EP3495651B1 - Grille pour la formation d'un flux d'inversion d'un turboréacteur d'aéronef - Google Patents

Grille pour la formation d'un flux d'inversion d'un turboréacteur d'aéronef Download PDF

Info

Publication number
EP3495651B1
EP3495651B1 EP18205712.5A EP18205712A EP3495651B1 EP 3495651 B1 EP3495651 B1 EP 3495651B1 EP 18205712 A EP18205712 A EP 18205712A EP 3495651 B1 EP3495651 B1 EP 3495651B1
Authority
EP
European Patent Office
Prior art keywords
type
fins
fin
screen
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18205712.5A
Other languages
German (de)
English (en)
Other versions
EP3495651A1 (fr
Inventor
Quentin VAUCOULOUX
Romain Cusset
Christophe Bourdeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Original Assignee
Airbus Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations SAS filed Critical Airbus Operations SAS
Publication of EP3495651A1 publication Critical patent/EP3495651A1/fr
Application granted granted Critical
Publication of EP3495651B1 publication Critical patent/EP3495651B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/129Cascades, i.e. assemblies of similar profiles acting in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a grid for forming an inversion flow of a double-flow turbojet of an aircraft, a double-flow turbojet comprising at least one such grid, as well as to an aircraft comprising at least one such double turbojet. flux.
  • An aircraft has a fuselage on each side of which a wing is attached. Under each wing is suspended at least one double-flow turbojet. Each bypass turbojet is fixed under the wing by means of a mast which is fixed between the structure of the wing and the structure of the bypass turbojet.
  • the bypass turbojet comprises an engine in the form of a core and a nacelle which is fixed around the engine to a fixed structure of the turbojet. Between the engine and the nacelle, the turbojet has a secondary stream in which flows from upstream to downstream, a secondary flow coming from a fan arranged upstream of the engine.
  • the nacelle comprises a fixed cowl with respect to the fixed structure and downstream, a movable cowl which moves in translation towards the rear to free a window between the movable cowl and the fixed cowl and which allows passage between the secondary flow and outside.
  • one or more reversing flaps move from an inactive position to an active position.
  • the reversing flap In the inactive position, the reversing flap is outside the secondary stream and does not prevent the flow of the secondary stream.
  • the reversing flap In the active position, the reversing flap is across the secondary vein and directs the secondary flow from the secondary vein towards the window and therefore outward.
  • the movements of the movable cowl and of the reversing flaps are carried out by a control system comprising, for example, jacks and rods.
  • grids also called “cascades” are arranged across the window, and guide the flow leaving through the window as best as possible to improve the efficiency of the reverser by more precisely controlling the direction of the deflected secondary flow.
  • the grids are in the form of profiled fins which deflect the secondary flow.
  • Each fin has a curved profile the roundness of which is oriented towards the rear and the center of curvature of which is forward in relation to the fin. If the fins allow good deflection of the secondary flow towards the front, the air flow leaving the grille tends to separate at the level of the trailing edge of each fin, which tends to reduce the performance of the grille.
  • An object of the present invention is to provide a grid for forming an inversion flow of a bypass turbojet of an aircraft.
  • Such a grid allows a reduction in weight while ensuring efficient deflection.
  • the Fig. 1 shows an aircraft 10 which comprises a fuselage 12 on each side of which is fixed a wing 14 which carries at least one bypass turbojet 100 according to the invention.
  • the bypass turbojet 100 is attached to the wing 14 by means of a mast 16.
  • the longitudinal axis of the nacelle 102 and of the bypass turbojet 100 which is generally parallel to the axis is called x.
  • Y is called the transverse axis or pitch axis of the aircraft which is horizontal when the aircraft is at ground
  • Z the vertical axis or vertical height or yaw axis when the aircraft is on the ground
  • the bypass turbojet 100 comprises a nacelle 102 which comprises at the front a fixed cowl 106 and at the rear of the fixed cowl 106 with respect to the longitudinal axis x, a movable cowl 108.
  • the bypass turbojet 100 comprises an engine 20 in the form of a core which is housed inside the nacelle 102.
  • the turbojet 100 has a duct 202 delimited between the nacelle 102 and the engine 20 and in which a flow circulates secondary 208 from an upstream blower.
  • the fixed cover 106 is fixedly mounted on a fixed structure 209 of the nacelle 102 and constitutes an outer wall of the nacelle 102.
  • the movable cowl 108 is mounted movable in translation on the fixed structure 209 in a direction of translation generally parallel to the longitudinal axis x. Translation is carried out by any suitable means such as for example slides and by any actuation systems such as for example jacks or motors.
  • the movable cowl 108 has an inner wall 207a and an outer wall 207b which surrounds the inner wall 207a.
  • the movable cover 108 is movable between a closed position ( Fig. 2 ) in which the movable cover 108 is against the fixed cover 106 and an open position ( Fig. 3 ) in which the movable cowl 108 is moved away from the fixed cowl 106 towards the rear so as to open a window 210 open to the outside of the nacelle 102 and which opens a passage between the secondary stream 202 and the outside.
  • a closed position the fixed cover 106 and the outer wall 207b extend to form the outer casing of the nacelle 102 and to close the window 210
  • the fixed cover 106 and the outer wall 207b are distant from each other.
  • the inner wall 207a comes into contact with the fixed structure 209 and constitutes an outer wall of the secondary vein. 202, and in the open position, the interior wall 207a is remote from the fixed structure 209 so as to open the passage between the secondary stream 202 and the window 210.
  • the nacelle 102 comprises at least one reversing flap 104.
  • thrust reverser system which is described here is only illustrative and the invention can be applied to any type of thrust reverser for which stunts are used in order to increase the efficiency of the thrust reverser. thrust towards the front of the basket.
  • the reversing flap 104 is disposed between the inner wall 207a and the outer wall 207b in the closed position.
  • the reversing flap 104 is mounted to rotate freely around an axis of rotation 50 on the fixed structure of the nacelle 102 between an inactive position ( Fig. 2 ) in which it is not in the vein 202 and an active position ( Fig. 3 ) in which it at least partially closes the vein 202.
  • the reversing flap 104 When the movable cowl 108 is in the closed position, the reversing flap 104 is in the inactive position, and when the movable cowl 108 is in the open position, the reversing flap 104 is in the active position so as to deflect at least part of the secondary flow 208 to the outside of the nacelle 102.
  • the movement of the reversing flap 104 is linked to the movement of the movable cover 108.
  • the movement of the reversing flap 104 is controlled by any appropriate means such as for example a linkage system, jacks or motors.
  • the secondary flow 208 is diverted outward through the window 210.
  • the nacelle 102 is equipped with grids 250 which allow the formation of an inversion flow of the turbojet 100 from the secondary flow 208, also known under the term “cascades” which are arranged across the window. 210 to improve the efficiency of the reverser by controlling more precisely the direction of a deviated secondary flow 208 and in particular by orienting it towards the front of the nacelle 102.
  • the Fig. 4 shows the grid 250 alone and in section.
  • the number of grids 250 per window 210 varies according to the dimensions of the grids 250 and of the window 210. In the following description, the invention is more particularly described for a grid 250, but it applies in the same way for each. grid 250 when there are several.
  • the grid 250 takes the form of a frame having an upstream edge 252 and a downstream edge 254 parallel to the upstream edge 252, as well as side edges 253 perpendicular to the upstream 252 and downstream edges 254.
  • the grid 250 is fixed to the fixed structure. of the nacelle 102, for example by screws.
  • the grid 250 has fins 256 of a first type and fins 258 of a second type, where each fin 256, 258 of one of the two types is interposed between two fins 258, 256 of the other type by progressing along the longitudinal axis x, that is to say from the front to the rear of the turbojet 100.
  • Each fin 256 of the first type has a curved profile, the rounding of which is oriented towards the rear of the turbojet 100 and the center of curvature of which is forward relative to the fin 256 of the first type. Each fin 256 of the first type therefore allows the secondary flow 208 to be deflected forward.
  • Each fin 258 of the second type also has a curved profile, the roundedness of which is oriented towards the rear of the turbojet 100 and the center of curvature of which is forward with respect to the fin 258 of the second type, but whose chord is smaller than the chord of fins 256 of the first type.
  • each fin 258 of the second type has an air intake which is less than the air intake of the fins 256 of the first type.
  • the fins 258 of the second type being smaller than the fins 256 of the first type, they are less heavy hence a weight gain, and they make it possible, by reducing the outlet surface of the secondary flow 208, to create a converging section and to accelerate the secondary flow 208 at the outlet of the grid 250 and thus to reduce the separation of the air flow at the level of the fins 256 of the first type.
  • the trailing edges of the fins 256 of the first type and the trailing edges of the fins 258 of the second type are aligned in a direction generally parallel to the longitudinal axis x. In other words, the trailing edges of all the fins 256 and 258 are all in the same exit plane generally parallel to the longitudinal axis x.
  • leading edges of the fins 256 of the first type and the leading edges of the fins 258 of the second type are not aligned in a direction generally parallel to the longitudinal axis X.
  • the leading edges of the fins 256 of first type are all in the same entry plane parallel to the exit plane and the leading edge of each fin 258 of the second type is in an intermediate plane between the entry plane and the exit plane and at a distance from each of them.
  • the vertical axis is taken here with reference to Figs. 2 to 6 , but this axis is more generally an axial direction of the bypass turbojet 100.
  • different thickness laws can be applied to the profile of the fins.
  • the Fig. 6 shows different variants which can be implemented independently of each other or in combination with each other.
  • the heights of the fins 258 of the second type vary from one fin 258 of the second type to another fin 258 of the second type. These variations are represented by heights h 1 ′ , h 2 ′ different.
  • the distance between a fin 256 of the first type and the fin 258 of the second consecutive type in the direction from the front to the rear is different from the distance between another fin 256 of the first type and l fin 258 of the second consecutive type in the direction from front to rear to this other fin 256 of the first type.
  • These variations are represented by distances s 1 ′ , s 2 ′ different.
  • the entry angles of the fins 258 of the second type vary from one fin 258 of the second type to another fin 258 of the second type. These variations are represented by angles ⁇ 1 ′ , ⁇ 2 ′ different.

Description

  • La présente invention concerne une grille pour la formation d'un flux d'inversion d'un turboréacteur double flux d'un aéronef, un turboréacteur double flux comportant au moins une telle grille, ainsi qu'un aéronef comportant au moins un tel turboréacteur double flux.
  • Un aéronef comporte un fuselage de chaque côté duquel est fixée une aile. Sous chaque aile est suspendu au moins un turboréacteur double flux. Chaque turboréacteur double flux est fixé sous l'aile par l'intermédiaire d'un mât qui est fixé entre la structure de l'aile et la structure du turboréacteur double flux.
  • Le turboréacteur double flux comporte un moteur sous forme d'un noyau et une nacelle qui est fixée autour du moteur à une structure fixe du turboréacteur. Entre le moteur et la nacelle, le turboréacteur présente une veine secondaire dans laquelle s'écoule de l'amont vers l'aval, un flux secondaire provenant d'une soufflante disposée en amont du moteur.
  • La nacelle comporte un capot fixe par rapport à la structure fixe et en aval, un capot mobile qui se déplace en translation vers l'arrière pour libérer une fenêtre entre le capot mobile et le capot fixe et qui permet le passage entre la veine secondaire et l'extérieur.
  • Dans le même temps, un ou plusieurs volets inverseurs se déplacent d'une position inactive à une position active. Dans la position inactive, le volet inverseur est en dehors de la veine secondaire et n'empêche pas l'écoulement du flux secondaire. Dans la position active, le volet inverseur est en travers de la veine secondaire et dirige le flux secondaire de la veine secondaire vers la fenêtre et donc vers l'extérieur.
  • Les déplacements du capot mobile et des volets inverseurs sont réalisés par un système de commande comportant par exemple des vérins et des tringles.
  • De manière connue, par exemple du document US2016/341150 , des grilles, appelées également « cascades » sont disposées en travers de la fenêtre, et guident au mieux le flux sortant par la fenêtre pour améliorer l'efficacité de l'inverseur en contrôlant de manière plus précise la direction du flux secondaire dévié.
  • Les grilles se présentent sous la forme d'ailettes profilées qui dévient le flux secondaire. Chaque ailette présente un profil courbe dont l'arrondi est orienté vers l'arrière et dont le centre de courbure est à l'avant par rapport à l'ailette. Si les ailettes permettent une bonne déviation du flux secondaire vers l'avant, le flux d'air en sortie de la grille a tendance à se séparer au niveau du bord de fuite de chaque ailette, ce qui tend à réduire la performance de la grille.
  • Pour assurer un meilleur rendement de ces grilles, il est nécessaire de trouver des formes d'ailettes plus performantes du point de vue aérodynamique et du point de vue du poids.
  • Un objet de la présente invention est de proposer une grille pour la formation d'un flux d'inversion d'un turboréacteur double flux d'un aéronef.
  • A cet effet, est proposée une grille pour la formation d'un flux d'inversion d'un turboréacteur double flux telle que revendiquée à la revendication 1.
  • Une telle grille permet une réduction du poids tout en assurant une déviation performante.
  • Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels :
    • la Fig. 1 est une vue de côté d'un aéronef comportant un turboréacteur double flux selon l'invention,
    • la Fig. 2 est une vue en coupe par un plan médian du turboréacteur selon l'invention en position fermée,
    • la Fig. 3 est une vue en coupe similaire à celle de la Fig. 2 en position ouverte,
    • la Fig. 4 montre une vue de côté d'une grille selon l'invention,
    • la Fig. 5 montre un agrandissement d'une partie de la grille de la Fig. 4, et
    • la Fig. 6 montre une vue de côté d'une grille selon différents modes de réalisation.
  • Dans la description qui suit, les termes relatifs à une position sont pris en référence à un aéronef en position d'avancement comme il est représenté sur la Fig. 1.
  • La Fig. 1 montre un aéronef 10 qui comporte un fuselage 12 de chaque côté duquel est fixée une aile 14 qui porte au moins un turboréacteur double flux 100 selon l'invention. La fixation du turboréacteur double flux 100 sous l'aile 14 s'effectue par l'intermédiaire d'un mât 16.
  • Dans la description qui suit, et par convention, on appelle x l'axe longitudinal de la nacelle 102 et du turboréacteur double flux 100 qui est globalement parallèle à l'axe longitudinal X de l'aéronef 10 ou axe de roulis, orienté positivement dans le sens d'avancement de l'aéronef 10, on appelle Y l'axe transversal ou axe de tangage de l'aéronef qui est horizontal lorsque l'aéronef est au sol, et Z l'axe vertical ou hauteur verticale ou axe de lacet lorsque l'aéronef est au sol, ces trois directions X, Y et Z étant orthogonales entre elles et formant un repère orthonormé ayant pour origine le centre de gravité de l'aéronef.
  • Le turboréacteur double flux 100 comporte une nacelle 102 qui comporte à l'avant un capot fixe 106 et à l'arrière du capot fixe 106 par rapport à l'axe longitudinal x, un capot mobile 108.
  • Comme cela est montré sur les Figs. 2 et 3, le turboréacteur double flux 100 comporte un moteur 20 sous forme d'un noyau qui est logé à l'intérieur de la nacelle 102. Le turboréacteur 100 présente une veine 202 délimitée entre la nacelle 102 et le moteur 20 et dans laquelle circule un flux secondaire 208 provenant d'une soufflante en amont.
  • Le capot fixe 106 est monté fixe sur une structure fixe 209 de la nacelle 102 et constitue une paroi extérieure de la nacelle 102.
  • Le capot mobile 108 est monté mobile en translation sur la structure fixe 209 selon une direction de translation globalement parallèle à l'axe longitudinal x. La translation est réalisée par tous moyens appropriés comme par exemple des glissières et par tous systèmes d'actionnement comme par exemple des vérins ou des moteurs.
  • Dans le mode de réalisation de l'invention présenté ici, le capot mobile 108 comporte une paroi intérieure 207a et une paroi extérieure 207b qui entoure la paroi intérieure 207a.
  • Le capot mobile 108 est mobile entre une position de fermeture (Fig. 2) dans laquelle le capot mobile 108 est contre le capot fixe 106 et une position d'ouverture (Fig. 3) dans laquelle le capot mobile 108 est éloigné du capot fixe 106 vers l'arrière de manière à ouvrir une fenêtre 210 ouverte sur l'extérieur de la nacelle 102 et qui ouvre un passage entre la veine secondaire 202 et l'extérieur. En position de fermeture, le capot fixe 106 et la paroi extérieure 207b se prolongent pour former l'enveloppe extérieure de la nacelle 102 et pour obturer la fenêtre 210, et en position d'ouverture, le capot fixe 106 et la paroi extérieure 207b sont éloignés l'un de l'autre.
  • Dans le même temps, en position de fermeture, la paroi intérieure 207a vient en contact avec la structure fixe 209 et constitue une paroi extérieure de la veine secondaire 202, et en position d'ouverture, la paroi intérieure 207a est éloignée de la structure fixe 209 de manière à ouvrir le passage entre la veine secondaire 202 et la fenêtre 210.
  • La nacelle 102 comporte au moins un volet inverseur 104. En particulier, il peut y avoir deux volets inverseurs 104 disposés l'un en face de l'autre, ou plusieurs, par exemple quatre, volets inverseurs 104 répartis régulièrement sur la périphérie de la nacelle 102.
  • Le système d'inversion de poussée qui est décrit ici ne l'est qu'à titre illustratif et l'invention peut s'appliquer à tout type d'inverseur de poussée pour lequel des cascades sont utilisées afin d'augmenter le rendement de la poussée vers l'avant de la nacelle.
  • En outre, ici l'invention est plus particulièrement décrite pour un volet inverseur 104, mais elle s'applique de la même manière pour chaque volet inverseur 104 lorsqu'il y en a plusieurs.
  • Dans le mode de réalisation de l'invention présenté ici, le volet inverseur 104 est disposé entre la paroi intérieure 207a et la paroi extérieure 207b en position de fermeture.
  • Le volet inverseur 104 est monté libre en rotation autour d'un axe de rotation 50 sur la structure fixe de la nacelle 102 entre une position inactive (Fig. 2) dans laquelle il n'est pas dans la veine 202 et une position active (Fig. 3) dans laquelle il obture au moins en partie la veine 202.
  • Lorsque le capot mobile 108 est en position de fermeture, le volet inverseur 104 est en position inactive, et lorsque le capot mobile 108 est en position d'ouverture, le volet inverseur 104 est en position active de manière à dévier au moins une partie du flux secondaire 208 vers l'extérieur de la nacelle 102.
  • Le déplacement du volet inverseur 104 est lié au déplacement du capot mobile 108. Le déplacement du volet inverseur 104 est commandé par tous moyens appropriés comme par exemple un système de tringlerie, des vérins ou des moteurs.
  • Ainsi, en position d'ouverture du capot mobile 108 et en position active du volet inverseur 104, le flux secondaire 208 est dévié vers l'extérieur à travers la fenêtre 210.
  • Pour chaque fenêtre 210, la nacelle 102 est équipée de grilles 250 qui permettent la formation d'un flux d'inversion du turboréacteur 100 à partir du flux secondaire 208, également connues sous le terme « cascades » qui sont disposées en travers de la fenêtre 210 pour améliorer l'efficacité de l'inverseur en contrôlant de manière plus précise la direction d'un flux secondaire 208 dévié et en particulier en l'orientant vers l'avant de la nacelle 102. La Fig. 4 montre la grille 250 seule et en coupe.
  • Le nombre de grilles 250 par fenêtre 210 varie selon les dimensions des grilles 250 et de la fenêtre 210. Dans la description qui suit, l'invention est plus particulièrement décrite pour une grille 250, mais elle s'applique de la même manière pour chaque grille 250 lorsqu'il y en a plusieurs.
  • La grille 250 prend la forme d'un cadre présentant un bord amont 252 et un bord aval 254 parallèle au bord amont 252, ainsi que des bords latéraux 253 perpendiculaires aux bords amont 252 et aval 254. La grille 250 est fixée à la structure fixe de la nacelle 102 par exemple par des vis.
  • A l'intérieur du cadre, la grille 250 présente des ailettes 256 d'un premier type et des ailettes 258 d'un deuxième type, où chaque ailette 256, 258 d'un des deux types est intercalée entre deux ailettes 258, 256 de l'autre type en progressant le long de l'axe longitudinal x, c'est-à-dire de l'avant vers l'arrière du turboréacteur 100.
  • Chaque ailette 256 du premier type présente un profil courbe dont l'arrondi est orienté vers l'arrière du turboréacteur 100 et dont le centre de courbure est à l'avant par rapport à l'ailette 256 du premier type. Chaque ailette 256 du premier type permet donc de dévier le flux secondaire 208 vers l'avant.
  • Chaque ailette 258 du deuxième type présente également un profil courbe dont l'arrondi est orienté vers l'arrière du turboréacteur 100 et dont le centre de courbure est à l'avant par rapport à l'ailette 258 du deuxième type, mais dont la corde est plus petite que la corde des ailettes 256 du premier type.
  • Ainsi, vis-à-vis du flux secondaire 208 entrant dans la grille 250, chaque ailette 258 du deuxième type présente une prise à l'air qui est inférieure à la prise à l'air des ailettes 256 du premier type. Les ailettes 258 du deuxième type étant plus petites que les ailettes 256 du premier type, elles sont moins lourdes d'où un gain de poids, et elles permettent, en réduisant la surface de sortie du flux secondaire 208, de créer une section convergente et d'accélérer le flux secondaire 208 en sortie de la grille 250 et ainsi de réduire la séparation du flux d'air au niveau des ailettes 256 du premier type.
  • Les bords de fuite des ailettes 256 du premier type et les bords de fuite des ailettes 258 du deuxième type sont alignés selon une direction globalement parallèle à l'axe longitudinal x. En d'autres termes, les bords de fuite de toutes les ailettes 256 et 258 sont toutes dans un même plan de sortie globalement parallèle à l'axe longitudinal x.
  • A contrario, les bords d'attaque des ailettes 256 du premier type et les bords d'attaque des ailettes 258 du deuxième type ne sont pas alignés selon une direction globalement parallèle à l'axe longitudinal X. Les bords d'attaque des ailettes 256 du premier type sont tous dans un même plan d'entrée parallèle au plan de sortie et le bord d'attaque de chaque ailette 258 du deuxième type est dans un plan intermédiaire entre le plan d'entrée et le plan de sortie et à distance de chacun d'eux.
  • La Fig. 5 montre un agrandissement de la grille 250 où :
    • « c » est la corde des ailettes 256 du premier type,
    • « c' » est la corde des ailettes 258 du deuxième type,
    • « s » est la distance entre deux ailettes 256 du premier type consécutives dans le sens de l'avant vers l'arrière,
    • « s' » est la distance entre une ailette 256 du premier type et une ailette 258 du deuxième type consécutive dans le sens de l'avant vers l'arrière,
    • « h » est la hauteur des ailettes 256 du premier type,
    • « h' » est la hauteur des ailettes 258 du deuxième type,
    • « θ1 » est l'angle d'entrée entre la tangente à la courbure du bord d'attaque des ailettes 256 du premier type et l'axe vertical,
    • « θ1' » est l'angle d'entrée entre la tangente à la courbure du bord d'attaque des ailettes 258 du deuxième type et l'axe vertical,
    • « θ2 » est l'angle de sortie entre la tangente à la courbure du bord de fuite des ailettes 256 du premier type et l'axe vertical,
    • « θ2' » est l'angle de sortie entre la tangente à la courbure du bord de fuite des ailettes 258 du deuxième type et l'axe vertical,
    • « st » est l'angle de décalage des ailettes 256 du premier type, c'est-à-dire l'angle entre la corde et l'axe vertical, et
    • « st' » est l'angle de décalage des ailettes 258 du deuxième type, c'est-à-dire l'angle entre la corde et l'axe vertical.
  • L'axe vertical est ici pris en référence aux Figs. 2 à 6, mais cet axe est plus généralement une direction axiale du turboréacteur double flux 100. En outre, différentes lois d'épaisseur peuvent s'appliquer au profil des ailettes.
  • Selon l'invention, les ailettes 256 du premier type et les ailettes 258 du deuxième type sont telles que : 0,2 × s s 0,8 × s ;
    Figure imgb0001
    0,2 × h h 0,8 × h ; avec 30 mm h 70 mm ;
    Figure imgb0002
    1,5 × θ 1 θ 1 1,5 × θ 1 ; avec -10° θ 1 70 ° ;
    Figure imgb0003
    1,5 × θ 2 θ 2 1,5 × θ 2 ; avec θ 2 50 ° ;
    Figure imgb0004
    c = h cos st avec 0 ° st θ 2 ;
    Figure imgb0005
    et 0,5 c s 2 ; avec c = h cos st et 0 ° st θ 2 .
    Figure imgb0006
  • La Fig. 6 montre différentes variantes qui peuvent être mises en œuvre indépendamment les unes des autres ou en combinaison les unes avec les autres.
  • Selon une première variante, les hauteurs des ailettes 258 du deuxième type varient d'une ailette 258 du deuxième type à une autre ailette 258 du deuxième type. Ces variations sont représentées par des hauteurs h 1 ,
    Figure imgb0007
    h 2
    Figure imgb0008
    différentes.
  • Selon une deuxième variante, la distance entre une ailette 256 du premier type et l'ailette 258 du deuxième type consécutive dans le sens de l'avant vers l'arrière, est différente de la distance entre une autre ailette 256 du premier type et l'ailette 258 du deuxième type consécutive dans le sens de l'avant vers l'arrière à cette autre ailette 256 du premier type. Ces variations sont représentées par des distances s 1 ,
    Figure imgb0009
    s 2
    Figure imgb0010
    différentes.
  • Selon une troisième variante, les angles d'entrée des ailettes 258 du deuxième type varient d'une ailette 258 du deuxième type à une autre ailette 258 du deuxième type. Ces variations sont représentées par des angles θ 1 ,
    Figure imgb0011
    θ 2
    Figure imgb0012
    différents.

Claims (8)

  1. Grille (250) pour la formation d'un flux d'inversion d'un turboréacteur double flux (100) présentant un avant et un arrière, ladite grille (250) comportant des ailettes (256) d'un premier type présentant un profil courbe dont l'arrondi est destiné à être orienté vers l'arrière et dont le centre de courbure est à l'avant par rapport à l'ailette (256) du premier type, ladite grille (250) comportant des ailettes (258) d'un deuxième type, en ce que chaque ailette (256, 258) d'un des deux types est intercalée entre deux ailettes (258, 256) de l'autre type en progressant de l'avant vers l'arrière, en ce que chaque ailette (258) du deuxième type présente un profil courbe dont l'arrondi est destiné à être orienté vers l'arrière et dont le centre de courbure est à l'avant par rapport à l'ailette (258) du deuxième type, et en ce que la corde des ailettes (258) du deuxième type est plus petite que la corde des ailettes (256) du premier type, caractérisée en ce que : 0,2 × s s 0,8 × s ;
    Figure imgb0013
    0,2 × h h 0,8 × h ; avec 30 mm h 70 mm ;
    Figure imgb0014
    1,5 × θ 1 θ 1 1,5 × θ 1 ; avec 10° θ 1 70 ° ;
    Figure imgb0015
    1,5 × θ 2 θ 2 1,5 × θ 2 ; avec θ 2 50 ° ;
    Figure imgb0016
    c = h cos st avec 0 ° st θ 2 ;
    Figure imgb0017
    et 0,5 c s 2 ; avec c = h cos st et 0 ° st θ 2 ;
    Figure imgb0018
    où « c » est la corde des ailettes (256) du premier type,
    « c' » est la corde des ailettes (258) du deuxième type,
    « s » est la distance entre deux ailettes (256) du premier type consécutives,
    « s' » est la distance entre une ailette (256) du premier type et une ailette (258) du deuxième type consécutive,
    « h » est la hauteur des ailettes (256) du premier type,
    « h' » est la hauteur des ailettes (258) du deuxième type,
    « θ1 » est l'angle d'entrée entre la tangente à la courbure du bord d'attaque des ailettes (256) du premier type et l'axe vertical,
    « θ1' » est l'angle d'entrée entre la tangente à la courbure du bord d'attaque des ailettes (258) du deuxième type et l'axe vertical,
    « θ2 » est l'angle de sortie entre la tangente à la courbure du bord de fuite des ailettes (256) du premier type et l'axe vertical,
    « θ2' » est l'angle de sortie entre la tangente à la courbure du bord de fuite des ailettes (258) du deuxième type et l'axe vertical,
    « st » est l'angle de décalage des ailettes (256) du premier type, et
    « st' » est l'angle de décalage des ailettes (258) du deuxième type.
  2. Grille (250) selon la revendication 1, caractérisée en ce que les bords de fuite des ailettes (256) du premier type et les bords de fuite des ailettes (258) du deuxième type sont dans un même plan de sortie.
  3. Grille (250) selon la revendication 2, caractérisée en ce que les bords d'attaque des ailettes (256) du premier type sont dans un même plan d'entrée parallèle au plan de sortie, et en ce que le bord d'attaque de chaque ailette (258) du deuxième type est dans un plan intermédiaire entre le plan d'entrée et le plan de sortie et à distance de chacun d'eux.
  4. Grille (250) selon l'une des revendications précédentes, caractérisée en ce que les hauteurs des ailettes (258) du deuxième type varient d'une ailette (258) du deuxième type à une autre ailette (258) du deuxième type.
  5. Grille (250) selon l'une des revendications précédentes, caractérisée en ce que la distance entre une ailette (256) du premier type et l'ailette (258) du deuxième type consécutive dans le sens de l'avant vers l'arrière, est différente de la distance entre une autre ailette (256) du premier type et l'ailette (258) du deuxième type consécutive dans le sens de l'avant vers l'arrière à cette autre ailette (256) du premier type.
  6. Grille (250) selon l'une des revendications précédentes, caractérisée en ce que les angles d'entrée des ailettes (258) du deuxième type varient d'une ailette (258) du deuxième type à une autre ailette (258) du deuxième type.
  7. Turboréacteur double flux (100) comportant au moins une grille (250) pour la formation d'un flux d'inversion selon l'une des revendications précédentes.
  8. Aéronef (10) comportant au moins un turboréacteur double flux (100) selon la revendication précédente.
EP18205712.5A 2017-12-11 2018-11-12 Grille pour la formation d'un flux d'inversion d'un turboréacteur d'aéronef Active EP3495651B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1761914A FR3074855A1 (fr) 2017-12-11 2017-12-11 Grille pour la formation d'un flux d'inversion d'un turboreacteur d'aeronef

Publications (2)

Publication Number Publication Date
EP3495651A1 EP3495651A1 (fr) 2019-06-12
EP3495651B1 true EP3495651B1 (fr) 2020-10-28

Family

ID=61187504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18205712.5A Active EP3495651B1 (fr) 2017-12-11 2018-11-12 Grille pour la formation d'un flux d'inversion d'un turboréacteur d'aéronef

Country Status (4)

Country Link
US (1) US11028801B2 (fr)
EP (1) EP3495651B1 (fr)
CN (1) CN109896023B (fr)
FR (1) FR3074855A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095677B1 (fr) * 2019-05-03 2021-04-09 Safran Aircraft Engines Grille d’inverseur de poussée incluant un traitement acoustique
US11566583B2 (en) * 2021-02-09 2023-01-31 Rohr, Inc. Fluid scoop for a thrust reverser system
US20240035429A1 (en) * 2022-08-01 2024-02-01 Rohr, Inc. Thrust reverser cascade with one or more flow disrupters
US20240035427A1 (en) * 2022-08-01 2024-02-01 Rohr, Inc. Thrust reverser cascade with offset vane leading edges

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945346A (en) * 1954-10-04 1960-07-19 Republic Aviat Corp Reverse thrust brake
US3024604A (en) * 1958-03-31 1962-03-13 Rolls Royce Aircraft jet propulsion apparatus with thrust reversing means
GB1318748A (en) * 1970-08-11 1973-05-31 Secr Defence Gas turgine ducted fan engines for aircraft
US4073440A (en) * 1976-04-29 1978-02-14 The Boeing Company Combination primary and fan air thrust reversal control systems for long duct fan jet engines
US4948072A (en) * 1989-02-08 1990-08-14 Boeing Of Canada Ltd. Segmented vectoring cruise nozzles
FR2651278B1 (fr) * 1989-08-23 1994-05-06 Hispano Suiza Inverseur a grilles sans capot coulissant pour turboreacteur.
FR2669679B1 (fr) * 1990-11-28 1994-04-29 Sud Ouest Conception Aeronauti Tuyere d'ejection de gaz pour moteur a reaction et moteur a reaction equipe d'une telle tuyere, en particulier moteur du type a flux separes.
US5507143A (en) * 1993-04-13 1996-04-16 The Boeing Company Cascade assembly for use in a thrust-reversing mechanism
US5485958A (en) * 1994-06-06 1996-01-23 Rolls-Royce, Incorporated Mechanism for operating a cascade of variable pitch vanes
FR2849113B1 (fr) * 2002-12-24 2005-02-04 Hurel Hispano Inverseur de poussee a grilles de deflection optimisees
GB0608985D0 (en) * 2006-05-06 2006-06-14 Rolls Royce Plc Aeroengine thrust reverser
US20080010969A1 (en) * 2006-07-11 2008-01-17 Thomas Anthony Hauer Gas turbine engine and method of operating same
US8292567B2 (en) * 2006-09-14 2012-10-23 Caterpillar Inc. Stator assembly including bleed ports for turbine engine compressor
US7946801B2 (en) * 2007-12-27 2011-05-24 General Electric Company Multi-source gas turbine cooling
FR2932233B1 (fr) * 2008-06-06 2012-09-28 Aircelle Sa Carter pour rotor de turbomachine
US8453429B2 (en) * 2009-06-30 2013-06-04 General Electric Company System and method for assembling a thrust reverser for a gas turbine propulsion system
DE102010002394A1 (de) * 2010-02-26 2011-09-01 Rolls-Royce Deutschland Ltd & Co Kg Nebenstromkanal eines Turbofantriebwerks
US8484944B2 (en) * 2010-08-13 2013-07-16 Spirit Aerosystems, Inc. Aerodynamic device for thrust reverser cascades
GB201108001D0 (en) * 2011-05-13 2011-06-29 Rolls Royce Plc A method of reducing asymmetric fluid flow effect in a passage
GB201112986D0 (en) * 2011-07-28 2011-09-14 Rolls Royce Plc Ducted fan gas turbine assembly
FR2978802B1 (fr) * 2011-08-05 2017-07-14 Aircelle Sa Inverseur a grilles mobiles et tuyere variable par translation
FR2978991A1 (fr) * 2011-08-08 2013-02-15 Snecma Dispositif d'inversion de poussee pour tuyere compacte
US20130051996A1 (en) * 2011-08-29 2013-02-28 Mtu Aero Engines Gmbh Transition channel of a turbine unit
US9181898B2 (en) * 2011-09-20 2015-11-10 United Technologies Corporation Thrust reverser for a gas turbine engine with moveable doors
US9086034B2 (en) * 2011-10-13 2015-07-21 Rohr, Inc. Thrust reverser cascade assembly with flow deflection shelf
US9068532B2 (en) * 2012-07-24 2015-06-30 Rohr, Inc. Translating sleeve thrust reverser with movable cascade
FR2995026B1 (fr) * 2012-09-03 2019-06-07 Safran Nacelles Cadre avant pour une structure d'inverseur de poussee a grilles de deviation
US9518513B2 (en) * 2012-10-12 2016-12-13 General Electric Company Gas turbine engine two degree of freedom variable bleed valve for ice extraction
FR2999239B1 (fr) * 2012-12-12 2015-02-20 Aircelle Sa Inverseur de poussee de nacelle et nacelle equipee d'au moins un inverseur
FR3002785B1 (fr) * 2013-03-01 2015-03-27 Aircelle Sa Grilles translatantes et fixes avec un t/r o-duct.
GB201314527D0 (en) * 2013-08-14 2013-09-25 Rolls Royce Deutschland Thrust reverser unit
US20160230702A1 (en) * 2013-09-19 2016-08-11 United Technologies Corporation Extended thrust reverser cascade
US8869504B1 (en) * 2013-11-22 2014-10-28 United Technologies Corporation Geared turbofan engine gearbox arrangement
EP3129630B1 (fr) * 2014-04-11 2019-04-03 Rohr, Inc. Grille de déviation à profil variable
DE102014210025A1 (de) * 2014-05-26 2015-12-17 Rolls-Royce Deutschland Ltd & Co Kg Schubumkehrkaskadenelement einer Fluggasturbine
FR3023325B1 (fr) * 2014-07-04 2016-07-15 Aircelle Sa Cadre arriere pour une structure d'inverseur de poussee a grilles de deviation
US9777642B2 (en) * 2014-11-21 2017-10-03 General Electric Company Gas turbine engine and method of assembling the same
DE102015203219A1 (de) * 2015-02-23 2016-08-25 Rolls-Royce Deutschland Ltd & Co Kg Triebwerksverkleidung einer Gasturbine mit Schubumkehrvorrichtung und im Querschnitt verstellbarer Ausströmdüse
US20160341150A1 (en) * 2015-05-21 2016-11-24 The Boeing Company Thrust Reverser System and Method with Flow Separation-Inhibiting Blades
US20170058828A1 (en) * 2015-08-26 2017-03-02 Rohr, Inc. Cascade with varying vane trailing edge thickness
US20170058829A1 (en) * 2015-08-26 2017-03-02 Rohr, Inc. Low forward-turning casacde with high-forward-turning aft vane passages
US10077740B2 (en) * 2015-10-16 2018-09-18 The Boeing Company Folding door thrust reversers for aircraft engines
US20170167438A1 (en) * 2015-12-11 2017-06-15 General Electric Company Gas Turbine Engine
US10309341B2 (en) * 2016-01-15 2019-06-04 The Boeing Company Thrust reverser cascade systems and methods
US11274563B2 (en) * 2016-01-21 2022-03-15 General Electric Company Turbine rear frame for a turbine engine
ITUA20161507A1 (it) * 2016-03-09 2017-09-09 Gen Electric Turbomotore a gas con una derivazione d'aria.
CN105736178B (zh) * 2016-04-11 2018-05-29 清华大学 组合循环发动机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20200025138A1 (en) 2020-01-23
FR3074855A1 (fr) 2019-06-14
CN109896023A (zh) 2019-06-18
CN109896023B (zh) 2022-02-22
US11028801B2 (en) 2021-06-08
EP3495651A1 (fr) 2019-06-12

Similar Documents

Publication Publication Date Title
EP3495651B1 (fr) Grille pour la formation d'un flux d'inversion d'un turboréacteur d'aéronef
EP0848153B1 (fr) Inverseur de poussée de turboréacteur à portes comportant des aubes déflectrices associées à la structure fixe
CA2076476C (fr) Inverseur de poussee de turboreacteur ayant un bord de deviation a courbure evolutive
EP0806563B1 (fr) Inverseur de poussée de turboréacteur à portes munies d'aubes deflectrices
EP0534815B2 (fr) Inverseur de poussée de turboréacteur à pilotage amélioré des nappes du flux inversé
EP3845754B1 (fr) Turboréacteur double flux comportant un système d'obturation de la veine du flux secondaire comportant un voile
FR2752017A1 (fr) Inverseur de poussee de turboreacteur a portes formant ecopes
EP0761957A1 (fr) Inverseur de poussée de turboréacteur à portes associées à un panneau amont formant écope
EP0754849B1 (fr) Inverseur de poussée de turboréacteur à double flux à portes dissymétriques
FR2764340A1 (fr) Inverseur de poussee de turboreacteur a portes munies d'un becquet mobile a entrainement optimise
WO1998055756A1 (fr) Inverseur de poussee de turboreacteur a portes formant ecopes associees a une casquette amont mobile
EP0807752B1 (fr) Inverseur de poussée de turboréacteur à portes associées à un panneau amont
EP0821151A1 (fr) Inverseur de poussée de turboréacteur à portes comportant un panneau coulissant
FR2947868A1 (fr) Nacelle d'aeronef incorporant un dispositif pour inverser la poussee
WO2010061071A2 (fr) Nacelle integree sur aile volante
EP3587784A1 (fr) Turboreacteur comportant une nacelle equipee de volets inverseurs pourvus de moyens pour generer des tourbillons
FR3097015A1 (fr) Turboréacteur comprenant des grilles pour la formation d’un flux d’inversion.
EP3693592B1 (fr) Nacelle d'un turboreacteur comportant un ensemble mobile et une structure fixe renforcee
FR3074852A1 (fr) Nacelle d'un turboreacteur comportant un volet inverseur et une grille de deviation pour la formation d'un flux d'inversion
EP4085190B1 (fr) Inverseur de poussée à portes comprenant un déflecteur pour rediriger un flux d'air vers l'amont
EP3524524B1 (fr) Bouche de prélèvement d'air dynamique, dispositif de contrôle environnemental, moteur et véhicule équipés d'une telle bouche
FR3089206A1 (fr) Nacelle d’un turboreacteur comportant un volet inverseur et un systeme de deploiement a retardement
FR3075274A1 (fr) Turboreacteur d'aeronef comportant des moyens permettant de varier sa surface de sortie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1328477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018009112

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1328477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201028

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210301

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018009112

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201112

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201112

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: DE

Payment date: 20231121

Year of fee payment: 6