EP3486481B1 - Method and system for detecting an icing condition of a wind turbine - Google Patents

Method and system for detecting an icing condition of a wind turbine Download PDF

Info

Publication number
EP3486481B1
EP3486481B1 EP18206114.3A EP18206114A EP3486481B1 EP 3486481 B1 EP3486481 B1 EP 3486481B1 EP 18206114 A EP18206114 A EP 18206114A EP 3486481 B1 EP3486481 B1 EP 3486481B1
Authority
EP
European Patent Office
Prior art keywords
icing
anemometer
threshold value
rotor
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18206114.3A
Other languages
German (de)
French (fr)
Other versions
EP3486481A1 (en
EP3486481B8 (en
Inventor
Marco Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy Service GmbH
Original Assignee
Senvion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senvion GmbH filed Critical Senvion GmbH
Publication of EP3486481A1 publication Critical patent/EP3486481A1/en
Publication of EP3486481B1 publication Critical patent/EP3486481B1/en
Application granted granted Critical
Publication of EP3486481B8 publication Critical patent/EP3486481B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/325Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method and a system for recognizing an icing state of a wind energy installation.
  • Wind turbines can be exposed to icing in certain weather conditions.
  • the ice can, for example, get stuck on the rotor blades. This can pose a risk to the environment if pieces of ice become detached from the rotor blade and are thrown away. Since the orbital speed can be high, especially in the outer area of a rotor blade, such pieces of ice can fly a considerable distance before they hit the ground.
  • the invention is based on the object of presenting a method and a system for recognizing an icing state of a wind energy installation, which have a reduced susceptibility to errors. Based on the stated prior art, the object is achieved with the features of the independent claims. Advantageous embodiments are specified in the subclaims.
  • a system state of the wind power installation is identified in which a first anemometer of the wind power installation is at a standstill and in which the speed of a rotor is below a predetermined first speed threshold value.
  • the rotor is accelerated to a speed above the first speed threshold value.
  • the condition of the first anemometer is checked, with an icing signal being generated when the first anemometer is stationary.
  • the invention has recognized that the standstill of an anemometer is occasionally caused by the anemometer getting into the slipstream of a rotor blade. If one were to infer an icing state of the wind energy installation solely from the standstill of the anemometer, the wind energy installation would be put out of operation even though there is actually no icing state at all.
  • the invention therefore proposes a two-stage method for recognizing a state of icing.
  • the standstill of the first anemometer when the rotor is stationary or rotating very slowly is still used as a first indicator of an icing condition.
  • the indicator is verified in a second stage of the method according to the invention.
  • the rotor is accelerated so that it rotates at a speed above the first speed threshold value.
  • An icing condition is only assumed and an icing signal is generated if the first anemometer is stationary even at the increased rotor speed.
  • the icing signal can be sent to a control of the wind power installation.
  • the controller can process the icing signal in order to put the wind energy installation into a state or to keep it in a state in which the wind energy installation is not in operation. Not in operation means that the wind turbine is not generating any electrical energy.
  • the wind energy installation can be put into a state in which the rotor only rotates slowly or not at all.
  • the wind energy installation can be put into a state in which the rotor rotates at a speed below the first speed threshold value.
  • the wind energy installation can switch to normal operation or maintain normal operation. This can mean, for example, that the control of the wind energy installation makes an attempt to start up the wind energy installation.
  • the rotor can be accelerated further and a connection to a connection network can be established as soon as the rotor reaches a minimum operating speed Has.
  • a necessary condition for an icing condition to occur is a low temperature.
  • the method according to the invention can therefore be carried out in such a way that a system state is identified in which the first anemometer of the wind turbine is at a standstill, the rotor rotates at a speed below the specified first speed threshold value and the air temperature is also below a specified temperature threshold value.
  • the temperature threshold value can be selected in such a way that there is no risk of icing above the temperature threshold value.
  • the method can be carried out in such a way that the state of the first anemometer is checked immediately after the acceleration process of the rotor is completed.
  • the method can be carried out in an alternative embodiment in such a way that the rotor is kept at a speed above the speed threshold value for a predetermined period of time after the acceleration process is completed before the status of the first anemometer is checked.
  • An icing signal is only generated if the first anemometer has come to a standstill after the time has elapsed.
  • the rotor is accelerated to a speed that is above a second predetermined speed threshold value, the second predetermined speed threshold value being greater than the first predetermined speed Speed threshold.
  • the method can be carried out in such a way that a very low rotor speed is defined with the first speed threshold value.
  • the first speed threshold value can be defined in such a way that the rotor speed is below the speed from which the wind energy installation produces electrical energy and is connected to the connection network. Below the first speed threshold value, the wind energy installation can be in a spin state in which the rotor rotates slowly without energy being produced. It is also possible for the rotor to stand still completely.
  • the first anemometer is sacrificed as a sensor in the method according to the invention. If the first anemometer comes to a standstill due to the formation of ice, the first anemometer no longer provides any information about the wind conditions. In the method according to the invention information about the wind speed that is independent of the first anemometer can be processed. A system state can be identified in which the first anemometer is stationary and in which the wind speed is greater than a predefined wind speed threshold value before the rotor is accelerated to a speed above the first speed threshold value.
  • the information about the wind speed that is independent of the first anemometer can be obtained, for example, by estimating the wind speed on the basis of a wind load acting on the rotor. It is also possible to use a second anemometer, which also provides measured values about the wind speed when the first anemometer is stationary.
  • the second anemometer can be provided with a heating device.
  • the method according to the invention can be carried out in such a way that the wind power installation is kept out of operation after the icing signal until the icing signal is canceled.
  • the icing state can be checked in this phase after the specified time intervals have elapsed.
  • the rotor can be accelerated to a speed above the first speed threshold value and the state of the first anemometer can be checked.
  • the icing signal can be maintained when the first anemometer is stationary.
  • the icing signal can be canceled when the first anemometer rotates.
  • the invention also relates to a system for recognizing an icing condition of a wind energy installation.
  • the system includes an icing module and a control unit.
  • the icing module is designed to generate an icing suspicion signal when a first anemometer of the wind energy installation is at a standstill and the speed of a rotor of the wind energy installation is less than a predetermined first speed threshold value.
  • the control unit is designed to accelerate the rotor to a speed above the first speed threshold value after receiving an icing suspicion signal.
  • the icing module is designed to check the state of the first anemometer after the acceleration process is complete and to generate an icing signal when the first anemometer is stationary.
  • the system can be developed with further features which are described in connection with the method according to the invention.
  • the method can be developed with further features that are described in connection with the system according to the invention are.
  • a nacelle 14 is rotatably mounted on a tower 15 as shown in the wind power installation.
  • the nacelle 14 carries a rotor 16 which drives a generator via a rotor shaft in order to generate electrical energy.
  • the electrical energy is fed into a connection network via a converter and a transformer.
  • the nacelle 14 can be rotated relative to the tower 15 in order to align the rotor 16 in the wind direction.
  • a first anemometer 17, a second anemometer 18 and a temperature sensor 19 are arranged on the gondola 14.
  • the first anemometer 17 is an unheated anemometer
  • the second anemometer 18 is a heated anemometer.
  • An icing module 20 receives measured values from the anemometers 17, 18 and the temperature sensor 19.
  • the icing module 20 If the icing module 20 identifies a system state in which the second anemometer 18 reports a wind speed that is above a predetermined wind speed threshold value while the first anemometer 17 is stationary, While the rotor speed is below a predetermined speed threshold and the temperature is below a predetermined temperature threshold, the icing module 20 generates an icing suspicion signal and forwards the icing suspicion signal to a control unit 21 of the wind turbine.
  • the control unit 21 generates a control signal in order to change the angle of attack of the rotor blades of the rotor 16, so that the rotor 16 takes up more energy from the wind and is accelerated. After a predetermined second speed threshold value has been exceeded, the control unit 21 keeps the speed of the rotor 16 constant and informs the icing module 20 that the acceleration process is complete. The icing module 20 checks whether the first anemometer 17 continues to stand still. If this is the case, then the icing module sends an icing signal to the control unit 21. The control unit 21 keeps the wind power installation out of operation, which means in particular that the speed of the rotor 16 is reduced again.
  • the control unit 21 can switch to the normal operating state and try to start up the wind energy installation.
  • step 120 it is checked whether the temperature reported by the temperature sensor 19 is below a predetermined temperature threshold value. If this is not the case, the method branches at 130, so that normal operation of the wind energy installation is continued. If the temperature is below the temperature threshold value, it is checked in step 140 whether the following conditions are cumulatively present: 1) the wind speed is above a predetermined wind speed threshold value; 2) the first anemometer 17 stands still; 3) the speed of the rotor 16 of the wind energy installation is lower than a predefined first speed threshold value. If one of the conditions is not met, the method branches at 150 and normal operation is continued.
  • step 160 the rotor 16 of the wind energy installation is accelerated. After the acceleration process has been completed, the state of the first anemometer 17 is checked in step 170. If it turns out that the second anemometer 17 is now rotating, the method branches at 180 and normal operation of the wind energy installation is continued. If the first anemometer 17 continues to stand still, then an icing signal is generated and the wind energy installation is put out of operation in step 180.
  • the wind energy installation If the wind energy installation is out of operation due to icing, it can be checked at regular intervals whether the icing condition persists. If this is not the case, the wind energy installation can go back to normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

Die Erfindung betrifft ein Verfahren und ein System zum Erkennen eines Vereisungszustands einer Windenergieanlage.The invention relates to a method and a system for recognizing an icing state of a wind energy installation.

Windenergieanlagen können bei bestimmten Wetterbedingungen einer Vereisung ausgesetzt sein. Das Eis kann sich beispielsweise auf den Rotorblättern festsetzen. Daraus kann sich eine Gefahr für die Umgebung ergeben, wenn Eisstücke sich von dem Rotorblatt lösen und weggeschleudert werden. Da die Bahngeschwindigkeit insbesondere im äußeren Bereich eines Rotorblatts hoch sein kann, können solche Eisstücke eine beträchtliche Strecke fliegen, bevor sie auf dem Boden aufschlagen.Wind turbines can be exposed to icing in certain weather conditions. The ice can, for example, get stuck on the rotor blades. This can pose a risk to the environment if pieces of ice become detached from the rotor blade and are thrown away. Since the orbital speed can be high, especially in the outer area of a rotor blade, such pieces of ice can fly a considerable distance before they hit the ground.

Es ist heute üblich, Windenergieanlagen außer Betrieb zu setzen, wenn die Gefahr einer Vereisung besteht. Von einem stillstehenden oder sehr langsam drehenden Rotor geht keine Gefahr aus.It is common today to shut down wind turbines if there is a risk of icing. There is no danger from a stationary or very slowly rotating rotor.

Ob ein Risiko von Eisansatz besteht, hängt von verschiedenen Bedingungen ab, wie etwa der Temperatur, der Luftfeuchtigkeit und der Windgeschwindigkeit. Da nicht alle diese Bedingungen sich ohne weiteres exakt messen lassen, kann aus indirekten Indikatoren auf die Gefahr von Eisansatz geschlossen werden. Steht beispielsweise ein Anemometer still, obwohl keine Windstille ist, so kann angenommen werden, dass das Anemometer sich aufgrund von Vereisung nicht dreht. Dokument EP 2 154 364 A1 stellt einen Generator für eine Windenergieanlage vor, wobei die Daten zweier Anemometer verglichen werden können und wobei ein Kühlabluftauslass einer Gondel auf ein Anemometer gerichtet werden kann, um Eis und Schnee an dem Anemometer entgegenzuwirken. Aus einem Vereisungszustand des Anemometers kann auf einen Vereisungszustand der Windenergieanlage insgesamt geschlossen werden. Im Betrieb hat sich gezeigt, dass dieser Indikator nicht immer zuverlässig ist. Gelegentlich wird aus dem Stillstand eines Anemometers auf einen Vereisungszustand geschlossen, obwohl tatsächlich kein Vereisungszustand vorliegt.Whether there is a risk of ice formation depends on various conditions, such as temperature, humidity and wind speed. Since not all of these conditions can be measured precisely without further ado, indirect indicators can be used to infer the risk of ice accumulation. For example, if an anemometer stands still although there is no wind, it can be assumed that the anemometer does not rotate due to icing. document EP 2 154 364 A1 presents a generator for a wind turbine, whereby the data of two anemometers can be compared and whereby a cooling exhaust air outlet of a nacelle can be directed to an anemometer in order to counteract ice and snow on the anemometer. An icing state of the wind energy installation as a whole can be deduced from an icing state of the anemometer. In operation it has been shown that this indicator is not always reliable. Occasionally, when an anemometer is at a standstill, it is concluded that there is an icing state, although there is actually no icing state.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und ein System zum Erkennen eines Vereisungszustands einer Windenergieanlage vorzustellen, die eine verminderte Fehleranfälligkeit haben. Ausgehend vom genannten Stand der Technik wird die Aufgabe gelöst mit den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.The invention is based on the object of presenting a method and a system for recognizing an icing state of a wind energy installation, which have a reduced susceptibility to errors. Based on the stated prior art, the object is achieved with the features of the independent claims. Advantageous embodiments are specified in the subclaims.

Bei dem erfindungsgemäßen Verfahren wird ein Systemzustand der Windenergieanlage identifiziert, in dem ein erstes Anemometer der Windenergieanlage stillsteht und in dem die Drehzahl eines Rotor unterhalb eines vorgegebenen ersten Drehzahl-Schwellwerts liegt. Der Rotor wird auf eine Drehzahl oberhalb des ersten Drehzahl-Schwellwerts beschleunigt. Der Zustand des ersten Anemometers wird geprüft, wobei ein Vereisungssignal erzeugt wird, wenn das erste Anemometer stillsteht.In the method according to the invention, a system state of the wind power installation is identified in which a first anemometer of the wind power installation is at a standstill and in which the speed of a rotor is below a predetermined first speed threshold value. The rotor is accelerated to a speed above the first speed threshold value. The condition of the first anemometer is checked, with an icing signal being generated when the first anemometer is stationary.

Die Erfindung hat erkannt, dass der Stillstand eines Anemometers gelegentlich dadurch verursacht wird, dass das Anemometer in den Windschatten eines Rotorblatts gerät. Würde man alleine aus dem Stillstand des Anemometers auf einen Vereisungszustand der Windenergieanlage schließen, so würde die Windenergieanlage außer Betrieb gesetzt, obwohl tatsächlich gar kein Vereisungszustand vorliegt.The invention has recognized that the standstill of an anemometer is occasionally caused by the anemometer getting into the slipstream of a rotor blade. If one were to infer an icing state of the wind energy installation solely from the standstill of the anemometer, the wind energy installation would be put out of operation even though there is actually no icing state at all.

Mit der Erfindung wird deswegen ein zweistufiges Verfahren zum Erkennen eines Vereisungszustands vorgeschlagen. Der Stillstand des ersten Anemometers bei stillstehendem oder sehr langsam drehendem Rotor wird weiterhin als ein erster Indikator für einen Vereisungszustand verwendet. Anstatt die Windenergieanlage nun direkt außer Betrieb zu setzen, wird der Indikator in einer zweiten Stufe des erfindungsgemäßen Verfahrens verifiziert. Dazu wird der Rotor beschleunigt, sodass er sich mit einer Drehzahl oberhalb des ersten Drehzahl-Schwellwerts dreht. Nur wenn das erste Anemometer auch bei der erhöhten Rotordrehzahl stillsteht, wird ein Vereisungszustand angenommen und ein Vereisungssignal erzeugt.The invention therefore proposes a two-stage method for recognizing a state of icing. The standstill of the first anemometer when the rotor is stationary or rotating very slowly is still used as a first indicator of an icing condition. Instead of putting the wind energy installation directly out of operation, the indicator is verified in a second stage of the method according to the invention. For this purpose, the rotor is accelerated so that it rotates at a speed above the first speed threshold value. An icing condition is only assumed and an icing signal is generated if the first anemometer is stationary even at the increased rotor speed.

Das Vereisungssignal kann zu einer Steuerung der Windenergieanlage geleitet werden. Die Steuerung kann das Vereisungssignal verarbeiten, um die Windenergieanlage in einen Zustand zu versetzen oder in einem Zustand zu halten, in dem die Windenergieanlage nicht in Betrieb ist. Nicht in Betrieb bedeutet, dass die Windenergieanlage keine elektrische Energie erzeugt. Beispielsweise kann die Windenergieanlage in einen Zustand versetzt werden, in dem der Rotor sich nur langsam oder gar nicht dreht. Insbesondere kann die Windenergieanlage in einen Zustand versetzt werden, in dem der Rotor mit einer Drehzahl unterhalb des ersten Drehzahl-Schwellwerts rotiert.The icing signal can be sent to a control of the wind power installation. The controller can process the icing signal in order to put the wind energy installation into a state or to keep it in a state in which the wind energy installation is not in operation. Not in operation means that the wind turbine is not generating any electrical energy. For example, the wind energy installation can be put into a state in which the rotor only rotates slowly or not at all. In particular, the wind energy installation can be put into a state in which the rotor rotates at a speed below the first speed threshold value.

Wenn kein Vereisungssignal erzeugt wird, kann die Windenergieanlage in den Normalbetrieb übergehen bzw. den Normalbetrieb beibehalten. Dies kann beispielsweise bedeuten, dass die Steuerung der Windenergieanlage einen Versuch unternimmt, die Windenergieanlage hochzufahren. Dabei kann der Rotor weiter beschleunigt werden und eine Verbindung mit einem Anschlussnetz hergestellt werden, sobald der Rotor eine Mindest-Betriebsdrehzahl erreicht hat.If no icing signal is generated, the wind energy installation can switch to normal operation or maintain normal operation. This can mean, for example, that the control of the wind energy installation makes an attempt to start up the wind energy installation. The rotor can be accelerated further and a connection to a connection network can be established as soon as the rotor reaches a minimum operating speed Has.

Eine notwendige Bedingung für das Auftreten eines Vereisungszustands ist eine niedrige Temperatur. Es gibt eine Temperaturschwelle, oberhalb derer ein Eisansatz unabhängig von allen sonstigen Bedingungen ausgeschlossen ist. Das erfindungsgemäße Verfahren kann deswegen so durchgeführt werden, dass ein Systemzustand identifiziert wird, in dem das erste Anemometer der Windenergieanlage stillsteht, der Rotor mit einer Drehzahl unterhalb des vorgegebenen ersten Drehzahl-Schwellwerts dreht und außerdem die Lufttemperatur unterhalb eines vorgegebenen Temperatur-Schwellwerts ist. Der Temperatur-Schwellwert kann so gewählt sein, dass oberhalb des Temperatur-Schwellwerts keine Vereisungsgefahr besteht.A necessary condition for an icing condition to occur is a low temperature. There is a temperature threshold above which ice accumulation is impossible regardless of all other conditions. The method according to the invention can therefore be carried out in such a way that a system state is identified in which the first anemometer of the wind turbine is at a standstill, the rotor rotates at a speed below the specified first speed threshold value and the air temperature is also below a specified temperature threshold value. The temperature threshold value can be selected in such a way that there is no risk of icing above the temperature threshold value.

Das Verfahren kann so durchgeführt werden, dass der Zustand des ersten Anemometers überprüft wird, unmittelbar nach dem der Beschleunigungsvorgang des Rotors abgeschlossen ist. Um das Risiko einer irrtümlichen Annahme eines Vereisungszustands zu vermindern, kann das Verfahren in einer alternativen Ausführungsform so durchgeführt werden, dass der Rotor nach Abschluss des Beschleunigungsvorgangs für eine vorgegebene Zeitspanne auf einer Drehzahl oberhalb des Drehzahl-Schwellwerts gehalten wird, bevor der Zustand des ersten Anemometers geprüft wird. Nur wenn das erste Anemometer nach Ablauf der Zeitspanne stillsteht, wird ein Vereisungssignal erzeugt.The method can be carried out in such a way that the state of the first anemometer is checked immediately after the acceleration process of the rotor is completed. In order to reduce the risk of mistakenly assuming an icing condition, the method can be carried out in an alternative embodiment in such a way that the rotor is kept at a speed above the speed threshold value for a predetermined period of time after the acceleration process is completed before the status of the first anemometer is checked. An icing signal is only generated if the first anemometer has come to a standstill after the time has elapsed.

Um das Risiko einer irrtümlichen Annahme eines Vereisungszustands zu vermindern, kann es ferner von Vorteil sein, wenn der Rotor auf eine Drehzahl beschleunigt wird, die oberhalb eines zweiten vorgegebenen Drehzahl-Schwellwerts liegt, wobei der zweite vorgegebene Drehzahl-Schwellwert größer ist als der erste vorgegebene Drehzahl-Schwellwert.In order to reduce the risk of mistakenly assuming an icing condition, it can also be advantageous if the rotor is accelerated to a speed that is above a second predetermined speed threshold value, the second predetermined speed threshold value being greater than the first predetermined speed Speed threshold.

Das Verfahren kann so durchgeführt werden, dass mit dem ersten Drehzahl-Schwellwert eine sehr niedrige Rotordrehzahl definiert wird. Der erste Drehzahl-Schwellwert kann so definiert sein, dass die Rotordrehzahl unterhalb der Drehzahl ist, ab der die Windenergieanlage elektrische Energie produziert und mit dem Anschlussnetz verbunden wird. Unterhalb des ersten Drehzahl-Schwellwerts kann die Windenergieanlage in einem Trudelzustand sein, dem der Rotor sich langsam dreht, ohne dass Energie produziert wird. Möglich ist auch, dass der Rotor vollständig stillsteht.The method can be carried out in such a way that a very low rotor speed is defined with the first speed threshold value. The first speed threshold value can be defined in such a way that the rotor speed is below the speed from which the wind energy installation produces electrical energy and is connected to the connection network. Below the first speed threshold value, the wind energy installation can be in a spin state in which the rotor rotates slowly without energy being produced. It is also possible for the rotor to stand still completely.

Das erste Anemometer wird bei dem erfindungsgemäßen Verfahren als Sensor geopfert. Wenn das erste Anemometer aufgrund von Eisansatz stillsteht, liefert das erste Anemometer keine Informationen mehr über die Windverhältnisse. Bei dem erfindungsgemäßen Verfahren kann eine von dem ersten Anemometer unabhängige Information über die Windgeschwindigkeit verarbeitet werden. Es kann ein Systemzustand identifiziert werden, in dem das erste Anemometer stillsteht und in dem die Windgeschwindigkeit größer ist als ein vorgegebener Windgeschwindigkeits-Schwellwert, bevor der Rotor auf eine Drehzahl oberhalb des ersten Drehzahl-Schwellwerts beschleunigt wird.The first anemometer is sacrificed as a sensor in the method according to the invention. If the first anemometer comes to a standstill due to the formation of ice, the first anemometer no longer provides any information about the wind conditions. In the method according to the invention information about the wind speed that is independent of the first anemometer can be processed. A system state can be identified in which the first anemometer is stationary and in which the wind speed is greater than a predefined wind speed threshold value before the rotor is accelerated to a speed above the first speed threshold value.

Die von dem ersten Anemometer unabhängige Information über die Windgeschwindigkeit kann beispielsweise gewonnen werden, indem die Windgeschwindigkeit anhand einer auf den Rotor wirkenden Windlast geschätzt wird. Möglich ist auch die Verwendung eines zweiten Anemometers, das auch dann Messwerte über die Windgeschwindigkeit liefert, wenn das erste Anemometer stillsteht. Das zweite Anemometer kann mit einer Heizeinrichtung versehen sein.The information about the wind speed that is independent of the first anemometer can be obtained, for example, by estimating the wind speed on the basis of a wind load acting on the rotor. It is also possible to use a second anemometer, which also provides measured values about the wind speed when the first anemometer is stationary. The second anemometer can be provided with a heating device.

Das erfindungsgemäße Verfahren kann so durchgeführt werden, dass die Windenergieanlage nach dem Vereisungssignal so lange außer Betrieb gehalten wird, bis das Vereisungssignal aufgehoben wird. Der Vereisungszustand kann in dieser Phase nach Ablauf vorgegebener zeitlicher Abstände überprüft werden. Dazu kann der Rotor auf eine Drehzahl oberhalb des ersten Drehzahl-Schwellwerts beschleunigt werden und der Zustand des ersten Anemometers geprüft werden. Das Vereisungssignal kann aufrechterhalten werden, wenn das erste Anemometer stillsteht. Das Vereisungssignal kann aufgehoben werden, wenn das erste Anemometer sich dreht.The method according to the invention can be carried out in such a way that the wind power installation is kept out of operation after the icing signal until the icing signal is canceled. The icing state can be checked in this phase after the specified time intervals have elapsed. For this purpose, the rotor can be accelerated to a speed above the first speed threshold value and the state of the first anemometer can be checked. The icing signal can be maintained when the first anemometer is stationary. The icing signal can be canceled when the first anemometer rotates.

Die Erfindung betrifft außerdem ein System zum Erkennen eines Vereisungszustands einer Windenergieanlage. Das System umfasst ein Vereisungsmodul und eine Steuereinheit. Das Vereisungsmodul ist dazu ausgelegt, ein Vereisungs-Verdachtssignal zu erzeugen, wenn ein erstes Anemometer der Windenergieanlage stillsteht und die Drehzahl eines Rotors der Windenergieanlage kleiner ist als ein vorgegebener erster Drehzahl-Schwellwert. Die Steuereinheit ist dazu ausgelegt, nach Eingang eine Vereisungs-Verdachtssignals den Rotor auf eine Drehzahl oberhalb des ersten Drehzahl-Schwellwerts zu beschleunigen. Das Vereisungsmodul ist dazu ausgelegt, nach Abschluss des Beschleunigungsvorgangs den Zustand des ersten Anemometers zu überprüfen und ein Vereisungssignal zu erzeugen, wenn das erste Anemometer stillsteht.The invention also relates to a system for recognizing an icing condition of a wind energy installation. The system includes an icing module and a control unit. The icing module is designed to generate an icing suspicion signal when a first anemometer of the wind energy installation is at a standstill and the speed of a rotor of the wind energy installation is less than a predetermined first speed threshold value. The control unit is designed to accelerate the rotor to a speed above the first speed threshold value after receiving an icing suspicion signal. The icing module is designed to check the state of the first anemometer after the acceleration process is complete and to generate an icing signal when the first anemometer is stationary.

Das System kann mit weiteren Merkmalen fortgebildet werden, die im Zusammenhang des erfindungsgemäßen Verfahrens beschrieben sind. Das Verfahren kann mit weiteren Merkmalen fortgebildet werden, die im Zusammenhang des erfindungsgemäßen Systems beschrieben sind.The system can be developed with further features which are described in connection with the method according to the invention. The method can be developed with further features that are described in connection with the system according to the invention are.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand vorteilhafter Ausführungsformen beispielhaft beschrieben. Es zeigen:

Fig. 1:
eine schematische Darstellung einer mit einem erfindungsgemäßen System ausgestatteten Windenergieanlage;
Fig. 2:
ein Ablaufdiagramm des erfindungsgemäßen Verfahrens.
The invention is described below by way of example with reference to the accompanying drawings using advantageous embodiments. Show it:
Fig. 1:
a schematic representation of a wind turbine equipped with a system according to the invention;
Fig. 2:
a flow chart of the method according to the invention.

Bei einer in Fig. 1 gezeigten Windenergieanlage ist eine Gondel 14 drehbar auf einem Turm 15 gelagert. Die Gondel 14 trägt einen Rotor 16, der über eine Rotorwelle einen Generator antreibt, um elektrische Energie zu erzeugen. Die elektrische Energie wird über einen Umrichter und einen Transformator in ein Anschlussnetz eingespeist. Die Gondel 14 kann relativ zu dem Turm 15 gedreht werden, um den Rotor 16 in Windrichtung auszurichten.With an in Fig. 1 A nacelle 14 is rotatably mounted on a tower 15 as shown in the wind power installation. The nacelle 14 carries a rotor 16 which drives a generator via a rotor shaft in order to generate electrical energy. The electrical energy is fed into a connection network via a converter and a transformer. The nacelle 14 can be rotated relative to the tower 15 in order to align the rotor 16 in the wind direction.

Auf der Gondel 14 sind ein erstes Anemometer 17, ein zweites Anemometer 18 und ein Temperatursensor 19 angeordnet. Das erste Anemometer 17 ist ein unbeheiztes Anemometer, das zweite Anemometer 18 ist ein beheiztes Anemometer. Ein Vereisungsmodul 20 empfängt Messwerte von den Anemometern 17, 18 und dem Temperatursensor 19. Wenn das Vereisungsmodul 20 einen Systemzustand identifiziert, in dem das zweite Anemometer 18 eine Windgeschwindigkeit meldet, die oberhalb eines vorgegebenen Windgeschwindigkeit-Schwellwerts liegt, während das erste Anemometer 17 stillsteht, während zugleich die Rotordrehzahl unterhalb eines vorgegebenen Drehzahl-Schwellwerts liegt und die Temperatur unterhalb eines vorgegebenen Temperatur-Schwellwerts liegt, so erzeugt das Vereisungsmodul 20 ein Vereisungs-Verdachtssignal und leitet das Vereisungs-Verdachtssignal an eine Steuereinheit 21 der Windenergieanlage.A first anemometer 17, a second anemometer 18 and a temperature sensor 19 are arranged on the gondola 14. The first anemometer 17 is an unheated anemometer, the second anemometer 18 is a heated anemometer. An icing module 20 receives measured values from the anemometers 17, 18 and the temperature sensor 19. If the icing module 20 identifies a system state in which the second anemometer 18 reports a wind speed that is above a predetermined wind speed threshold value while the first anemometer 17 is stationary, While the rotor speed is below a predetermined speed threshold and the temperature is below a predetermined temperature threshold, the icing module 20 generates an icing suspicion signal and forwards the icing suspicion signal to a control unit 21 of the wind turbine.

Die Steuereinheit 21 erzeugt ein Steuersignal, um die Anstellwinkel der Rotorblätter des Rotors 16 zu ändern, sodass der Rotor 16 mehr Energie aus dem Wind aufnimmt und beschleunigt wird. Nach Überschreiten eines vorgegebenen zweiten Drehzahl-Schwellwerts hält die Steuereinheit 21 die Drehzahl des Rotors 16 konstant und teilt dem Vereisungsmodul 20 mit, dass der Beschleunigungsvorgang abgeschlossen ist. Das Vereisungsmodul 20 überprüft, ob das erste Anemometer 17 weiterhin stillsteht. Ist dies der Fall, so sendet das Vereisungsmodul ein Vereisungssignal an die Steuereinheit 21. Die Steuereinheit 21 hält die Windenergieanlage außer Betrieb, was insbesondere bedeutet, dass die Drehzahl des Rotors 16 wieder reduziert wird.The control unit 21 generates a control signal in order to change the angle of attack of the rotor blades of the rotor 16, so that the rotor 16 takes up more energy from the wind and is accelerated. After a predetermined second speed threshold value has been exceeded, the control unit 21 keeps the speed of the rotor 16 constant and informs the icing module 20 that the acceleration process is complete. The icing module 20 checks whether the first anemometer 17 continues to stand still. If this is the case, then the icing module sends an icing signal to the control unit 21. The control unit 21 keeps the wind power installation out of operation, which means in particular that the speed of the rotor 16 is reduced again.

Stellt das Vereisungsmodul 20 fest, dass das Anemometer 17 sich nach Abschluss des Beschleunigungsvorgangs wieder dreht, so liegt kein Vereisungszustand vor. Die Steuereinheit 21 kann in den normalen Betriebszustand übergehen und versuchen, die Windenergieanlage hochzufahren.If the icing module 20 determines that the anemometer 17 is rotating again after the acceleration process has been completed, then there is no icing condition. The control unit 21 can switch to the normal operating state and try to start up the wind energy installation.

Der Ablauf des erfindungsgemäßen Verfahrens ist in Fig. 2 dargestellt. Nach dem Start des Verfahrens in Schritt 100 ist die Windenergieanlage in Schritt 110 im Normalbetrieb. In Schritt 120 wird überprüft, ob die von dem Temperatursensor 19 gemeldete Temperatur unterhalb eines vorgegebenen Temperatur-Schwellwerts liegt. Ist dies nicht der Fall, verzweigt das Verfahren bei 130, sodass der Normalbetrieb der Windenergieanlage fortgesetzt wird. Liegt die Temperatur unterhalb des Temperatur-Schwellwerts, so wird in Schritt 140 geprüft, ob kumulativ die folgenden Bedingungen vorliegen: 1) die Windgeschwindigkeit liegt oberhalb eines vorgegebenen Windgeschwindigkeit-Schwellwerts; 2) das erste Anemometer 17 steht still; 3) die Drehzahl des Rotors 16 der Windenergieanlage ist kleiner als ein vorgegebener erster Drehzahl-Schwellwert. Ist eine der Bedingungen nicht erfüllt, so verzweigt das Verfahren bei 150 und der Normalbetrieb wird fortgesetzt.The sequence of the method according to the invention is shown in Fig. 2 shown. After the start of the method in step 100, the wind energy installation is in normal operation in step 110. In step 120 it is checked whether the temperature reported by the temperature sensor 19 is below a predetermined temperature threshold value. If this is not the case, the method branches at 130, so that normal operation of the wind energy installation is continued. If the temperature is below the temperature threshold value, it is checked in step 140 whether the following conditions are cumulatively present: 1) the wind speed is above a predetermined wind speed threshold value; 2) the first anemometer 17 stands still; 3) the speed of the rotor 16 of the wind energy installation is lower than a predefined first speed threshold value. If one of the conditions is not met, the method branches at 150 and normal operation is continued.

Wird ein Systemzustand festgestellt, in dem alle Bedingungen kumulativ erfüllt sind, so wird in Schritt 160 der Rotor 16 der Windenergieanlage beschleunigt. Nach Abschluss des Beschleunigungsvorgangs wird in Schritt 170 der Zustand des ersten Anemometers 17 überprüft. Stellt sich heraus, dass das zweite Anemometer 17 sich nun dreht, verzweigt das Verfahren bei 180 und der Normalbetrieb der Windenergieanlage wird fortgesetzt. Steht das erste Anemometer 17 weiterhin still, so wird ein Vereisungssignal erzeugt und die Windenergieanlage in Schritt 180 außer Betrieb gesetzt.If a system state is determined in which all the conditions are cumulatively met, then in step 160 the rotor 16 of the wind energy installation is accelerated. After the acceleration process has been completed, the state of the first anemometer 17 is checked in step 170. If it turns out that the second anemometer 17 is now rotating, the method branches at 180 and normal operation of the wind energy installation is continued. If the first anemometer 17 continues to stand still, then an icing signal is generated and the wind energy installation is put out of operation in step 180.

Ist die Windenergieanlage wegen Vereisung außer Betrieb, so kann in regelmäßigen Abständen geprüft werden, ob der Vereisungszustand weiterhin besteht. Ist dies nicht der Fall, so kann die Windenergieanlage wieder in den Normalbetrieb übergehen.If the wind energy installation is out of operation due to icing, it can be checked at regular intervals whether the icing condition persists. If this is not the case, the wind energy installation can go back to normal operation.

Claims (10)

  1. Method for detecting an icing condition of a wind turbine, comprising the following steps:
    a. Identifying a system condition of the wind turbine in which a first anemometer (17) of the wind turbine is stationary and in which the rotational speed of a rotor (16) of the wind turbine is lower than a predefined first rotational speed threshold value;
    b. Accelerating the rotor (16) to a rotational speed above the first rotational speed threshold value;
    c. Testing the condition of the first anemometer (17), wherein an icing signal is generated if the first anemometer (17) is stationary.
  2. Method according to Claim 1, characterized in that the icing signal is fed to a control unit (21) of the wind turbine, in order to place the wind turbine in a condition or keep it in a condition in which the wind turbine is out of operation.
  3. Method according to Claim 1 or 2, characterized in that a system condition is identified in which the air temperature is below a predefined temperature threshold value.
  4. Method according to one of Claims 1 to 3, characterized in that after the conclusion of the acceleration process the rotor (16) is kept at a rotational speed above the first rotational speed threshold value for a predefined time period before the condition of the first anemometer (17) is tested.
  5. Method according to one of Claims 1 to 4, characterized in that the rotor (16) is accelerated to a rotational speed which is above a second predefined rotational speed threshold value, wherein the second predefined rotational speed threshold value is higher than the first predefined rotational speed threshold value.
  6. Method according to one of Claims 1 to 5, characterized in that information about the wind speed, which is independent of the first anemometer (17) is processed.
  7. Method according to Claim 6, characterized in that the wind speed is measured with a second anemometer (18), wherein the second anemometer (18) is heated.
  8. Method according to Claim 6 or 7, characterized in that a system condition is identified in which the first anemometer (17) is stationary and in which the wind speed is above a predefined wind speed threshold value.
  9. Method according to one of Claims 1 to 8, characterized in that after the icing signal has been generated the icing condition is checked at predefined time intervals.
  10. System for detecting an icing condition of a wind turbine with an icing module (20) and with a control unit (21), wherein the icing module (20) is configured to generate an icing suspicion signal if a first anemometer (17) of the wind turbine is stationary and the rotation speed of a rotor (16) of the wind turbine is lower than a predefined first rotational speed threshold value at which the control unit (21) is configured to accelerate the rotor (16) to a rotational speed above the first rotational speed threshold value after the inputting of an icing suspicion signal, and wherein the icing module (20) is configured to check the condition of the first anemometer (17) after the conclusion of the acceleration process, and to generate an icing signal if the first anemometer (17) is stationary.
EP18206114.3A 2017-11-16 2018-11-14 Method and system for detecting an icing condition of a wind turbine Active EP3486481B8 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017010609.6A DE102017010609A1 (en) 2017-11-16 2017-11-16 Method and system for detecting an icing condition of a wind turbine

Publications (3)

Publication Number Publication Date
EP3486481A1 EP3486481A1 (en) 2019-05-22
EP3486481B1 true EP3486481B1 (en) 2020-10-21
EP3486481B8 EP3486481B8 (en) 2020-12-30

Family

ID=64316321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18206114.3A Active EP3486481B8 (en) 2017-11-16 2018-11-14 Method and system for detecting an icing condition of a wind turbine

Country Status (4)

Country Link
EP (1) EP3486481B8 (en)
DE (1) DE102017010609A1 (en)
DK (1) DK3486481T3 (en)
ES (1) ES2837379T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760861A1 (en) * 2019-07-05 2021-01-06 Siemens Gamesa Renewable Energy A/S Determination of wind parameter values for use in wind turbine control systems
CN115450850B (en) * 2021-06-08 2024-05-17 中车株洲电力机车研究所有限公司 Wind turbine generator cabin displacement calculation method based on acceleration

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487673B2 (en) * 2006-12-13 2009-02-10 General Electric Company Ice detection based on anemometry
JP4994944B2 (en) * 2007-05-18 2012-08-08 三菱重工業株式会社 Wind power generator
CN102834610B (en) * 2010-04-12 2016-06-15 西门子公司 Determine the method and system that the quality on the rotating vane of wind turbine changes
US20120226485A1 (en) * 2011-03-03 2012-09-06 Inventus Holdings, Llc Methods for predicting the formation of wind turbine blade ice
EP2592447A1 (en) * 2011-11-08 2013-05-15 Topwind Consultancy B.V. Frost condition detection system and method
DK3165766T3 (en) * 2015-11-06 2021-08-23 Nordex Energy Spain S A WIND TURBINE AND METHOD FOR REMOVING ICE IN WIND TURBINES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017010609A1 (en) 2019-05-16
ES2837379T3 (en) 2021-06-30
DK3486481T3 (en) 2020-12-07
EP3486481A1 (en) 2019-05-22
EP3486481B8 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
DE102005016524B4 (en) Method and device for detecting rotor blade ice
EP1454058B2 (en) Method for monitoring a sensor
EP2404059B1 (en) Method for monitoring wind turbines
EP2697508B1 (en) Device and method for determining a blade position and for ending a safety run
EP3359810B1 (en) Method for monitoring a wind turbine
EP3420226B1 (en) Method for determining an equivalent wind velocity
EP3486481B1 (en) Method and system for detecting an icing condition of a wind turbine
DE102014203508B9 (en) Rotor blade bearing arrangement for a wind energy plant
DE102011051416A1 (en) Wind turbine and method for operating a wind turbine
DE102012109252A1 (en) Wind turbine blade edge surveillance system
DE202006000816U1 (en) Wind energy plant, has evaluating module transmitting control signal to machine controller, if measured wind velocities of anemometers differ from each other around given deviation limiting value for given time period
DE102011079269A1 (en) Safety chain and method for operating a wind turbine
DE102014100200A1 (en) Method and device for operating a wind turbine
EP2984336A1 (en) Wind turbine and method for operating a wind turbine
DE102012011357A1 (en) Wind turbine control system and system for controlling a wind farm
DE102017131241B4 (en) Monitoring method for a wind turbine, associated monitoring device and wind turbine with monitoring device
EP4182557A1 (en) Device for identifying an accumulation of ice on rotor blades of a wind turbine and method for teaching such a device
EP2984335B1 (en) Method and system for monitoring an individual blade adjustment of a wind turbine
DE102013221401A1 (en) Method for detecting a state change of a plant
EP3472459A1 (en) Method for monitoring a rotor blade adjustment
DE102007020076B4 (en) Wind measuring system for a wind turbine
WO2012131032A2 (en) Wind turbine
EP2937559A1 (en) Method for an emergency feathering drive
DE102018116941A1 (en) Device and method for recognizing the accumulation or the type of ice on a rotor blade of a rotor of a wind turbine
EP3486479B1 (en) Method for operation of a wind farm and wind farm

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1326094

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002793

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS GAMESA RENEWABLE ENERGY SERVICE GMBH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2837379

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002793

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201114

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211119

Year of fee payment: 4

Ref country code: ES

Payment date: 20211216

Year of fee payment: 4

Ref country code: DK

Payment date: 20211119

Year of fee payment: 4

Ref country code: DE

Payment date: 20211122

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018002793

Country of ref document: DE

Owner name: SIEMENS GAMESA RENEWABLE ENERGY SERVICE GMBH, DE

Free format text: FORMER OWNER: SIEMENS GAMESA RENEWABLE ENERGY SERVICE GMBH, 22297 HAMBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018002793

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20221130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221114

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221115