EP3491054A1 - Plasticizer composition - Google Patents
Plasticizer compositionInfo
- Publication number
- EP3491054A1 EP3491054A1 EP17746065.6A EP17746065A EP3491054A1 EP 3491054 A1 EP3491054 A1 EP 3491054A1 EP 17746065 A EP17746065 A EP 17746065A EP 3491054 A1 EP3491054 A1 EP 3491054A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- plasticizer
- compound
- disclosed
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 369
- 239000004014 plasticizer Substances 0.000 title claims abstract description 169
- 150000001875 compounds Chemical class 0.000 claims abstract description 140
- 229920001944 Plastisol Polymers 0.000 claims description 100
- 239000004999 plastisol Substances 0.000 claims description 100
- 238000000465 moulding Methods 0.000 claims description 93
- -1 2-ethylhexyl Chemical group 0.000 claims description 92
- 239000004800 polyvinyl chloride Substances 0.000 claims description 66
- 229920001577 copolymer Polymers 0.000 claims description 64
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 64
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 62
- 229920001971 elastomer Polymers 0.000 claims description 38
- 229920000642 polymer Polymers 0.000 claims description 29
- 229920001169 thermoplastic Polymers 0.000 claims description 28
- 239000004416 thermosoftening plastic Substances 0.000 claims description 28
- 229920001519 homopolymer Polymers 0.000 claims description 27
- 239000000806 elastomer Substances 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 22
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 16
- 230000001681 protective effect Effects 0.000 claims description 6
- 244000043261 Hevea brasiliensis Species 0.000 claims description 5
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 229920003052 natural elastomer Polymers 0.000 claims description 5
- 229920001194 natural rubber Polymers 0.000 claims description 5
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 5
- 229920003051 synthetic elastomer Polymers 0.000 claims description 5
- 239000005061 synthetic rubber Substances 0.000 claims description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 5
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 239000005077 polysulfide Substances 0.000 claims description 3
- 229920001021 polysulfide Polymers 0.000 claims description 3
- 150000008117 polysulfides Polymers 0.000 claims description 3
- 230000009182 swimming Effects 0.000 claims description 3
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 claims description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 abstract description 29
- HORIEOQXBKUKGQ-UHFFFAOYSA-N bis(7-methyloctyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCCCCCOC(=O)C1CCCCC1C(=O)OCCCCCCC(C)C HORIEOQXBKUKGQ-UHFFFAOYSA-N 0.000 description 119
- 238000000034 method Methods 0.000 description 71
- 239000003054 catalyst Substances 0.000 description 59
- 239000004806 diisononylester Substances 0.000 description 58
- 150000002148 esters Chemical class 0.000 description 55
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 49
- 238000007037 hydroformylation reaction Methods 0.000 description 41
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 30
- 238000005984 hydrogenation reaction Methods 0.000 description 30
- 229920003023 plastic Polymers 0.000 description 28
- 239000004033 plastic Substances 0.000 description 28
- 239000002253 acid Substances 0.000 description 27
- YLQLIQIAXYRMDL-UHFFFAOYSA-N propylheptyl alcohol Chemical compound CCCCCC(CO)CCC YLQLIQIAXYRMDL-UHFFFAOYSA-N 0.000 description 27
- BBVARVTURNYWGV-UHFFFAOYSA-N 7-methyloctyl benzoate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1 BBVARVTURNYWGV-UHFFFAOYSA-N 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 26
- 125000004432 carbon atom Chemical group C* 0.000 description 26
- 238000005886 esterification reaction Methods 0.000 description 26
- 230000032050 esterification Effects 0.000 description 25
- 238000005809 transesterification reaction Methods 0.000 description 23
- QDTDKYHPHANITQ-UHFFFAOYSA-N 7-methyloctan-1-ol Chemical compound CC(C)CCCCCCO QDTDKYHPHANITQ-UHFFFAOYSA-N 0.000 description 22
- CMCJNODIWQEOAI-UHFFFAOYSA-N bis(2-butoxyethyl)phthalate Chemical compound CCCCOCCOC(=O)C1=CC=CC=C1C(=O)OCCOCCCC CMCJNODIWQEOAI-UHFFFAOYSA-N 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 22
- 238000002360 preparation method Methods 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical class CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 21
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000012360 testing method Methods 0.000 description 18
- 229920002554 vinyl polymer Polymers 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 15
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 15
- YCZJVRCZIPDYHH-UHFFFAOYSA-N ditridecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCC YCZJVRCZIPDYHH-UHFFFAOYSA-N 0.000 description 15
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 15
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 13
- 150000001298 alcohols Chemical class 0.000 description 13
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 13
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 13
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 12
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 239000010948 rhodium Substances 0.000 description 12
- 239000005060 rubber Substances 0.000 description 12
- HNDYULRADYGBDU-UHFFFAOYSA-N 8-methylnonyl benzoate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC=C1 HNDYULRADYGBDU-UHFFFAOYSA-N 0.000 description 11
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 11
- 150000001336 alkenes Chemical class 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- SZLIWAKTUJFFNX-UHFFFAOYSA-N dihydrocitronellol benzoate Natural products CC(C)CCCC(C)CCOC(=O)C1=CC=CC=C1 SZLIWAKTUJFFNX-UHFFFAOYSA-N 0.000 description 11
- 238000004090 dissolution Methods 0.000 description 11
- 238000004821 distillation Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000003381 stabilizer Substances 0.000 description 11
- 239000007858 starting material Substances 0.000 description 11
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 10
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 229910052703 rhodium Inorganic materials 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 10
- GQBWSGXZXIZPAF-UHFFFAOYSA-N tris(2-methylpropyl) benzene-1,2,4-tricarboxylate Chemical compound CC(C)COC(=O)C1=CC=C(C(=O)OCC(C)C)C(C(=O)OCC(C)C)=C1 GQBWSGXZXIZPAF-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 238000005882 aldol condensation reaction Methods 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- RJIFVNWOLLIBJV-UHFFFAOYSA-N tributyl benzene-1,2,4-tricarboxylate Chemical compound CCCCOC(=O)C1=CC=C(C(=O)OCCCC)C(C(=O)OCCCC)=C1 RJIFVNWOLLIBJV-UHFFFAOYSA-N 0.000 description 9
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical class CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 8
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 8
- 239000012778 molding material Substances 0.000 description 8
- 239000000049 pigment Substances 0.000 description 8
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- MJHNUUNSCNRGJE-UHFFFAOYSA-N trimethyl benzene-1,2,4-tricarboxylate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C(C(=O)OC)=C1 MJHNUUNSCNRGJE-UHFFFAOYSA-N 0.000 description 8
- ZVHAANQOQZVVFD-UHFFFAOYSA-N 5-methylhexan-1-ol Chemical compound CC(C)CCCCO ZVHAANQOQZVVFD-UHFFFAOYSA-N 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 239000004808 2-ethylhexylester Substances 0.000 description 6
- DFVOXRAAHOJJBN-UHFFFAOYSA-N 6-methylhept-1-ene Chemical compound CC(C)CCCC=C DFVOXRAAHOJJBN-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- KRADHMIOFJQKEZ-UHFFFAOYSA-N Tri-2-ethylhexyl trimellitate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C1 KRADHMIOFJQKEZ-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 150000001299 aldehydes Chemical group 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- DTDMYWXTWWFLGJ-UHFFFAOYSA-N decan-4-ol Chemical class CCCCCCC(O)CCC DTDMYWXTWWFLGJ-UHFFFAOYSA-N 0.000 description 6
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 239000004611 light stabiliser Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 6
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 5
- JTKHUJNVHQWSAY-UHFFFAOYSA-N 9-methyldecan-1-ol Chemical compound CC(C)CCCCCCCCO JTKHUJNVHQWSAY-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 5
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- FJJYHTVHBVXEEQ-UHFFFAOYSA-N 2,2-dimethylpropanal Chemical compound CC(C)(C)C=O FJJYHTVHBVXEEQ-UHFFFAOYSA-N 0.000 description 4
- AOWJVNTZMBKLQO-UHFFFAOYSA-N 2-propan-2-ylheptan-1-ol Chemical compound CCCCCC(CO)C(C)C AOWJVNTZMBKLQO-UHFFFAOYSA-N 0.000 description 4
- VZXWJVFQXZUFQS-UHFFFAOYSA-N 4-methyl-2-propylhexan-1-ol Chemical compound CCCC(CO)CC(C)CC VZXWJVFQXZUFQS-UHFFFAOYSA-N 0.000 description 4
- QEVWDMOIPOLQBL-UHFFFAOYSA-N 5-methyl-2-propylhexan-1-ol Chemical compound CCCC(CO)CCC(C)C QEVWDMOIPOLQBL-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- QSAWQNUELGIYBC-UHFFFAOYSA-L cyclohexane-1,2-dicarboxylate Chemical compound [O-]C(=O)C1CCCCC1C([O-])=O QSAWQNUELGIYBC-UHFFFAOYSA-L 0.000 description 4
- WQABCVAJNWAXTE-UHFFFAOYSA-N dimercaprol Chemical compound OCC(S)CS WQABCVAJNWAXTE-UHFFFAOYSA-N 0.000 description 4
- 238000006471 dimerization reaction Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- FXHGMKSSBGDXIY-UHFFFAOYSA-N heptanal Chemical compound CCCCCCC=O FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 229960002479 isosorbide Drugs 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 239000012429 reaction media Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 150000003628 tricarboxylic acids Chemical class 0.000 description 4
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 4
- HIJFENKJMYXCST-IHWYPQMZSA-N (z)-4-acetyloxy-4-oxobut-2-enoic acid Chemical compound CC(=O)OC(=O)\C=C/C(O)=O HIJFENKJMYXCST-IHWYPQMZSA-N 0.000 description 3
- NQDZCRSUOVPTII-UHFFFAOYSA-N 10-methylundecan-1-ol Chemical compound CC(C)CCCCCCCCCO NQDZCRSUOVPTII-UHFFFAOYSA-N 0.000 description 3
- VRZRVMXNGMZLDB-UHFFFAOYSA-N 3-ethylheptan-1-ol Chemical compound CCCCC(CC)CCO VRZRVMXNGMZLDB-UHFFFAOYSA-N 0.000 description 3
- GEKRISJWBAIIAA-UHFFFAOYSA-N 5-methylhexanal Chemical class CC(C)CCCC=O GEKRISJWBAIIAA-UHFFFAOYSA-N 0.000 description 3
- PLLBRTOLHQQAQQ-UHFFFAOYSA-N 8-methylnonan-1-ol Chemical compound CC(C)CCCCCCCO PLLBRTOLHQQAQQ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 239000004805 Cyclohexane-1,2-dicarboxylic acid Substances 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000005909 Kieselgur Substances 0.000 description 3
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 239000003349 gelling agent Substances 0.000 description 3
- 239000002638 heterogeneous catalyst Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 3
- 150000003014 phosphoric acid esters Chemical class 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 150000003283 rhodium Chemical class 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 3
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 2
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical compound CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 2
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 2
- UPSVYNDQEVZTMB-UHFFFAOYSA-N 2-methyl-1,3,5-trinitrobenzene;1,3,5,7-tetranitro-1,3,5,7-tetrazocane Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O.[O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UPSVYNDQEVZTMB-UHFFFAOYSA-N 0.000 description 2
- BYGQBDHUGHBGMD-UHFFFAOYSA-N 2-methylbutanal Chemical compound CCC(C)C=O BYGQBDHUGHBGMD-UHFFFAOYSA-N 0.000 description 2
- GADNZGQWPNTMCH-UHFFFAOYSA-N 2-propylhept-2-enal Chemical compound CCCCC=C(C=O)CCC GADNZGQWPNTMCH-UHFFFAOYSA-N 0.000 description 2
- MQQCUZGHANGGIT-UHFFFAOYSA-N 3,4,5-trimethylhexan-1-ol Chemical compound CC(C)C(C)C(C)CCO MQQCUZGHANGGIT-UHFFFAOYSA-N 0.000 description 2
- HBUKPSFSXBTFFW-UHFFFAOYSA-N 3,5-dimethylheptan-1-ol Chemical compound CCC(C)CC(C)CCO HBUKPSFSXBTFFW-UHFFFAOYSA-N 0.000 description 2
- DNHFCNDAPIMDKL-UHFFFAOYSA-N 3,6-dimethylheptan-1-ol Chemical compound CC(C)CCC(C)CCO DNHFCNDAPIMDKL-UHFFFAOYSA-N 0.000 description 2
- YCBDLDKYDMUESI-UHFFFAOYSA-N 3-ethyl-4-methylhexan-1-ol Chemical compound CCC(C)C(CC)CCO YCBDLDKYDMUESI-UHFFFAOYSA-N 0.000 description 2
- BMDLBCTXXXEROC-UHFFFAOYSA-N 4,5-dimethylheptan-1-ol Chemical compound CCC(C)C(C)CCCO BMDLBCTXXXEROC-UHFFFAOYSA-N 0.000 description 2
- MWWKESKJRHQWEF-UHFFFAOYSA-N 4-Methyloctan-1-ol Chemical compound CCCCC(C)CCCO MWWKESKJRHQWEF-UHFFFAOYSA-N 0.000 description 2
- VHGVOODVCUKVCL-UHFFFAOYSA-N 4-methyl-2-propan-2-ylhexan-1-ol Chemical compound CCC(C)CC(CO)C(C)C VHGVOODVCUKVCL-UHFFFAOYSA-N 0.000 description 2
- SFIQHFBITUEIBP-UHFFFAOYSA-N 5-methyl-2-propan-2-ylhexan-1-ol Chemical compound CC(C)CCC(CO)C(C)C SFIQHFBITUEIBP-UHFFFAOYSA-N 0.000 description 2
- WWRGKAMABZHMCN-UHFFFAOYSA-N 6-methyloctan-1-ol Chemical compound CCC(C)CCCCCO WWRGKAMABZHMCN-UHFFFAOYSA-N 0.000 description 2
- JRPPVSMCCSLJPL-UHFFFAOYSA-N 7-methyloctanal Chemical compound CC(C)CCCCCC=O JRPPVSMCCSLJPL-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004609 Impact Modifier Substances 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000001361 allenes Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- UHWUCPZJJSSOOY-UHFFFAOYSA-N butan-1-ol;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CCCCO UHWUCPZJJSSOOY-UHFFFAOYSA-N 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000013375 chromatographic separation Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 125000005677 ethinylene group Chemical class [*:2]C#C[*:1] 0.000 description 2
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000009408 flooring Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 150000002382 heptanals Chemical class 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000002649 leather substitute Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229940049920 malate Drugs 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 2
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 2
- NUJGJRNETVAIRJ-COJKEBBMSA-N octanal Chemical class CCCCCCC[11CH]=O NUJGJRNETVAIRJ-COJKEBBMSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical compound [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 2
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- KMPQYAYAQWNLME-UHFFFAOYSA-N undecanal Chemical compound CCCCCCCCCCC=O KMPQYAYAQWNLME-UHFFFAOYSA-N 0.000 description 2
- 229940005605 valeric acid Drugs 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- 239000001893 (2R)-2-methylbutanal Substances 0.000 description 1
- 125000006526 (C1-C2) alkyl group Chemical group 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N 1,4-butanediol Substances OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- 125000006219 1-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical class CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 1
- DAEAMCPYMQHGGW-UHFFFAOYSA-N 2,3-dimethylheptan-1-ol Chemical compound CCCCC(C)C(C)CO DAEAMCPYMQHGGW-UHFFFAOYSA-N 0.000 description 1
- ZEIZTVAKJXMCSQ-UHFFFAOYSA-N 2,5-dimethylheptan-1-ol Chemical compound CCC(C)CCC(C)CO ZEIZTVAKJXMCSQ-UHFFFAOYSA-N 0.000 description 1
- RCYIBFNZRWQGNB-UHFFFAOYSA-N 2,6-dimethylheptan-1-ol Chemical compound CC(C)CCCC(C)CO RCYIBFNZRWQGNB-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- RNVXSRJRDVLSAG-UHFFFAOYSA-N 2-[2-(2-benzoyloxypropoxy)propoxy]propyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OC(C)COC(C)COC(C)COC(=O)C1=CC=CC=C1 RNVXSRJRDVLSAG-UHFFFAOYSA-N 0.000 description 1
- IHEDBVUTTQXGSJ-UHFFFAOYSA-M 2-[bis(2-oxidoethyl)amino]ethanolate;titanium(4+);hydroxide Chemical compound [OH-].[Ti+4].[O-]CCN(CC[O-])CC[O-] IHEDBVUTTQXGSJ-UHFFFAOYSA-M 0.000 description 1
- XFDQLDNQZFOAFK-UHFFFAOYSA-N 2-benzoyloxyethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOC(=O)C1=CC=CC=C1 XFDQLDNQZFOAFK-UHFFFAOYSA-N 0.000 description 1
- GJOGRUGECVQJBK-UHFFFAOYSA-N 2-diphenylphosphanylacetic acid Chemical compound C=1C=CC=CC=1P(CC(=O)O)C1=CC=CC=C1 GJOGRUGECVQJBK-UHFFFAOYSA-N 0.000 description 1
- UYRPRYSDOVYCOU-UHFFFAOYSA-N 2-diphenylphosphanylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 UYRPRYSDOVYCOU-UHFFFAOYSA-N 0.000 description 1
- DHPXCZQIGRUZAY-UHFFFAOYSA-N 2-ethyl-2,4-dimethylhexan-1-ol Chemical compound CCC(C)CC(C)(CC)CO DHPXCZQIGRUZAY-UHFFFAOYSA-N 0.000 description 1
- BXXFUDLHJKLLDU-UHFFFAOYSA-N 2-ethyl-2,5-dimethylhexan-1-ol Chemical compound CCC(C)(CO)CCC(C)C BXXFUDLHJKLLDU-UHFFFAOYSA-N 0.000 description 1
- PYLMCYQHBRSDND-UHFFFAOYSA-N 2-ethyl-2-hexenal Chemical compound CCCC=C(CC)C=O PYLMCYQHBRSDND-UHFFFAOYSA-N 0.000 description 1
- JILNFHMXFBDGGA-UHFFFAOYSA-N 2-ethyl-2-methylheptan-1-ol Chemical compound CCCCCC(C)(CC)CO JILNFHMXFBDGGA-UHFFFAOYSA-N 0.000 description 1
- NRZVENBFUFCASY-UHFFFAOYSA-N 2-ethyl-4-methylhexan-1-ol Chemical compound CCC(C)CC(CC)CO NRZVENBFUFCASY-UHFFFAOYSA-N 0.000 description 1
- QNJAZNNWHWYOEO-UHFFFAOYSA-N 2-ethylheptan-1-ol Chemical compound CCCCCC(CC)CO QNJAZNNWHWYOEO-UHFFFAOYSA-N 0.000 description 1
- UGIWGFXQNPWKPR-UHFFFAOYSA-N 2-ethylhexyl phenyl hydrogen phosphate Chemical compound CCCCC(CC)COP(O)(=O)OC1=CC=CC=C1 UGIWGFXQNPWKPR-UHFFFAOYSA-N 0.000 description 1
- UPOMCDPCTBJJDA-UHFFFAOYSA-N 2-methyl-1-[(2-methylpropan-2-yl)oxy]propane Chemical compound CC(C)COC(C)(C)C UPOMCDPCTBJJDA-UHFFFAOYSA-N 0.000 description 1
- ACBMYYVZWKYLIP-UHFFFAOYSA-N 2-methylheptan-2-ol Chemical compound CCCCCC(C)(C)O ACBMYYVZWKYLIP-UHFFFAOYSA-N 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- JQXYBDVZAUEPDL-UHFFFAOYSA-N 2-methylidene-5-phenylpent-4-enoic acid Chemical compound OC(=O)C(=C)CC=CC1=CC=CC=C1 JQXYBDVZAUEPDL-UHFFFAOYSA-N 0.000 description 1
- IGVGCQGTEINVOH-UHFFFAOYSA-N 2-methyloctan-1-ol Chemical compound CCCCCCC(C)CO IGVGCQGTEINVOH-UHFFFAOYSA-N 0.000 description 1
- KBCNUEXDHWDIFX-UHFFFAOYSA-N 2-methyloctan-2-ol Chemical class CCCCCCC(C)(C)O KBCNUEXDHWDIFX-UHFFFAOYSA-N 0.000 description 1
- NGDNVOAEIVQRFH-UHFFFAOYSA-N 2-nonanol Chemical class CCCCCCCC(C)O NGDNVOAEIVQRFH-UHFFFAOYSA-N 0.000 description 1
- OKGUXCUCCABSEP-UHFFFAOYSA-N 2-propylheptyl benzoate Chemical compound CCCCCC(CCC)COC(=O)C1=CC=CC=C1 OKGUXCUCCABSEP-UHFFFAOYSA-N 0.000 description 1
- JSUXZEJWGVYJJG-UHFFFAOYSA-N 2-propylhexan-1-ol Chemical compound CCCCC(CO)CCC JSUXZEJWGVYJJG-UHFFFAOYSA-N 0.000 description 1
- TZWSLANDWSEXRD-UHFFFAOYSA-N 3,4-dimethylheptan-1-ol Chemical compound CCCC(C)C(C)CCO TZWSLANDWSEXRD-UHFFFAOYSA-N 0.000 description 1
- WETBJXIDTZXCBL-UHFFFAOYSA-N 3,5-dimethylhexan-1-ol Chemical compound CC(C)CC(C)CCO WETBJXIDTZXCBL-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- MUPPEBVXFKNMCI-UHFFFAOYSA-N 3-methylheptan-1-ol Chemical compound CCCCC(C)CCO MUPPEBVXFKNMCI-UHFFFAOYSA-N 0.000 description 1
- CLFSZAMBOZSCOS-UHFFFAOYSA-N 3-methyloctan-1-ol Chemical compound CCCCCC(C)CCO CLFSZAMBOZSCOS-UHFFFAOYSA-N 0.000 description 1
- TVDUZVIJAUNRRO-UHFFFAOYSA-N 4,4-dimethyl-2-propylpentan-1-ol Chemical compound CCCC(CO)CC(C)(C)C TVDUZVIJAUNRRO-UHFFFAOYSA-N 0.000 description 1
- QABJATQYUASJEM-UHFFFAOYSA-N 4,5-dimethylhexan-1-ol Chemical compound CC(C)C(C)CCCO QABJATQYUASJEM-UHFFFAOYSA-N 0.000 description 1
- GCBXGQPBCBPHSP-UHFFFAOYSA-N 4,6-dimethylheptan-1-ol Chemical compound CC(C)CC(C)CCCO GCBXGQPBCBPHSP-UHFFFAOYSA-N 0.000 description 1
- KFIRGGRDLDDWMX-UHFFFAOYSA-N 4-ethyl-3-methylhexan-1-ol Chemical compound CCC(CC)C(C)CCO KFIRGGRDLDDWMX-UHFFFAOYSA-N 0.000 description 1
- BBVCCVAFLKQRMK-UHFFFAOYSA-N 4-ethyl-5-methylhexan-1-ol Chemical compound CCC(C(C)C)CCCO BBVCCVAFLKQRMK-UHFFFAOYSA-N 0.000 description 1
- ZCILGMFPJBRCNO-UHFFFAOYSA-N 4-phenyl-2H-benzotriazol-5-ol Chemical class OC1=CC=C2NN=NC2=C1C1=CC=CC=C1 ZCILGMFPJBRCNO-UHFFFAOYSA-N 0.000 description 1
- JSRZLXKKHMYWLL-UHFFFAOYSA-N 5,6-dimethylheptan-1-ol Chemical compound CC(C)C(C)CCCCO JSRZLXKKHMYWLL-UHFFFAOYSA-N 0.000 description 1
- KFARNLMRENFOHE-UHFFFAOYSA-N 5-methylheptan-1-ol Chemical compound CCC(C)CCCCO KFARNLMRENFOHE-UHFFFAOYSA-N 0.000 description 1
- JIUFYGIESXPUPL-UHFFFAOYSA-N 5-methylhex-1-ene Chemical compound CC(C)CCC=C JIUFYGIESXPUPL-UHFFFAOYSA-N 0.000 description 1
- CGCDFYUPZXVGIX-UHFFFAOYSA-N 5-methyloctan-1-ol Chemical compound CCCC(C)CCCCO CGCDFYUPZXVGIX-UHFFFAOYSA-N 0.000 description 1
- DMFDIYIYBVPKNT-UHFFFAOYSA-N 8-methylnon-1-ene Chemical compound CC(C)CCCCCC=C DMFDIYIYBVPKNT-UHFFFAOYSA-N 0.000 description 1
- WDMOXLRWVGEXJV-UHFFFAOYSA-N 8-methylnonanal Chemical class CC(C)CCCCCCC=O WDMOXLRWVGEXJV-UHFFFAOYSA-N 0.000 description 1
- RYUJRXVZSJCHDZ-UHFFFAOYSA-N 8-methylnonyl diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)(OCCCCCCCC(C)C)OC1=CC=CC=C1 RYUJRXVZSJCHDZ-UHFFFAOYSA-N 0.000 description 1
- QNJMAPUHMGDDBE-UHFFFAOYSA-N 9-methyldec-1-ene Chemical compound CC(C)CCCCCCC=C QNJMAPUHMGDDBE-UHFFFAOYSA-N 0.000 description 1
- WFWCBRYYFJNRNT-UHFFFAOYSA-N 9-methyldecanal Chemical compound CC(C)CCCCCCCC=O WFWCBRYYFJNRNT-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- RWPICVVBGZBXNA-BGYRXZFFSA-N Bis(2-ethylhexyl) terephthalate Natural products CCCC[C@H](CC)COC(=O)C1=CC=C(C(=O)OC[C@H](CC)CCCC)C=C1 RWPICVVBGZBXNA-BGYRXZFFSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- YAAQEISEHDUIFO-UHFFFAOYSA-N C=CC#N.OC(=O)C=CC=CC1=CC=CC=C1 Chemical compound C=CC#N.OC(=O)C=CC=CC1=CC=CC=C1 YAAQEISEHDUIFO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004807 Di(2-ethylhexyl)terephthalate Substances 0.000 description 1
- LQLQDKBJAIILIQ-UHFFFAOYSA-N Dibutyl terephthalate Chemical compound CCCCOC(=O)C1=CC=C(C(=O)OCCCC)C=C1 LQLQDKBJAIILIQ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- MSPCIZMDDUQPGJ-UHFFFAOYSA-N N-methyl-N-(trimethylsilyl)trifluoroacetamide Chemical compound C[Si](C)(C)N(C)C(=O)C(F)(F)F MSPCIZMDDUQPGJ-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CGSLYBDCEGBZCG-UHFFFAOYSA-N Octicizer Chemical compound C=1C=CC=CC=1OP(=O)(OCC(CC)CCCC)OC1=CC=CC=C1 CGSLYBDCEGBZCG-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 206010043183 Teething Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920002877 acrylic styrene acrylonitrile Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- MOVRNJGDXREIBM-UHFFFAOYSA-N aid-1 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)CO)C(O)C1 MOVRNJGDXREIBM-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005011 alkyl ether group Chemical group 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004600 biostabiliser Substances 0.000 description 1
- RWPICVVBGZBXNA-UHFFFAOYSA-N bis(2-ethylhexyl) benzene-1,4-dicarboxylate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C=C1 RWPICVVBGZBXNA-UHFFFAOYSA-N 0.000 description 1
- DIMOQAGSNHTROK-UHFFFAOYSA-N bis(2-ethylhexyl) cyclohexane-1,2-dicarboxylate Chemical compound CCCCC(CC)COC(=O)C1CCCCC1C(=O)OCC(CC)CCCC DIMOQAGSNHTROK-UHFFFAOYSA-N 0.000 description 1
- HOQGHOMLEVKTBY-UHFFFAOYSA-N bis(2-ethylhexyl) cyclohexane-1,4-dicarboxylate Chemical compound CCCCC(CC)COC(=O)C1CCC(C(=O)OCC(CC)CCCC)CC1 HOQGHOMLEVKTBY-UHFFFAOYSA-N 0.000 description 1
- LQKWPGAPADIOSS-UHFFFAOYSA-N bis(2-methylpropyl) benzene-1,4-dicarboxylate Chemical compound CC(C)COC(=O)C1=CC=C(C(=O)OCC(C)C)C=C1 LQKWPGAPADIOSS-UHFFFAOYSA-N 0.000 description 1
- OIPMQULDKWSNGX-UHFFFAOYSA-N bis[[ethoxy(oxo)phosphaniumyl]oxy]alumanyloxy-ethoxy-oxophosphanium Chemical compound [Al+3].CCO[P+]([O-])=O.CCO[P+]([O-])=O.CCO[P+]([O-])=O OIPMQULDKWSNGX-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- NPAIMXWXWPJRES-UHFFFAOYSA-N butyltin(3+) Chemical compound CCCC[Sn+3] NPAIMXWXWPJRES-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000001031 chromium pigment Substances 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000001032 cobalt pigment Substances 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-L cyclohexane-1,4-dicarboxylate Chemical compound [O-]C(=O)C1CCC(C([O-])=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-L 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000004816 dichlorobenzenes Chemical class 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007700 distillative separation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- DLAHAXOYRFRPFQ-UHFFFAOYSA-N dodecyl benzoate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1 DLAHAXOYRFRPFQ-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000006200 ethylation reaction Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 238000007172 homogeneous catalysis Methods 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- AQBLLJNPHDIAPN-LNTINUHCSA-K iron(3+);(z)-4-oxopent-2-en-2-olate Chemical compound [Fe+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AQBLLJNPHDIAPN-LNTINUHCSA-K 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- ZUBZATZOEPUUQF-UHFFFAOYSA-N isononane Chemical compound CCCCCCC(C)C ZUBZATZOEPUUQF-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- VOKXPKSMYJLAIW-UHFFFAOYSA-N nickel;phosphane Chemical compound P.[Ni] VOKXPKSMYJLAIW-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical class CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- CWZQRDJXBMLSTF-UHFFFAOYSA-N oxolane-2,5-dicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)O1 CWZQRDJXBMLSTF-UHFFFAOYSA-N 0.000 description 1
- TWBKZBJAVASNII-UHFFFAOYSA-N pentadecane-1-sulfonic acid Chemical compound CCCCCCCCCCCCCCCS(O)(=O)=O TWBKZBJAVASNII-UHFFFAOYSA-N 0.000 description 1
- PRCNQQRRDGMPKS-UHFFFAOYSA-N pentane-2,4-dione;zinc Chemical compound [Zn].CC(=O)CC(C)=O.CC(=O)CC(C)=O PRCNQQRRDGMPKS-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 150000008301 phosphite esters Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 239000008031 plastic plasticizer Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 229920009537 polybutylene succinate adipate Polymers 0.000 description 1
- 239000004630 polybutylene succinate adipate Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 239000005336 safety glass Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- PZTAGFCBNDBBFZ-UHFFFAOYSA-N tert-butyl 2-(hydroxymethyl)piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CO PZTAGFCBNDBBFZ-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 230000036346 tooth eruption Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- IGNTWNVBGLNYDV-UHFFFAOYSA-N triisopropylphosphine Chemical compound CC(C)P(C(C)C)C(C)C IGNTWNVBGLNYDV-UHFFFAOYSA-N 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000005590 trimellitic acid group Chemical group 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- OTYZITQZGUUIFO-UHFFFAOYSA-N tripentyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCOC(=O)C1=CC=C(C(=O)OCCCCC)C(C(=O)OCCCCC)=C1 OTYZITQZGUUIFO-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- XMAYNXHPIPZVDP-UHFFFAOYSA-N tripropan-2-yl benzene-1,2,4-tricarboxylate Chemical compound CC(C)OC(=O)C1=CC=C(C(=O)OC(C)C)C(C(=O)OC(C)C)=C1 XMAYNXHPIPZVDP-UHFFFAOYSA-N 0.000 description 1
- QEUYMNVHNSOBRS-UHFFFAOYSA-N tripropyl benzene-1,2,4-tricarboxylate Chemical compound CCCOC(=O)C1=CC=C(C(=O)OCCC)C(C(=O)OCCC)=C1 QEUYMNVHNSOBRS-UHFFFAOYSA-N 0.000 description 1
- LTWYFTXZEUBPCY-UHFFFAOYSA-N tris(2-methylbutyl) benzene-1,2,4-tricarboxylate Chemical compound CC(COC(=O)C=1C(=CC(=CC=1)C(=O)OCC(CC)C)C(=O)OCC(CC)C)CC LTWYFTXZEUBPCY-UHFFFAOYSA-N 0.000 description 1
- KIXLAASMBDJKOI-UHFFFAOYSA-N tris(3-methylbutyl) benzene-1,2,4-tricarboxylate Chemical compound CC(CCOC(=O)C=1C(=CC(=CC=1)C(=O)OCCC(C)C)C(=O)OCCC(C)C)C KIXLAASMBDJKOI-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/12—Esters; Ether-esters of cyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- the present invention relates to a plasticizer composition containing at least one trimellitic acid trialkyl ester and at least one 1,2-cyclohexanedicarboxylic acid ester, molding compositions containing at least one polymer and plasticizer composition, plastisols containing at least one polymer and such a plasticizer Composition and the use of these plasticizer compositions in molding compositions and plastisols.
- Polyvinyl chloride is one of the most widely produced plastics in terms of quantity.
- PVC is usually a hard and brittle plastic up to about 80 ° C, which is used as rigid PVC (PVC-U) by adding heat stabilizers and other additives.
- PVC-U rigid PVC
- plasticizers can yield soft PVC (PVC-P), which can be used for many applications where rigid PVC is unsuitable.
- PVC-P soft PVC
- the use of plasticizers serves to lower the processing temperature of plastics and to increase their elasticity
- plasticizers have a high compatibility with the plasticized plastic, that is, that they do not or only relatively slowly emerge from the plasticized plastic, and / or toxicologically largely harmless.
- plasticizers are commonly used in other plastics.
- Other plastics may be, for example, polyvinyl butyral (PVB), homopolymers or copolymers of styrene, polyacrylates, polysulfides or thermoplastic polyurethanes (TPU).
- PVB polyvinyl butyral
- TPU thermoplastic polyurethanes
- plasticizers for plastics for example PVC, are disclosed in the prior art.
- EP 1354867 B1 discloses mixtures of benzoic acid isononyl esters in combination with phthalic acid dialkyl esters and / or dialkyl adipic acid esters and / or cyclohexanedicarboxylic acid alkyl esters which, according to the description, can be used as plasticizers for PVC.
- EP 1415978 B1 discloses mixtures of isodecyl benzoate in combination with phthalic acid dialkyl esters and / or dialkyl adipates and / or alkyl cyclohexanedicarboxylic acid esters which can be used as plasticizers for PVC.
- mixtures of trimellitic trialkyl esters and trimellitaryl esters are suitable as plasticizers for plastics such as PVC.
- the disclosed blends are said to have a low dissolution temperature and volatility. Plastics containing the disclosed blend may also contain other plasticizers.
- plasticizer composition for plastics, such as PVC, can be found, which gives the plasticized plastic good mechanical properties.
- the plasticizer composition should also have good gelling properties and a high compatibility with the plastics to be plasticized and be toxicologically unobjectionable.
- the plasticizer composition is said to exhibit low volatility, both during processing and during use of the final products.
- plasticizer composition comprising a) at least one compound of the general formula (I),
- R 1a R 1b and R 1c are independently C3 to Cs alkyl
- R 2a and R 2b are independently C7 to C12 alkyl.
- One subject of the disclosure is the use of the disclosed plasticizer composition as a plasticizer for plastics. Also subject of the disclosure is the use of the disclosed plasticizer composition as plasticizer for plastisols.
- Also subject matter of the disclosure is a molding composition containing at least one polymer and the disclosed plasticizer composition.
- a plastisol is the subject of the disclosure containing at least one polymer and the disclosed softener composition.
- a molding composition containing at least one polymer and the disclosed plasticizer composition for the production of moldings and films is the subject of the present disclosure.
- a plastisol containing at least one polymer and the disclosed plasticizer composition for making molded articles and films is the subject of the present disclosure.
- molded articles and films containing the disclosed plasticizer composition are the subject of the present disclosure. DESCRIPTION OF THE INVENTION
- the abbreviation phr parts per hundred resin
- the weight percentage refers to the total weight if nothing else is stated.
- a mixture is any mixture of two or more, for example, a mixture may contain two to five or more.
- a mixture can also contain an arbitrarily large number.
- a gelling assistant is a plasticizer or a mixture of different plasticizers, which is characterized in that the dissolution temperature of the plasticizer or the mixture of different plasticizers according to DIN 53408 (06/1967) is at most 125 ° C.
- a compound of the general formula (I) may be: st 1, 2,4-benzenetricarboxylic acid tri - (n-propyl) -ester
- a compound of general formula (II) may be: 11.1 is di- (2-ethylhexyl) -1,2-cyclohexanedicarboxylate
- a polymer is a plastic.
- a polymer may be an elastomer or a thermoplastic.
- a thermoplastic can usually be processed thermoplastically.
- thermoplastic may be, for example:
- TP.1 is a homo- or copolymer which contains in copolymerized form at least one monomer selected from C.sub.2 to C.sub.10 monoolefins, for example ethylene, propylene, 1,3-butadiene, 2-chloro-1,3-butadiene, Vinyl alcohols or their C 2 - to C 10 -alkyl esters, vinyl acetate, vinyl chloride, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, glycidyl acrylate, glycidyl methacrylate, acrylates or methacrylates with alcohol components of branched or unbranched C 1 - to C 10 -alcohols, vinylaromatics, for example styrene, (meth) acrylonitrile, ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acids and maleic anhydride.
- TP.2 is a polyvinyl
- TP.3 is a polycarbonate
- TP.4 is a polyether
- TP.5 is a polyether ketone
- TP.6 is a thermoplastic polyurethane
- TP.7 is a polysulfide
- TP.8 is a polysulfone
- TP.9 is a polyester
- TP.10 is a polyalkylene terephthalate
- TP.1 1 is a polyhydroxyalkanoate
- TP.12 is a polybutylene succinate
- TP.13 is a polybutylene succinate adipate
- TP.14 is a polyacrylate having identical or different alcohol radicals from the group of C 4 - to C 8 -alcohols such as butanol, hexanol, octanol, 2-ethylhexanol
- TP 15 is a polymethylmethacrylate
- TP 16 is a methyl methacrylate-butyl acrylate copolymer
- TP 17 is an acrylonitrile-butadiene-styrene copolymer
- TP 18 is an ethylene-propylene copolymer
- TP 19 is an ethylene-propylene-diene copolymer
- TP 20 is a polystyrene
- TP 21 is a styrene-acrylonitrile copolymer
- TP 22 is an acrylonitrile-styrene-acrylate
- TP 23 is a styrene-butadiene-methyl methacrylate copolymer
- TP 24 is a styrene-maleic anhydride copolymer
- TP 25 is a styrene-methacrylic acid copolymer
- TP26 is a polyoxymethylene
- TP 27 is a polyvinyl alcohol
- TP 28 is a polyvinyl acetate
- TP 29 is a polyvinyl butyral
- TP 30 is a polyvinyl chloride
- TP 31 is a polycaprolactone
- TP 32 is polyhydroxybutyric acid
- TP 33 is polyhydroxyvaleric acid
- TP 34 is polylactic acid
- TP 35 is ethylcellulose
- TP 36 is cellulose acetate
- TP 37 is cellulose propionate
- TP 38 is Celite acetate / butyrate
- polyvinyl chloride is obtained by homopolymerization of vinyl chloride.
- the polyvinyl chloride contained in the disclosed molding composition can be prepared by, for example, suspension polymerization or bulk polymerization.
- the polyvinyl chloride contained in the disclosed plastisol can be prepared, for example, by microsuspension polymerization or bulk polymerization.
- the plasticizer composition according to the invention is characterized by high compatibility with the plastic to be plasticized, and the plasticizer composition of the present invention can have a positive influence on the gelling behavior of the plastics plasticized therewith.
- the present softener composition has a beneficial effect on the mechanical properties of plasticized plastics.
- a measure of the elasticity of plasticized plastics is the Shore A hardness. The lower the Shore A hardness, the higher the elasticity of the plasticized plastic.
- a measure of good gelling properties may be a low dissolving temperature / gelling temperature.
- plasticizers in plasticized plastics characterizes the extent to which plasticizers tend to exude during use of the plasticized plastics, thereby impairing the performance properties of the plastics.
- low volatility in processing can be reflected by low process volatility.
- the dissolution temperature / gelling temperature refers to the minimum temperature at which a substantially homogeneous phase forms between polymer and plasticizer.
- the present disclosure relates to a plasticizer composition which contains at least one compound of the general formula (I) and at least one compound of the general formula (II).
- R 1a , R 1b and R 1c are independently C3 to C6 alkyl.
- C3- to Cs-alkyl may be straight-chain or branched.
- C3 to Cs alkyl may be n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, 2-methylbutyl or 3-methylbutyl.
- R 1a , R 1b and R 1c are independently C 4 alkyl.
- C4 alkyl may be straight or branched.
- C 4 alkyl may be n-butyl or isobutyl.
- the disclosed plasticizer composition contains at least one compound of the general formula (I). Accordingly, the disclosed plasticizer composition may also contain a mixture of compounds of general formula (I).
- the disclosed plasticizer composition may, for example, comprise a mixture of compounds of general formula (I) selected from 1.1, I.2, I.3, I.4, I.5, I.6 and I.7.
- R 2a and R 2b are independently C7 to C12 alkyl.
- C 2 - to C 12 -alkyl can be straight-chain or branched.
- C 7 -C 12 -alkyl n-heptyl, 1-methylhexyl, 2-methylhexyl, 1-ethylpentyl, 2-ethylpentyl, 1-propylbutyl, 1-ethyl-2-methylpropyl, n-octyl, isooctyl, 2-ethylhexyl, n-nonyl, isononyl, 2-propylhexyl, n-decyl, isodecyl, 2-propylheptyl, n-undecyl, isoundecyl or n-dodecyl, isododecyl.
- R 2a and R 2b are independently Cs to Cn alkyl.
- Cs to Cn-alkyl may be straight-chain or branched.
- Cs to Cn alkyl may be n-octyl, n-nonyl, isononyl, 2-ethylhexyl, isodecyl, 2-propylheptyl, n-undecyl or isoundecyl.
- the disclosed plasticizer composition contains at least one compound of the general formula (II). Accordingly, the disclosed plasticizer composition may also contain a mixture of compounds of general formula (II). The disclosed plasticizer composition may, for example, contain a mixture of compounds of general formula (II) selected from 11.1, W.2, and II.3
- Plasticizer composition may contain, for example
- 1.7 XXX a mixture of compounds 1.1 to I.7 and compound 11.1 or, a mixture of compounds 1.1 to I.7 and compound II.2 or, a mixture of compounds 1.1 to I.7 and compound II.3 or, a mixture selected from Compound 1.1, I.2, I.3, I.4, I.5, I.6, and I.7 and a mixture selected from Compound 11.1, II.2 and II.3.
- the content of at least one compound of the general formula (I) in the disclosed plasticizer composition is usually 5 to 70% by weight. It may be preferable that the content is 8 to 70% by weight, and more preferably 10 to 70% by weight.
- the content of at least one compound of general formula (I) in the of- For example, the plasticizer composition employed may be 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, or 65 percent by weight.
- the content of at least one compound of the general formula (II) in the disclosed plasticizer composition is usually 30 to 95% by weight. It may be preferable that the content is 30 to 92% by weight, and more preferably 30 to 90% by weight.
- the content of at least one compound of the general formula (II) in the disclosed softening composition may be, for example, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85% by weight.
- the subject matter of the disclosure can thus be a plasticizer composition which contains 5 to 70% by weight of at least one compound of the general formula (I) and contains 30 to 95% by weight of at least one compound of the general formula (II). It may be preferred that a plasticizer composition contains from 8 to 70 weight percent of at least one compound of general formula (I) and from 30 to 92 weight percent of at least one compound of general formula (II). It may further be preferred that a plasticizer composition contains from 10 to 70% by weight of at least one compound of the general formula (I) and from 30 to 90% by weight of at least one compound of the general formula (II).
- a plasticizer composition within the scope of the disclosure may include
- the weight ratio of the at least one compound of the general formula (I) and the at least one compound of the general formula (II) may be in the range of 1:19 to 7: 3. It may be preferred that the weight ratio is in the range of 1: 1.5 to 7: 3. Further, it may be preferable that the weight ratio is in the range of 1: 9 to 7: 3. Thus, the weight ratio of at least one compound of general formula (I) and at least one compound of general formula (II) may be in the range of 1: 15, 1: 5, 1: 1, or 2: 1.
- a plasticizer composition may contain, in addition to at least one compound of the general formula (I) and (II), at least one plasticizer different from the compounds of the general formulas (I) and (II).
- a plasticizer which is different from the compounds of the general formula (I) or (II) may, for example, be a cyclohexane-1,2-dicarboxylic acid dialkyl ester having 4 to 6 C atoms and / or 13 C atoms in the alkyl chains, a cyclohexane 1, 3-dicarboxylic acid dialkyl ester, a cyclohexane-1, 4-dicarboxylic acid dialkyl ester, a dialkyl terephthalate, a dialkyl phthalate, a dialkyl malate, a dialkyl acetyl maleate, a benzoic acid ester, a dibenzoic acid ester, a saturated monocarboxylic acid, an unsaturated monocarboxylic acid ester, a saturated Dicarboxylic acid diester, an unsaturated dicarboxylic acid diester, an aromatic sulfonic acid ester, an alkylsulfonic acid ester, a
- Isosorbide ester a phosphoric acid ester, a citric acid triester, an acylated citric acid ester, an alkylpyrrolidone derivative, a 2,5-furandicarboxylic acid dialkyl ester, a 2,5-tetrahydrofurandicarboxylic acid dialkyl ester, a polyester of aliphatic and / or aromatic polycarboxylic acids with at least dihydric alcohols, an epoxidized vegetable oil or a be epoxidized fatty acid monoalkyl esters.
- a cyclohexane-1,2-dicarboxylic acid dialkyl ester different from the compound of the general formula (II) usually has 4 to 6 and / or 13 carbon atoms in the alkyl chains.
- the alkyl chains of the cyclohexane-1,2-dicarboxylic acid dialkyl ester different from the compound of the general formula (II) may independently of one another have a different number of C atoms.
- a cyclohexane-1, 3-dicarboxylic acid dialkyl ester may have 4 to 13 carbon atoms in the alkyl chains.
- the alkyl chains of the cyclohexane-1, 3-dicarboxylic acid dialkyl ester may independently have a different number of carbon atoms.
- a cyclohexane-1,4-dicarboxylic acid dialkyl ester may have 4 to 13 carbon atoms in the alkyl chains.
- the alkyl chains of the cyclohexane-1, 4-dicarbon Aciddialkylesters may independently have a different number of carbon atoms.
- a dialkyl cyclohexane-1, 4-dicarboxylate may be, for example, di (2-ethylhexyl) cyclohexane-1,4-dicarboxylate.
- a terephthalic acid dialkyl ester may have 4 to 12 C atoms in the alkyl chains.
- the alkyl chains can independently of one another have a different number of carbon atoms.
- a terephthalic acid ester may be, for example, di-n-butyl terephthalate, diisobutyl terephthalate or di (2-ethylhexyl) terephthalate.
- a dialkyl phthalate may have 9 to 13 carbon atoms in the alkyl chains.
- the alkyl chains can independently of one another have a different number of carbon atoms.
- a dialkyl phthalate may be, for example, di-isononyl phthalate.
- An dialkyl malate or a dialkyl acetyl maleate may have from 4 to 13 carbon atoms in the alkyl chains.
- the alkyl chains of the malic dialkyl ester or of the dialkyl acetyl maleate may independently have a different number of C atoms.
- An alkyl benzoate may have 7 to 13 C atoms in the alkyl chain.
- a benzoic acid alkyl ester may be, for example, isononyl benzoate, isodecyl benzoate, or 2-propylheptyl benzoate.
- a dibenzoic acid ester may be, for example, diethylene glycol dibenzoate, dipropylene glycol dibenzoate, tripropylene glycol dibenzoate or dibutylene glycol dibenzoate
- a saturated monocarboxylic acid ester may be, for example, an ester of acetic acid, an ester of butyric acid, an ester of valeric acid, or an ester of lactic acid.
- a saturated monocarboxylic acid ester may also be an ester of a monocarboxylic acid with a polyhydric alcohol.
- pentaerythritol may be completely esterified with valeric acid.
- An unsaturated monocarboxylic acid ester may be, for example, an ester of acrylic acid.
- An unsaturated dicarboxylic acid diester may be, for example, an ester of maleic acid.
- An alkyl sulfonic acid ester may have 8 to 22 C atoms in the alkyl chain.
- An alkylsulfonic acid ester may be, for example, a phenyl or cresyl ester of pentadecylsulfonic acid.
- An isosorbide ester is usually an isosorbide diester which is esterified with Cs to Ci3 carboxylic acids.
- An isosorbide diester may have different or identical Cs to C 13 alkyl chains.
- a phosphoric acid ester may be tri-2-ethylhexyl phosphate, trioctyl phosphate, triphenyl phosphate, isodecyldiphenyl phosphate, or bis-2 (2-ethylhexyl) phenyl phosphate, 2-ethylhexyldiphenyl phosphate.
- the OH group can be present in free or carboxylated form, for example acetylated form.
- the alkyl chains of the citric acid triester or the acetylated citric acid triester independently comprise 4 to 8 carbon atoms.
- An alkylpyrrolidone derivative may have 4 to 18 carbon atoms in the alkyl chain.
- a 2.5-furandicarboxylic acid dialkyl ester may have 5 to 13 carbon atoms in the alkyl chains.
- the alkyl chains of 2,5-Furandicarbonklaredialkylesters may independently have a different number of carbon atoms.
- a 2,5-tetrahyrofurandicarboxylic acid dialkyl ester may have 5 to 13 carbon atoms in the alkyl chains.
- the alkyl chains of 2,5-Tetrahydrofurandicarbonklaredialkylesters can independently have a different number of carbon atoms.
- a polyester having aromatic or aliphatic polycarboxylic acids may be a polyester based on adipic acid with polyhydric alcohols, such as dialkylene glycol polyadipates having 2 to 6 carbon atoms in the alkylene unit. Examples may be polyester adipates, polyglycol adipates and polyester phthalates.
- the plasticizer composition disclosed contains at least one plasticizer other than the compound of the general formula (I) and (II), its content in the disclosed plasticizer composition is up to 50% by weight, based on the total amount of all plasticizers in the plasticizer composition.
- Composition containing plasticizers It may be preferable that the content in the disclosed plasticizer composition is up to 40% by weight. It may be further preferred that the content in the disclosed softening composition is up to 25% by weight. In general, however, it may be preferable that no plasticizer other than the compounds of the general formulas (I) and (II) is contained in the disclosed plasticizer composition.
- a molding composition containing the disclosed plasticizer composition and at least one polymer.
- the disclosed molding composition may accordingly also contain a mixture of polymers.
- thermoplastic is included in the molding composition containing the disclosed plasticizer composition. Accordingly, the disclosed molding composition may also contain a mixture of thermoplastics.
- a molding compound may contain, for example
- thermoplastic properties are generally the routine activity of those skilled in the art.
- the amount of the disclosed plasticizer composition in the disclosed molding composition is typically 0.5 to 300 phr. It may be preferred that the amount of the disclosed plasticizer composition in the disclosed molding composition is from 1..o. to 130 phr. It may be further preferred that the amount of the disclosed plasticizer composition in the molding composition is from 2.0 to 100 phr.
- the amount of the disclosed plasticizer composition contained in the disclosed molding composition may be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95 phr.
- the amount of the disclosed plasticizer composition in the disclosed molding composition is usually 5 to 300 phr. It may be preferable that the amount of the disclosed plasticizer composition in the open-hard molding composition is 15 to 200 phr. It may be further preferred that the amount of the disclosed plasticizer composition in the disclosed molding composition is from 30 to 150 phr.
- the amount of the disclosed softener composition disclosed in U.S. Patent No. 5,306,054 Molding compound is, for example, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 1 10, 1 15, 120, 125, 130, 135, 140 or 145 phr.
- the disclosed molding composition contains 20 to 90 weight percent polyvinyl chloride. It may be preferred that the molding composition contains 40 to 90 weight percent polyvinyl chloride, and more preferably 45 to 85 weight percent. For example, the disclosed molding composition may contain 50, 55, 60, 65, 70, 75 or 80 weight percent polyvinyl chloride.
- the disclosed molding composition containing at least one thermoplastic and the disclosed plasticizer composition may also contain other additives.
- the disclosed plastisol containing at least one thermoplastic and the disclosed softening composition may also contain other additives.
- Additives may be for example stabilizers, lubricants, fillers, colorants, flame retardants, light stabilizers, blowing agents, polymeric processing agents, impact modifiers, optical brighteners, antistatic agents, biostabilizers or a mixture thereof.
- the additives described below do not limit the disclosed molding composition or the disclosed plastisol, but are merely illustrative of the disclosed molding composition or the disclosed plastisol.
- Stabilizers may be the usual polyvinyl chloride stabilizers in solid and liquid form, such as Ca / Zn, Ba / Zn, Pb, Sn stabilizers, carbonates such as hydrotalcite, acid-binding phyllosilicates or mixtures thereof.
- the disclosed molding composition or plastisol may contain stabilizer content of from 0.05 to 7 percent by weight based on the total weight of the molding material or the plastisol. It may be preferred that the content of stabilizers is from 0.1 to 5% by weight and more preferably from 0.5 to 3% by weight.
- Lubricants typically serve to reduce the adhesion between the disclosed molding material or the disclosed plastisol and the surfaces, and are intended, for example, to reduce the frictional forces of mixing, plasticizing or deforming.
- Lubricants in the disclosed molding composition or in the disclosed plastisol all common lubricants used in plastics processing can be used.
- Lubricants commonly used in plastics processing are, for example, hydrocarbons, such as oils, paraffins, PE waxes or mixtures thereof, fatty alcohols having 6 to 20 C atoms, ketones, carboxylic acids, such as fatty acids, montanic acids or mixtures thereof, oxidized PE waxes, metal salts of carboxylic acids , Carbonklareamide, carboxylic acid esters, which result from the esterification of alcohols such as ethanol, fatty alcohols, glycerol, ethanediol or pentaerythritol with long-chain carboxylic acids.
- the disclosed molding composition or plastisol may contain lubricity of 0.01 to 10 weight percent based on the total weight of the molding compound or plastic isolate. It may be preferable that the content of the lubricant is from 0.05 to 5% by weight, and more preferably from 0.2 to 2% by weight.
- Fillers are generally used to positively influence the compressive, tensile and / or flexural strength, hardness and / or heat distortion resistance of the disclosed molding composition or plastisol.
- fillers for example, carbon black and / or inorganic fillers may be present in the disclosed molding composition or in the disclosed plastisol.
- Inorganic fillers may be natural calcium carbonates such as chalk, limestone, marbles, synthetic calcium carbonates, dolomite, silicates, silicic acid, sand, diatomaceous earth, aluminum silicates such as kaolin, mica, feldspar, or any mixture of two or more of the aforementioned fillers.
- the disclosed molding composition or plastisol may contain from 0.01 to 80 percent by weight filler based on the total weight of the molding material or the plastisol. It may be preferable that the content of the filler is 0.01 to 60% by weight, and more preferably 1 to 40% by weight. Thus, the disclosed molding compound or plastisol may contain 2, 5, 8, 10, 12, 15, 18, 20, 22, 25, 27, 30, 33, 36, or 39 percent by weight fillers.
- Colorants may serve to tailor the disclosed molding composition or plastisol to different uses. Colorants may be, for example, pigments or dyes.
- pigments for example, inorganic and / or organic pigments may be included in the disclosed molding composition or in the disclosed plastisol.
- Inorganic pigments may be cobalt pigments such as COO / Al 2 O 3 and / or chromium pigments such as Cr 2 O 3.
- Organic pigments may be monoazo pigments, condensed azo pigments, azomethine pigments, anthraquinone pigments, quinacridones, phthalocyanine pigments and / or dioxazine pigments.
- the disclosed molding composition or plastisol may contain 0.01 to 10 weight percent of colorants based on the total weight of the molding compound or plastic isolate. It may be preferable that the content of colorants is 0.05 to 5% by weight, and more preferably 0.1 to 3% by weight.
- Flame inhibitors can serve to reduce the flammability of the disclosed molding material or plastisol and to reduce smoke formation upon combustion.
- Flame inhibitors which may be included in the disclosed molding composition or in the disclosed plastisol may, for example, be antimony trioxide, chloroparaffin, phosphate esters, aluminum hydroxide and / or boron compounds.
- the disclosed molding composition or plastisol may contain flame retardants of from 0.01 to 10 percent by weight based on the total weight of the molding material or the plastisol. It may be preferable that the content of flame retardants is 0.2 to 5% by weight, and more preferably 0.5 to 2% by weight.
- Light stabilizers, such as UV absorbers can serve to protect the disclosed molding material or plastisol by damage from the action of light.
- Light stabilizers may, for example, be hydroxybenzophenones, hydroxyphenylbenzotriazoles, cyanoacrylates, hindered amine light stabilizers, such as derivatives of 2,2,6,6-tetramethylpiperidine or mixtures of the abovementioned compounds.
- the disclosed molding material or plastisol may contain from 0.01 to 7 weight percent of light stabilizers based on the total weight of the molding material or the plastisol. It may be preferable that the content of the light stabilizer is 0.02 to 4% by weight, and more preferably 0.5 to 3% by weight.
- the disclosed plasticizer composition and at least one elastomer may be included. Accordingly, the disclosed plasticizer composition and a mixture of elastomers may also be included in the disclosed molding composition.
- An elastomer may be, for example, a rubber.
- a rubber may be a natural rubber or a synthetic rubber.
- Synthetically produced rubber may be, for example, polyisoprene rubber, styrene-butadiene rubber, butadiene rubber, nitrile-butadiene rubber, chloroprene rubber.
- the disclosed molding composition comprises at least natural rubber and / or at least one synthetic rubber, wherein the rubber or rubber mixture contained can be vulcanized with sulfur.
- the disclosed molding composition contains at least one elastomer in a proportion of 20 to 95 percent by weight based on the total weight of the molding composition. It may be preferred that the disclosed molding composition contains at least one elastomer at a level of from 45 to 90 percent by weight. Furthermore, it may be preferred that the disclosed molding composition at least contains at least one elastomer in a proportion of 50 to 85 weight percent.
- the disclosed molding composition may contain, for example, 55, 60, 65, 70, 75 or 80 percent by weight of at least one elastomer.
- the amount of the disclosed plasticizer composition in the molding composition is usually 1 to 60 phr.
- the amount of the disclosed plasticizer composition in the molding composition is 2 to 40 phr and further 3 to 30 phr.
- the amount of the disclosed plasticizer composition contained in the molding composition may be, for example, 5, 10, 15, 20 or 25 phr.
- a mixture of at least one thermoplastic and at least one elastomer may be included.
- a mixture of polyvinyl chloride and at least one elastomer may be included.
- the content of elastomer is generally from 1 to 50 percent by weight, based on the total weight of the molding composition. It may be preferable that the content of the elastomer is 3 to 40% by weight based on the total weight of the pulp. It may further be preferred that the content of elastomer is 5 to 30 percent by weight based on the total weight of the molding composition.
- the disclosed molding composition may contain, for example, 10, 15, 20 or 25 percent by weight of elastomer.
- the amount of plasticizer composition disclosed in the molding composition can vary widely to achieve the desired properties. It is routine practice for those skilled in the art to use appropriate amounts of the disclosed softening composition to achieve the desired properties.
- the amount of plasticizer composition disclosed in the molding composition is polyvinyl chloride and at least elastomer contains 0.5 to 300 phr. It may be preferred that the amount of the disclosed plasticizer composition in the molding composition containing polyvinyl chloride and at least one elastomer is from 1 to 150 phr and further from 2 to 120 phr.
- the amount of the disclosed plasticizer composition contained in the molding composition may be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 , 90, 95, 100, 105, 1 10 or 1 15 phr.
- a molding composition containing the disclosed plasticizer composition and at least one elastomer may also contain other additives. Additives may, for example, carbon black, silica, phenolic resins, vulcanizing or crosslinking agents, vulcanizing or Crosslinking accelerators, activators, various oils, anti-aging agents or mixture of said additives.
- Further additives may be substances which, on the basis of his specialist knowledge, the skilled person would mix into tires or other rubber compounds in order to achieve a specific effect.
- a plastisol containing the disclosed softening composition and at least one polymer.
- the disclosed plastisol may accordingly also contain a mixture of polymers.
- a plastisol is a suspension of finely powdered polymer in liquid plasticizer, the rate of dissolution of the polymer in the liquid plasticizer being very low at room temperature.
- a substantially homogeneous phase forms between polymer and plasticizer.
- the individual isolated plastic aggregates swell and combine to form a three-dimensional highly viscous gel. This process is usually referred to as gelling and takes place from a certain minimum temperature. This minimum temperature is generally referred to as gelling or dissolving temperature.
- the introduction of the necessary heat can be done via the parameters temperature and / or residence time. The faster the gelation takes place (indication here is the dissolving temperature, ie the lower it is, the faster the plastisol gels), the lower the temperature (with the same residence time) or the residence time (at the same temperature) can be selected.
- thermoplastic is contained in a plastisol.
- plastisol may be included
- the plastisol may be necessary to include different amounts of the disclosed plasticizer composition in the plastisol to achieve the desired plastisol properties.
- the setting of the desired plastisol properties is generally subject to the routine activity of the skilled person.
- the proportion of the disclosed plasticizer composition in the plastisol is usually from 30 to 400 phr, preferably from 50 to 200 phr.
- the content of plasticizers of the general formula (I) in a plastisol containing polyvinyl chloride is usually at least 10 phr, may preferably be at least 15 phr and may in particular be at least 20 phr.
- the disclosed plasticizer composition can be used as a plasticizer for a polymer or a mixture of polymers.
- the disclosed plasticizer composition can be used as a plasticizer for a thermoplastic or a mixture of thermoplastics.
- the disclosed plasticizer composition can also be used as a plasticizer for an elastomer or blend of elastomers.
- An elastomer may be a natural rubber or a synthetic rubber.
- Synthetically prepared rubber may be, for example, polyisoprene rubber, styrene-butadiene rubber, butadiene rubber, nitrile-butadiene rubber, chloroprene rubber, or any mixture thereof.
- the disclosed plasticizer composition may also be used as a plasticizer for a blend containing at least one elastomer and at least one thermoplastic. Most commonly, the disclosed plasticizer composition is used as a plasticizer for polyvinyl chloride, a polyvinyl chloride copolymer, or a blend of polymers containing polyvinyl chloride. The disclosed plasticizer composition can be used as a plasticizer in a plastisol.
- Most of the disclosed softening composition is used as a plasticizer in a plastisol containing polyvinyl chloride.
- the disclosed molding composition is used in the production of moldings or films.
- Shaped bodies may be, for example, containers, apparatus or foamed devices.
- Containers may include, for example, housings of electrical appliances such as kitchen appliances or computer housings, pipes, hoses such as water or irrigation hoses, industrial rubber hoses, chemical hoses, wire or cable sheathing, tool sheathing, bicycle, scooter, wheelbarrow handles, metal coatings or packaging containers ,
- Apparatus may be, for example, tools, furniture such as chairs, shelves, tables, records, profiles such as floor profiles for outdoor use or profiles for conveyor belts or components for vehicle construction such as body components, underbody protection or vibration dampers, or erasers.
- Foamed devices may be, for example, upholstery, mattresses, foams or insulating materials.
- Films may include, for example, tarpaulins such as truck tarpaulins, roof tarpaulins, geomembranes, stadium roofs or tarpaulins, gaskets, composite films such as laminated safety glass films, self-adhesive films, laminating films, shrink films, outdoor flooring, tape foils, coatings, swimming pool sheeting, decorative sheeting or imitation leather ,
- tarpaulins such as truck tarpaulins, roof tarpaulins, geomembranes, stadium roofs or tarpaulins
- gaskets composite films such as laminated safety glass films, self-adhesive films, laminating films, shrink films, outdoor flooring, tape foils, coatings, swimming pool sheeting, decorative sheeting or imitation leather ,
- the disclosed molding composition can be used to make moldings or films that come into direct contact with humans or foods.
- Shaped bodies or films which come into direct contact with humans or foods may be, for example, medical devices, hygiene products, food packaging, interior products, baby and children's products, childcare articles, sports or leisure products, clothing, fibers or fabrics.
- Medical devices that can be made using the disclosed molding composition may include, for example, enteral or hemodialysis tubes, breathing tubes, drainage tubes, infusion tubes, infusion bags, blood bags, catheters, tracheal tubes, disposable syringes, gloves, or respiratory masks.
- Food packages that can be made using the disclosed molding composition may include, for example, cling film, food hoses, drinking water hoses, food storage or freezing containers, lid seals, caps, bottle caps or artificial wine corks.
- Indoor products which can be produced using the disclosed molding composition may include, for example, floor coverings which may be constructed homogeneously or from several layers consisting of at least one foamed layer, such as floor coverings, mudflap mats, sports flooring, luxury Vinyl Tiles (LVT) , Artificial leather, wall coverings, foamed or unfoamed tapes in buildings, linings or console covers in vehicles
- floor coverings which may be constructed homogeneously or from several layers consisting of at least one foamed layer, such as floor coverings, mudflap mats, sports flooring, luxury Vinyl Tiles (LVT) , Artificial leather, wall coverings, foamed or unfoamed tapes in buildings, linings or console covers in vehicles
- Baby and children's products that can be made using the disclosed molding composition may be, for example, toys such as dolls, toy figures or kneading, inflatable toys such as balls or rings, stopper socks, buoyancy aids, stroller covers, changing mattresses, hot water bottles, teething rings or vials ,
- Sports or leisure products that can be made using the disclosed molding compound may be, for example, exercise balls, exercise mats, seat cushions, massage balls or rolls, shoes, shoe soles, balls, air mattresses, or water bottles.
- Apparel that can be made using the disclosed molding composition can be, for example, latex clothing, protective clothing, rain jackets or rubber boots. Plastisols are usually made into the form of the final product at ambient temperature by various methods, such as brushing, casting, such as the shell casting or spin casting, dipping, printing, screen printing, spraying, and the like. Subsequently, the gelation is carried out by heating, after cooling a homogeneous, more or less flexible product is obtained.
- the disclosed plastisol can be used for the production of films, wallpaper, seamless hollow bodies, gloves, heterogeneous floors or for use in the textile sector, such.
- B. be used for textile coatings.
- Films may include, for example, truck tarpaulins, roof tarpaulins, covers in general, such as boat covers, stroller covers or stadium roofs, tarpaulins, geomembranes, tablecloths, coatings, swimming pool foils, artificial leather or decorative sheeting.
- gloves can be gardening gloves, medical gloves, chemical gloves, protective gloves or disposable gloves.
- the disclosed plastisol for example, for the production of seals, such as lid seals, panels or console covers in vehicles, dolls, figures or kneading, inflatable toys, such as balls or rings, stopper socks, buoyancy aids, changing pads, exercise balls, exercise mats, seat cushions, vibrators, massage balls or - Rolls, latex clothing, protective clothing, rain jackets or rubber boots can be used.
- seals such as lid seals, panels or console covers in vehicles, dolls, figures or kneading
- inflatable toys such as balls or rings, stopper socks, buoyancy aids, changing pads, exercise balls, exercise mats, seat cushions, vibrators, massage balls or - Rolls, latex clothing, protective clothing, rain jackets or rubber boots
- the disclosed plastisol usually contains polyvinyl chloride.
- the disclosed softener composition as a calendering aid or rheology adjuvant.
- the disclosed softener composition in surface-active compositions such as flow or film binders, defoamers, foam inhibitors, wetting agents, coalescents or emulsifiers.
- the disclosed plasticizer composition can also be used in lubricants such as lubricating oils, greases or lubricating pastes.
- the disclosed softening composition can be used as a quenching agent for chemical reactions, phlegmatizers, in pharmaceutical products, in adhesives, in sealants, in printing inks, in impact modifiers or leveling agents.
- the subject matter of the disclosure is moldings or films containing the disclosed plasticizer composition. Reference is made to the statements made on the use of molding compositions for the production of moldings or films information on moldings or films. The examples of moldings or films cited here are to be used to design the terms moldings or film in these sections.
- These include the reaction of at least one alcohol component selected from the alcohols R 1a -OH, R 1b -OH and R 1c -OH with a corresponding tricarboxylic acid, for example 1, 2,4-benzenetricarboxylic acid, or a suitable derivative thereof. Suitable derivatives are, for.
- a corresponding tricarboxylic acid for example 1, 2,4-benzenetricarboxylic acid, or a suitable derivative thereof.
- Suitable derivatives are, for.
- the acid halides and acid anhydrides An acid halide may be, for example, an acid chloride.
- the reaction can be carried out in the presence of an esterification catalyst.
- an esterification catalyst customary catalysts can be used, for.
- mineral acids such as sulfuric acid or phosphoric acid
- organic sulfonic acids such as methanesulfonic acid or p-toluenesulfonic acid
- amphoteric catalysts in particular titanium, tin (IV) - or zirconium compounds, such as Tetraa Ikoxytitane, z.
- tetra butoxytitanium, or tin (IV) oxide As tetra butoxytitanium, or tin (IV) oxide.
- the resulting in the reaction water can be removed by conventional means, for. B. by distillation, are removed.
- WO 02/038531 describes a process for preparing esters in which a) in a reaction zone, a mixture consisting essentially of the acid component or an anhydride thereof and the alcohol component is boiled in the presence of an esterification catalyst, b) the alcohol and water-containing vapors are separated by rectification into an alcohol-rich fraction and a water-rich fraction, c) the alcohol-rich fraction is returned to the reaction zone and the water-rich fraction is discharged from the process.
- esterification catalysts the aforementioned catalysts are used.
- the esterification catalyst is used in an effective amount, which is usually in the range of 0.05 to 10 wt .-%, preferably 0.1 to 5 wt .-%, based on the sum of acid component (or anhydride) and alcohol component.
- an effective amount which is usually in the range of 0.05 to 10 wt .-%, preferably 0.1 to 5 wt .-%, based on the sum of acid component (or anhydride) and alcohol component.
- the esterification of the corresponding tricarboxylic acids for example 1, 2,4-benzenetricarboxylic acid, in the presence of the above-described alcohol components R 1a - OH, R 1b -OH and / or R 1c -OH by means of an organic acid or mineral acid, in particular concentrated sulfuric acid , be performed. It may be advantageous that the alcohol component is used at least in twice the stoichiometric amount, based on the 1, 2,4-benzenetricarboxylic acid or a derivative thereof.
- the esterification can be carried out at ambient pressure or reduced or elevated pressure. It may be preferred that the esterification is carried out at ambient or reduced pressure.
- the esterification may be carried out in the absence of an added solvent or in the presence of a solvent. If the esterification is carried out in the presence of a solvent, it is preferably a solvent which is inert under the reaction conditions.
- An inert solvent is generally understood as meaning a solvent which, under the given reaction conditions, does not undergo reactions with the starting materials, reagents, solvents or the products which are involved in the reaction.
- the inert solvent can form an azeotrope with water. These include, for example, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, aromatic and substituted aromatic hydrocarbons or ethers.
- the solvent is selected from pentane, hexane, heptane, ligroin, petroleum ether, cyclohexane, dichloromethane, trichloromethane, carbon tetrachloride, benzene, toluene, xylene, chlorobenzene, dichlorobenzenes, dibutyl ether, THF, dioxane and mixtures thereof.
- the esterification is usually carried out in a temperature range of 50 to 250 ° C.
- esterification catalyst is selected from organic acids or mineral acids
- the esterification is usually carried out in a temperature range of 50 to 160 ° C.
- esterification catalyst is selected from amphoteric catalysts
- the esterification is usually carried out in a temperature range of 100 to 250 ° C.
- the esterification can take place in the absence or in the presence of an inert gas.
- An inert gas is generally understood to mean a gas which, under the given reaction conditions, does not react with the starting materials, reagents, solvents or the products formed. It may be preferred that the esterification takes place without the addition of an inert gas.
- the alcohol and the acid are in a molar ratio of 2: 1 in one
- the reaction mixture is heated to boiling, preferably from 100 to 140 ° C.
- the water formed in the reaction is distilled off azeotropically together with the alcohol and then separated off.
- the alcohol is returned to the reaction mixture.
- the 1, 2,4-benzenetricarboxylic acid and aliphatic alcohols used for the preparation of the compounds of the general formula (I) can either be obtained commercially or prepared by synthesis routes known from the literature.
- the compounds of the general formula (I) can also be prepared by transesterification. Transesterification procedures and specific procedures are either known to those skilled in the art or are apparent to him by his general knowledge.
- starting materials are compounds of the general formula (I) in which R 1a R 1b and R 1c independently of one another represent d- to C 2 -alkyl.
- Tricarbon Acidtrialkylester for example Trimellit yarntrimethylester, trimellitic litklaretriethylester, Trimellitklaredimethylethylester or Trimellitkladdiethylester or mixtures thereof, with at least one alcohol component selected from the alcohols R 1a R 1b -OH -OH and R 1c is -OH, wherein R 1a, R 1b and R 1c is C 3 - to C 5 -alkyl, in the presence of a suitable transesterification catalyst.
- Suitable transesterification catalysts are, for example, the customary catalysts customarily used for transesterification reactions, which are usually also used in esterification reactions. These include z.
- mineral acids such as sulfuric acid or phosphoric acid
- organic sulfonic acids such as methanesulfonic acid or p-toluenesulfonic acid
- special metal catalysts from the group of tin (IV) catalysts for example dialkyltin dicarboxylates such as dibutyltin diacetate, trialkyltin alkoxides, monoalkyltin compounds such as monobutyltin dioxide, tin salts such as tin acetate or tin oxides
- titanium catalysts monomeric or polymeric titanates or titanium chelates such as tetraethyl orthotitanate, tetrapropyl orthotitanate, tetrabutyl orthotitanate, triethanolamine titanate
- zirconium catalysts zirconates or zirconium chelates such as tetrapropyl zirconate, tetrabutyl zircon
- the amount of transesterification catalyst used may generally be from 0.001 to 10% by weight. It may be preferable that the amount is 0.05 to 5% by weight.
- the reaction mixture is usually heated to the boiling point of the reaction mixture, so that the reaction temperature, depending on the reactants in a temperature range of 20 to 200 ° C.
- the transesterification can be carried out at ambient pressure or reduced or elevated pressure. It may be preferred that the transesterification is carried out at a pressure of 0.001 to 200 bar, and more preferably at a pressure of 0.01 to 5 bar.
- the lower-boiling alcohol eliminated during the transesterification can be distilled off continuously in order to shift the equilibrium of the transesterification reaction.
- the distillation column required for this purpose is usually in direct contact with the transesterification reactor.
- the distillation column can be installed directly on the transesterification reactor.
- each of these reactors may be equipped with a distillation column or, preferably from the last boilers of the transesterification reactor cascade, the vaporized alcohol mixture may be fed via one or more manifolds to a distillation column.
- the recovered in this distillation higher boiling alcohol is preferably recycled back to the transesterification.
- the transesterification of the tri (C 1 -C 2) -alkyl esters of corresponding tricarboxylic acids, for example 1, 2,4-benzenetricarboxylic acid, with at least one alcohol component selected from the alcohols R 1a -OH R 1b -OH and R 1c -OH, where R 1a , R 1b and R 1c are C 3 - to C 5 -alkyl, may preferably be carried out in the presence of at least one titanium (IV) -alcoholate.
- Preferred titanium (IV) alcoholates are tetrapropoxy titanium, tetrabutoxy titanium or mixtures thereof. It may be preferred that the alcohol component is used at least in twice the stoichiometric amount, based on the tri- (C 1 -C 2 -alkyl) esters used.
- the transesterification can be carried out in the absence or in the presence of an added solvent. It may be preferred that the transesterification is carried out in the presence of an inert solvent. Suitable solvents are those mentioned above for the esterification. These include especially toluene and THF.
- the temperature in the transesterification is usually in a range of 20 to 200 ° C.
- the transesterification can be carried out in the absence or in the presence of an inert gas.
- An inert gas is generally understood to mean a gas which, under the given reaction conditions, does not react with the starting materials, reagents, solvents or the products formed. It may be preferred that the transesterification be carried out without adding an inert gas.
- the compounds of general formula (II) can either be obtained commercially or prepared by methods which are either known to those skilled in the art or can be deduced from their general knowledge.
- the 1,2-cyclohexanedicarboxylic acid esters are obtained by nuclear hydrogenation of the corresponding phthalic acid esters.
- the core hydrogenation can be carried out, for example, by the process described in WO 99/32427.
- a particularly suitable core hydrogenation process for example, also describes WO 201 1/082991 A2.
- 1,2-cyclohexanedicarboxylic acid esters can be obtained, for example, by esterification of 1,2-cyclohexanedicarboxylic acid or suitable derivatives thereof with the corresponding alcohols. Methods and specific procedures are either known to those skilled in the art or are apparent to him by his general knowledge.
- the process for preparing the compounds of the general formula (II) has in common that, starting from phthalic acid, 1, 2-cyclohexanedicarboxylic acid or suitable derivatives thereof, an esterification or transesterification is carried out, the corresponding C7-C12 alkanols used as starting materials become.
- These alcohols are usually not pure substances but mixtures of isomers, the composition and degree of purity of which depends on the particular method with which they are presented.
- C 7 -C 12 -alkanols which are used for the preparation of the compounds (II) contained in the plasticizer composition may be straight-chain or branched or consist of mixtures of straight-chain and branched C 7 -C 12 -alkanols. These include, for example, n-heptanol, isoheptanol, n-octanol, isooctanol, 2-ethylhexanol, n-nonanol, isononanol, isodecanol, 2-propylheptanol, n-undecanol, isoundecanol, n-dodecanol or isododecanol. It may be preferred that 2-ethylhexanol, isononanol and 2-propylheptanol are used as alkanols and, further, that isononanol be used.
- the heptanols used for the preparation of the compounds of general formula (II) may be straight-chain or branched or consist of mixtures of straight-chain and branched heptanols. It may be preferred to use mixtures of branched heptanols, also referred to as isoheptanol, which may be obtained by the rhodium- or, preferably, cobalt-catalyzed hydroformylation of dimerpropene, obtainable, for example, from e.g. B. after the Dimer sol® process, and subsequent hydrogenation of the resulting isoheptanals are prepared to an isoheptanol mixture.
- the isoheptanol mixture thus obtained consists of several isomers.
- Substantially straight-chain heptanols can be obtained by the rhodium or preferably cobalt-catalyzed hydroformylation of 1-hexene and subsequent hydrogenation of the resulting n-heptanal to n-heptanol.
- the hydroformylation of 1-hexene or dimerpropene can be carried out according to methods known per se.
- cobalt carbonyl compounds are used, which form under the conditions of the hydroformylation under the action of synthesis gas in situ from cobalt salts. If the cobalt-catalyzed hydroformylation is carried out in the presence of trialkyl or triarylphosphines, the desired heptanols are formed directly as the hydroformylation product, so that no further hydrogenation of the aldehyde function is required any more.
- WO 01014297 described in detail.
- the industrially established rhodium-low-pressure hydroformylation process can be used with triphenylphosphine ligand-modified rhodium carbonyl compounds, as is the subject of US Pat. No. 4,147,830, for example.
- rhodium-catalyzed hydroformylation of long-chain olefins such as the hexane isomer mixtures obtained by the abovementioned processes
- long-chain olefins such as the hexane isomer mixtures obtained by the abovementioned processes
- a higher pressure of from 80 to 400 bar must be set.
- the implementation of such rhodium high-pressure hydroformylation is carried out in z. For example, EP-A 695734, EP-B 880494 and EP-B 1047655 described.
- the isoheptanal mixtures obtained after hydroformylation of the hexene-isomer mixtures can be catalytically hydrogenated, for example, in a conventional manner to give isoheptanol mixtures.
- heterogeneous catalysts are used for this purpose, which as the catalytically active component metals and / or metal oxides of VI. to VIII.
- the I. subgroup of the Periodic Table of the Elements in particular chromium, molybdenum, manganese, rhenium, iron, cobalt, nickel and / or copper, optionally deposited on a support material such as Al2O3, S1O2 and / or ⁇ 2 included.
- Such catalysts are z. B.
- DE-A 3228881, DE-A 2628987 and DE-A 2445303 it may be preferred that the hydrogenation of isoheptanals with an excess of hydrogen of 1, 5 to 20% above the amount of hydrogen required stoichiometrically for the hydrogenation of Isoheptanale, at temperatures of 50 to 200 ° C and at a hydrogen pressure of 25 to 350 bar is performed and to avoid side reactions the hydrogenation feed according to DE-A 2628987 a small amount of water, for example in the form of an aqueous solution of an alkali metal hydroxide or carbonate according to the teaching of WO 01087809, is added.
- 2-ethylhexanol which was the plasticizer alcohol produced in the largest amounts for many years, can be obtained by the aldol condensation of n-butyraldehyde to 2-ethylhexenal and subsequent hydrogenation to 2-ethylhexanol (see Ullmann's Encyclopedia of Industrial Chemistry; 5th edition, Bd. A 10, pp. 137-140, VCH Verlagsgesellschaft GmbH, Weinheim 1987).
- Substantially straight-chain octanols can be obtained, for example, by the rhodium or, preferably, cobalt-catalyzed hydroformylation of 1-heptane and subsequent hydrogenation of the resulting n-octanal to n-octanol.
- the 1-epoxide required for this purpose can be obtained, for example, from the Fischer-Tropsch synthesis of hydrocarbons.
- the isooctanol alcohol is generally not a uniform chemical compound but an isomeric mixture of differently branched Cs-alcohols, for example Dimethyl-1-hexanol, 3,5-dimethyl-1-hexanol, 4,5-dimethyl-1-hexanol, 3-methyl-1-heptanol and 5-methyl-1-heptanol which, depending on the conditions of preparation used and process can be present in different proportions in isooctanol nen.
- Isooctanol is usually prepared by the codimerization of propene with butenes, such as n-butenes, and subsequent hydroformylation of the resulting mixture of heptene isomers.
- the octanal isomer mixture obtained in the hydroformylation can then be hydrogenated in a conventional manner to the isooctanol.
- the codimerization of propene with butenes to isomeric heptenes can be carried out, for example, with the aid of the homogeneously catalyzed Dimersol® process (for example Chauvin et al., Chem. Ind., May 1974, pp.
- the catalyst used is a soluble nickel Phosphine complex in the presence of an ethylaluminum chloride compound, for example, ethylaluminum dichloride serves.
- phosphine ligands for the nickel complex catalyst may, for. B. tri-butylphosphine, tri-isopropylphosphine, tricyclohexylphosphine and / or Tribenzylphosphin be used.
- the reaction generally takes place at temperatures of 0 to 80 ° C, it may be advantageous to set a pressure at which the olefins are dissolved in the liquid reaction mixture (for example Cornils; Hermann: Applied Homogeneous Catalysis with Organometallic Compounds; Bd 1, pp. 254-259, Wiley-VCH, Weinheim 2002).
- a pressure at which the olefins are dissolved in the liquid reaction mixture for example Cornils; Hermann: Applied Homogeneous Catalysis with Organometallic Compounds; Bd 1, pp. 254-259, Wiley-VCH, Weinheim 2002.
- the codimerization of propene with butenes can also be carried out with heterogeneous NiO catalysts deposited on a support, similar heptene isomer distributions being obtained as in the homogeneously catalyzed process.
- heterogeneous NiO catalysts are used for example in the so-called Octol® process (Hydrocarbon Processing, February 1986, pp. 31-33), a well-suited specific nickel heterogeneous catalyst for Olefindimermaschine or codimerization is z. As disclosed in WO 9514647.
- catalysts based on nickel it is also possible to use brominated-acid heterogeneous catalysts for the codimerization of propene with butenes, as a rule higher-branched heptenes than in the nickel-catalyzed process are obtained.
- suitable catalysts for this purpose are solid phosphoric acid catalysts z.
- diatomaceous earth impregnated with phosphoric acid or diatomaceous earth as used for example by the PolyGas® process for Olefindi- or oligomerization (for example Chitnis et al; Hydro- carbon Engineering ⁇ 0, No. 6 - June 2005).
- Br ⁇ nsted-acidic catalysts are usually zeolites, which, for example, uses the further developed based on the PolyGas® process EMOGAS® process.
- the 1-heptene and the heptene isomer mixtures are prepared by the known processes described above in connection with the preparation of n-heptanal and heptanal isomer mixtures by means of rhodium- or cobalt-catalyzed hydroformylation, preferably cobalt-catalyzed hydroformylation, in n -Octanal or octanal isomer mixtures transferred. These are then z. B. hydrogenated by means of one of the above-mentioned in connection with the n-heptanol and isoheptanol preparation catalysts to the corresponding octanols nolen.
- Substantially straight-chain nonanol can be obtained, for example, by the rhodium- or preferably cobalt-catalyzed hydroformylation of 1-octene and subsequent hydrogenation of the resulting n-nonanal.
- the starting olefin 1 -Octen can, for example, an ethylene oligomerization by means of a homogeneously in the reaction medium - 1, 4-butanediol - soluble nickel complex catalyst with z.
- B. diphenylphosphinoacetic acid or 2-diphenylphosphinobenzoic acid can be obtained as ligands. This process is also known by the name Shell Higher Olefins Process or SHOP process (for example, Weisermel, Arpe: Industrielle Organische Chemie, 5th Edition, page 96, Wiley-VCH, Weinheim, 1998).
- Isononanol which is used to synthesize the diisononyl esters of general formulas (II) contained in the disclosed softener composition, is not a uniform chemical compound but a mixture of different branched Cg isomeric alcohols, depending on the The nature of their preparation, in particular also the starting materials used, may have different degrees of branching.
- the isononanols are obtained by dimerization of butenes to give isooctene mixtures, followed by hydroformylation of the isooctene mixtures and hydrogenation of the resultant compounds
- Isononanols with a lower degree of branching may be preferred.
- Such low branched isononanol mixtures are selected from the linear butenes 1-butene, cis- and / or trans-2-butene, which may optionally contain even lower amounts of isobutene, for example via the above-described route of butene dimerization, hydroformylation of isooctene and Hydrogenation of the obtained isononanal mixtures produced. It may be preferred that raffinate II is used as raw material.
- Raffinate II can in general from the C 4 cut of a cracker, for example a steam cracker, after elimination of allenes, acetylenes and dienes, in particular 1, 3-butadiene, by its partial hydrogenation to linear butenes or its separation by extractive distillation ,
- a cracker for example a steam cracker
- allenes, acetylenes and dienes, in particular 1, 3-butadiene by its partial hydrogenation to linear butenes or its separation by extractive distillation ,
- Raffinate II can in general from the C 4 cut of a cracker, for example a steam cracker, after elimination of allenes, acetylenes and dienes, in particular 1, 3-butadiene, by its partial hydrogenation to linear butenes or its separation by extractive distillation ,
- N-methylpyrrolidone and subsequent Br ⁇ nsted acid catalyzed removal of the isobutene contained therein by its reaction with methanol or isobutanol by
- Raffinate II in addition to 1-butene and cis- and trans-2-butene still n- and iso-butane and residual amounts of up to 5 wt .-% of isobutene.
- the dimerization of the linear butenes or of the butene mixture contained in the raffinate II can be carried out, for example, by means of the customary industrially practiced processes, as described above in connection with the production of isoheptene mixtures, for example by means of heterogeneous, brominated-acid catalysts, as used, for example, in PolyGas ® or EMOGAS® method can be used by the Dimersol® method using homogeneous in the reaction medium dissolved nickel complex catalysts or by heterogeneous, nickel (II) oxide-containing catalysts by the Octol® process or, for example, the method be carried out according to WO 9514647.
- the resulting isooctene mixtures are converted into isononanal mixtures by the known processes described above in connection with the preparation of heptanal isomer mixtures by means of rhodium- or cobalt-catalyzed hydroformylation, preferably cobalt-catalyzed hydroformylation. These are then z. B. by means of one of the above mentioned in connection with the isoheptanol preparation catalysts to the suitable isononanolgemischen hydrogenated.
- the isononanol isomer mixtures prepared in this way can be characterized by their isoindex, which is calculated from the degree of branching of the individual isomeric isononanol components in the isononanol mixture multiplied by their percentage in the isononanol mixture can be.
- isoindex is calculated from the degree of branching of the individual isomeric isononanol components in the isononanol mixture multiplied by their percentage in the isononanol mixture can be.
- the isoindex of an isononanol mixture can be determined by gas chromatographic separation of the isononanol mixture into its individual isomers and concomitant quantification of their percentage in the isononanol mixture, determined by standard methods of gas chromatographic analysis.
- these are expediently trimethylsilylated prior to the gas chromatographic analysis by standard methods, for example by reaction with N-methyl-N-trimethylsilyltrifluoroacetamide.
- capillary columns are used with polydimethylsiloxane as the stationary phase. Such capillary columns are commercially available, and it only takes a few routine experiments by the skilled person to choose from the wide range of trade a suitable for this separation task suitable product.
- the diisononyl esters of general formula (II) used in the disclosed softener composition are generally selected from isononanols having an iso-index of from 0.8 to 2, preferably from 1.0 to 1.8, and most preferably from 1.1 to 1.5 esterified, which can be prepared by the above-mentioned methods.
- compositions of isononanol mixtures are given below, as can be used for the preparation of the compounds of the general formula (II) according to the disclosure, wherein it should be noted that the proportions of the individual isomers in the isononanol mixture depend on the composition of the starting material, for example raffinate II, whose composition may vary due to production of butenes and may vary from variations in the production conditions used, for example the age of the catalysts used and the temperature and pressure conditions to be adapted thereto.
- an isononanol mixture which has been prepared by cobalt-catalyzed hydroformylation and subsequent hydrogenation from an isooctene mixture produced using raffinate II as raw material by means of the catalyst and process according to WO 9514647 can have the following composition:
- 74 wt .-% preferably 6.24 to 1 1, 24 wt .-%, particularly preferably 6.74 to 10.74 wt .-% 4,6-dimethylheptanol;
- From 2.45 to 8.45% by weight preferably from 2.95 to 7.95% by weight, particularly preferably from 3.45 to 7.45% by weight, of 4,5-dimethylheptanol and 3-methyl-octanol;
- 0.70 to 2.70 wt.% Preferably 0.90 to 2.50 wt.%, Particularly preferably 1.20 to 2.20 wt.% Of 3,6,6-trimethylhexanol;
- n-nonanol From 0.1 to 3% by weight, preferably from 0.2 to 2% by weight, particularly preferably from 0.3 to 1% by weight, of n-nonanol;
- an isononanol mixture prepared by cobalt-catalyzed hydroformylation followed by hydrogenation using an ethylene-containing butene mixture as raw material by the polygas® or EMOGAS® process isooctene mixture may be used in the range of the following compositions depending on the raw material composition and Variations in the reaction conditions used vary: From 6.0 to 16.0% by weight, preferably from 7.0 to 15.0% by weight, particularly preferably from 8.0 to 14.0% by weight of n-nonanol;
- Isodecanol which is used to synthesize the diisodecyl esters of the general formula (II) contained in the disclosed softener composition, is generally not a uniform chemical compound but a complex mixture of differently branched isomeric decanols.
- 2-Propylheptanol which is used to synthesize the di- (2-propylheptyl) esters of general formula (II) contained in the disclosed softening composition, may be pure 2-propylheptanol or propylheptanol isomer mixtures, as they are generally formed in the industrial production of 2-propylheptanol and commonly also referred to as 2-propylheptanol.
- 2-propylheptanol can be obtained, for example, by aldol condensation of n-valeraldehyde and subsequent hydrogenation of the 2-propylheptenal formed, for example according to US Pat. No. 2,921,089.
- 2-propylheptanol contains, in addition to the main component 2-propylheptanol, one or more of the 2-propylheptanol isomers, 2-propyl-4-methylhexanol, 2-propyl-5-methylhexanol, 2-isopropylheptanol, 2-isopropyl- 4-methylhexanol, 2-isopropyl-5-methylhexanol and / or 2-propyl-4,4-dimethylpentanol.
- hydrocarbon sources for example 1-butene, 2-butene, raffinate I - an alkane / alkene mixture obtained from the C 4 cut of a cracker after separation of allenes, acetylenes and dienes, which in addition to 1 - and 2-butene still contains significant amounts of isobutene - or raffinate II, which is obtained from raffinate I by separation of isobutene and as olefin components except 1 - and 2-butene contains only small amounts of isobutene.
- 1-butene, 2-butene, raffinate I - an alkane / alkene mixture obtained from the C 4 cut of a cracker after separation of allenes, acetylenes and dienes, which in addition to 1 - and 2-butene still contains significant amounts of isobutene - or raffinate II, which is obtained from raffinate I by separation of isobutene and as olefin components except 1 - and
- mixtures of raffinate I and raffinate II can be used as a raw material for 2-propylheptanol production.
- These olefins or olefin mixtures can be hydroformylated according to conventional methods with cobalt or rhodium catalysts, from 1-butene, a mixture of n- and iso-valeraldehyde - the name iso-valeraldehyde called the compound 2-methylbutanal - is formed, its n / iso ratio may vary within relatively wide limits depending on the catalyst and hydroformylation conditions used.
- n- and iso-valeraldehyde are formed in an n / iso ratio of generally 10: 1 to 20: 1, whereas in the case of use of with phosphite ligands, for example according to US Pat. No. 5,288,918 or WO
- isobutene contained in the olefinic raw material is hydroformylated, albeit at a different rate, from virtually all catalyst systems to 3-methylbutanal and depending on the catalyst to a lesser extent to pivalaldehyde.
- the Cs-aldehydes depending on the starting materials and catalysts used, ie n-valeraldehyde, optionally in admixture with iso-valeraldehyde, 3-methylbutanal and / or pivalaldehyde, may if desired be completely or partially separated by distillation into the individual components before the aldol condensation, so that also Here is a possibility to influence and control the isomer composition of the Cio-alcohol component of the ester mixtures according to the invention. Similarly, it is possible to
- Aldehyde mixture as formed in the hydroformylation, without the prior separation of individual isomers of aldol condensation feed.
- aldol condensation which can be carried out by means of a basic catalyst, such as an aqueous solution of sodium or potassium hydroxide, for example according to the method described in EP-A 366089, US-A 4426524 or US-A 5434313, arises when using n-Valeraldehyd as the only condensation product 2-propylheptenal, whereas when using a mixture of isomeric Cs-aldehydes an isomeric mixture of the products of Homoaldolkondensation same aldehyde molecules and the crossed aldol condensation different valeraldehyde isomers is formed.
- the aldol condensation can be controlled by the targeted implementation of individual isomers so that predominantly or completely a single Aldolkondensationsisomer is formed.
- the aldol condensation products in question can then, usually after previous, usually distillative separation from the reaction mixture and, if desired, purification by distillation, be hydrogenated with conventional hydrogenation catalysts, for example those mentioned above for the hydrogenation of aldehydes, to the corresponding alcohols or alcohol mixtures.
- the compounds of the general formula (II) present in the open-ended plasticizer composition may be esterified with pure 2-propylheptanol.
- mixtures of 2-propylheptanol with the stated propylheptanol isomers are used for preparing these esters, in which the content of 2-propylheptanol is at least 50% by weight. It may be preferable that the content of 2-propylheptanol is 60 to 98% by weight, and more preferably 80 to 95% by weight, and more preferably 85 to 95% by weight.
- Suitable mixtures of 2-propylheptanol with the propylheptanol isomers include, for example, those of 60 to 98 wt .-% of 2-propylheptanol, 1 to 15 wt .-% of 2-propyl-4-methyl-hexanol and 0.01 to 20 wt. % 2-propyl-5-methylhexanol and 0.01 to 24% by weight of 2- Isopropylheptanol, wherein the sum of the proportions of the individual constituents does not exceed 100 wt .-%. It may be preferred that the proportions of the individual components add up to 100% by weight.
- 2-propylheptanol with the propylheptanol isomers include, for example, those from 75 to 95 wt .-% of 2-propylheptanol, 2 to 15 wt .-% of 2-propyl-4-methyl-hexanol, 1 to 20 wt. % 2-propyl-5-methylhexanol, 0.1 to 4% by weight of 2-isopropylheptanol, 0.1 to 2% by weight of 2-isopropyl-4-methylhexanol and 0.1 to 2% by weight 2-isopropyl-5-methyl-hexanol, the sum of the proportions of the individual constituents
- mixtures of 2-propylheptanol with the propylheptanol isomers those with 85 to 95 wt .-% of 2-propylheptanol, 5 to 12 wt .-% of 2-propyl-4-methyl-hexanol and 0.1 to 2% by weight of 2-propyl-5-methylhexanol and 0.01 to 1% by weight of 2-isopropylheptanol, the sum of the proportions of the individual constituents
- the isomeric composition of the alkylester groups or alkylether groups corresponds in practice to the composition of the propylheptanol isomer mixtures used for the esterification.
- the undecanols used to prepare the compounds of general formula (II) contained in the disclosed softening composition can be straight-chain or branched or can be composed of mixtures of straight-chain and branched undecanols. It may be preferred that mixtures of branched undecanols, also referred to as isoundecanol, be used as the alcohol component.
- Substantially straight-chain undecanol can be obtained, for example, by the rhodium- or preferably cobalt-catalyzed hydroformylation of 1-decene and subsequent hydrogenation of the resulting n-undecanal.
- the starting olefin 1-decene is prepared, for example, via the SHOP process previously mentioned in the preparation of 1-octene.
- the 1-decene obtained in the SHOP process can undergo skeletal isomerization, e.g. Example by means of acidic zeolitic molecular sieves, as in
- WO 9823566 which form mixtures of isomeric decenes, their rhodium or preferably cobalt-catalyzed hydroformylation and subsequent ing hydrogenation of the isoundecanal mixtures obtained also leads to the preparation of the compounds according to the invention of the general formula (II) Isoundecanols used.
- the hydroformylation of 1-decene or isodecene mixtures by means of rhodium or cobalt catalysis can be carried out as previously described in connection with the synthesis of C7 to Cio alcohols.
- the C7 to Cn-alkyl alcohols or mixtures thereof thus obtained can be used for the preparation of the diester compounds of the general formula (II) according to the invention.
- Substantially straight-chain dodecanol can be obtained, for example, via the Alfol® or Epal® process. These processes involve the oxidation and hydrolysis of straight-chain trialkylaluminum compounds which, starting from triethylaluminum, are built up stepwise over several ethylation reactions using Ziegler-Natta catalysts. From the resulting mixtures of substantially straight-chain alkyl alcohols of different chain lengths, the desired n-dodecanol can be obtained after the distillative discharge of the C 12 -alkyl alcohol fraction.
- n-dodecanol can also be prepared by hydrogenation of natural fatty acid methyl esters, for example from coconut oil.
- Branched isododecanol can be obtained analogously to the known processes for the codimerization and / or oligomerization of olefins, as described, for example, in WO 0063151, with subsequent hydroformylation and hydrogenation of the isoundecene mixtures, as described, for example, in DE-A 4339713. After purification by distillation of the hydrogenation, the isododecanols thus obtained or mixtures thereof, as described above, can be used to prepare the diester compounds of the general formula (II) according to the invention.
- homopolymeric emulsion PVC was used as Solvin® 367 NC and / or Vinnolit® P 70, isononylbenzot as Vestinol® INB, isodecyl benzoate as Jayflex® MB 10, di-isononyl-1,2-cyclohexanedicarboxylate as Hexamoll®DINCH®, diisononyl phthalate as Palatinol® N, trimellitic tri- (2-ethylhexyl) ester as Palatinol® TOTM and the Ba-Zn stabilizer as reagent SLX / 781 used.
- the acid number was determined (according to DIN EN ISO 21 14 06/2002). At a value of 55 mg KOH or below, a portion of the wet isobutanol was replaced with fresh, dry isobutanol and the reaction continued under reflux until the acid number dropped below 1 mg KOH. The reaction mixture was cooled to about 100 ° C and then a 20% aqueous sodium hydroxide solution was added and stirred for 30 minutes. The amount of aqueous sodium hydroxide solution required is calculated according to the acid number SZ:
- the dissolution temperature was determined according to DIN 53408 (Jun 67). The lower the dissolution temperature, the better the gelling behavior of the substance in question for PVC.
- V1 isononyl benzoate 128 8.4
- V2 isodecyl benzoate (as 131 10.0
- compound I.3 and compound I.4 show a lower dissolving temperature for PVC than the gelling aids Vestinol® INB and Jayflex® MB10.
- the dynamic viscosity is slightly higher.
- Compound I.3 and Compound I.4 show a significantly lower dissolution temperature for PVC compared to the plasticizers Hexamoll®DINCH®, Palatinol® N and Palatinol® TOTM.
- the dynamic viscosity is usually higher.
- plastisols were the PVC and a mixture of the plasticizer compositions according to the invention.
- Plasticizer di-isononyl-1,2-cyclohexanedicarboxylate (as Hexamoll®DINCH®) with compound I.3 (1,2,4-benzenetricarboxylic acid tri- (n-butyl) ester) or compound I.4 (1, 2,4-benzenetricarboxylic acid tri- (iso-butyl) ester) in different proportions (Hexamoll®DINCH® to compound I.3 75/25, 73/27, 70/30, or Hexamoll®DINCH®) Compounds I.4 73/27, 68/32 and 66/34), prepared according to the following recipe: phr
- Plasticizer composition 100 according to the invention
- Piastisole were also prepared, which contain PVC as plasticizer exclusively Hexamoll®DINCH® or Palatinol® N, or a plastisol with 45 wt.% Of the plasticizer Hexamoll®DINCH® with 55 wt.% Of the gelling assistant Vestinol® INB and a Plastisol with wt.33% of the plasticizer Hexamoll®DINCH® with 67 wt% of the gelling agent Jayfelx® MB 10.
- PVC plasticizer exclusively Hexamoll®DINCH® or Palatinol® N
- a plastisol with 45 wt.% Of the plasticizer Hexamoll®DINCH® with 55 wt.% Of the gelling assistant Vestinol® INB and a Plastisol with wt.33% of the plasticizer Hexamoll®DINCH® with 67 wt% of the gelling agent Jayfelx® MB 10.
- the viscosity measurements were carried out with an oscillatory and rotary rheometer MCR 302 by Anton Paar in an oscillation test.
- Gap width 1 mm
- the plastisols with the softener composition according to the invention gel at much lower temperatures than the plastisol, which contains exclusively Hexamoll® DINCH® as plasticizer. Even at a composition of 75% by weight of Hexamoll® DINCH® and 25% by weight of compound I.3, a gelling temperature of 150 ° C. is achieved, which corresponds to the setting temperature of the plasticizer Palatinol® N and which is sufficient for many plastisol applications.
- the gelling temperature of the plastisols can be further significantly lowered.
- FIGS. 3 and 4 show two comparative examples.
- the gelling temperature of 150 ° C is also reached, which corresponds to the gelling temperature of Isononylphthalats.
- plastisols were prepared with a plasticizer composition of 30% by weight of compound 1.3 (1, 2,4-benzenetricarboxylic acid tri (n-butyl) ester) and 70% by weight of Hexamoll® DINCH® or from 34% by weight of compound I.4 (1,2,4-benzenetricarboxylic acid tris (isobutyl) ester) and 66% by weight of Hexamoll® DINCH® and with the softener compositions of 55% by weight Vestinol® INB (isononyl benzoate) and 45% by weight Hexamoll® DINCH® and 67% by weight Jayflex® MB 10 (isodecyl benzoate) and 33% by weight Hexamoll® DINCH®.
- the following recipe was used.
- plastisols were also prepared which contain exclusively Hexa moll®DINCH® or Palatinol® N or 1,2,4-benzenetricarboxylic acid tri (isobutyl) ester (compound I.4) as plasticizers.
- the following recipe was used.
- the liquid plastisol In order to be able to determine performance properties of the plastisols, the liquid plastisol must be converted into a processable, solid film. For this, the plastisol was pregelled at low temperature.
- a new relay paper was clamped in the fixture at the Mathisofen.
- the oven was preheated to 140 ° C; the gel time is set to 25 s.
- the gap adjustment the gap between the paper and the doctor blade was adjusted to 0.1 mm with the thickness template.
- the Thickness gauge was set to 0.1 mm. Then, the gap was set to a value of 0.7 mm on the dial gauge.
- the plastisol was applied to the paper and smoothed with a squeegee. Then the clamping device was moved into the oven via the start button. After 25 s, the clamping device drove out of the oven again. The plastisol was gelled and the resulting film was peeled off the paper in one piece. The thickness of this film was about 0.5 mm. Determination of process volatility
- the process volatility of the softening composition according to the invention consists of 30% by weight of compound I.3 and 70% by weight of hexamoll® DINCH® or 34% by weight of compound I.4 and 66% by weight.
- % Hexamoll® DINCH® significantly lower than the process volatility of the softener compositions of 55 wt.% Vestinol® INB and 45 wt.% Hexamoll® DINCH® or, 67 wt.% Jaxflex® MB 10 and 33% Hexamoll®DINCH®.
- the plasticizer compositions according to the disclosure significantly less plasticizer is lost during the processing of the plastisols.
- the process volatility of the softening composition according to the disclosure of 30% by weight of compound I.3 and 70% by weight of hexamoll® DINCH® or 34% by weight of compound I.4 and 66% by weight of hexamoll® DINCH® is higher than that of pure plasticizer Palatinol® N, and significantly lower than the process volatility of the pure gelling aid 1, 2,4-benzenetricarboxylic tri- (iso-butyl) ester (compound I.4). ll.d) Determination of the Shore A hardness of films of plastisols with the plasticizer compositions according to the invention
- the Shore A hardness of the plastisol film having the disclosed plasticizer composition is 30% by weight of Compound I.3 and 70% by weight of Hexamoll® DINCH® and 34% Compound I, respectively. 4 and 66% by weight of Hexamoll® DINCH® significantly lower than the Shore A hardness of the films of the plastisols with the softener compositions of 55% by weight of Vestinol® INB and 45% by weight of Heaxmoll®DINCH® and 67% by weight Jayflex® MB 10 and 33% by weight Hexamoll® DINCH®.
- the use of the disclosed plasticizer compositions thus leads to a higher elasticity of the PVC articles.
- the Shore A hardness of the film of the PVC plastisol with the disclosed plasticizer composition of 30 wt.% Compound I.3 and 70 wt.% Hexamoll® DINCH® or 34 wt.% Compound I.4 and 66 wt. % Hexamoll® DINCH® is also significantly lower than the Shore A hardness of the PVC plastisol film with the pure plasticizer Hexamoll®DINCH®.
- the Shore A hardness of the PVC plastisol film with the disclosed plasticizer composition of 30% by weight of compound I.3 and 70% by weight of Hexamoll® DINCH® is even lower than the Shore A hardness of the film the PVC plastisol with the pure plasticizer Palatinol® N or films containing only the gelling agent 1, 2,4-benzenetricarboxylic tri- (iso-butyl) ester (compound I.4).
- plastisols having the disclosed plasticizer composition were compounded from 30% by weight of compound I.3 and 70% by weight of Hexamoll® DINCH® or 34% by weight of compound I.4 and 66% by weight of Hexamoll®DINCH® and Plastisols with the plasticizer compositions comprising 55% by weight of Vestinol® INB and 45% by weight of Hexamoll® DINCH® and 67% by weight of Jayflex® MB 10 and 33% by weight of Hexamoll® DINCH® as prepared under II.c) described.
- PVC plastisols were also prepared as plasticizers exclusively Hexamoll® DINCH®, Palatinol® N or 1, 2,4-benzenetricarboxylic acid tri- (isobutyl) ester (compound I.4).
- the plastisol was gelled directly at 190 ° C. for 2 minutes in the Mathis oven. On the approximately 0.5 mm thick films thus obtained, the film volatility test was carried out.
- the film volatility of the disclosed plasticizer composition is 30% by weight of compound I.3 and 70% by weight of Hexamoll® DINCH® or 34% by weight of compound I.4 and 66% by weight of hexamole ®DINCH® significantly lower than the film volatility of the softener compositions of 55 wt% Vestinol® INB and 45 wt% Hexamoll®DINCH® and 67 wt% Jayflex® MB 10 and 33 wt% Hexamoll®DINCH®. In the disclosed plasticizer compositions, therefore, less plasticizer escapes in the finished, plasticized PVC article.
- the film volatility of the disclosed plasticizer composition of 30% by weight of compound I.3 and 70% by weight of Hexamoll® DINCH® or 34% by weight of compound I.4 and 66% by weight of Hexamoll® DINCH® is higher than that of the pure plasticizer Palatinol® N, but significantly lower than that of the pure 1, 2,4-benzenetricarboxylic acid tri (iso-butyl) ester (compound I.4). ll.f) Determination of the compatibility (permanence) of films of plastisols with the plasticizer compositions according to the invention
- plastisols with the disclosed plasticizer composition were made from 30% by weight of compound I.3 and 70% by weight of Hexamoll® DINCH® or 34% by weight of compound I.4 and 66% by weight of Hexamoll® DINCH® and plastisols with the softener compositions of 55% by weight of Vestinol® INB and 45% by weight of Hexamoll® DINCH® and 67% by weight of Jayflex® MB 10 and 33% by weight of Hexamoll® DINCH® prepared as described under II.c) ,
- plastisols were also prepared which contain exclusively Hexamoll® DINCH®, Palatinol® N or 1,2,4-benzenetricarboxylic acid tri (isobutyl) ester (compound I.4) as plasticizers.
- the plastisol was gelled directly at 190 ° C. for 2 minutes in the Mathis oven. At the so
- the test serves to qualitatively and quantitatively measure the compatibility of plasticized PVC formulations. It is carried out at elevated temperature (70 ° C) and humidity (100% rel. H). The data obtained are evaluated against the storage time.
- test pieces 10 test pieces (foils) with a size of 75 ⁇ 10 ⁇ 0.5 mm were used per formulation.
- the films were punched on the broadside, labeled and weighed.
- the label must be smudge-proof and can z. B. done with the soldering iron.
- Test medium water vapor formed at 70 ° C from demineralized water
- the temperature in the interior of the heating cabinet was set to the required 70 ° C.
- the test films were hung on a wire rack and placed in a glass pan about 5 cm high with water (deionized water). Only films of the same composition may be stored in a designated and numbered basin in order to avoid mutual interference and to facilitate removal after the respective storage periods.
- the glass pan was sealed with a PE film so that it could not escape the water vapor that later formed in the glass pan.
- the Auswitz the disclosed plasticizer composition of 30 wt.% Compound I.3 and 70 wt.% Hexamoll®DINCH® or 34 wt.% Compound I.4 and 66 wt.% Hexamoll ®DINCH® significantly better than the exudation behavior of the softener compositions comprising 55% by weight of Vestinol® INB and 45% by weight of Hexamoll®DINCH® and 67% by weight of Jayflex® MB 10 and 33% by weight of Hexamoll®DINCH®.
- the compatibility of the disclosed plasticizer composition is therefore better than the compatibility of the softener compositions of 55 wt% Vestinol® INB and 45 wt% Hexamoll®DINCH® and 67 wt% Jayflex® MB 10 and 33 wt% Hexamoll® DINCH®.
- the exudation behavior of the disclosed plasticizer composition is worse than the exudation behavior of the pure plasticizers Hexamoll® DINCH® and Palatinol® N, but better than that of 1, 2,4-benzenetricarboxylic acid tri (iso-butyl) ester ( Compound I.4).
- Trialkyl trimellitates differing in carbon number in their alkyl chains were examined for their process volatility and film volatility. The determination of the process volatility was carried out analogously to II. C), the determination of the film volatility was carried out analogously to II. E). Piastisols with the following formulation were used for the study: phr
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16182126 | 2016-08-01 | ||
PCT/EP2017/068978 WO2018024594A1 (en) | 2016-08-01 | 2017-07-27 | Plasticizer composition |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3491054A1 true EP3491054A1 (en) | 2019-06-05 |
Family
ID=56561255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17746065.6A Withdrawn EP3491054A1 (en) | 2016-08-01 | 2017-07-27 | Plasticizer composition |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190161597A1 (en) |
EP (1) | EP3491054A1 (en) |
CN (1) | CN109563306A (en) |
CA (1) | CA3032582A1 (en) |
RU (1) | RU2019105682A (en) |
WO (1) | WO2018024594A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2934757T3 (en) | 2017-03-01 | 2023-02-24 | Basf Se | Coating composition containing PVC and plasticizer components |
EP3589708B1 (en) | 2017-03-01 | 2022-10-05 | Basf Se | Coating composition comprising pvc and plasticizers |
JP7184455B2 (en) * | 2018-06-27 | 2022-12-06 | 株式会社ディスコ | Wafer processing method |
CN108997114A (en) * | 2018-08-06 | 2018-12-14 | 河北驭驰橡塑科技有限公司 | A kind of production technology of tributyl trimellitate |
CN113227250B (en) * | 2018-10-04 | 2024-01-30 | 亚历山德拉·乌尼诺夫 | Plastisols of aromatic lipophilic polymers without polyvinyl chloride |
KR20220118122A (en) * | 2021-02-18 | 2022-08-25 | 한화솔루션 주식회사 | Plasticizer composition, and sealant/adhesive compositions comprising the same |
TWI782870B (en) * | 2022-02-10 | 2022-11-01 | 立大信材料有限公司 | Modified polyvinyl butyral material, and preparation and applications thereof |
US11932756B2 (en) | 2022-04-12 | 2024-03-19 | Leader Shining Material Co., Ltd. | Modified polyvinyl butyral material, and preparation and applications thereof |
DK181414B1 (en) * | 2022-11-17 | 2023-10-25 | Papas Got A Brand New Tag V/Np Estrup | A thermoplastic elastomer (TPE) changing mat |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3147317A1 (en) * | 2015-09-28 | 2017-03-29 | Evonik Degussa GmbH | Tripentylester of trimellitic acid |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921089A (en) | 1957-11-27 | 1960-01-12 | Eastman Kodak Co | 2-propylheptanol and its esters |
DE1945359B2 (en) | 1969-09-08 | 1973-05-10 | METHOD OF OBTAINING ESTERS | |
DE2139630C3 (en) | 1971-08-07 | 1979-03-22 | Basf Ag, 6700 Ludwigshafen | Process for the production of predominantly straight-chain aldehydes |
DE2244373A1 (en) | 1972-09-09 | 1974-04-04 | Basf Ag | PROCESS FOR THE CONTINUOUS PRODUCTION OF AQUATIC SOLUTIONS OF COBALT CARBONYLENE |
DE2404855C3 (en) | 1974-02-01 | 1981-01-22 | Basf Ag, 6700 Ludwigshafen | Process for preventing emulsification in the preparation of reaction mixtures containing butyraldehydes and cobalt |
DE2445303C3 (en) | 1974-09-21 | 1979-04-05 | Basf Ag, 6700 Ludwigshafen | Basic carbonate suitable for the production of a copper-containing catalyst |
US4148830A (en) | 1975-03-07 | 1979-04-10 | Union Carbide Corporation | Hydroformylation of olefins |
DE2612355C3 (en) | 1976-03-24 | 1983-11-17 | Basf Ag, 6700 Ludwigshafen | Process for separating catalysts from crude plasticizer esters |
DE2628987C3 (en) | 1976-06-28 | 1981-10-22 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of C? 3? -C? 5? Alkanols |
US4426524A (en) | 1980-09-02 | 1984-01-17 | Fmc Corporation | Heterocyclic substituted benzyl alcohol, insecticidal ester derivatives, and intermediates |
DE3228881C2 (en) | 1982-08-03 | 1985-06-13 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of C? 3? -C? 5? Alcohols |
US4969953A (en) | 1988-10-25 | 1990-11-13 | Mitsubishi Kasei Corporation | Alcohol mixture for plasticizer and method for producing the same |
GB9207756D0 (en) | 1992-04-07 | 1992-05-27 | Davy Mckee London | Process |
US5288918A (en) | 1992-09-29 | 1994-02-22 | Union Carbide Chemicals & Plastics Technology Corporation | Hydroformylation process |
US5324853A (en) | 1993-01-19 | 1994-06-28 | Exxon Chemical Patents Inc. | Process for the production of plasticizer and polyolesters |
DE4339713A1 (en) | 1993-11-22 | 1995-05-24 | Basf Ag | Process for oligomerization of olefins to highly linear oligomers and catalysts therefor |
DE4427428A1 (en) | 1994-08-03 | 1996-02-29 | Basf Ag | Process for the preparation of aldehydes |
DE19605435A1 (en) | 1996-02-14 | 1997-08-21 | Basf Ag | Process for the preparation of aldehydes by hydroformylation with a rhodium catalyst and recovery of the rhodium catalyst by extraction |
KR100641537B1 (en) | 1996-11-26 | 2006-10-31 | 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 | Highly branched primary alcohol compositions, and biodegradable detergents made therefrom |
DE19721347B9 (en) | 1997-05-22 | 2005-09-29 | Celanese Chemicals Europe Gmbh | Process for the preparation of ester plasticizers |
KR100688403B1 (en) | 1997-12-19 | 2007-03-09 | 바스프 악티엔게젤샤프트 | Method For Hydrogenating Benzene Polycarboxylic Acids Or Derivatives Thereof By Using A Catalyst Containing Macropores |
DE19801437A1 (en) | 1998-01-16 | 1999-07-22 | Basf Ag | Production of aldehydes and alcohols via catalyzed hydroformylation of olefins |
CA2367358C (en) | 1999-04-21 | 2010-02-02 | Lucien Thil | Mixture of adipic or phthalic acid diesters and isomeric nonanols |
DE19939491A1 (en) | 1999-08-20 | 2001-02-22 | Basf Ag | Continuous hydroformylation of olefin for aldehyde and alcohol production, using recycled cobalt catalyst derived from cobalt salt solution under conditions such that the solubility limit of cobalt formate is not exceeded |
DE10024542A1 (en) | 2000-05-18 | 2001-11-22 | Basf Ag | Production of saturated 3-20C alcohols uses a hydrogenation catalyst bed in the presence of a salt-like base in the reactant feed containing an anion of an acid having a pKa of greater than 2 |
DE10056179A1 (en) | 2000-11-13 | 2002-05-29 | Basf Ag | Process for the preparation of esters of polybasic acids |
EP1383777B1 (en) | 2001-03-29 | 2005-11-16 | Basf Aktiengesellschaft | Ligands for pnicogen chelate complexes with a metal of subgroup viii and use of the complexes as catalysts for hydroformylation, carbonylation, hydrocyanation or hydrogenation |
DE10217186A1 (en) | 2002-04-18 | 2003-11-13 | Oxeno Olefinchemie Gmbh | Isonyl benzoates and their use |
DE10249912A1 (en) | 2002-10-26 | 2004-05-06 | Oxeno Olefinchemie Gmbh | Benzoic acid isodecyclester mixtures, preparation and their use |
GB0322247D0 (en) | 2003-09-23 | 2003-10-22 | Exxonmobil Chem Patents Inc | Improvement in or relating to an isobutylene containing stream |
EP2016140B1 (en) * | 2006-04-28 | 2015-06-10 | Kao Corporation | Water-based inks for ink-jet printing |
EP1873198A1 (en) | 2006-06-30 | 2008-01-02 | Lanxess Deutschland GmbH | Mixtures of alkyl esters and benzyl esters of polycarboxylic acids |
KR101833077B1 (en) | 2009-12-15 | 2018-02-27 | 바스프 에스이 | Catalyst and method for hydrogenating aromatics |
DE102010061867A1 (en) * | 2010-11-24 | 2012-05-24 | Evonik Oxeno Gmbh | Use of di (isononyl) cyclohexanoic acid ester (DINCH) in foamable PVC formulations |
JP2013147519A (en) * | 2012-01-17 | 2013-08-01 | Hitachi Cable Ltd | Soft vinyl chloride resin composition and insulated wire using the same |
ITMI20121641A1 (en) * | 2012-10-02 | 2014-04-03 | Polynt S P A | PROCEDURE FOR THE HYDROGENATION OF AROMATIC CARBOSSYLIC ACID ESTERS TO GIVE THEM SATURAL HOMOLOGIOS, NEW USES FOR THESE HOMOLOGOS, AND NEW PLASTICIZED POLYMERIC MIXTURES. |
US20140162045A1 (en) * | 2012-12-11 | 2014-06-12 | Baxter Healthcare Sa | Radiation stabilized pvc compositions, and method of making same |
CN105793341A (en) * | 2013-12-06 | 2016-07-20 | 巴斯夫欧洲公司 | Softener composition which contains tetrahydrofuran derivatives and 1,2-cyclohexane dicarboxylic acid esters |
US9340658B2 (en) * | 2014-07-24 | 2016-05-17 | Eastman Chemical Company | Low-volatility plasticizer blends |
TWI686444B (en) * | 2014-09-04 | 2020-03-01 | 德商巴斯夫歐洲公司 | Plasticizer composition comprising polymeric dicarboxylic esters |
-
2017
- 2017-07-27 EP EP17746065.6A patent/EP3491054A1/en not_active Withdrawn
- 2017-07-27 CN CN201780047852.8A patent/CN109563306A/en active Pending
- 2017-07-27 CA CA3032582A patent/CA3032582A1/en not_active Abandoned
- 2017-07-27 US US16/321,919 patent/US20190161597A1/en not_active Abandoned
- 2017-07-27 RU RU2019105682A patent/RU2019105682A/en not_active Application Discontinuation
- 2017-07-27 WO PCT/EP2017/068978 patent/WO2018024594A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3147317A1 (en) * | 2015-09-28 | 2017-03-29 | Evonik Degussa GmbH | Tripentylester of trimellitic acid |
Also Published As
Publication number | Publication date |
---|---|
RU2019105682A3 (en) | 2020-10-29 |
RU2019105682A (en) | 2020-09-01 |
US20190161597A1 (en) | 2019-05-30 |
CA3032582A1 (en) | 2018-02-08 |
WO2018024594A1 (en) | 2018-02-08 |
CN109563306A (en) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3166997B1 (en) | Plasticizer composition which comprise aliphatic ester of dicarboxylic acid and alkylester of acid terephthalic | |
WO2018024594A1 (en) | Plasticizer composition | |
EP3077453B1 (en) | Softener composition which contains tetrahydrofuran derivatives and 1,2-cyclohexane dicarboxylic acid esters | |
EP3092266B1 (en) | Plasticizer composition containing furan derivatives and 1,2-cyclohexanedicarboxylic ester | |
EP3166998B1 (en) | Moulding material containing dicarboxylic acid esters and 1,2-cyclohexane dicarboxylic acid esters | |
EP3433309B1 (en) | Polymer composition containing a cycloalkyl alkyl dicarboxylic acid diester as a plasticizer | |
EP3183291B1 (en) | Plasticizer composition comprising polymeric dicarboxylic esters | |
EP3250635B1 (en) | Plasticizer composition containing polymeric dicarboxylic acid esters and terephthalic acid dialkyl esters | |
EP3041829A1 (en) | Tetrahydrofuran derivatives and their use as plasticizers | |
EP3134463A1 (en) | Plasticizer composition which contains furan derivatives and terephthalic acid dialkyl esters | |
EP3356456B1 (en) | Plasticizer composition containing polymeric dicarboxylic acid esters and terephthalic acid dialkyl esters | |
EP3356459B1 (en) | Plasticizer composition containing polymeric dicarboxylic acid esters and dicarboxylic acid diesters | |
EP3356458B1 (en) | Plasticizer composition containing polymeric dicarboxylic acid esters and phthalic acid dialkyl esters | |
EP3189098B1 (en) | Plasticier composition which contains a polymer dicarboxylic acid ester | |
WO2018024591A1 (en) | Plasticizer composition | |
WO2018024597A1 (en) | Plasticizer composition | |
EP3491053A1 (en) | Plasticizer composition | |
EP3405518B1 (en) | Plasticiser composition containing aliphatic dicarboxylic acid esters and diesters selected from 1,2-cyclohexane dicarboxylic acid esters and terephthalic acid esters | |
EP3356457B2 (en) | Plasticizer composition containing polymeric dicarboxylic acid esters and 1,2-cyclohexane dicarboxylic acid esters | |
EP3747860B1 (en) | Novel cyclohexanone based plasticisers | |
WO2024133358A1 (en) | Plasticizer compound | |
WO2024133359A1 (en) | Plasticizer | |
DE102015207291A1 (en) | Plasticizer composition containing furan derivatives and 1,2-cyclohexanedicarboxylic acid ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190301 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200602 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210126 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210608 |