signal and the main components, compared with the reference interval, and the result of the comparison displayed. If the comparison gives a discrepancy, the brewmaster or a representative of the brewery can, if necessary, check the quality of the beer sample by tasting and, if necessary, modify the production parameters for the beer production in such a way that the error is compensated or eliminated.
  • the microcomputer may be integrated with the absorption spectrometer or its controller. This enables simple on-the-spot checks of beer samples during the ongoing production process. However, it is also possible for the microcomputer to be separated from the absorption spectrometer and to be able to be connected to the absorption spectrometer via a suitable interface in order to read in the measurement signal for the absorption spectrum.
  • the number n of reference beer samples is greater than or equal to the number m of the main components, in particular twice as large and preferably at least three times as large as these.
  • the number m of the main components is at least 20, optionally at least 30, in particular at least 40 and preferably at least 50. This allows a very precise comparison of the beer sample with the reference beer, which also deviations from beer ingredients can be considered, the only contained in very low concentration in the beer sample and / or the reference beer.
  • the reference beer samples and the beer sample are irradiated with infrared radiation whose wavenumber covers the range between 950 and 3050, in particular between 960 and 2000 and preferably between 980 and 1200.
  • the sugars contained in the beer have characteristic absorption peaks that can be identified in the spectrum.
  • a liquid layer of the beer sample or the reference beer sample is irradiated with infrared radiation.
  • the thickness of the liquid layer illuminated by the infrared radiation may be at most 30 ⁇ , optionally a maximum of 20 ⁇ , preferably a maximum of 15 ⁇ and in particular a maximum of 10 ⁇ amount.
  • 100 reference beer samples are each brewed with the same ingredients and the same process parameters.
  • measurement signals for the absorption spectra of the 100 reference beer samples are recorded in a wavenumber range extending from the wavenumber 980 to the wavenumber 1200.
  • Each measurement signal comprises in each case 1000 combinations of values, each of which has at least one value for the wave number and an associated value for the optical infrared absorption of the reference beer sample.
  • a principal component analysis is carried out, in which 30 main components are determined with the aid of software known per se.
  • a factor charge P R (i, j) is determined for each of the 30 main components.
  • the mean value ⁇ ⁇ (/) of all factor charges and the standard deviation a P (j) of these factor charges are determined in each case:
  • R (i, j) determines i R (i, l) ⁇ (i, 2) ⁇ (i, 3) R (i, 29) J ⁇ (i, 30)
  • the factor charges P B (i) of this measurement signal are determined: ⁇ '( ⁇ )
  • the factor charges thus obtained are normalized by subtracting from the respective factor charge P B (j) the mean ⁇ ⁇ (/) of all the reference beer sample factor charges for the main component concerned and the magnitude of the result of this subtraction by the standard deviation a P (j) of these factor charges divided:
  • the arithmetic mean value is determined to form a characteristic value B for the beer sample:
  • This characteristic value B is compared with the reference interval [9.0368514 ... 33.2298688]. Since the characteristic value B is outside the reference interval, an error in the production of the beer sample is displayed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

In a method for monitoring the correspondence of a beer sample with a reference beer, at least 15 reference beer samples of the reference beer are brewed with the same ingredients and the same process parameters. Measurement signals for the absorption spectrum of the reference beer samples are captured and a principal component analysis is carried out for the measurement signals, in which at least 15 principal components are ascertained. A factor loading PR(i,j) is respectively determined for each principal component for the individual reference beer samples and a reference value (I) is ascertained, where i denotes the reference beer sample and j denotes the principal component, μP(j) refers to the mean value of all factor loadings of the j-th principal component and σP(j) refers to the standard deviation of these factor loadings. A reference interval (II) is formed, where n denotes the number of reference beer samples, m denotes the number of principal components, σR(j) denotes the standard deviation of all reference values of the j-th principal component and k denotes a constant not equal to zero. A measurement signal is captured for the absorption spectrum of the beer sample and the factor loadings PB(i) of this measurement signal are determined for the principal components ascertained for the reference beer samples and a characteristic (III) is formed and compared to the reference interval. Should the characteristic B lie outside of the reference interval, a fault during the production of the beer sample is indicated.

Description

Verfahren zum Überprüfen der Übereinstimmung einer Bierprobe mit einem  Method for checking the conformity of a beer sample with a
Referenzbier  reference beer
Die Erfindung betrifft ein Verfahren zum Überprüfen der Übereinstimmung einer Bierprobe mit einem Referenzbier, welches derselben Biersorte zugeordnet sind wie die Bierprobe. The invention relates to a method for checking the conformity of a beer sample with a reference beer, which are associated with the same type of beer as the beer sample.
In Brauereibetrieben werden bei der Bierproduktion aufwändige Qualitätskontrollen durchgeführt, die neben einer bakteriellen Untersuchung der hergestellten Biere auch eine sensorische Prüfung der Biere umfassen. Durch die sensorische Prüfung soll sichergestellt werden, dass Biere einer bestimmten, in dem Brauereibetrieb hergestellten Biersorte stets den gleichen, für den Brauereibetrieb typischen Geschmack und Geruch haben. Durch diese Maßnahme sollen die Biere des betreffenden Brauereibetriebs von Wettbewerbsprodukten abgegrenzt und unterschieden werden. Die Bierkonsumenten sollen an den Geschmack gewöhnt und veranlasst werden, ihr Bier bevorzugt bei der betreffenden Brauerei zu beziehen. In brewery operations, elaborate quality controls are carried out during beer production, which, in addition to a bacterial examination of the beers produced, also include a sensory examination of the beers. The purpose of the sensory test is to ensure that beers in a particular type of beer produced in the brewery always have the same taste and smell typical of the brewery. The purpose of this measure is to distinguish and distinguish the beers of the brewery in question from competitors. The beer consumers should be accustomed to the taste and made to get their beer preferred at the brewery concerned.
In der Praxis erfolgt die sensorische Prüfung der Biere im Rahmen von Bierverkostungen, die in größeren Brauereien von einem geschulten Verkoster-Team durchgeführt werden. Bei der Bierverkostung besteht jedoch das Problem, dass sich das geschmackliche Empfinden der Bierverkoster verändern kann, wenn mehrere Biere hintereinander verkostet werden. Das hängt damit zusammen, dass der Geschmack des Bierverkosters beim Verkosten der ersten Bierprobe noch neutral ist, beim anschließenden Verkosten einer weiteren Bierprobe aber durch die erste Bierprobe verändert sein kann. Dies kann zu Ungenauigkeiten bei der Qualitätsprüfung führen. Ungünstig ist außerdem, dass die sensorische Prüfung der Biere durch Verkosten ziemlich aufwändig ist und dass das Verkoster-Team möglicherweise nicht ständig verfügbar ist. Es besteht deshalb die Aufgabe, ein Verfahren der eingangs genannten Art zu schaffen, das es auf einfache und reproduzierbare Weise in einem Brauereibetrieb ermöglicht, die Übereinstimmung einer dort hergestellten Bierprobe mit einem Referenzbier derselben Biersorte zu überprüfen. In practice, the beers undergo sensory testing as part of beer tastings conducted in larger breweries by a trained taster team. When tasting beer, however, there is the problem that the taste sensation of beer tasters can change when several beers are tasted in a row. The reason for this is that the taste of the beer taster when tasting the first beer sample is still neutral, but may be altered by the first beer tasting during the subsequent tasting of another beer sample. This can lead to inaccuracies in the quality inspection. Another disadvantage is that tasting the beers by tasting them is quite expensive and that the taster team may not be constantly available. It is therefore an object to provide a method of the type mentioned, which makes it possible in a simple and reproducible manner in a brewery to check the compliance of a beer sample produced there with a reference beer of the same beer type.
Erfindungsgemäß wird diese Aufgabe mit den Merkmalen des Anspruchs 1 gelöst Diese sehen vor, dass von dem Referenzbier mindestens 15 Referenzbierproben mit den gleichen Zutaten und den gleichen Prozessparametern gebraut wurden, dass mittels Infrarot-Absorptionsspektroskopie Messsignale für das Absorptionsspektrum der einzelnen Referenzbierproben erfasst und für die Messsignale eine Hauptkomponentenanalyse durchgeführt wird, bei der mindestens 15 Hauptkomponenten ermittelt und für die einzelnen Referenzbierproben jeweils für jede Hauptkomponente eine Faktorladung PR (i,j) bestimmt wird, wobei i die Referenzbierprobe und j die Hauptkomponente bezeichnet, dass aus den Faktorladungen PR (i,j) für jede Referenzbierprobe und für jede Hauptkomponente jeweils ein Referenzwert According to the invention, this object is achieved with the features of claim 1. These provide that at least 15 reference beer samples were brewed from the reference beer with the same ingredients and the same process parameters that detected by infrared absorption spectroscopy measurement signals for the absorption spectrum of the individual reference beer samples and for the measurement signals carrying out a principal component analysis in which at least 15 main components are determined and a factor charge P R (i, j) is determined for the individual reference beer samples for each main component, where i denotes the reference beer sample and j the main component that consists of the factor charges P R (i , j) one reference value for each reference beer sample and for each major component
\ PR (i,j) - μΡ ]) \ ermittelt wird, wobei μΡ (/) der Mittelwert aller Faktorladungen der j-ten Hauptkomponente und oP ( ) die Standardabweichung dieser Faktorladungen bedeuten, dass ein Referenzintervall \ P R (i, j) - μ Ρ ]) \ where μ Ρ (/) is the mean of all factor charges of the j-th main component and o P () is the standard deviation of these factor charges, that is a reference interval
n m m n m m i = l j=l j = l i = l j = l j = l  n m m m i = l j = l j = l i = l j = l j = l
gebildet wird, wobei n die Anzahl der Referenzbierproben, m die Anzahl der Hauptkomponenten, aR (j) die Standardabweichung aller Referenzwerte der j-ten Hauptkomponente und k eine Konstante ungleich null ist, dass mittels Infrarot-Absorptionsspektroskopie ein Messsignal für das Absorptionsspektrum der auf Übereinstimmung mit dem Referenzbier zu überprüfenden Bierprobe erfasst wird und für die für die Referenzbierproben ermittelten Hauptkomponenten die Faktorladungen PB( dieses Messsignals bestimmt und aus diesen Faktorladungen PB (Q, den Mittelwerten μΡ (/) der Faktorladungen der Referenzbierproben für die einzelnen Hauptkomponenten und den Standardabweichungen aP (j) dieser Faktorladungen ein Kennwert where n is the number of reference beer samples, m is the number of principal components, a R (j) is the standard deviation of all reference values of the j-th main component, and k is a non-zero constant, that by infrared absorption spectroscopy, an absorption spectrum measurement signal is In accordance with the reference beer to be tested beer sample is detected and determined for the reference beer samples the factor charges P B (this measurement signal and from these factor charges P B (Q, the mean μ Ρ (/) of the factor loadings of the reference beer samples for each Principal components and the standard deviations a P (j) of these factor charges a characteristic value
gebildet und mit dem Referenzintervall verglichen wird, und dass für den Fall, dass der Kennwert B außerhalb des Referenzintervalls liegt ein Fehler bei der Produktion der Bierprobe angezeigt wird. is formed and compared with the reference interval, and that in the event that the characteristic B is outside the reference interval, an error in the production of the beer sample is displayed.
In vorteilhafter Weise wird das Referenzintervall mit Hilfe von normierten Referenzwerten R (i,j) bestimmt, bei denen der Mittelwert μΡ (/) aller Faktorladungen der betreffenden Hauptkomponente von der der betreffenden Referenzbierprobe zugeordneten Faktorladung PR (i,j) subtrahiert und der Betrag dieser Subtraktion durch die Standardabweichung aller Referenzwerte R(i,j) dieser Hauptkomponente dividiert wird. Durch diese Maßnahme gehen Spektralanteile, die durch Bierinhaltsstoffe verursacht sind, die nur in geringer Konzentration in den Referenzbierproben vorliegen, stärker in das Referenzintervall ein als dies der Fall wäre, wenn anstelle der normierten Referenzwerte die Faktorladungen zur Berechnung des Referenzintervalls verwendet würden. Dies ermöglicht einen präzisen Vergleich der Bierprobe mit dem durch die Referenzbierproben repräsentierten Referenzbier. Advantageously, the reference interval is determined with the aid of normalized reference values R (i, j), in which the mean value μ Ρ (/) of all factor charges of the relevant main component is subtracted from the factor charge P R (i, j) associated with the relevant reference beer sample, and the Amount of this subtraction is divided by the standard deviation of all reference values R (i, j) of this main component. As a result of this measure, spectral components caused by beer constituents, which are only present in low concentrations in the reference beer samples, are more in the reference interval than would be the case if the factor charges were used to calculate the reference interval instead of the normalized reference values. This allows a precise comparison of the beer sample with the reference beer represented by the reference beer samples.
Die Faktorladungen können mittels einer geeigneten, an sich bekannten Software ermittelt werden. Sie werden auch als„Score" bezeichnet. Die Konstante k kann einen beliebigen Wert ungleich null aufweisen, insbesondere den Wert 1 oder den Kehrwert 1 /m der Anzahl m der Hauptkomponenten. Nachdem das Referenzintervall aus den Faktorladungen und der Konstanten ermittelt wurde, kann es beispielsweise zusammen mit den Hauptkomponenten und ggf. der Konstanten k in einem Datenspeicher eines Mikrocomputers abgelegt werden. The factor charges can be determined by means of a suitable, known per se software. They are also referred to as "scores." The constant k can have any value other than zero, in particular the value 1 or the reciprocal 1 / m of the number m of the main components For example, stored together with the main components and possibly the constant k in a data memory of a microcomputer.
Mit den zuvor abgespeicherten Hauptkomponenten, dem Referenzintervall und ggf. dem Faktor k kann das erfindungsgemäße Verfahren auf einfache Weise auf eine Vielzahl von in einer Brauerei hergestellten Bierproben angewendet werden, indem jeweils von der betreffenden Bierprobe mittels eines hochauflösenden Ab- sorptionsspektrometers ein Messsignal für das Absorptionsspektrum aufgenommen wird. Dabei wird dieses Absorptionsspektrum mit den gleichen Parametern erfasst wie die Absorptionsspektren der Referenzbierproben. Vorzugsweise wird für die Messung des Absorptionsspektrums der Bierprobe dasselbe oder zumindest ein baugleiches Absorptionsspektrometer verwendet wie für die Messung der Absorptionsspektren der Referenzbierproben. With the previously stored main components, the reference interval and possibly the factor k, the method according to the invention can be applied in a simple manner to a large number of beer samples produced in a brewery, In each case, a measurement signal for the absorption spectrum is recorded from the relevant beer sample by means of a high-resolution absorption spectrometer. This absorption spectrum is recorded with the same parameters as the absorption spectra of the reference beer samples. Preferably, the same or at least one identical absorption spectrometer is used for the measurement of the absorption spectrum of the beer sample as for the measurement of the absorption spectra of the reference beer samples.
Mit Hilfe eines auf dem Mikrocomputer ablaufenden Betriebsprogramms kann aus dem Messsignal und den Hauptkomponenten der Kennwert B ermittelt, mit dem Referenzintervall verglichen und das Ergebnis des Vergleichs zur Anzeige gebracht werden. Falls der Vergleich eine Abweichung ergibt, kann der Braumeister oder ein entsprechender Mitarbeiter der Brauerei bei Bedarf die Qualität der untersuchten Bierprobe durch Verkosten überprüfen und erforderlichenfalls die Produktionsparameter für die Bierherstellung derart verändern, dass der Fehler kompensiert bzw. beseitigt wird. With the aid of an operating program running on the microcomputer, characteristic value B can be determined from the measuring signal and the main components, compared with the reference interval, and the result of the comparison displayed. If the comparison gives a discrepancy, the brewmaster or a representative of the brewery can, if necessary, check the quality of the beer sample by tasting and, if necessary, modify the production parameters for the beer production in such a way that the error is compensated or eliminated.
Der Mikrocomputer kann in das Absorptionsspektrometer oder dessen Steuerung integriert sein. Dies ermöglicht im laufenden Produktionsprozess eine einfache Vorort-Kontrolle der Bierproben. Es ist aber auch möglich, dass der Mikrocomputer von dem Absorptionsspektrometer getrennt und zum Einlesen des Messsignals für das Absorptionsspektrum mit dem Absorptionsspektrometer über eine geeignete Schnittstelle verbindbar ist. The microcomputer may be integrated with the absorption spectrometer or its controller. This enables simple on-the-spot checks of beer samples during the ongoing production process. However, it is also possible for the microcomputer to be separated from the absorption spectrometer and to be able to be connected to the absorption spectrometer via a suitable interface in order to read in the measurement signal for the absorption spectrum.
Bei einer bevorzugten Ausführungsform der Erfindung ist die Anzahl n der Referenzbierproben größer oder gleich der Anzahl m der Hauptkomponenten, insbesondere doppelt so groß und bevorzugt mindestens drei Mal so groß wie diese. Durch eine möglichst große Anzahl von Referenzbierproben können durch statistische Schwankungen verursachte Ungenauigkeiten in den Hauptkomponenten weitestgehend vermieden werden. Bei einer vorteilhaften Ausgestaltung der Erfindung beträgt die Anzahl m der Hauptkomponenten mindestens 20, gegebenenfalls mindestens 30, insbesondere mindestens 40 und bevorzugt mindestens 50. Dies ermöglicht einen sehr präzisen Vergleich der Bierprobe mit dem Referenzbier, wobei auch Abweichungen von Bierinhaltsstoffen berücksichtigt werden können, die nur in sehr geringer Konzentration in der Bierprobe und/oder dem Referenzbier enthalten sind. In a preferred embodiment of the invention, the number n of reference beer samples is greater than or equal to the number m of the main components, in particular twice as large and preferably at least three times as large as these. By using the largest possible number of reference beer samples, inaccuracies in the main components caused by statistical fluctuations can be largely avoided. In an advantageous embodiment of the invention, the number m of the main components is at least 20, optionally at least 30, in particular at least 40 and preferably at least 50. This allows a very precise comparison of the beer sample with the reference beer, which also deviations from beer ingredients can be considered, the only contained in very low concentration in the beer sample and / or the reference beer.
Vorteilhaft ist, wenn bei der Infrarot-Absorptionsspektroskopie die Referenzbierproben und die Bierprobe mit Infrarotstrahlung durchleuchtet wird, deren Wellenzahl den Bereich zwischen 950 und 3050, insbesondere zwischen 960 und 2000 und bevorzugt zwischen 980 und 1200 abdeckt. In diesem Bereich haben die im Bier enthaltenen Zucker charakteristische Absorptionspeaks, die sich im Spektrum identifizieren lassen. Bei der Messung des Absorptionsspektrums wird eine Flüssigkeitsschicht der Bierprobe bzw. der Referenzbierprobe mit Infrarotstrahlung durchleuchtet. Die Dicke der mit der Infrarotstrahlung durchleuchteten Flüssigkeitsschicht kann maximal 30 μιτι, gegebenenfalls maximal 20 μιτι, bevorzugt maximal 15 μιτι und insbesondere maximal 10 μιτι betragen. It is advantageous if, in infrared absorption spectroscopy, the reference beer samples and the beer sample are irradiated with infrared radiation whose wavenumber covers the range between 950 and 3050, in particular between 960 and 2000 and preferably between 980 and 1200. In this area, the sugars contained in the beer have characteristic absorption peaks that can be identified in the spectrum. In the measurement of the absorption spectrum, a liquid layer of the beer sample or the reference beer sample is irradiated with infrared radiation. The thickness of the liquid layer illuminated by the infrared radiation may be at most 30 μιτι, optionally a maximum of 20 μιτι, preferably a maximum of 15 μιτι and in particular a maximum of 10 μιτι amount.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung näher erläutert. Hereinafter, an embodiment of the invention will be explained in more detail.
Bei dem Ausführungsbeispiel werden zum Überprüfen der Übereinstimmung einer zu untersuchenden Bierprobe mit einem Referenzbier, welches derselben Biersorte zugeordnet sind wie die Bierprobe, von dem Referenzbier, 100 Referenzbierproben jeweils mit den gleichen Zutaten und den gleichen Prozessparametern gebraut. In the embodiment, to check the correspondence of a beer sample to be analyzed with a reference beer associated with the same type of beer as the beer sample from the reference beer, 100 reference beer samples are each brewed with the same ingredients and the same process parameters.
Mittels eines Infrarot-Absorptionsspektrometers vom Typ QFOOD QUANTOS® werden in einem Wellenzahlenbereich, der sich von der Wellenzahl 980 zur Wellenzahl 1200 erstreckt, Messsignale für die Absorptionsspektren der 100 Referenzbierproben erfasst. Jedes Messsignal umfasst jeweils 1000 Wertekombinationen, die jeweils zumindest einen Wert für die Wellenzahl und eine dieser zugeordneten Wert für die optische Infrarot-Absorption der Referenzbierprobe aufweist. Für die auf diese Weise erfassten 100 Messsignale bzw. Spektren wird eine Hauptkomponentenanalyse durchgeführt, bei der mit Hilfe einer an sich bekannten Software 30 Hauptkomponenten ermittelt werden. Für die 100 Referenzbierproben wird jeweils für jede der 30 Hauptkomponenten eine Faktorladung PR(i,j) bestimmt. Der Index i bezeichnet die Referenzbierprobe und der Index j die Hauptkomponente. Insgesamt ergeben sich also 3.000 Faktorladungen PR(i,j), von denen nachstehend aus Gründen der Übersichtlichkeit nur einige dargestellt sind: j=1 j=29 j=30 i=1 -0,1230054 -0,0026305 -0,0003498 -0,00000534 -0,00000243 i=2 -0,1242563 -0,0026599 -0,0003300 0,00000015 -0,00000127 i=3 -0,1293215 -0,0019354 0,0000951 -0,00000968 0,00000739 Using a QFOOD QUANTOS ® infrared absorption spectrometer, measurement signals for the absorption spectra of the 100 reference beer samples are recorded in a wavenumber range extending from the wavenumber 980 to the wavenumber 1200. Each measurement signal comprises in each case 1000 combinations of values, each of which has at least one value for the wave number and an associated value for the optical infrared absorption of the reference beer sample. For the 100 measurement signals or spectra recorded in this way, a principal component analysis is carried out, in which 30 main components are determined with the aid of software known per se. For the 100 reference beer samples, a factor charge P R (i, j) is determined for each of the 30 main components. The index i denotes the reference beer sample and the index j the main component. In total, therefore, there are 3,000 factor charges P R (i, j), of which only a few are shown below for the sake of clarity: j = 1 j = 29 j = 30 i = 1 -0,1230054 -0,0026305 -0,0003498 -0.00000534 -0.00000243 i = 2 -0.1242563 -0.0026599 -0.0003300 0.00000015 -0.00000127 i = 3 -0.1293215 -0.0019354 0.0000951 -0.00000968 0, 00000739
i=98 -0,1294580 -0,0003328 0,00057318 -0,00000786 -0,00000556 i=99 -0,1286656 -0,0008917 0,00045053 -0,00000487 -0,00000637 i=100 -0,1309384 -0,0004471 0,00042969 -0,00000069 -0,00000744 i = 98 -0.1294580 -0.0003328 0.00057318 -0.00000786 -0.00000556 i = 99 -0.1286656 -0.0008917 0.00045053 -0.00000487 -0.00000637 i = 100 -0, 1309384 -0,0004471 0,00042969 -0,00000069 -0,00000744
Für jede der 30 Hauptkomponenten werden jeweils der Mittelwert μΡ (/) aller Faktorladungen und die Standardabweichung aP(j) dieser Faktorladungen bestimmt: For each of the 30 main components, the mean value μ Ρ (/) of all factor charges and the standard deviation a P (j) of these factor charges are determined in each case:
1 -0,12897300 0,00196521  1 -0.12897300 0.00196521
2 -0,001 15020 0,00124260  2 -0.001 15020 0.00124260
3 0,00052527 0,00039921  3 0.00052527 0,00039921
0,00000017708 0,0000102710 0.00000017708 0.0000102710
0,00000015864 0,0000089216  0.00000015864 0.0000089216
0,00000016190 0,0000060188  0.00000016190 0.0000060188
Für jede Faktorladung PR (i,j) wird jeweils entsprechend der Betrags-Formel For each factor charge P R (i, j) is respectively in accordance with the amount formula
positiver Referenzwert R (i,j) ermittelt i R(i, l) Ä(i, 2) Ä(i, 3) R(i, 29) J?(i, 30) positive reference value R (i, j) determines i R (i, l) λ (i, 2) λ (i, 3) R (i, 29) Jα (i, 30)
1 3,03662653 1 ,19134758 2,19197238 0,61632769 0,430633371 3,036,662,613 1, 19134758 2,19197238 0,61632769 0,43063337
2 2,40007829 1 ,21500130 2,14247494 0,00063217 0,237904432 2,4000,778 1, 21500130 2,14247494 0,00063217 0,23790443
3 0,17732606 0,63194497 1 ,07755101 1 ,10278655 1 ,20091677 3 0.17732606 0.63194497 1, 07755101 1, 10278655 1, 20091677
0,24679333 0,65777029 0,12001654 0,89878767 0,95066921 0,15641331 0,20799952 0,18721578 0,56364666 1 ,08524718 1 ,00010092 0,56582482 0,23942857 0,09467341 1 ,26302301 0,246,793.33 0,65777029 0,12001654 0,89878767 0,95066921 0,15641331 0,20799952 0,18721578 0,56364666 1, 08524718 1, 00010092 0,56582482 0,23942857 0,09467341 1, 26302301
Außerdem wird für jede Hauptkomponente jeweils die Standardabweichung σκ (ϊ) über alle 100 Referenzwerte der betreffenden Hauptkomponente bestimmt: σ«(ί) In addition, the standard deviation σ κ (ϊ) for each main component is determined over all 100 reference values of the relevant main component: σ '(ί)
0,64967043  0.64967043
0,54158537  0.54158537
0,57910532  0.57910532
28 0,60052400 28 0.60052400
29 0,72734766  29 0.72734766
30 0,63994051  30 0.63994051
Aus den so erhaltenen Referenzwerten R(i,j) und Standardabweichungen aR (i) wird entsprechend der Formel From the thus obtained reference values R (i, j) and standard deviations a R (i) is calculated according to the formula
ein Referenzintervall gebildet: a reference interval is formed:
[21 ,1333601 - 12,0965087 ... 21 ,1333601 + 12,0965087] = [9,0368514 ... 33,2298688] [21, 1333601 - 12,0965087 ... 21, 1333601 + 12,0965087] = [9.0368514 ... 33.2298688]
In einem weiteren Verfahrensschritt wird die auf Übereinstimmung mit dem Referenzbier zu überprüfende Bierprobe bereitgestellt. Mit Hilfe des Infrarot-Absorpti- onsspektrometers vom Typ QFOOD QUANTOS® wird in einem Wellenzahlenbereich, der mit dem Wellenzahlenbereich, in dem auch die Absorptionsspektren der Referenzbierproben vermessen wurden, ein Messsignal für das Absorptionsspektrum der Bierprobe erfasst. In a further method step, the beer sample to be checked for conformity with the reference beer is provided. With the aid of the QFOOD QUANTOS ® infrared absorption spectrometer, a wave frequency range is recorded which contains the wavenumber range in which the absorption spectra of the reference beer samples were measured, and a measurement signal for the absorption spectrum of the beer sample.
Für die für die Referenzbierproben ermittelten 30 Hauptkomponenten werden die Faktorladungen PB (i) dieses Messsignals bestimmt: σ«(ί) For the 30 main components determined for the reference beer samples, the factor charges P B (i) of this measurement signal are determined: σ '(ί)
1 0,64967043  1 0,649,67043
2 0,54158537  2 0,54158537
3 0,57910532  3 0,579,10532
28 0,60052400 28 0.60052400
29 0,72734766  29 0.72734766
30 0,63994051  30 0.63994051
Die so erhaltenen Faktorladungen werden normalisiert, indem jeweils von der betreffenden Faktorladung PB (j) der Mittelwert μΡ(/) aller Faktorladungen der Referenzbierproben für die betreffende Hauptkomponente subtrahiert und das Ergebnis dieser Subtraktion durch die Standardabweichung aP (j) dieser Faktorladungen betragsmäßig dividiert wird: The factor charges thus obtained are normalized by subtracting from the respective factor charge P B (j) the mean μ Ρ (/) of all the reference beer sample factor charges for the main component concerned and the magnitude of the result of this subtraction by the standard deviation a P (j) of these factor charges divided:
PB W - PP V  PB W - PP V
o (/)  o (/)
Aus den so erhaltenen, normalisierten Faktorladungen wird der arithmetische Mittelwert ermittelt, um einen Kennwert B für die Bierprobe zu bilden: From the normalized factor loadings thus obtained, the arithmetic mean value is determined to form a characteristic value B for the beer sample:
Dieser Kennwert B wird mit dem Referenzintervall [9,0368514 ... 33,2298688] verglichen. Da der Kennwert B außerhalb des Referenzintervalls liegt, wird ein Fehler bei der Produktion der Bierprobe angezeigt.  This characteristic value B is compared with the reference interval [9.0368514 ... 33.2298688]. Since the characteristic value B is outside the reference interval, an error in the production of the beer sample is displayed.

Claims

Patentansprüche Verfahren zum Überprüfen der Übereinstimmung einer Bierprobe mit einem Referenzbier, welches derselben Biersorte zugeordnet ist wie die Bierprobe, dadurch gekennzeichnet, dass von dem Referenzbier mindestens 15 Referenzbierproben mit den gleichen Zutaten und den gleichen Prozessparametern gebraut wurden, dass mittels Infrarot-Absorptionsspektroskopie Messsignale für das Absorptionsspektrum der einzelnen Referenzbierproben erfasst und für die Messsignale eine Hauptkomponentenanalyse durchgeführt wird, bei der mindestens 15 Hauptkomponenten ermittelt und für die einzelnen Referenzbierproben jeweils für jede Hauptkomponente eine Faktorladung PR(i,j) bestimmt wird, wobei i die Referenzbierprobe und j die Hauptkomponente bezeichnet, dass aus den Faktorladungen PR(i,j) für jede Referenzbierprobe und für jede Hauptkomponente jeweils ein Referenzwert A method for checking the conformity of a beer sample with a reference beer, which is associated with the same type of beer as the beer sample, characterized in that at least 15 reference beer samples were brewed from the reference beer with the same ingredients and the same process parameters that by infrared absorption spectroscopy measuring signals for the Absorption spectrum of the individual reference beer samples is detected and carried out for the measurement signals, a principal component analysis in which at least 15 main components determined and for each reference beer samples for each major component, a factor charge P R (i, j) is determined, where i denotes the reference beer sample and j the main component in that each of the factor charges P R (i, j) has a reference value for each reference beer sample and for each main component
ermittelt wird, wobei μΡ(/) der Mittelwert aller Faktorladungen der j-ten Hauptkomponente und aP(J) die Standardabweichung dieser Faktorladungen bedeuten, dass ein Referenzintervall where μ Ρ (/) is the mean of all factor charges of the j-th main component and a P (J) is the standard deviation of these factor charges, that is a reference interval
n m m n m m i=l j=l j=l i=l j=l i=l  n m m m i = l j = l j = l i = l j = l i = l
gebildet wird, wobei n die Anzahl der Referenzbierproben, m die Anzahl der Hauptkomponenten, aR(j) die Standardabweichung aller Referenzwerte der j-ten Hauptkomponente und k eine Konstante ungleich null ist, dass mittels Infrarot-Absorptionsspektroskopie ein Messsignal für das Absorptionsspektrum der auf Übereinstimmung mit dem Referenzbier zu überprüfenden Bierprobe erfasst wird und für die für die Referenzbierproben ermittelten Hauptkomponenten die Faktorladungen PB (i) dieses Messsignals bestimmt und aus diesen Faktorladungen PB (Q, den Mittelwerten μΡ(/) der Faktorladungen der Referenzbierproben für die einzelnen Hauptkomponenten und den Standardabweichungen aP(j) dieser Faktorladungen ein Kennwert where n is the number of reference beer samples, m is the number of principal components, a R (j) is the standard deviation of all reference values of the j-th main component, and k is a non-zero constant, that by infrared absorption spectroscopy, a measurement signal for the absorption spectrum of Matching with the reference beer to be tested beer sample is detected and determined for the reference beer samples the factor charges P B (i) of this measurement signal and from these factor charges P B (Q, the mean μ Ρ (/) of the factor loadings of reference beer samples for each Principal components and the standard deviations a P (j) of these factor charges a characteristic value
gebildet und mit dem Referenzintervall verglichen wird, und dass für den Fall, dass der Kennwert B außerhalb des Referenzintervalls liegt ein Fehler bei der Produktion der Bierprobe angezeigt wird.  is formed and compared with the reference interval, and that in the event that the characteristic B is outside the reference interval, an error in the production of the beer sample is displayed.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Anzahl n der Referenzbierproben größer oder gleich der Anzahl m der Hauptkomponenten ist, insbesondere doppelt so groß und bevorzugt mindestens drei Mal so groß ist wie diese. 2. The method according to claim 1, characterized in that the number n of the reference beer samples is greater than or equal to the number m of the main components, in particular twice as large and preferably at least three times as large as these.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl m der Hauptkomponenten mindestens 20, gegebenenfalls mindestens 30, insbesondere mindestens 40 und bevorzugt mindestens 50 beträgt. 3. The method according to claim 1 or 2, characterized in that the number m of the main components is at least 20, optionally at least 30, in particular at least 40 and preferably at least 50.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Konstante k dem Kehrwert der Anzahl m der Hauptkomponenten entspricht. 4. The method according to any one of claims 1 to 3, characterized in that the constant k corresponds to the reciprocal of the number m of the main components.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei der Infrarot-Absorptionsspektroskopie die Referenzbierproben und die Bierprobe mit Infrarotstrahlung durchleuchtet wird, deren Wellenzahl den Bereich zwischen 950 und 3050, insbesondere zwischen 960 und 2000 und bevorzugt zwischen 980 und 1200 abdeckt. 5. The method according to any one of claims 1 to 4, characterized in that in the infrared absorption spectroscopy the reference beer samples and the beer sample is irradiated with infrared radiation whose wave number is between 950 and 3050, in particular between 960 and 2000 and preferably between 980 and 1200 covers.
EP17751070.8A 2016-08-10 2017-08-03 Method for verifying conformity of a beer sample with a reference beer Active EP3497430B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016009636.5A DE102016009636B4 (en) 2016-08-10 2016-08-10 Method for checking the conformity of a beer sample with a reference beer
PCT/EP2017/069698 WO2018029088A1 (en) 2016-08-10 2017-08-03 Method for monitoring the correspondence of a beer sample with a reference beer

Publications (2)

Publication Number Publication Date
EP3497430A1 true EP3497430A1 (en) 2019-06-19
EP3497430B1 EP3497430B1 (en) 2021-01-06

Family

ID=59579622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17751070.8A Active EP3497430B1 (en) 2016-08-10 2017-08-03 Method for verifying conformity of a beer sample with a reference beer

Country Status (4)

Country Link
US (1) US10746654B2 (en)
EP (1) EP3497430B1 (en)
DE (1) DE102016009636B4 (en)
WO (1) WO2018029088A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455740B (en) * 2019-07-17 2021-11-23 武汉科技大学 Asphalt aging time course prediction method
ES2955072T3 (en) * 2019-10-17 2023-11-28 Evonik Operations Gmbh Method of predicting a property value of a material using principal component analysis

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY107650A (en) * 1990-10-12 1996-05-30 Exxon Res & Engineering Company Method of estimating property and / or composition data of a test sample
DE10108712A1 (en) * 2001-02-23 2002-09-12 Warsteiner Brauerei Haus Crame Method for analytical analysis of a beer sample
CA2544488A1 (en) * 2006-05-01 2007-11-01 Chemisch Biochemisch Onderzoekscn Use of hop polyphenols in beer
NZ583466A (en) * 2007-08-13 2012-09-28 Commw Scient Ind Res Org Barley with low levels of hordein, methods of producing food with low levels of hordein and methods of treating coeliac's disease
GB0720423D0 (en) * 2007-10-19 2007-11-28 Univ Leuven Kath Method for brewing beer
GB0810251D0 (en) * 2008-06-05 2008-07-09 Stephenson Group Ltd Improvements in or relating to gassed beverages
EP2718691B1 (en) * 2011-06-09 2017-12-13 QFood GmbH Method and apparatus for determining the concentration of an analyte contained in a liquid sample
NL2011388C2 (en) * 2013-09-05 2015-03-09 Haffmans Bv DEVICE FOR OPTICALLY DETERMINING THE CONCENTRATION OF ALCOHOL AND CARBOHYDRATES IN A LIQUID SAMPLE.
DK2846160T3 (en) * 2013-09-09 2016-04-25 Alfa Laval Corp Ab Method and device for ølgæring
US10570357B2 (en) * 2015-06-17 2020-02-25 University Of Northern Colorado In-line detection of chemical compounds in beer

Also Published As

Publication number Publication date
US10746654B2 (en) 2020-08-18
EP3497430B1 (en) 2021-01-06
US20190178794A1 (en) 2019-06-13
WO2018029088A1 (en) 2018-02-15
DE102016009636B4 (en) 2018-07-12
DE102016009636A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
EP3098581B1 (en) Method for correcting background signals in a spectrum
EP2748589B1 (en) Method for determining the purity of a refrigerant
DE10027074B4 (en) Method of analyzing multi-component gas mixtures using FTIR spectroscopy
EP3159681B1 (en) Method and device for automatable determination of the detection threshold and the relative error in the quantification of the concentration of a substance to be tested in a measuring probe
EP3075906B1 (en) Impregnation system and method for monitoring the same
DE102012217419A1 (en) Analysis method for X-ray diffraction measurement data
DE102005009195B4 (en) Method and device for correcting a spectrum
EP3497430A1 (en) Method for monitoring the correspondence of a beer sample with a reference beer
DE4203587A1 (en) Quantitative spectral analytical processes - e.g. for analysing exhaust gas from methanol-driven automobile
WO2003098174A1 (en) Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
DE102016109472A1 (en) Method for the quantitative determination of liquid multicomponent mixtures
DE102007021324B4 (en) Apparatus and method for determining the mixing ratio of a medium consisting of two or more individual components
DE102008039836B4 (en) Apparatus and method for determining the acidity
WO1999047909A1 (en) Automatic calibration method
DE102014012367B3 (en) Method for determining the concentration of glucoraphanin and / or sulforaphane in a plant
AT523446B1 (en) contamination analyzer
DE1235630B (en) Method for the spectroscopic identification of pure substances
WO2002068938A1 (en) Method for analytically examining a beer sample
DE102014218354B4 (en) A method of obtaining information coded in a result of an NMR measurement
DE102017210548A1 (en) Thickness-independent spectroscopic analysis of consumables
DE4307736A1 (en) Sequence to process electrophoresic sample of human serum quickly - comprises normalisation of measuring sample derived from electrophoresic processing compared to ref. prod., fractionating sample on basis of derived fractionating point, etc.
DE2918084C3 (en) Device for determining the extinctions of components in an exhaust gas mixture
DE102021118559A1 (en) Method and system for analyzing a sample from data
EP3312598B1 (en) Device for monitoring a production process for gypsum products using at least one furnace
EP3465164B1 (en) Method for the reconstruction of a raman spectrum

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200819

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GREEN, JONATHAN E.

Inventor name: KLAPPROTH, HOLGER

Inventor name: SEIDEL, ROBERT

Inventor name: HAAS, JOACHIM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1352901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008962

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008962

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

26N No opposition filed

Effective date: 20211007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1352901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 7

Ref country code: DE

Payment date: 20230831

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106