EP3484274A1 - Emitter locating system and related methods - Google Patents
Emitter locating system and related methodsInfo
- Publication number
- EP3484274A1 EP3484274A1 EP17831631.1A EP17831631A EP3484274A1 EP 3484274 A1 EP3484274 A1 EP 3484274A1 EP 17831631 A EP17831631 A EP 17831631A EP 3484274 A1 EP3484274 A1 EP 3484274A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- emitter
- tubing
- outlet
- emitters
- locator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 230000003287 optical effect Effects 0.000 claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 claims description 100
- 230000007246 mechanism Effects 0.000 claims description 88
- 238000003780 insertion Methods 0.000 claims description 55
- 230000037431 insertion Effects 0.000 claims description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 238000001816 cooling Methods 0.000 claims description 23
- 238000005520 cutting process Methods 0.000 claims description 15
- 230000002262 irrigation Effects 0.000 claims description 13
- 238000003973 irrigation Methods 0.000 claims description 13
- 238000011179 visual inspection Methods 0.000 claims description 13
- 238000004513 sizing Methods 0.000 claims description 12
- 239000013536 elastomeric material Substances 0.000 claims description 9
- 238000007689 inspection Methods 0.000 claims description 9
- 239000012530 fluid Substances 0.000 description 55
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 17
- 239000010949 copper Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 239000002826 coolant Substances 0.000 description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 12
- 239000004810 polytetrafluoroethylene Substances 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 230000036961 partial effect Effects 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 9
- 230000001603 reducing effect Effects 0.000 description 8
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 8
- 238000001931 thermography Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 230000002786 root growth Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 TeflonĀ® Polymers 0.000 description 4
- 229920002313 fluoropolymer Polymers 0.000 description 4
- 239000004811 fluoropolymer Substances 0.000 description 4
- 239000003966 growth inhibitor Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 241001310793 Podium Species 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001921 mouthing effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/02—Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
- A01G25/026—Apparatus or processes for fitting the drippers to the hoses or the pipes
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/02—Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
- A01G25/023—Dispensing fittings for drip irrigation, e.g. drippers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/06—Watering arrangements making use of perforated pipe-lines located in the soil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0021—Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
- B29C48/154—Coating solid articles, i.e. non-hollow articles
- B29C48/155—Partial coating thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
- B29C48/157—Coating linked inserts, e.g. chains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/919—Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92076—Position, e.g. linear or angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92209—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92447—Moulded article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92571—Position, e.g. linear or angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92942—Moulded article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92961—Auxiliary unit, e.g. for external melt filtering, re-combining or transfer between units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/28—Storing of extruded material, e.g. by winding up or stacking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
- B29L2009/005—Layered products coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/22—Tubes or pipes, i.e. rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/70—Agricultural usage or equipment
- B29L2031/7004—Agricultural usage or equipment for plants or flowers
Definitions
- the present invention relates to methods and apparatus for detecting or locating emitters or portions thereof in an irrigation drip line, and more particularly, to methods and apparatus for detecting the location of an emitter outlet in a partially assembled drip line and confirming proper placement of the outlet opening in the drip line, and methods relating to same.
- the emitter is typically formed at predetermined intervals along a long stretch of material which is either bonded to the inner surface of the supply line or connected between ends of a material to form a generally round conduit or supply line with the strip or tape running the longitudinal length of the conduit.
- drip strips or tape type emitters are illustrated in U.S. Patent No. 4,726,520 issued February 23, 1988.
- the emitter location can be detected in extruded tubing by height differences between the extruded tube and the outline of the plastic emitter after it is bonded to the extruded tube (e.g., a slight perturbance in the tubing will occur in the location of the bonded emitter to indicate where the emitter is within the tubing).
- an outlet hole can be drilled to allow water to exit from the emitter to create an emission point in the dripline tube.
- FIG. 13 is a perspective view of an alternate insert tipped guide bar embodying features of the present invention.
- FIGS. 17A-B are perspective views of another insertion tool in accordance with the present invention illustrating a system having first and second conveyors for delivering emitters to the escapement, with FIG. 17B being an enlarged view of the second conveyor and second vibratory drive associated with same;
- the bowl feeder 110 will also have an access panel or door that allows for rapid removal of any remaining product in the bowl feeder 110 so that the apparatus 100 may be changed over to transport and/ or manufacture drip line using emitters of a different type (e.g., emitters with different drip rates, emitters with different configurations, such as round or cylindrical emitters, emitters made of different materials such as rigid polymers, etc.).
- emitters of a different type e.g., emitters with different drip rates, emitters with different configurations, such as round or cylindrical emitters, emitters made of different materials such as rigid polymers, etc.
- the bowl feeder 110 may further include a lubricant applied to the surfaces of the bowl feeder 110 that the emitters will contact, such as a synthetic fluoropolymer of tetrafluoroethylene like polytetrafluoroethylene (PTFE) (e.g., TEFLON brand lubricants produced by DuPont Co.).
- PTFE polytetrafluoroethylene
- the PTFE coated surfaces reduce the friction between the elastomeric emitters and the feeder 110 so that the emitters move more easily through the feeder 110 and the feeder track or arm channel 110a that delivers the emitters to conveyor 120.
- feeder 110 is a vibratory feeder that vibrates the emitters into a properly orientated line of emitters that can be fed onto conveyor 120. Vibratory emitters can be set to a frequency that will position the bulk product being fed by the feeder into a desired orientation and a single file line if desired.
- the table has a rail 114 to which posts or stanchions 122 are moveably connected on one end and that are connected on the opposite end to portions of conveyor 110.
- the stanchions 122 are spaced along the conveyor 120 to ensure sufficient support for the conveyor 120 and rest on slides 122a that move along the rail 114 as the conveyor 120 moves between the first and second positions. Longer conveyor runs may require additional stanchions and, conversely, fewer stanchions may be required for shorter runs.
- the system 100 includes a fixed stanchion or support 124 on a distal end of the conveyor 120 that the conveyor 120 moves with respect to when moved between the first and second positions.
- Movement of the conveyor 120 may be motorized if desired.
- motor 126 may be used to drive the conveyor back and forth along the rail 114 between the conveyor's first and second positions.
- the motor 126 may be equipped to provide fine and coarse adjustments so that the majority of travel of the conveyor 120 to and from the second position can be handled at a faster pace, while the portion of travel to and from the first position can be handled at a slower pace that allows for fine adjustment of the guide bar 140 being inserted into the extruder 160.
- motor 126 may be used for moving the belt and/ or rollers and may be connected to rail 114 to simply assist with sliding the conveyor between the first and second positions.
- the motor 126 may be used to do both (i.e., moving the conveyor 120 and a belt or roller of the conveyor, etc.).
- the conveyor 120 is capable of being connected to a shop air system to utilize compressed air that is available on site and therefore not requiring an additional air compressor or tank.
- system 100 may further include a separate air compressor and air tank to allow for operation of the air conveyor.
- additional components could be mounted to the rail 114 to allow for movement of the components along with the conveyor as it moves between the first and second positions.
- these components could be placed in a static position (e.g., along, on or under table 112) and simply be connected to the conveyor 120 in such a way as to allow for conveyor movement between the first and second positions (e.g., via flexible air or pneumatic lines that have enough slack for accommodating conveyor movement, etc.).
- the conveyor depicted in FIGS. 1A-G further shows a generally horizontal conveyor 120, however, it should be understood that in alternate embodiments an angled conveyor may be positioned.
- the conveyor 120 may be configured to utilize gravity to help move the emitters from the vibratory bowl 110 to the escapement 130.
- the vibratory bowl end of the conveyor may be positioned higher than the escapement end of the conveyor, which may also require the vibratory bowl to be positioned higher with respect to the remainder of the insertion tooling components.
- FIG. 4 an alternate slotted belt conveyor is illustrated.
- the conveyor is referenced by reference numeral 220 and the escapement by reference numeral 230.
- the conveyor 220 includes a belt 221 that carries the emitters 280 from the vibratory feeder bowl 210 to the escapement 230.
- the belt 221 defines a recess, such as slot 221a, for receiving the inlet protrusion of emitter 280 so that the emitter rests generally flush on the upper surface of the belt 221.
- roller conveyor could alternatively be used (see, e.g., FIGS. 17A- B).
- the rollers of the roller conveyor will similarly include or define a slot or recess within which the inlet protrusion of emitter 280 may be disposed to allow the emitter to rest generally flush on the uppermost surface of the rollers.
- roller conveyor system would be angled downward so that the bowl inserter end of the conveyor is positioned higher than the escapement end of the conveyor to utilize the effects of gravity to assist in moving the emitters down the conveyor.
- the roller conveyor may include a vibratory drive for driving emitters along the roller conveyor (see, e.g., FIGS. 17A-B).
- the curvature of the belt lowers the emitter 380 so that each emitter 380 aligns with the channel defined by the escapement 330 and, in particular, the conveyor bridge 328 located between the curved end of conveyor 320 and escapement 330.
- the conveyor bridge 328 defines a channel with a T-shaped cross-section that aligns the emitter 380 with a similarly shaped channel defined by escapement 330, with the vertical portion of the T-shaped channel accommodating the inlet protrusion 380a of emitter 380.
- any of the conveyors discussed herein could be setup so that the conveyor can continue to run even when emitters are stacked end-to-end waiting to enter the conveyor bridge or escapement 130.
- the belt may be configured to allow for the belt to slip under the emitter or emitters once a series of emitters are aligned end-to-end entering the escapement 130.
- a chute may be used in place of a conveyor that either uses angles and gravity or vibration to move the emitters from feeder 110 to escapement 130.
- a non-moving conveyor may advance emitters via vibration only if desired.
- system 600 illustrated in FIGS. 17A-B includes a stimulator, such as electric vibratory drive 629, which urges emitters 680 to travel from the belt conveyor end of roller conveyor 620b toward the emitter drive mechanism 630.
- the vibratory drive 629 gently vibrates the roller conveyor 620b at a high frequency to at least partially levitate or lift the emitters 680 within emitter channel 142 and reduce the amount of friction present between the elastomer ic emitters 680 and the roller conveyor 620b which, in turn, makes it easier to move the elastomeric emitters through the conveyor 620b.
- emitter drive mechanism 630 and inserter 640 are positioned to allow the inserter 640 to be inserted or engaged with the extruder 660 so that emitters 680 can be bonded to extruded tubing via bonding mechanism 650 to form drip line 690 and in the second position the conveyor 620, emitter drive mechanism 630 and inserter 640 are moved to a second/ different position so that inserter 640 is removed or retracted from the extruder 660.
- the vibratory drive 629 is not operable as the guide bar 640 is moved toward the first position and inserted through the extruder die head 662, however, the vibratory drive 629 would be setup such that even if it were operational during movement of the guide bar 640 toward the first position the vibration induced in the inserter or guide bar 640 would not be sufficient to risk damaging the guide bar 640 on the extruder 660 or vice versa.
- the apparatus 100 preferably includes an escapement 130 that includes an emitter drive mechanism, such as belt drive 132 that grasps the emitters being fed into the escapement from the conveyor 120 and drives the emitters toward the guide bar 140.
- an emitter drive mechanism such as belt drive 132 that grasps the emitters being fed into the escapement from the conveyor 120 and drives the emitters toward the guide bar 140.
- the escapement 130 preferably defines a T-shaped channel that aligns with both the conveyor 120 and guide bar 140, with the lower vertical portion of the T-shaped channel being sized to accommodate or fit the inlet protrusion of the emitter.
- the belt drive 132 is positioned to engage at least the sides of the emitter and drive the emitter through the escapement 130 and into the guide bar 140.
- the guide bar 140 begins to fill-up until emitters are stacked single file and end-to-end along the guide bar 140 and into the escapement 130.
- advancement of an emitter will force all emitters loaded into the guide bar 140 to advance.
- advancement of another emitter through the escapement drive mechanism 132 will cause the emitter furthest from the escapement 130 on guide bar 140 to advance onto the distal end or bonding position of the guide bar 140 at which point the emitter will be bonded to the extruded tubing via the bonding mechanism or machine 150.
- a controller such as a programmable logic controller (PLC) may be used to control the operation of the drive mechanism 132 of escapement 130 in order to drive emitters through the escapement 130 and into and out of guide bar 140 at predetermined and/ or desired intervals and/ or to ensure that the emitters are spaced apart from one another at desired intervals in tubing 190.
- optical sensors may be used in conjunction with the escapement 130 to ensure that a sufficient number of emitters are lined-up and ready for insertion via insertion tooling 100.
- the escapement 130 will be independently operable separate and apart from the conveyor 120 and vibratory bowl inserter 110 so that a desired or proper number of emitters may be maintained in each portion of the apparatus 100 at all times.
- Optical sensors may also be placed about the escapement channel and/ or the guide bar assembly to ensure that a sufficient number of emitters are present in system 100 and that the PLC controller is maintaining the desired insertion pace and/ or distance between emitters.
- the belt drive 132 is tapered so that a larger opening or ingress is provided where the emitter is received into the escapement 130 which then tapers down to a narrower opening at the exit or egress where the emitter leaves the escapement drive mechanism 132.
- the tapered shape of belt drive 132 allows the insertion tooling to account for misaligned emitters and/ or slight variances in the alignment or positioning of the emitters as the emitters transition from the conveyor 120 to the escapement 130 and then tapers the belt to properly align the emitter for the guide bar 140.
- the escapement 130 may be provided with a drive mechanism that does not utilize such a tapering feature such as that shown in FIG. 4, if desired.
- the belt drive 132 of escapement 130 uses a toothed synchronous belt that is driven by motor 144 and drive wheel or cog 132a. More particularly, motor 144, such as a stepping MPL low inertia servo motor, turns a motor output shaft connected to drive wheel 132a in response to the controller (e.g., PLC), which in turn drives the sprocket wheels or ribbed rollers 132b connected to ribbed drive wheel 132a via belt 132c.
- the controller e.g., PLC
- the stepping motor 144 can be adjusted to provide for a displacement of one emitter at a time through the escapement 130. This ensures proper spacing and provides a non-slip surface between the emitter and drive belt 132c. Although in the form illustrated only one belt (i.e., belt 132c) is driven, it should be understood that in alternate embodiments motor 144 could also drive a second drive wheel connected to the second belt 132d, if desired.
- belt tensioning mechanisms could be provided to adjust the tension of each belt in belt drive 132 if desired.
- the apparatus 100 may be equipped to move one of the wheels of each belt to increase or decrease tension.
- movable pins may be provided that the belts travel along in order to adjust tension for each belt.
- a single belt could be used to drive both sides of the emitter passing through a network of sprockets that transfer the belt from one side of the escapement 130 to the other so that the belt engages both sides of emitters entering into the escapement 130.
- the drive mechanism of escapement 130 is positioned or oriented horizontally and drives opposite sides of the emitters, it should be understood that in alternate embodiments the drive mechanism of escapement 130 may be positioned in different orientations to drive the emitter. For example, in one alternate form, the drive mechanism could be rotated ninety degrees (90Ā°) to drive opposite top and bottom surfaces of the emitter. Such an embodiment would likely be used in conjunction with emitters that do not have inlet protrusions, however, it is possible to use such a configuration even with emitters having inlet protrusions.
- a controller such as a PLC is used to drive a gear, such as star wheel 433, which has teeth positioned to drive or advance one emitter toward the guide bar 440.
- a gear such as star wheel 433, which has teeth positioned to drive or advance one emitter toward the guide bar 440.
- rotation of the star wheel 433 eventually results in advancement of an emitter toward the guide bar 140 which, in turn, forces the emitter on the guide bar 440 furthest from escapement 430 to be inserted into and bonded to tubing extruded from extruder 460.
- other forms of drive mechanism may be used such as drive wheels, shuttles, pneumatics, flat belts, V-belts, etc.
- the escapement 130 is preferably moveably between first and second positions like conveyor 120 (e.g., moveable between a first position wherein the guide bar is inserted and/ or engaged with the extruder 160 and a second position wherein the guide bar is removed or extracted from the extruder 160).
- the escapement 130 is connected to work surface 112 via base 136 and slides 138 which are connected to rails 114 on work surface 112.
- the rails 114 and slides 138 allow the escapement 130 to be moved back and forth between the first and second positions along with conveyor 120.
- the escapement 130 further includes shock absorbers 135, 137 and a locking mechanism 139 for locking the escapement 130 in either the first or second position.
- the shock absorbers 135, 137 are used to slow the base 136 of escapement 130 as it moves toward a limit of travel so that no jarring takes place. This is particularly important when moving the escapement into the first position so that the guide bar 140 enters the extruder 160 carefully and smoothly.
- the lock 139 is in the form of a clasp or cam toggle clamp type fastener and is capable of locking the escapement 130 into at least the first position. This helps ensure that the escapement 130 and guide bar 140 do not move once the guide bar 140 is inserted into the extruder 160.
- the lock 139 may be configured to lock the escapement 130 into both the first and second positions if desired.
- the apparatus 100 further includes inserter or guide bar assembly 140.
- the guide bar 140 includes an emitter channel 142 surrounded by a lower shell or shield 144 and an upper shell or shield 146.
- the lower and upper shells are made of a polymer such as a thermoplastic Polyether ether ketone (PEEK) material and are used to shield the emitters traveling through the emitter channel 142 from the excessive heat that is given off by the extruder 160 as the emitters pass through the portion of the guide bar 140 disposed within the extruder head 162.
- PEEK thermoplastic Polyether ether ketone
- the shields 144, 146 are made of a length sufficient to cover all emitters that pass through or are positioned near the extruder 160. However, in a preferred form and as illustrated in FIGS. 2A-B, the shields 144, 146 are made even longer than necessary so that there is more shield surface area to dissipate heat over making the shields operate much like heat sinks for guide bar assembly 140.
- the guide bar 140 also includes a brake or brake mechanism 148 positioned downstream from the extruder 160, adjacent or proximate to the bonding mechanism 150.
- the brake 148 prevents emitters from moving into the bonding mechanism 150 until driven into the bonding mechanism for connection to the extruded tube via the escapement drive mechanism 132.
- the brake 148 works in conjunction with the escapement 130 to space the emitters at predetermined or desired intervals within the extruded tube to form drip line 190 having emitters placed at regularly spaced intervals and prevents more than one emitter from being released at a time for bonding with tubing 190.
- brake 148 comprises a generally U-shaped or C- shaped bracket that extends about the emitter channel 142 and has two spring levers 148a, 148b that extend out over the emitter channel 142 that engage any emitter present in the emitter channel below at least a portion of the spring levers 148a, 148b to prevent the emitter from moving further downstream in the emitter channel 142 unless driven further downstream in the emitter channel 142 via the escapement drive mechanism 132.
- the outer surface of the emitter channel 142 defines a recess or notched channel within which the brake mechanism 148 is to be disposed in order to assist with positioning or alignment of the brake mechanism 148 on the guide bar 140.
- a clip with spring steel levers 148a, 148b is shown as the brake mechanism 148, it should be appreciated that any other brake structure capable of retaining emitters in emitter channel 142 may be used.
- a ball and detent mechanism may be used that provides enough friction to hold an emitter proximate to the brake mechanism 148 until the escapement 130 drives the emitter further downstream and moves another emitter into engagement with the brake mechanism 148.
- another form of friction fitting may be used between the emitter and the emitter channel 142 or brake mechanism 148, such as ribs, textured surfaces, etc.
- the guide bar 140 preferably includes a fastener, such as clamp 143, which is used to secure at least one of the lower and upper shields 144, 146 to the emitter channel 142.
- a base member 141 is also positioned proximate the clamp 143 for securing one end of the guide bar 140 and positioning same adjacent the escapement 130 so that emitters traveling through tooling apparatus 100 move smoothly from the escapement 130 to the guide bar 140.
- the emitter channel 142 has the same cross- sectional shape (e.g., T-shape) as the emitter channel defined by escapement 130 and defined by conveyor bridge 128.
- the base 141 preferably includes a horizontal portion 141a for securing the guide bar 140 to apparatus 100 and a vertical portion 141b which anchors the emitter channel 142 to the horizontal base portion 141a and apparatus 100.
- the vertical member 141b defines a circular opening through which the emitter channel 142 is disposed and held in alignment with the emitter channel of escapement 130.
- the guide bar 140 may be coated with a synthetic fluoropolymer of tetrafluoroethylene, such as a polytetrafluoroethylene (PTFE) (e.g., like the DuPont Co. brand TEFLON).
- PTFE polytetrafluoroethylene
- the apparatus 100 will preferably be connected to a vibratory drive, such as electric vibrating drive 149, so that the guide bar 140 may be gently vibrated at a high frequency to at least partially levitate or lift the emitters within emitter channel 142 and reduce the amount of friction present between the elastomeric emitters and the emitter channel 142 which, in turn, makes it easier to move the elastomeric emitters through the emitter channel 142 of guide bar 140.
- the horizontal portion 141a of guide bar base 141 is connected to vibratory drive 149 and the vibratory drive 149 is connected to base 136 so that the guide bar assembly 140 remains moveable between the first and second positions along with the escapement 130 and conveyor 120.
- the guide bar 140 in the first position the guide bar 140 is inserted or engaged with the extruder 160 so that emitters can be bonded to extruded tubing via bonding mechanism 150 and is removed or retracted from the extruder 160 in the second position.
- the vibratory drive 149 is not operable as the guide bar 140 is moved toward the first position and inserted through the extruder die head 162, however, the vibratory drive 149 would be setup such that even if it were operational during movement of the guide bar 140 toward the first position the vibration induced in the guide bar 140 and specifically the emitter channel 142 would not be sufficient to risk damaging the guide bar 140 on the extruder 160 or vice versa.
- vibratory drive 149 is similar to the electric vibratory drives used in connection with drum feeder 110.
- alternate forms of vibratory drives may be used for any of the vibratory drives disclosed herein (e.g., rotary vibrators, electromagnetic vibrators, piston vibrators, pneumatic vibrators, etc.).
- vibratory drives may be added to any of the components of apparatus 100 (e.g., bowl feeder 110, conveyor 120, escapement 130 and guide bar 140) in order to assist in transporting the elastomeric emitters through the system as desired.
- the bowl feeder 110 and guide bar 140 may be equipped with vibratory drives.
- guide bar 140 will include a system for cooling the guide bar 140 or emitters disposed therein.
- FIGS. 10A-B are partial cross-section views of the guide bar 140 of FIGS. 1A- 3B, 6 and 8-9, taken along lines 10-10 in FIG. 1C.
- the coolant system 142a is built into emitter channel 142 and comprises conduit or piping that is either drilled into or cast into the body of emitter channel 142.
- a coolant or heat transfer fluid is passed through the conduit 142a in order to cool emitter channel 142 and/ or transfer heat away from emitter channel 142 as the guide bar 140 is moved into and held in the first position wherein the guide bar 140 is disposed within extruder 160.
- the emitter channel 142 is made of a good thermal conductor so that heat transfer can readily take place throughout the guide bar 140 and within lower and upper shields 144, 146, respectively.
- the coolant is a liquid or vapor that can readily be circulated into and out of the guide bar assembly 140.
- the system 100 will have a temperature controller and temperature sensors, such as thermocouples, that the temperature controller can use to maintain the heat within the shields 144, 146 and/ or proximate emitter channel 142 at a desired temperature or temperature range.
- the conduit of coolant system 142a may be drilled or bored into the emitter channel 142 from the front and sides of the emitter channel 142 and then plugs, such as set screws 142b, may be inserted into the bore openings to seal the conduit 142a and leave only inlet and outlet ports 142c, 142d, respectively, free for fluid connection to the coolant system controlled by the temperature controller.
- the temperature controller could be configured as its own standalone control unit, or incorporated into the controller used in connection with any of the other components of system 100 (e.g., escapement PLC controller, conveyor controller, drum feeder controller, etc.).
- the lower and upper shields 144, 146 further assist in protecting the emitters 180 in emitter channel 142 from the heat generated by die head 162.
- the coolant system 142a works to protect the emitters 180 in emitter channel 142 from the heat generated by die head 162.
- the guide bar assembly 140 further includes an insert 142e which is positioned in and makes-up at least a portion of emitter channel 142.
- the insert 142e that forms the channel for the inlet protrusion of emitter 180.
- the insertion tooling 100 can be used to transport and manufacture drip line using different types of emitters.
- insert 142e may be used in conjunction with tooling 100 to transport elastomeric emitters and manufacture drip line using elastomeric emitters of the type disclosed in U.S. Published Patent Application No. 20130248616, published September 26, 2013, and International Patent Application Publication No. WO2013148672, published October 3, 2013.
- insert 142e may be removed and/ or replaced with a different insert in order to manufacture self-contained emitters having housing members such as those disclosed in U.S. Patent No. 7648085, issued January 19, 2010, U.S. Patent No. 8302887, issued November 6, 2012, U.S. Published Patent Application No. 20090266919, published October 29, 2009, and U.S. Published Patent Application No. 20090261183, published October 22, 2009, and U.S. Published Patent Application No. 20100282873, published November 11, 2010, all of which are incorporated herein by reference in their entirety.
- greater room is needed in the emitter channel 142 due to the fact that additional structures such as housings and/ or elastomeric membranes are present.
- upper shield 146 defines an upwardly extending recess 146a to accommodate an outlet chimney that is utilized in several of the emitters mentioned above.
- the guide bar 140 may be configured to transport and/ or insert only one specific type of emitter if desired, such as elastomeric emitter 180.
- the guide bar assembly 140 could likely be made of smaller diameter and/ or other features could be adjusted to cater specifically to the type of emitter being inserted.
- a single emitter channel could be 142 formed that provides the T-shaped channel of insert 142e and coolant system 142a of emitter channel 142, but all integrated into a single structure and, preferably, one that is smaller in shape.
- system 100 may be made capable of producing drip lines of smaller diameter (both inner and outer diameter) and/ or drip lines with conventional diameters but with smaller, less invasive emitters that cause less turbulence to fluid flowing through the tubing and provide less surface area for debris, such as grit, to build-up on inside the tubing.
- the guide bar assembly 540 includes a synthetic fluoropolymer insert of tetrafluoroethylene, such as a polytetrafluoroethylene (PTFE) like the DuPont Co. brand TEFLON.
- PTFE polytetrafluoroethylene
- the PTFE insert 547 allows the emitter 580 to smoothly move out from the brake mechanism of the guide bar assembly 540 and to pass into position under tractor wheel 552 of the bonding mechanism.
- the PTFE coating reduces friction between the emitter 580 and the guide bar assembly 540.
- an additional lubricant may be added to the insert 547, such as mineral oil.
- the oil will enhance the sliding of the emitter 580 on the guide bar 540 and, specifically, along the emitter channel and insert 547 of guide bar 540.
- the apparatus 100 further includes a bonding mechanism 150 for bonding the emitters 180 to the extruded tubing to form drip line 190.
- FIG. 15 illustrates a partial cross-sectional view of the bonding mechanism 150 taken along lines 15-15 in FIG. IE. As illustrated in this figure, the bonding mechanism 150 utilizes tractor wheel 152 to compress the exterior of the freshly extruded tube over the emitter 180 to bond emitter 180 to the inside of tube 190.
- the tractor wheel 152 is made of hardened steel and contoured to the shape of the tube so that pressure is applied evenly over the surface of the tube 190 and constant pressure is provided on the tube 190 and emitter 180 to ensure the upper surface of emitter 180 is bonded fully to the inside surface of tube 190.
- the radius of contour of the tractor wheel 152 does not extend beyond the width of the emitter 180 to reduce the risk lines will be formed in the tubing by outside edges of the tractor wheel 152 on the exterior surfaces of the extruded tube surface.
- FIG. 16A illustrates another partial cross-sectional view of the bonding mechanism 150 bonding the emitter 180 to tubing 190 and is taken along lines 16-16 in FIG. IE.
- the tractor wheel 152 can be seen bonding the emitter positioned on the roller tip 145 to tubing 190 and a second emitter can be seen positioned within the brake mechanism 148 of guide bar assembly 140.
- the guide bar assembly 140 would be filled with emitters behind the emitter held in brake mechanism 148.
- the bonding mechanism 150 will further define an aquarium chamber or portion 154 and calibrator 156 that the freshly bonded tube 190 and emitter 180 travel through.
- the bonded tube and emitter 190 is immersed in fluid, such as water, in aquarium 154 to start cooling and the calibrator 156 is used to continue to form and/ or size the extruded tubing into the desired tubing shape and size.
- the calibrator 156 preferably includes a plurality of openings therein in order to allow fluid to continue to contact the extruded tubing as it travels through the calibrator 156. From there the drip line 190 travels into a vacuum water tank 170 followed by a water cooling tank and then is run through a high speed perforator to make an emitter outlet opening in the finished drip line 190 and wound into spools of desired length.
- the vacuum water tank 170 allows the drip line 190 to cool and maintain the desired round tubing shape without flatting under the forces of gravity and once the drip line has cooled to a sufficient temperature where exposure to the forces of gravity will not affect the shape of the drip line 190, the tubing travels from the vacuum water tank 170 to the open-air water tank and then on to the spooling machine.
- the insertion tooling 100 can be removed from the extruder 160 (see FIG. 16B) so that tubing without emitters can be extruded from extruder 160 and run through tractor wheel assembly 150, vacuum water tank and water cooling tank 170 and wound via spooling machine.
- This allows for the same line to be used to run or manufacture drip line and regular tubing without emitters, which saves shop floor space and improves shop usage (e.g., ability to run second and third shifts), thereby making for a more efficient manufacturing setup and process.
- the guide bar assembly 140 may be configured to allow for setup and use with multiple types of emitters or different emitters so the same line can be used to manufacture multiple types of drip line as well as regular tubing (or non-drip/ emitter tubing). This too saves shop floor space and improves shop usage and efficiency.
- such a method comprises providing a first conveyor of a first type for transporting elastomeric emitters along tooling and a second conveyor of a second type, different than the first type of conveyor, for further transporting the elastomeric emitters along the tooling, and moving the elastomeric emitters from the first conveyor to the second conveyor to transport the elastomeric emitters further along the tooling.
- the method includes providing a vibratory drive mechanism connected to at least one of the first and second conveyors, and vibrating the at least one of the first and second conveyors, to reduce friction between the elastomeric emitters and the tooling and urge movement of the emitters along the tooling in a predetermined direction.
- the first conveyor may be a belt conveyor having a motor driven belt and the second conveyor may be a roller conveyor with a vibratory drive mechanism connected to the roller conveyor, and the method further includes driving the emitters along the belt conveyor and into the second conveyor via the motor driven belt, and rolling the emitters along the roller conveyor via the vibratory drive mechanism to align the emitters with an emitter drive mechanism.
- the apparatus 100 may also include an inserter for inserting a root growth inhibiting member, such as a copper insert, proximate to the outlet bath of the emitter 180 to reduce the risk of roots growing into the outlet of the emitter 180.
- a root growth inhibiting member such as a copper insert
- the copper insert will correspond in size and shape to the size and shape of outlet bath of emitter 180 and is, preferably, connected to the floor of the outlet bath so that it cannot shift and block flow of fluid through the emitter 180 and out of the emitter outlet.
- the copper insert is formed as a plate that is fixed to the bottom of the emitter outlet bath via an adhesive (e.g., glue, epoxy, resin, cement, etc.).
- the copper insert 846 has a generally rectangular shape that corresponds to the shape of the emitter outlet bath and defines a plurality of openings that correspond in location to the protrusions extending up from the floor of outlet bath which prevent the outlet from collapsing under increased fluid pressure within the drip line 190.
- the plurality of openings defined by the copper insert are sized so that the protrusions easily fit within the insert openings and the copper insert can be placed directly against the floor of the outlet bath of emitter 180.
- the copper insert may take a variety of different shapes and sizes and may be connected or affixed to the emitter 180 in a variety of different ways.
- the copper insert may be shaped to fit in only a portion of the outlet bath of emitter 180 (e.g., filling only a portion of the outlet bath rather than the entire floor of the outlet bath) and, thus, have a shape that does not correspond to the shape of the outlet bath of emitter 180.
- the copper insert may be made round, rectangular or triangular (or of any other polygonal) shape, non-polygonal in shape, and may be symmetrical or asymmetrical in shape.
- the copper insert could be provided in a rectangular shape that defines a single opening to allow the insert to be positioned on a single protrusion extending up from the emitter outlet bath, or it may define a plurality of openings that allow the insert to be positioned on a single row of protrusions extending up from the outlet bath, two rows of protrusions, etc.
- the copper insert may alternatively be affixed to the emitter 180 by way of another form of fastener besides adhesive, such as friction fit, tongue-and-groove (or mortise and tenon), screw, bolt, rivet, staple, hot weld, heat stake, pin, or other mating or interlocking structures, etc.
- adhesive such as friction fit, tongue-and-groove (or mortise and tenon), screw, bolt, rivet, staple, hot weld, heat stake, pin, or other mating or interlocking structures, etc.
- the openings defined by copper insert may be sized so that they create a friction or press fit engagement with the protrusions extending up from the outlet bath of the emitter 180.
- the protrusions may be shaped with a section of reduced diameter near the floor of the outlet bath so that the insert is pressed down over the protrusion until positioned within the reduced diameter section and held in place due to the adjacent protrusion portion being slightly larger in diameter than the opening defined by the insert to prevent the inset from lifting up from the floor of the outlet bath of emitter 180.
- it may be desired to position the copper insert up off of the floor of the outlet bath so that fluid flows over or along at least two sides of the insert.
- the openings defined by the copper insert may be sized so that insert cannot be positioned directly in contact with the floor of the outlet bath.
- the protrusions may have a reduced diameter section positioned somewhere between the floor of the outlet bath and the distal end of the protrusions to capture the insert somewhere there between and spaced from both the floor and distal end.
- the walls may define a notch, detent, groove or channel within which the copper insert is positioned and maintained.
- the walls may define one or more, or even a continuous, rib or shoulder or set of ribs and shoulders within which the copper insert is positioned and maintained.
- the insert may not be fastened or affixed to the emitter and may simply rest in the outlet bath.
- a method of inserting an elastomeric emitter comprising providing an insertion mechanism, disposing the insertion mechanism within an extruder and vibrating the insertion mechanism to reduce friction between the elastomeric emitter and the insertion mechanism.
- methods of assembling and/ or manufacturing drip line comprising providing an insertion mechanism, an extruder, and a bonding mechanism, and vibrating the insertion mechanism to transport the elastomeric emitter to the bonding mechanism as the extruder extrudes tubing and bonding the emitter to the extruded tube via the bonding mechanism.
- methods of compensating for increased friction between insertion tooling and elastomeric emitters comprising providing insertion tooling and an elastomeric emitter and vibrating the elastomeric emitter through at least a portion of the insertion tooling to place the elastomeric emitter in position for bonding to extruded tubing.
- one color may be used to identify an emitter or dip line that drips at a rate of one gallon per hour (1 GPH), another color may be used to identify an emitter or drip line that drips at a rate of two gallons per hour (2 GPH), another color may be used to identify an emitter or drip line that drips at four gallons per hour (4 GPH).
- some colors may be used to signify the source of water for a particular application. For example, the color purple is often used to indicate that reclaimed or recycled water is being used. If desired, any of the above embodiments and methods could include the addition of color for such purposes.
- the insertion tooling may be used to make drip lines with different spacing between emitters.
- a system may utilize a puller such as puller 773 and rely on the coiler 777 (which may be a combination puller/ coiler) to assist in collecting the finished product.
- the sole puller may be positioned far downstream of the process such as puller 776.
- the tester 775 will be positioned somewhere downstream of or on the latter half of the system or manufacturing product line behind the cutter or outlet opening maker/ installer 774 so that the tester 775 can test the dripline tubing itself and/ or the bond between the drip line and the emitters.
- any of the emitter drip line product manufacturing lines mentioned above may be equipped with an emitter bond tester as disclosed herein.
- any of these product manufacturing lines may be equipped with one or more controllers that control emitter insertion spacing, line speed, maintain fluid levels and constant vacuum pressure in tanks, and that monitor and react when the emitter bond tester detects a poorly bonded emitter/ conduit section in the drip line.
- the controller may mark the tubing with indicia that the coiler can detect and remove from the coiled drip line.
- a separate piece of equipment may be used to perform this function.
- the tester 775 further includes at least one of a window, monitor or display, meter and camera for monitoring air escaping from outlet passages in the conduit 790 to detect excessive amounts of air which occurs with a poorly bonded emitter. More particularly, when the conduit 790 is run through the fluid filled vacuum chamber 790b, air is drawing through the emitter producing bubbles in the water. Any voids or poorly bonded areas of the emitter will be detectable by the quantity and size of the bubbles escaping from the emitter and conduit 790. If voids or faulty bonding is present, additional air will be drawn through the emitter thereby creating more bubbles.
- a window, monitor or display, meter and camera for monitoring air escaping from outlet passages in the conduit 790 to detect excessive amounts of air which occurs with a poorly bonded emitter. More particularly, when the conduit 790 is run through the fluid filled vacuum chamber 790b, air is drawing through the emitter producing bubbles in the water. Any voids or poorly bonded areas of the emitter will be detectable by the quantity and size of
- the drip line will squirt water from the conduit at these points when put into use in the field and causing one area to receive much more water or fluid from the conduit than the remaining emitters in the drip line that are working properly.
- the tester 775 may be equipped with a camera for measuring the air or bubbles escaping from the outlets of the conduit 790 either in lieu of the flow meter 775q or in addition to the flow meter 775q.
- a high resolution camera such as the Cognex, In-Site 7402 model high resolution series vision system could be used for this purpose.
- a camera equipped tester 775 will also include a display (e.g., monitor, screen, etc.) that allows the camera's picture to be viewed either on a real time basis or in recall mode to illustrate the bubble image that led to a defective bond being detected.
- tester 775 forms a bubble leak detection system that can identify if emitters are properly bonded to the inner surface of the conduit so that the finished product operates as intended (i.e., drip line with emitters that trickle fluid out at a generally constant flow rate so the areas surrounding each emitter receive comparable amounts of fluid). While, vacuum tanks or bubble leak detectors have been used in the past to test the integrity of extruded conduit to make sure it is free of leaks, none have been used in the manner disclosed herein to detect the sufficiency of the bond between conduit and in-line emitters.
- a sensor such as flow meter 775q, for detecting air bubbles or air leaks from the conduit 790 is illustrated connected to the housing 775a and having a guide 775r positioned at least in part within the fluid of the tank 775b and proximate the conduit 790 to capture air escaping from the conduit 790 to assist the flow meter 775q in detecting leaks.
- tester 775 also includes a controller in communication with the flow meter 775q which is programmed to identify a poor bond between the emitter and conduit based on leaks detected by the flow meter or data provided by the flow meter 775q.
- the flow meter 775q is used to detect a leak rate of any air escaping from the conduit 790 and the controller identifies poor bonds based on leak rates at or above a predetermined threshold.
- the predetermined threshold for determining if a poor bond is present may be determined based on at least one of a size of the conduit being tested (e.g., inner diameter of tubing, tubing wall thickness, etc.), a size of the emitter bonded to the conduit, and/ or a flow rate of the emitter bonded to the conduit.
- the controller is programmed to take some action once a faulty bond is detected between an emitter and the conduit.
- this action could be to simply stop the product manufacturing line to correct the problem (e.g., remove the section of tubing or conduit with the poorly bonded emitter, mark the section for later removal, remove the section and reconnect the free ends of the line with a barbed coupler fitting, instruct the coiler to remove the section of tubing or conduit with the poorly bonded emitter, etc.).
- the method includes monitoring a sensor positioned proximate the conduit for air escaping from the conduit, identifying a poor bond between the emitter and surrounding conduit when the air escaping from the conduit is at or above a predetermined threshold, and taking corrective action in response to an identified poor bond to prevent said poorly bonded emitter from remaining in finished drip line in a present state.
- the flexible or elastomeric nature of the emitters discussed herein present additional challenges when it comes to manufacturing drip line or tubing using these emitters.
- the elastomeric or flexible nature of these emitters makes them difficult to detect once they have been bonded to the inside surface of the tubing.
- the flexible emitter does not produce the same detectable disruption in the shape of the tubing that a conventional hard or rigid plastic emitter produces, another detection method must be used (other than checking for disruptions in the surface of the tube) in order to locate the emitter so that the position of the emitter and emitter outlet can be detected to form the outlet opening in the outer tubing in the correct position or spot (e.g., the correct position, location, zone or target area of the tubing so that the emitter properly drips fluid at the desired flow rate).
- the flexible emitter does not create the pronounced outline or other identifiable characteristic that would indicate the position of the emitter within the tube, even in instances where the tube is temporarily flattened to detect the presence of the emitter.
- emitter locator or detector 778 An exemplary solution to the problems discussed herein is illustrated in FIGS. 20A- D and is referred to generally as emitter locator or detector 778.
- the emitter locator 778 would be positioned after the second vacuum cooling tank 772 (FIG. 18) and before the tubing or spooling reel, or coiler 777 (FIG. 18). More particularly, in a preferred form, emitter locator 778 would actually replace cutter 774 and be used to locate the emitter 780 inside of tubing 790, form the outlet opening in tubing 790 and verify that the outlet opening was formed in the correct location in tubing 790.
- puller 773 could be used in the tooling or production line as well, such as puller 773, emitter bond tester 775 and puller 776. It should be understood, however, that these items do not have to be present in all production line configurations.
- only one puller may be used, such as puller 776 instead of both puller 773 and puller 776.
- locator 778 could be equipped to integrate additional features or steps of the production line illustrated in FIG. 18.
- puller 773 may be integrated with emitter locator 778, such as by adding a tube pulling or driving mechanism on either side of the locator 778.
- additional tooling stations may be desired and used.
- additional cooling tanks may be provided in order to assist in cooling the extruded tubing down to a desired temperature, which typically takes longer with a thicker walled tube than in a thinner walled tube.
- fewer stations may be needed or desired.
- the tooling or production line can be customized to suit the product being produced.
- the emitter locator 778 preferably includes a housing 778a having an access panel such as door 778b and a tube entry point (e.g., entry port, channel or inlet) 778c and a tube exit point (e.g., exit port, channel or outlet) 778d.
- a tube entry point e.g., entry port, channel or inlet
- a tube exit point e.g., exit port, channel or outlet
- the tubing 790 moves through the emitter locator 778 from right to left as one looks at the front of the unit (although this could be reversed if desired).
- a first optical instrument 778e is positioned proximate the entry point 778c of the emitter locator 778.
- the first optical instrument 778e is a thermal imaging camera (i.e., thermal imager or thermal imaging detection camera) used to detect emitter 780 via the difference in heat signatures between the emitter 780 and surrounding tube 790 which has just been cooled in the production line via the fluid in vacuum sizing tank 770, water cooling tank 772 (if present), and any other water cooling tanks that are desired and present in the system.
- a thermal imaging camera i.e., thermal imager or thermal imaging detection camera
- the first and second optical instruments 778e and 778m are different from one another, where the first 778e is used to detect the emitter location, while the second 778m is used to double-check or confirm that the outlet opening was formed in the correct spot or desired target area. While the first and second optical instruments 778e, 778m are different from one another in the preferred embodiment, it should be understood that in alternate embodiments they may be identical to one another (e.g., both may be a thermal imager such as camera 778e).
- the cutter 778f is positioned between the first and second optical instruments 778e, 778m, respectively, and will be rotatable to allow the cutter 778f to be properly aligned with the emitter 780 even when twists in the tubing 790 have occurred and caused the emitter to be positioned off-center or offset from the original longitudinal center line the emitter is positioned along when initially bonded to tubing 790.
- the cutter 778f is disposed in a vented enclosure (e.g., cabinet or receptacle) defined by housing 778a and preferably comprises a rotatable high-speed drill head assembly having a rotating structure, such as drum 778g, within which high-speed pneumatic drill head 778h is disposed and/ or coupled.
- the assembly includes a chain drive having drive motor 778i which is used to rotate the drum 778g and drill head 778h via a coupling, such as chain 778j.
- the motor 778i is situated in housing 778a so that its output shaft is positioned generally parallel to the longitudinal axis of the tubing 790 passing through locator 778.
- the actuator or power switch 778n is fixedly or permanently mounted to the housing and protrudes through a corresponding recess or portal in access panel 778b so that the switch 778n can be pressed very aggressively without damaging its mounting, such as in cases when a user aggressively actuates (e.g., bangs) the switch with a body part (e.g., hand, knee, etc.) to immediately shut down the production line.
- a user aggressively actuates e.g., bangs
- a body part e.g., hand, knee, etc.
- second optical instrument 778m is a conventional vision inspection camera fixed proximate the downstream opening 778d and not a thermal imaging camera.
- the second optical instrument 778m could be a second thermal imaging camera or other visual inspection device capable of confirming the outlet opening in tubing 790 is located within the detected and tracked outlet target zone or area.
- the second optical instrument 778m may be rotatably mounted to locator 778 in order to be moved into any angular position necessary to confirm whether or not the outlet opening in tubing 790 is made in the target zone.
- Some advantages of the configurations and embodiments contemplated herein for the emitter locator 778 are that they allow emitter locations to be detected in irrigation drip line tubes of various thickness and in applications that are otherwise difficult to determine the emitter location, such as those using a flexible emitter, such as a single piece elastomeric emitter like that disclosed herein.
- Another advantage is that the tooling allows the drill head to rotate with the tubing to accommodate variations in the manufacturing process that cause the extruded tubing to rotate.
- tooling allows the drill hole to be inspected to verify that it was drilled in the correct location.
- the emitter locator 778 can be used with numerous types of emitters, not just elastomeric emitters (e.g., rigid flat emitters, cylindrical emitters, etc.).
- An advantage the emitter locator 778 provides over other techniques for detecting the presence of an emitter is that it works regardless the thickness of the conduit used (e.g., tubing, hose, etc.) and can work with thicker walled tubes or hose (e.g., hard hose or tubing, heavy walled hose or tubing, etc.).
- the controller 778o can also confirm placement accuracy of the outlet opening within the tubing outlet target area with the vision inspection camera 778m.
- the controller 778o is an onboard controller mounted to the housing 778a and configured to allow for programing of the emitter locator 778 at the emitter locator itself.
- the controller 778o is disposed on an angled side panel of housing 778a in order to make it easy for the user to operate the controls of locator 778.
- the angled side panel is integrated into access panel 778b of locator 778 in order to give easy access and serviceability to the backside of the electronics by simply opening panel 778b.
- the sprocket 778k is coupled to the driven gear 7781 via drive chain 778] so that the controller 778o can rotate the high-speed pneumatic cutter 778f in clockwise and counterclockwise directions about the outer diameter of tubing 790 by actuating the motor 778i to drive the sprocket 778k in clockwise and counterclockwise directions, respectively.
- FIG. 22 illustrates a simple flow diagram or chart that a controller may run in accordance with the embodiments disclosed herein.
- the routine starts at step 779a and checks to see if an emitter is detected or located in step 779b. If not, the routine loops back to start 779a. If so, the system identifies the target outlet area or area where it is desired to make the outlet opening in tubing 790 in step 779c given the detected location of emitter 780. The system then forms the outlet opening in tubing 790 via step 779d and then confirms the accuracy of the placement of that opening in step 779e.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Water Supply & Treatment (AREA)
- Environmental Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Radiation-Therapy Devices (AREA)
- Drilling And Boring (AREA)
- Vehicle Body Suspensions (AREA)
- Feeding Of Articles To Conveyors (AREA)
- Geophysics And Detection Of Objects (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662363678P | 2016-07-18 | 2016-07-18 | |
PCT/US2017/042378 WO2018017476A1 (en) | 2016-07-18 | 2017-07-17 | Emitter locating system and related methods |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3484274A1 true EP3484274A1 (en) | 2019-05-22 |
EP3484274A4 EP3484274A4 (en) | 2020-03-04 |
EP3484274B1 EP3484274B1 (en) | 2021-10-13 |
Family
ID=60941748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17831631.1A Active EP3484274B1 (en) | 2016-07-18 | 2017-07-17 | Emitter locating system and related methods |
Country Status (6)
Country | Link |
---|---|
US (2) | US10375904B2 (en) |
EP (1) | EP3484274B1 (en) |
CY (1) | CY1124765T1 (en) |
ES (1) | ES2897971T3 (en) |
IL (2) | IL300957A (en) |
WO (1) | WO2018017476A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7648085B2 (en) | 2006-02-22 | 2010-01-19 | Rain Bird Corporation | Drip emitter |
US9877440B2 (en) | 2012-03-26 | 2018-01-30 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
US10631473B2 (en) | 2013-08-12 | 2020-04-28 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
US10330559B2 (en) | 2014-09-11 | 2019-06-25 | Rain Bird Corporation | Methods and apparatus for checking emitter bonds in an irrigation drip line |
US10375904B2 (en) * | 2016-07-18 | 2019-08-13 | Rain Bird Corporation | Emitter locating system and related methods |
US11051466B2 (en) | 2017-01-27 | 2021-07-06 | Rain Bird Corporation | Pressure compensation members, emitters, drip line and methods relating to same |
US10626998B2 (en) | 2017-05-15 | 2020-04-21 | Rain Bird Corporation | Drip emitter with check valve |
USD883048S1 (en) | 2017-12-12 | 2020-05-05 | Rain Bird Corporation | Emitter part |
JP6659744B2 (en) * | 2018-01-25 | 2020-03-04 | ćć”ćććÆę Ŗå¼ä¼ē¤¾ | Robot system |
US11985924B2 (en) | 2018-06-11 | 2024-05-21 | Rain Bird Corporation | Emitter outlet, emitter, drip line and methods relating to same |
US10794730B1 (en) * | 2019-06-03 | 2020-10-06 | Wenbo Yang | Position tracking system |
CN110509524B (en) * | 2019-07-19 | 2021-08-31 | ęµę±å®éēµę°ē§ęęéå ¬åø | Pipe tractor |
US20230086517A1 (en) * | 2020-12-08 | 2023-03-23 | N-Drip Ltd. | System for fabricating extruded dripper |
CN116841215B (en) * | 2023-08-29 | 2023-11-28 | å¤©ę“„čŖęÆ č¾¾ē§ęęéå ¬åø | Motion control method and system based on numerical control machine tool machining optimization |
CN117283852B (en) * | 2023-11-24 | 2024-02-09 | ę±čååē¹ē§é«ååęęč”份ęéå ¬åø | PEEK extruder extrusion pressure detection device |
Family Cites Families (553)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US375904A (en) * | 1888-01-03 | Machine for cutting moldings | ||
DE112706C (en) | ||||
US2794321A (en) | 1957-06-04 | Fuel pressure regulator | ||
US2174515A (en) | 1936-09-01 | 1939-10-03 | Reynolds Gas Regulator Co | Apparatus for automatically controlling reducing valves in gas regulators |
US2508403A (en) | 1943-12-11 | 1950-05-23 | Ind Man Corp | Compound master cylinder |
US2449731A (en) | 1946-03-29 | 1948-09-21 | Robert F Therrien | Growth poisoning sewer joint |
US2625429A (en) | 1949-05-19 | 1953-01-13 | Skinner Irrigation Company | Sprinkling system |
US2639194A (en) | 1950-12-21 | 1953-05-19 | Spraying Systems Co | Antidrip valve for spray nozzles |
US2683061A (en) | 1950-12-27 | 1954-07-06 | Standard Oil Dev Co | Wash distribution system |
US2762397A (en) | 1952-06-24 | 1956-09-11 | Hays Mfg Co | Flow control device |
US2873030A (en) | 1954-05-04 | 1959-02-10 | Cuno Eng Corp | Filter |
US3004330A (en) | 1957-05-23 | 1961-10-17 | Revere Copper & Brass Inc | Tubes for structural and fluid conducting purposes, and methods of making the same |
BE569339A (en) | 1957-07-31 | |||
US3199901A (en) | 1962-01-15 | 1965-08-10 | Svenska Flaektfabriken Ab | Means for connecting thin-walled plane elements |
US3155612A (en) | 1962-05-02 | 1964-11-03 | Union Tank Car Co | Fluid distributor for tanks |
AT228723B (en) | 1962-06-29 | 1963-08-12 | Ferdinand Schulz | Atomizing nozzle and nozzle head |
GB1023016A (en) | 1963-02-27 | 1966-03-16 | Standard Telephones Cables Ltd | Manufacture of tubes |
US3323550A (en) | 1964-05-21 | 1967-06-06 | Lee Co | Fluid resistor |
US3434500A (en) | 1964-12-23 | 1969-03-25 | Dresser Ind | Fluid pressure reducer |
US3361359A (en) | 1966-01-10 | 1968-01-02 | Richard D. Chapin | Soil soaking system |
IL25197A (en) | 1966-02-17 | 1970-01-29 | Blass I | Irrigation dripper unit |
US3467142A (en) | 1967-08-08 | 1969-09-16 | Du Pont | Flow device and method of manufacture thereof |
US3426544A (en) | 1967-11-24 | 1969-02-11 | Robert Curtis | Aqua-tube sub-surface irrigation |
US3586291A (en) | 1969-02-24 | 1971-06-22 | Jerry P Malec | Means for controlling fluid flow |
IL35081A (en) | 1969-08-11 | 1973-03-30 | A C I Operations | Trickle irrigation system |
US3698195A (en) | 1970-05-25 | 1972-10-17 | Richard D Chapin | Water distributing hose |
US3939875A (en) | 1970-08-06 | 1976-02-24 | Boyle And Osborn | Permeable flexible plastic tubing |
US3830067A (en) | 1970-08-06 | 1974-08-20 | D Boyle | Irrigation system |
US3729142A (en) | 1970-12-03 | 1973-04-24 | Diaz J Leal | Drippers for irrigation |
US3693888A (en) | 1970-12-10 | 1972-09-26 | Sub Terrain Irrigation | Fluid emitter |
ES402875A1 (en) | 1971-05-23 | 1975-05-16 | Standards Inst Israel | Trickle irrigation unit |
US3815636A (en) | 1971-06-23 | 1974-06-11 | Iplex Plastic Ind Pty Ltd | Pressure reducing valve and flow control device |
US3897009A (en) | 1971-07-06 | 1975-07-29 | Rangel Garza Javier | Trickle irrigation system |
US3727635A (en) | 1971-07-12 | 1973-04-17 | T Todd | Pressure compensating trickle rate fluid outlet |
US3697002A (en) | 1971-07-21 | 1972-10-10 | American Standard Inc | Flow control device |
US3753527A (en) | 1971-08-06 | 1973-08-21 | Rocket Research Corp | Drip irrigation system |
US3719327A (en) | 1971-08-13 | 1973-03-06 | Mcmahan Brothers Mfg Co Inc | Drip irrigation nozzle |
US3903929A (en) | 1971-11-10 | 1975-09-09 | Anjac Plastics | Irrigation conduit |
US3957292A (en) | 1971-12-30 | 1976-05-18 | Diggs Richard E | Quick-connect fittings for a trickle type irrigation system |
US3973732A (en) | 1971-12-30 | 1976-08-10 | Diggs Richard E | Quick-connect fittings for a trickle type irrigation system |
US3833019A (en) | 1971-12-30 | 1974-09-03 | R Diggs | Quick-connect fittings for a trickle type irrigation system |
US3791587A (en) | 1972-03-17 | 1974-02-12 | M Drori | Flow-reducing device particularly useful for trickle irrigation |
US3780946A (en) | 1972-05-30 | 1973-12-25 | A Smith | Self-cleaning emitter |
US3873030A (en) | 1972-07-17 | 1975-03-25 | Jaime Suhagun Barragan | One-piece drip irrigation device |
US3779468A (en) | 1972-07-21 | 1973-12-18 | L Spencer | Trickle irrigation system |
US3807430A (en) | 1972-07-24 | 1974-04-30 | J Keller | Flushing flow control emitter unit |
US3777987A (en) | 1972-08-04 | 1973-12-11 | Allport Davies | Irrigation device |
JPS5146530B2 (en) | 1972-08-31 | 1976-12-09 | ||
JPS5030376B2 (en) | 1972-09-20 | 1975-09-30 | ||
US3874598A (en) | 1972-10-02 | 1975-04-01 | Dow Chemical Co | Irrigation tube |
US3777980A (en) | 1972-11-03 | 1973-12-11 | Allport Davies | Irrigation fitting |
US3856333A (en) | 1972-12-07 | 1974-12-24 | Johns Manville | Drip irrigator device |
US3797741A (en) | 1973-01-18 | 1974-03-19 | L Spencer | Intermittent irrigation system |
US3804334A (en) | 1973-02-09 | 1974-04-16 | B Curry | Controlled moisture emitter |
ZA74755B (en) | 1973-02-14 | 1975-01-29 | Iplex Plastic Ind Ltd | Button drip feed device |
US3814377A (en) | 1973-02-28 | 1974-06-04 | T Todd | Pressure compensating trickle valve |
US3870236A (en) | 1973-03-14 | 1975-03-11 | Sahagun Barragan Jaime | Dripping irrigation tubing |
USRE28095E (en) | 1973-03-15 | 1974-07-30 | Water distbibuting hose | |
US3851896A (en) | 1973-09-24 | 1974-12-03 | D Olson | In-line emitter for hose |
US3896999A (en) | 1973-09-28 | 1975-07-29 | Jaime Sahagun Barragan | Anti-clogging drip irrigation valve |
US3863845A (en) | 1974-03-18 | 1975-02-04 | Rain Bird Sprinkler Mfg | Emitter for low rate, low pressure discharge of irrigating water |
IL44502A (en) | 1974-03-26 | 1979-10-31 | Lego Lemelstrich Ltd | Flow restrictor for irrigation systems |
US3940066A (en) | 1974-07-11 | 1976-02-24 | The Toro Company | Pop-up sprinkler head having flow adjustment means |
US3929258A (en) | 1974-07-29 | 1975-12-30 | Westates Space Era Products | Fluid dispensing structures |
AR205938A1 (en) | 1974-08-14 | 1976-06-15 | Hydro Plan Eng Ltd | DRIP UNIT |
US3966233A (en) | 1974-08-16 | 1976-06-29 | Diggs Richard E | Irrigation apparatus |
US4059228A (en) | 1974-09-03 | 1977-11-22 | Salco Products, Inc. | Self cleaning, pressure responsive emitter valve for soil irrigation |
US3885743A (en) | 1974-09-05 | 1975-05-27 | Apache Corp | Flow control device for providing low flow rates |
US4058257A (en) | 1974-12-05 | 1977-11-15 | Lloyd Spencer | Irrigation emitter |
US3948285A (en) | 1975-01-29 | 1976-04-06 | Rain Bird Sprinkler Mfg. Corporation | Pressure and flow regulation device |
US3981452A (en) | 1975-02-10 | 1976-09-21 | Gershon Eckstein | Irrigation pipes with dripper units and method of its manufacture |
US4017958A (en) | 1975-02-13 | 1977-04-19 | Diggs Richard E | Irrigation apparatus |
IL46706A (en) | 1975-02-25 | 1976-09-30 | Gilead Gideon | Water conducting and emitting device |
US3970251A (en) | 1975-03-06 | 1976-07-20 | Harmony Emitter Company, Inc. | Pipe insertable emitter for irrigation systems |
US4054152A (en) | 1975-03-11 | 1977-10-18 | Nippondenso Co., Ltd. | Check valve |
US3995436A (en) | 1975-03-13 | 1976-12-07 | Diggs Richard E | Apparatus for uniform dispersion of digested effluent |
US4385727A (en) | 1975-04-22 | 1983-05-31 | Lloyd Spencer | Irrigation emitter tube |
US3954223A (en) | 1975-06-20 | 1976-05-04 | Rain Bird Sprinkler Mfg., Corporation | Trickle irrigator |
US4036435A (en) | 1975-07-23 | 1977-07-19 | Pecaro George J | Drip irrigation emitter |
US3998244A (en) | 1975-08-08 | 1976-12-21 | Clarence Bentley | Drip irrigation valve with helical flow path |
US3993248A (en) | 1975-08-13 | 1976-11-23 | Harmony Emitter Company, Inc. | Fluid flow regulator |
US4095750A (en) | 1975-10-14 | 1978-06-20 | Gideon Gilead | Water conduit |
US4037791A (en) | 1975-10-17 | 1977-07-26 | Leslie Fred Mullett | Flow-control device |
NZ181702A (en) | 1975-10-17 | 1978-07-28 | Iplex Plastic Ind Pty Ltd | Drip feed deivce:attachment to water supply tube |
US4008853A (en) | 1975-10-31 | 1977-02-22 | Vernay Laboratories, Inc. | Pressure responsive self-purging emitter |
US4022384A (en) | 1975-12-08 | 1977-05-10 | Hancor, Inc. | Irrigation tubing |
US3998427A (en) | 1975-12-11 | 1976-12-21 | Clarence Bentley | Self-cleaning drip irrigation valve |
US4047995A (en) | 1976-02-02 | 1977-09-13 | Leal Diaz J | Hoses for irrigation by dripping and the like and the process to manufacture the same |
US4084749A (en) | 1976-04-11 | 1978-04-18 | Mordeki Drori | Flow reducing devices particularly useful as drip emitters for drip irrigation |
CH599025A5 (en) | 1976-04-23 | 1978-05-12 | Grapha Holding Ag | |
IT1062989B (en) | 1976-05-25 | 1985-02-11 | Aid Agricolture Ind Dev | CONSTANT FLOW SELF-CLEANING DRIPPER FOR DROP IRRIGATION SYSTEMS |
US4077570A (en) | 1976-05-26 | 1978-03-07 | Harmony Emitter Company, Inc. | Penetrably mounted emitter for conduits |
CA1053726A (en) | 1976-06-07 | 1979-05-01 | Gershon Eckstein | Irrigation pipes with dripper units and method of its manufacture |
US4132364A (en) | 1976-08-23 | 1979-01-02 | Harmony Emitter Company, Inc. | Casing mounted emitter |
US4147307A (en) | 1976-10-04 | 1979-04-03 | Christy Mark H | Multiple emitter flow control |
IL50650A (en) | 1976-10-10 | 1979-05-31 | Drori Mordeki | Regulated flow-reducing device particularly useful for drip irrigation |
US4573640A (en) | 1976-10-26 | 1986-03-04 | Hydro-Plan Engineering Ltd. | Irrigation emitter unit |
US4384680A (en) | 1976-10-26 | 1983-05-24 | Hydro-Plan Engineering Ltd. | Fluid flow regulator unit |
IL50766A (en) | 1976-10-26 | 1983-06-15 | Hydro Plan Eng Ltd | Irrigation emitter unit |
IT1086606B (en) | 1976-11-29 | 1985-05-28 | Althouse Victor E | SILICONIC RUBBER CLOSING ELEMENT AND PROCEDURE TO APPLY IT |
US4121771A (en) | 1977-01-17 | 1978-10-24 | Hendrickson Ralph L | Drip irrigation emitter |
MX143576A (en) | 1977-04-11 | 1981-06-03 | Jaime Sahagun Barragan | IMPROVEMENTS IN INTEGRAL DRIP IRRIGATION SYSTEM |
US4143820A (en) | 1977-03-08 | 1979-03-13 | Bright Sr Elvin M | Emitter for drip irrigation systems |
AU511876B2 (en) | 1977-04-12 | 1980-09-11 | Drossbach, Hubert Maximilian | Irrigation pipe |
US4122590A (en) | 1977-05-09 | 1978-10-31 | Lloyd Spencer | Means and method of installing emitters in irrigation tubing |
US4134550A (en) | 1977-05-31 | 1979-01-16 | Bright Sr Elvin M | Liquid flow control device |
US4160323A (en) | 1977-06-20 | 1979-07-10 | Tracy Ronald J | Portable dental cabinet |
DE2729458C3 (en) | 1977-06-30 | 1981-07-16 | Arcu Armaturindustri AB, Alstermo | Flow regulator, especially for installation between a water crane and a water pipe end |
JPS5471432A (en) | 1977-11-17 | 1979-06-08 | Sotokazu Rikuta | Flow rate constant value automatic control valve |
IL67824A (en) | 1977-11-24 | 1985-08-30 | Hydro Plan Eng Ltd | Irrigation drip emitter unit |
US4273286A (en) | 1977-11-29 | 1981-06-16 | Ris Irrigation Systems | Conduit for drip irrigation systems |
US4354639A (en) | 1977-12-16 | 1982-10-19 | Delmer William M | Multiple chamber drip irrigation hose |
US4196853A (en) | 1977-12-16 | 1980-04-08 | Delmer W A | Multiple chamber drip irrigation hose |
US4226368A (en) | 1978-01-23 | 1980-10-07 | The Toro Company | Multiple vortex dripper |
IL55533A0 (en) | 1978-09-07 | 1978-12-17 | Lego Lemelstrich Ltd | Improved drip emitter |
US4177947A (en) | 1978-10-13 | 1979-12-11 | Reed Irrigation Systems Pty. Ltd. | Irrigation device |
IL55798A0 (en) | 1978-10-25 | 1978-12-17 | Drori Mordeki | Fluid distribution devices particularly useful for drip irrigation and mathod and apparatus for making same |
US4161291A (en) | 1978-11-01 | 1979-07-17 | Clarence Bentley | Emitter |
HU177567B (en) | 1978-11-15 | 1981-11-28 | Budapesti Mueszaki Egyetem | Sprinkler |
US4235380A (en) | 1979-05-15 | 1980-11-25 | Delmer W A | Multiple chamber drip irrigation hose |
DE2924708A1 (en) | 1979-06-19 | 1981-01-22 | Gideon Gilead | METHOD FOR PRODUCING AN IRRIGATION HOSE AND METHOD OF A IRRIGATION HOSE PRODUCED BY THIS METHOD |
US4225307A (en) | 1979-06-29 | 1980-09-30 | Magera Matthias R | Refractory insulation for skid pipes and the like in reheating furnaces |
IL57986A (en) | 1979-08-06 | 1982-11-30 | Hydro Plan Eng Ltd | Irrigation emitter unit |
ES483222A1 (en) | 1979-08-07 | 1980-04-16 | Neoplast Ind | Production of drip irrigation hose |
IL58176A0 (en) | 1979-09-04 | 1979-12-30 | Bron Dan | A self-regulating nozzle for a liquid supply line |
IL58773A (en) | 1979-11-22 | 1982-12-31 | Hydro Plan Eng Ltd | Emitter unit |
US4331293A (en) | 1979-11-23 | 1982-05-25 | Rangel Garza Javier | Emitters for drip irrigation systems, micro-sprinklers and similars, of the pressure compensating type and also those types whose flow varies in relation to the changes in pressure |
US4247051A (en) | 1979-12-20 | 1981-01-27 | Davies Allport | Irrigation hose and method for its construction |
IL59305A (en) | 1980-02-04 | 1983-06-15 | Naan Mech Works | Irrigation line having desired flow output characteristics and method of producing same |
US4460129A (en) | 1980-02-13 | 1984-07-17 | Olson Donald O | Turbulent flow emitter |
IL60071A (en) | 1980-05-14 | 1990-02-09 | Gilead Gideon | Apparatus for drip irrigation |
US4344576A (en) | 1980-09-15 | 1982-08-17 | Smith Allan L | Trickle flow irrigation valve |
FR2500259A1 (en) | 1981-02-26 | 1982-08-27 | Dumont Marc | DRIP DROP IRRIGATION TRANSMITTER TO BE MOUNTED ON A LIQUID MASS CONDUIT |
US4392616A (en) | 1981-04-06 | 1983-07-12 | Olson Donald O | Self-perforating drip irrigation device |
US4824019A (en) | 1981-06-10 | 1989-04-25 | Lew Hyok S | Lawn-border sprinkler |
NZ200960A (en) | 1981-06-22 | 1985-11-08 | Ris Irrigation Syst | Drip feed device containing disc with tortuous flow paths on each side |
IL63341A (en) | 1981-07-15 | 1996-09-12 | Naan Mech Works | Drip irrigation apparatus |
US5181952A (en) | 1981-10-26 | 1993-01-26 | Battelle Memorial Institute | Root-growth-inhibiting sheet |
US5744423A (en) | 1981-10-26 | 1998-04-28 | Battelle Memorial Institute | Method and composition for protecting pavement structure from growth of plants in splits of the structure |
US5116414A (en) | 1981-10-26 | 1992-05-26 | Battelle Memorial Institute | Long-term control of root growth |
US4534515A (en) | 1982-04-01 | 1985-08-13 | Chapin Richard D | Drip irrigation system employing adjacently arranged flow-restricting passages |
US4572756A (en) | 1982-04-01 | 1986-02-25 | Chapin Richard D | Drip irrigation system employing adjacently arranged flow-restricting passages |
US4473191A (en) | 1982-04-01 | 1984-09-25 | Chapin Richard D | Drip irrigation system employing flow regulation |
US4642152A (en) | 1982-04-01 | 1987-02-10 | Chapin Richard D | Drip irrigation system employing flow regulation |
US4627903A (en) | 1982-07-26 | 1986-12-09 | Exxon Research & Engineering Company | Electrode for an electrostatic atomizing device |
EP0101066B1 (en) | 1982-08-14 | 1988-12-21 | Gustav E. Dr. Phil. Utzinger | Liquid-spraying system |
US4430020A (en) | 1982-09-29 | 1984-02-07 | Robbins Jackie W D | Drip irrigation hose |
IL67635A (en) | 1983-01-07 | 1988-03-31 | Rosenberg Peretz | Fluid flow control device particularly useful as a drip irrigation emitter |
GB8306852D0 (en) | 1983-03-12 | 1983-04-20 | Lucas Ind Plc | Hydraulic flow control valve |
US4502631A (en) | 1983-03-24 | 1985-03-05 | Rain Bird Sprinkler Mfg. Corp. | Trickle irrigation unit |
GB8310080D0 (en) | 1983-04-14 | 1983-05-18 | Interox Chemicals Ltd | Bleach composition |
US4522339A (en) | 1983-06-03 | 1985-06-11 | Ris Irrigation Systems | Irrigation fitting with installation barb and associated barb installation tool |
US4702787A (en) | 1983-06-10 | 1987-10-27 | Agrifim Irrigation International Nv | Process for making drip irrigation lines |
US4513777A (en) | 1983-08-22 | 1985-04-30 | General Motors Corporation | Pressure compensated flow control valve assembly for fluids containing finely divided solids |
IL70355A (en) | 1983-11-30 | 1988-05-31 | Plassim Tech Plastics Works | Irrigation emitter unit |
US4626130A (en) | 1983-12-12 | 1986-12-02 | Chapin Richard D | Drip irrigation system |
US4726520A (en) | 1984-04-30 | 1988-02-23 | Rain Bird Sprinkler Mfg. Corp. | Continuous tube emitter |
AU574775B2 (en) | 1984-04-30 | 1988-07-14 | Rain Bird Sprinkler Manufacturing Corporation | Continuous tube emitter |
US4613080A (en) | 1984-06-29 | 1986-09-23 | Rain Bird Sprinkler Mfg. Corp. | Multiple outlet trickle irrigation unit |
DE3525591A1 (en) | 1984-07-20 | 1986-01-23 | Gardena Kress + Kastner Gmbh, 7900 Ulm | Outlet valve for a drip-watering system |
US4753394A (en) | 1984-08-13 | 1988-06-28 | Goodman Clarence R | Trickle irrigation systems with improved emitters |
IL74332A (en) | 1985-02-13 | 1991-09-16 | Rosenberg Peretz | Pulsator device for converting line fluid pressure to a pulsating pressure |
US4807668A (en) | 1985-03-01 | 1989-02-28 | Roberts James C | Drip irrigation tape |
US4722759A (en) | 1985-03-01 | 1988-02-02 | James C. Roberts | Apparatus for fabricating drip irrigation tape |
AT384146B (en) | 1985-05-15 | 1987-10-12 | Arpe Plast Kunststoff | PLANTS FOR IRRIGATING PLANTS AND METHOD FOR PRODUCING A TUBE FOR IRRIGATING PLANTS |
GB8512575D0 (en) | 1985-05-17 | 1985-06-19 | Dunlop Ltd | Hose |
IL75336A (en) | 1985-05-29 | 1992-07-15 | Plastro Gvat | Method for producing a drip irrigation line and an emitter therefor |
US4791805A (en) | 1985-06-07 | 1988-12-20 | Expertek, Inc. | Fuel tank leak detection apparatus |
US4765541A (en) | 1985-07-30 | 1988-08-23 | Rex B. Candy | Drip emitter housing |
US4653695A (en) | 1985-09-11 | 1987-03-31 | Drip Irrigation Systems, Ltd. | Pressure compensating drip irrigation emitter |
IL76553A (en) | 1985-10-03 | 1993-01-31 | Naan Mech Works | Drip irrigation apparatus |
US4775046A (en) | 1986-01-17 | 1988-10-04 | Future Automation, Inc. | Transport belt for production parts |
IL78045A0 (en) | 1986-03-05 | 1986-07-31 | Bron Dan | Drip emitter |
CH678476A5 (en) | 1986-04-11 | 1991-09-30 | Maillefer Sa | |
US4722481A (en) | 1986-05-05 | 1988-02-02 | Jack Lemkin | Adjustable drip emitter |
US4726527A (en) | 1986-07-07 | 1988-02-23 | Mendenhall Edward V | Drip irrigation emitter |
US4984739A (en) | 1986-08-04 | 1991-01-15 | Davies Allport | Drip irrigation hose |
AP43A (en) | 1986-11-12 | 1989-07-16 | Silkbell Ltd | "Flow regulating device." |
FR2608464B1 (en) | 1986-12-18 | 1989-03-10 | Degremont | DEVICE FOR INTRODUCING A FLUID INTO A RECEIVING MEDIUM, SUCH AS THAT OF AN APPARATUS USED FOR THE TREATMENT OF LIQUIDS, ESPECIALLY WATER |
US5200132A (en) | 1987-03-31 | 1993-04-06 | Plastro Gvat | Method and an apparatus for producing a drip-irrigation emitter |
US4824025A (en) | 1987-05-26 | 1989-04-25 | Miller David B | One-piece in-line pressure compensating drip irrigation emitter |
ZA873956B (en) | 1987-06-03 | 1988-01-27 | Gilead Gideon | Irrigation device |
US4817875A (en) | 1987-09-21 | 1989-04-04 | David Karmeli | Flexible pipe for trickle irrigation |
US4880167A (en) | 1987-09-23 | 1989-11-14 | James Hardie Irrigation, Inc. | Irrigation hose with linear turbulent flow emitter |
US4850531A (en) | 1988-02-01 | 1989-07-25 | James Hardie Irrigation, Inc. | Drip emitter |
US5673852A (en) | 1988-02-16 | 1997-10-07 | Roberts; James C. | Drip irrigation tape and method of manufacture |
US5318657A (en) | 1988-02-16 | 1994-06-07 | Roberts James C | Drip irrigation tape and method of manufacture |
US5732887A (en) | 1988-02-16 | 1998-03-31 | Roberts; James C. | Drip irrigation tape and method of manufacture |
EP0341573A3 (en) | 1988-05-13 | 1990-05-09 | Sartorius Ag | Process and apparatus for the cross-flow filtration of liquids |
IL86549A (en) | 1988-05-30 | 1991-04-15 | Hydro Plan Eng Ltd | Process and installation for producing a drip irrigation conduit |
US5324371A (en) | 1988-05-30 | 1994-06-28 | Hydro-Plan Engineering Ltd. | Process for producing a drip irrigation conduit |
ES2021890B3 (en) | 1988-07-18 | 1991-11-16 | Egli Fischer & Co | TUBULAR CLAMP |
GB2223426B (en) | 1988-08-03 | 1992-09-30 | Kitechnology Bv | Apparatus for forming plastics coated tube |
US4854158A (en) | 1988-08-22 | 1989-08-08 | Expertek, Inc. | Method and apparatus for leak testing a fluid containing chamber |
YU226088A (en) | 1988-12-14 | 1990-10-31 | Vojko Rajster | Device for converting laminar liquid flow into drops |
CA1320918C (en) | 1989-02-13 | 1993-08-03 | Showa Denko Kabushiki Kaisha | Container |
US4935992A (en) | 1989-04-10 | 1990-06-26 | Micro Plastics, Inc. | Leak reduction hose clamp |
US5898019A (en) | 1989-09-01 | 1999-04-27 | Battelle Memorial Institute | Method and composition for protecting pavement structure from growth of seeds and roots in splits of the structure |
IL91571A (en) | 1989-09-08 | 1995-03-30 | Agroteam Consultants Ltd | Drip irrigation line and method of making same |
US5141360A (en) | 1989-09-18 | 1992-08-25 | David Zeman | Irrigation tubing |
US5031837A (en) | 1990-01-02 | 1991-07-16 | Raindrip, Inc. | Drip irrigator |
IL93255A (en) | 1990-02-02 | 1997-03-18 | Plastro Gvat | Drip irrigation lines |
US5052625A (en) | 1990-03-02 | 1991-10-01 | Ruskin Rodney R | Pressure compensating drip irrigation system |
US5137216A (en) | 1990-04-03 | 1992-08-11 | Raindrip, Inc. | Multiple unit drip irrigator |
DE4012922A1 (en) | 1990-04-23 | 1991-10-24 | Juergen Haro | METHOD FOR TRANSPORTING INJURED OR HELPLESS, AND RESCUE CAPSULE FOR CARRYING OUT THE METHOD |
US5096206A (en) | 1990-06-01 | 1992-03-17 | W. E. Hall Company | Pipe joint sealer |
US5183208A (en) | 1990-07-20 | 1993-02-02 | Agroteam Consultants Ltd. | Drip irrigation emitter |
US5123984A (en) | 1990-08-17 | 1992-06-23 | T-Systems International, Inc. | Method and apparatus for forming ports in drip irrigation hose |
GR1001008B (en) | 1990-10-03 | 1993-03-31 | Emmanouil Dermitzakis | Dripping pipe with internal joined drippers |
US5676897A (en) | 1990-10-03 | 1997-10-14 | Dermitzakis; Emmanuil | Dripline duct with internally located emiters and manufacture process |
IL95972A (en) | 1990-10-12 | 1993-03-15 | Naan Irrigation Systems | Method and apparatus for producing pipes for drip irrigation |
IL96106A (en) | 1990-10-25 | 1998-04-05 | Hydro Plan Eng Ltd | Fluid flow control unit for example for an irrigation emitter |
US5111995A (en) | 1990-12-18 | 1992-05-12 | Rain Bird Sprinkler Mfg. Corp. | Drip irrigation tube |
EP0493299B1 (en) | 1990-12-20 | 1997-05-02 | Plastika Kritis S.A. | Method of producing a drip irrigation pipe and a drip irrigation pipe |
US5252162A (en) | 1991-02-22 | 1993-10-12 | William A. Delmer | Multiple chamber drip irrigation hose made from a single strip |
US5118042A (en) | 1991-02-22 | 1992-06-02 | William A. Delmer | Multiple chamber drip irrigation hose |
US5111996A (en) | 1991-02-27 | 1992-05-12 | Drip Irrigation Systems, Ltd. | Incremental pressure-compensating drip irrigation emitter |
IL97564A (en) | 1991-03-15 | 1996-07-23 | Lego Lemelstrich Ltd | Drip irrigation apparatus |
US5236130A (en) | 1991-03-15 | 1993-08-17 | Lego M. Lemelshtrich Ltd. | Drip irrigation apparatus |
IL98039A (en) | 1991-05-02 | 1994-02-27 | Rosenberg Peretz | Irrigation system drip irrigation devices and saddle clamps particularly useful therein |
US5246171A (en) | 1991-06-06 | 1993-09-21 | Roberts James C | Drip irrigation tape including a series of alternately offset elongated chambers |
US5337597A (en) | 1991-06-20 | 1994-08-16 | Expertek | Bubble emission volume quantifier |
US5232159A (en) | 1991-07-15 | 1993-08-03 | Abbat Products International, Inc. | Sprinkler and edging apparatus |
GR1000745B (en) | 1991-08-01 | 1992-12-30 | Eurodrip A V E G E Anonymos Vi | Water emitter in line pressure compensating with autoregulation for dripirrigation |
IL99281A (en) | 1991-08-22 | 1998-04-05 | Naan Irrigation Systems | Irrigation device |
US5207386A (en) | 1991-10-01 | 1993-05-04 | Hydro-Plan Engineering Ltd. | Flow emitter units moulds for use in the manufacture thereof |
US5399160A (en) | 1991-10-04 | 1995-03-21 | Minnesota Mining And Manufacturing Company | Irrigation tubing set having compliant sections |
US5216784A (en) | 1991-10-07 | 1993-06-08 | Tyton Corporation | Conduit clamp |
IL100126A (en) | 1991-11-22 | 1994-11-28 | Hydromatic Ltd | Method and apparatus for making drip irrigation devices |
US5232160A (en) | 1991-11-22 | 1993-08-03 | Hendrickson Bros. | Multiple-outlet irrigation device and regulator |
WO1993013866A1 (en) | 1992-01-21 | 1993-07-22 | Wade Manufacturing Co. | Pulsator for irrigation systems and the like |
IL100749A (en) | 1992-01-24 | 1996-01-31 | Plastro Gvat | Regulated drip irrigation emitter with improved membrane |
US5423501A (en) | 1992-02-10 | 1995-06-13 | Yu; Michael | Irrigation hose hanger |
US5192027A (en) | 1992-02-11 | 1993-03-09 | Delmer Daniel W C | Drip irrigation devices and plastic films with copper powder incorporated |
IL109486A0 (en) | 1994-04-29 | 1994-07-31 | Naan Irrigation Systems | Irrigation apparatus |
IL101071A (en) | 1992-02-26 | 1997-09-30 | Naan Irrigation Systems | Drip irrigation apparatus |
US5820028A (en) | 1992-02-26 | 1998-10-13 | Naan Irrigation Systems | Irrigation apparatus |
US5253807A (en) | 1992-03-17 | 1993-10-19 | Wade Manufacturing Co. | Multi-outlet emitter and method |
US5294212A (en) | 1992-04-01 | 1994-03-15 | Hydroplan Engineering Ltd. | Irrigation systems |
USRE35857E (en) | 1992-04-08 | 1998-07-21 | Hydroplan Engineering Ltd. | Irrigation systems |
IT1255120B (en) | 1992-04-30 | 1995-10-20 | Flexible tube for drip irrigation, having integrated emitters | |
US5327941A (en) | 1992-06-16 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Cascade orificial resistive device |
US5340027A (en) | 1992-06-26 | 1994-08-23 | Michael Yu | Pressure-compensated self-flushing dripper |
AU664913B2 (en) | 1992-08-13 | 1995-12-07 | Implico B.V. | A hydrogel composition and methods of making it |
US5332160A (en) | 1992-10-26 | 1994-07-26 | Agrifim Irrigation International N.V. | Multi-layer drip irrigation conduit |
US5310438A (en) | 1992-12-16 | 1994-05-10 | Agrifim Irrigation International N.V. | Process for making low cost drip irrigation lines using plastic extrusion and film blowing techniques |
US5441203A (en) | 1993-01-25 | 1995-08-15 | Lurmark Limited | Spray nozzle holder containing two valves for flow control |
US5324379A (en) | 1993-01-27 | 1994-06-28 | Drip Irrigation Systems, Ltd. | Method and apparatus for producing drip irrigation conduit |
US5282578A (en) | 1993-02-08 | 1994-02-01 | T-Systems International, Inc. | Self-protecting irrigation hose and method |
US6394412B2 (en) | 1993-04-02 | 2002-05-28 | Netafim (A.C.S.) Ltd. | Controlled valve |
NZ266948A (en) | 1993-05-26 | 1998-02-26 | T Systems Int Inc | Drip irrigation hose; outlets from regulating passage each comprise a single longitudinal slit, water drips from outlets when hose is pressurised; method of manufacture |
US5522551A (en) | 1993-05-26 | 1996-06-04 | T-Systems International, Inc. | Drip irrigation hose and method for its manufacture |
US5333793A (en) | 1993-07-21 | 1994-08-02 | T-Systems International, Inc. | Drip irrigation hose with pressure compensation and method for its manufacture |
US5636797A (en) | 1993-07-30 | 1997-06-10 | Cohen; Amir | Drip irrigation emitter and flow control unit included therein |
US5634594A (en) | 1993-07-30 | 1997-06-03 | Cohen; Amir | Flow control device particularly useful in drip irrigation emitters |
US5400973A (en) | 1993-07-30 | 1995-03-28 | Cohen; Amir | Pressure responsive regulated flow restrictor useful for drip irrigation |
US6109296A (en) | 1993-08-06 | 2000-08-29 | Austin; Cary M. | Dribble flow valve |
US6557819B2 (en) | 1993-08-06 | 2003-05-06 | Cary M. Austin | Roll seal control valve |
IL106973A (en) | 1993-09-10 | 1996-09-12 | Hydromatic Ltd | Method and apparatus for making simultaneously a number of drip irrigation lines with preformed members |
US5442001A (en) | 1993-09-14 | 1995-08-15 | National Starch And Chemical Investment Holding Corporation | Use of low toxicity solvents in waterborne adhesives |
US5413282A (en) | 1993-10-28 | 1995-05-09 | James Hardie Irrigation, Inc. | Pressure compensating emitter with shut down flush |
IL107444A (en) | 1993-10-29 | 1999-03-12 | Aran Eng Dev Ltd | Drip irrigation line flushing valve |
IL108171A (en) | 1993-12-24 | 2000-01-31 | Hydromatic Ltd | Flow reducer devices and drip irrigation emitter including same |
US5465905A (en) | 1994-03-17 | 1995-11-14 | Mister Dripper Company, Llc | Irrigation system with multi-functional irrigation control valves |
US5711482A (en) | 1994-05-03 | 1998-01-27 | Yu; Michael | Resilient disk drip irrigation devices |
US6085986A (en) | 1994-05-03 | 2000-07-11 | Yu; Michael | Oscillating disk drives |
US6305617B1 (en) | 1994-05-03 | 2001-10-23 | Michael Yu | Oscillating disk dental hygiene device |
US5722601A (en) | 1994-05-26 | 1998-03-03 | T-Systems International, Inc. | Drip irrigation hose and method of its manufacture |
JPH0817860A (en) | 1994-06-30 | 1996-01-19 | Oki Electric Ind Co Ltd | Manufacture of electronic part |
US5865377A (en) | 1994-07-19 | 1999-02-02 | T-Systems International, Inc. | Drip irrigation hose and method for its manufacture |
IL110856A0 (en) | 1994-09-04 | 1994-11-28 | Lego Irrigation Ltd | Irrigation apparatus including pulsators |
US5531381A (en) | 1994-10-05 | 1996-07-02 | Ruttenberg; Gideon | Pulsating drip laterals |
US5620143A (en) | 1994-10-24 | 1997-04-15 | Drip Tape Manufacturers & Engineers, Inc. | Constant-flow irrigation tape and method of making |
US5785785A (en) | 1994-10-24 | 1998-07-28 | Drip Tape Manufacturers & Engineers, Inc. | Method of making constant flow irrigation tape |
US5591293A (en) | 1994-11-14 | 1997-01-07 | Agrifim Irrigation Internaional N.V. | Process for manufacturing drip irrigation systems using plastic lamination/extrusion techniques |
FR2727890B1 (en) | 1994-12-07 | 1997-01-24 | Kertscher Sa E | METHOD OF MANUFACTURING DRIP IRRIGATION PIPES |
FR2728655B1 (en) | 1994-12-21 | 1997-01-24 | Air Liquide | EXTERNAL MIXTURE TYPE BURNER |
US5615838A (en) | 1995-03-10 | 1997-04-01 | Drip Irrigation Systems, Ltd. | In-line retention drip emitter |
US5871325A (en) | 1995-04-19 | 1999-02-16 | Jabil Circuit, Inc. | Thin support for PC board transfer system |
US5628462A (en) | 1995-08-15 | 1997-05-13 | Miller; David B. | Drip irrigation emitter |
US5651999A (en) | 1995-08-15 | 1997-07-29 | Pilot Industries, Inc. | Apparatus for testing extruded tubing |
US5688072A (en) | 1995-12-14 | 1997-11-18 | Micro Irrigation Technologies, Inc. | Agricultural drip tape |
US5727733A (en) | 1996-01-19 | 1998-03-17 | Gideon Ruttenberg | Pulsating devices |
US5813603A (en) | 1996-02-16 | 1998-09-29 | Vernay Laboratories, Inc. | Low throughput water system flow control members and methods of inhibiting swelling of such members |
US6026850A (en) | 1996-02-27 | 2000-02-22 | Global Agricultural Technology And Engineering, Llc | Pressure regulating valve |
IL117326A (en) | 1996-03-01 | 1999-11-30 | Cohen Amir | Regulated flow-restrictor devices particularly useful in drip irrigation |
IL118377A (en) | 1996-05-22 | 2001-12-23 | Cohen Amir | Irrigation emitters having reduced sensitivity to clogging |
IL119237A (en) | 1996-09-11 | 1998-10-30 | Gvat Plastro | Flow-regulating element and drip irrigation units utilizing same |
US5887640A (en) | 1996-10-04 | 1999-03-30 | Semi-Solid Technologies Inc. | Apparatus and method for semi-solid material production |
US6120634A (en) | 1997-02-26 | 2000-09-19 | Micro Irrigation Technologies, Inc. | Method and apparatus for forming agricultural drip tape |
US5820029A (en) | 1997-03-04 | 1998-10-13 | Rain Bird Sprinkler, Mfg. Corp. | Drip irrigation emitter |
US5957391A (en) | 1997-03-07 | 1999-09-28 | T-Systems International, Inc. | Drip irrigation hose with self-cleaning inlet and method for its manufacture |
US6015102A (en) | 1997-03-07 | 2000-01-18 | T-Systems International, Inc. | External emitter for drip irrigation hose |
EP0872172B1 (en) | 1997-04-18 | 2000-11-29 | Swisscab S.A. | Method for manufacturing a dripper irrigation tube and dripper used in such a tube |
IL124071A (en) | 1997-04-18 | 2001-12-23 | Swisscab Sa | Method for manufacturing a drip irrigation tube and dripper unit used therein |
WO1998050167A1 (en) | 1997-05-06 | 1998-11-12 | T-Systems International, Inc. | Pressure-compensating drip irrigation hose and method for its manufacture |
US6217726B1 (en) | 1997-05-22 | 2001-04-17 | Therma Corporation, Inc. | Tube inner surface electropolishing device with electrolyte dam |
KR100211100B1 (en) | 1997-06-18 | 1999-07-15 | ģķ¬ģ§ | Irrigation hose |
AU8297198A (en) | 1997-07-09 | 1999-02-08 | T-Systems International, Inc. | Unibody pressure-compensating emitter |
IL121967A (en) | 1997-10-14 | 2001-06-14 | Hydro Plan Eng Ltd | Emitter unit |
IL121998A0 (en) | 1997-10-19 | 1998-03-10 | Rosenberg Peretz | Fluid-flow control device particularly useful as a drip-irrigation emitter |
US5875815A (en) | 1997-10-20 | 1999-03-02 | Nelson Irrigation Corporation | Combination pressure regulator/drain check valve |
DE69829653T2 (en) | 1997-11-14 | 2005-09-08 | Sumitomo Osaka Cement Co., Ltd. | METHOD FOR PRODUCING ANTIMICROBIAL METAL PARTS AND METAL PARTS MANUFACTURED THEREFOR |
US6062245A (en) | 1997-11-21 | 2000-05-16 | Berglind; Eric J. | Gaseous fuel burner manifold with integral pressure regulator assembly |
IL122777A (en) | 1997-12-28 | 2003-12-10 | Amir Cohen | Valve controlled drip irrigation lines |
GR980100147A (en) | 1998-04-27 | 1999-12-31 | *ļæ½65tF fs@ K@*66 0ļæ½ f9 | Method and device for the manufacture of a drip irrigation conduit |
IL124704A (en) | 1998-06-01 | 2002-04-21 | Cohen Amir | Method and apparatus for making dripper lines |
US5988211A (en) | 1998-07-06 | 1999-11-23 | Randolph W. Cornell | I.V. flow controller |
AU4717999A (en) | 1998-07-06 | 2000-01-24 | Rain Bird Sprinkler Manufacturing Corporation | Irrigation tube with flexible margin |
ES2212175T3 (en) | 1998-07-08 | 2004-07-16 | Apswisstech S.A. | MANUFACTURING PROCEDURE OF A DRIP PIPE AND MANUFACTURING LINE FOR THEIR REALIZATION. |
US5996909A (en) | 1998-07-15 | 1999-12-07 | Lin; Ching-Bin | Water-penetrable drip irrigation pipe |
IT1305415B1 (en) | 1998-08-20 | 2001-05-04 | Carmelo Giuffre | PROCESS AND PLANT FOR THE MANUFACTURE OF DROP IRRIGATION PIPES |
FI109964B (en) | 1998-11-02 | 2002-11-15 | Lp Tutkimuskeskus Oy | Method and apparatus for the treatment of cereal grains |
US6164605A (en) | 1998-11-04 | 2000-12-26 | General Motors Corporation | Brake line captured band clamp |
WO2000030760A1 (en) | 1998-11-20 | 2000-06-02 | T-Systems International, Inc. | Drip irrigation hose with root deterrent strip |
IL131716A (en) | 1998-12-21 | 2006-09-05 | Amir Cohen | Drip irrigation emitters |
JP2000228417A (en) | 1999-02-04 | 2000-08-15 | Sony Corp | Semiconductor device, manufacture thereof, electronic module and electronic equipment |
US6238081B1 (en) | 1999-03-23 | 2001-05-29 | Hydro Systems Company | Ultra-lean dilution apparatus |
US6334958B1 (en) | 1999-05-05 | 2002-01-01 | Rodney Ruskin | Process for minute dosing of gravity media filters |
IL129817A (en) | 1999-05-06 | 2002-12-01 | Plassim Tech Plastics Works | Method for producing an irrigation pipeline with inner emitters |
JP2001144204A (en) | 1999-11-16 | 2001-05-25 | Nec Corp | Semiconductor device and manufacture thereof |
US6213408B1 (en) | 1999-11-18 | 2001-04-10 | Eureka Technologies Ltd | Flow regulator and corresponding method with pressure responsive flow regulation |
US20030089803A1 (en) | 1999-11-19 | 2003-05-15 | Mark Huntley | Drip irrigation hose with emitters having different discharge rates |
AU2001227026A1 (en) | 2000-02-02 | 2001-08-14 | Metzerplas Industries Ltd. | Manufacture of drip irrigation apparatus |
IL134695A0 (en) | 2000-02-23 | 2001-07-24 | Naan Irrigation Systems C S Lt | Flow regulators with flexibile diaphragms |
GR20000100065A (en) | 2000-02-28 | 2001-10-31 | Emitter with water inlet filter and method of assembly thereof | |
US6464152B1 (en) | 2000-04-06 | 2002-10-15 | Eurodrip, S.A. | Self-cleaning pressure compensating irrigation drip emitter |
DE10018291A1 (en) | 2000-04-13 | 2001-10-25 | Sieghard Schiller Gmbh & Co Kg | Device for coating workpieces |
US6620278B1 (en) | 2000-04-18 | 2003-09-16 | Nelson Irrigation Corporation | Drip tape manufacturing process |
US6460786B1 (en) | 2000-06-14 | 2002-10-08 | Roberts Group Holdings Llc | Drip irrigation tape with indicia |
US6382530B1 (en) | 2000-07-10 | 2002-05-07 | Nelson Irrigation Corporation | Pressure compensating drip tape |
US6371390B1 (en) | 2000-08-21 | 2002-04-16 | Amir Cohen | Drip irrigation hose and method of making same |
US6886761B2 (en) | 2000-08-21 | 2005-05-03 | Amir Cohen | Drip irrigation hose and method and apparatus for making same |
FR2814215B1 (en) | 2000-09-18 | 2003-06-27 | Snecma Moteurs | SELF-CLEANING DOSING DEVICE |
EP1192853B1 (en) | 2000-09-27 | 2006-09-20 | Eberhard Kertscher | Method for the continuous production of pipes for drip irrigation |
US6561443B2 (en) | 2000-10-03 | 2003-05-13 | Valplastic U.S.A., Llc | Drip irrigation tape |
FR2816691B1 (en) | 2000-11-10 | 2002-12-27 | Coflexip | CATHODIC PROTECTION DEVICE FOR FLEXIBLE DUCTS |
USD450550S1 (en) | 2000-11-16 | 2001-11-20 | Roberts Group Holdings, Llc | Flow channel for drip irrigation with biased cavity |
USD455055S1 (en) | 2000-11-16 | 2002-04-02 | Roberts Groups Holdings, Llc | Flow channel for drip irrigation with central cavity |
US6343616B1 (en) | 2000-12-15 | 2002-02-05 | Charles R. Houtchens | Drip emitter attaching apparatus |
US6513734B2 (en) | 2001-01-08 | 2003-02-04 | Giacomo Bertolotti | Pressure compensated discharge emitter |
US20020104902A1 (en) | 2001-02-08 | 2002-08-08 | Eran Eckstein | Inline dripper with micro-tube connector |
US6499687B2 (en) | 2001-03-12 | 2002-12-31 | Keith R. Bryant | Drip line irrigation tubing dispenser |
AU2002303144A1 (en) | 2001-03-16 | 2002-10-03 | The Toro Company | Drip irrigation emitter |
IL142245A0 (en) | 2001-03-26 | 2002-03-10 | Netafim A C S Ltd | Method and system for mounting a sprayer on wires |
US20030023112A1 (en) | 2001-04-11 | 2003-01-30 | Jiamin Lang | Benzoate/alkanoate ester compositions |
ITSV20010012A1 (en) | 2001-04-20 | 2002-10-20 | Irritec Srl | SELF-COMPENSATING EMITTER FOR DROP DROP IRRIGATION |
US6830203B2 (en) | 2001-06-27 | 2004-12-14 | Mohammad Neyestani | Self-discharging drip irrigation |
IL147275A0 (en) | 2001-08-07 | 2002-08-14 | Rosenberg Peretz | Water irrigation system and method, and control unit useful therein |
US7056966B2 (en) | 2001-08-30 | 2006-06-06 | Velsicol Chemical Corporation | Liquid benzoate ester compositions and aqueous polymer compositions containing same as plasticizers |
US6583207B2 (en) | 2001-08-30 | 2003-06-24 | Velsicol Chemical Corporation | Liquid benzoate ester compositions and aqueous polymer compositions containing same as plasticizers |
US6817548B2 (en) | 2001-09-05 | 2004-11-16 | R.M. Wade & Co. | Fluid distribution emitter and system |
CN1225507C (en) | 2001-10-22 | 2005-11-02 | äøč±åå¦ę Ŗå¼ä¼ē¤¾ | Polycarbonate composition, additional record disk base plate and disk and method for making disk |
US6821928B2 (en) | 2001-11-06 | 2004-11-23 | Rodney Ruskin | Method to reduce the rate of diffusion of slow-release materials through polymers and process for making drip irrigation devices with long-term control of root growth |
JP2003211028A (en) | 2001-11-14 | 2003-07-29 | Asmo Co Ltd | Washer nozzle with check valve and hose joint with check valve |
US6750760B2 (en) | 2001-11-15 | 2004-06-15 | Broan-Nutone | Door chime assembly and method |
US7175113B2 (en) | 2001-11-26 | 2007-02-13 | Amir Cohen | Drip irrigation hose and method for making same |
US6736337B2 (en) | 2002-02-08 | 2004-05-18 | The Toro Company | Pressure compensating drip irrigation hose |
US20050133613A1 (en) | 2002-03-10 | 2005-06-23 | Yaron Mayer | System and method for more efficient automatic irrigation based on a large number of cheap humidity sensors and automatic faucets |
US9491913B2 (en) | 2002-03-10 | 2016-11-15 | Batya Barhon Mayer | System and method for more efficient automatic irrigation based on a large number of cheap humidity sensors and automatic faucets |
WO2003095557A1 (en) | 2002-05-08 | 2003-11-20 | Teijin Chemicals, Ltd. | Polycarbonate resin composition, pellet thereof, and molded article thereof |
US6996932B2 (en) | 2002-05-17 | 2006-02-14 | Kruer Thomas R | Unitized mat to facilitate growing plants |
US6997402B2 (en) | 2002-05-17 | 2006-02-14 | Kruer Thomas R | Unitized mat to facilitate growing woody plants |
IL150032A (en) | 2002-06-04 | 2005-08-31 | Rosenberg Peretz | Valve assembly and pulsator device constructed therewith |
US20030226913A1 (en) | 2002-06-11 | 2003-12-11 | R.M. Wade & Co. | Emitter with pressure compensating fluid control valve |
US20040018263A1 (en) | 2002-07-24 | 2004-01-29 | Rami Hashimshony | Apparatus useful for continuous forming of thermoplastic material and method for use thereof |
AU2002324050A1 (en) | 2002-08-11 | 2004-03-11 | Hugo Weber | Cleaning system for surfaces exposed to poor weather conditions |
IL151446A0 (en) | 2002-08-22 | 2003-04-10 | Netafim A C S Ltd | Integral dripping emitter |
EP1403025A1 (en) | 2002-09-27 | 2004-03-31 | Eberhard Kertscher | Apparatus for the continuous production of drip irrigation pipes |
ES2223241B1 (en) | 2002-10-02 | 2006-05-16 | Irrimon, S.A.U. | SELF-COMPENSATING DRIP IRRIGATION ISSUER, WITH UNIDIRECTIONAL FLOW DEVICE. |
US6827298B2 (en) | 2002-10-18 | 2004-12-07 | National Diversified Sales, Inc. | Adjustable flow bubbler for drip irrigation systems |
US6581262B1 (en) | 2002-10-29 | 2003-06-24 | Michael Myers | Installation tool for irrigation emitter barbs |
US7887664B1 (en) | 2003-05-05 | 2011-02-15 | The Toro Company | Continuous molded emitter |
US7048010B2 (en) | 2003-05-08 | 2006-05-23 | Netafim (A.C.S.) Ltd. | Drip irrigation system |
KR200325113Y1 (en) | 2003-06-16 | 2003-09-02 | ź¹ģ¶ģ¼ | Water pressure adjustment valve for falling drop of water hose |
RU2240682C1 (en) | 2003-07-21 | 2004-11-27 | ŠŠ¾Š»Š³Š¾Š³ŃŠ°Š“ŃŠŗŠ°Ń Š³Š¾ŃŃŠ“Š°ŃŃŃŠ²ŠµŠ½Š½Š°Ń ŃŠµŠ»ŃŃŠŗŠ¾Ń Š¾Š·ŃŠ¹ŃŃŠ²ŠµŠ½Š½Š°Ń Š°ŠŗŠ°Š“ŠµŠ¼ŠøŃ | Drop-type drainage outlet |
ATE341935T1 (en) | 2003-08-20 | 2006-11-15 | Eberhard Kertscher | DRILLING EQUIPMENT FOR DRIP IRRIGATION PIPES |
WO2005020667A2 (en) | 2003-08-22 | 2005-03-10 | Nelson Irrigation Corporation | Traveling sprinkler incorporating automatic water supply valve docking station |
EP1541013A1 (en) * | 2003-12-12 | 2005-06-15 | The Thomas Machines SA | Method of fabrication of drip irrigation conduits |
US7007916B2 (en) | 2004-02-27 | 2006-03-07 | The Toro Company | Low flow valve improvement |
JP2005294451A (en) | 2004-03-31 | 2005-10-20 | Sharp Corp | Semiconductor integrated circuit, method for manufacturing the same, and semiconductor integrated circuit device |
US7748930B2 (en) | 2004-05-10 | 2010-07-06 | Developmental Technologies, Llc | Fluid and nutrient delivery system and associated methods |
US7712253B2 (en) | 2004-05-10 | 2010-05-11 | Developmental Technologies, Llc | Fluid and nutrient delivery system and associated methods |
US20050258279A1 (en) | 2004-05-24 | 2005-11-24 | Nelson Irrigation Corporation | Pressure compensating drip tape and related method |
EP1765516A4 (en) | 2004-05-28 | 2007-09-05 | Jardinier Planter Systems Inc | Water-conserving surface irrigation systems and methods |
US7270280B2 (en) | 2004-06-21 | 2007-09-18 | Netafim Ltd. | Disc shape dripper |
US20050284966A1 (en) | 2004-06-23 | 2005-12-29 | Defrank Michael | Emitter |
US7389950B2 (en) | 2004-08-12 | 2008-06-24 | Sun-Nan Lo | Sprinkler having movable nozzles |
US20060043219A1 (en) | 2004-09-02 | 2006-03-02 | Moshe Raanan | Drip irrigation pipe |
AU2004208646A1 (en) | 2004-09-03 | 2006-03-23 | Netafim Ltd. | Drip irrigation pipe |
IL164043A (en) | 2004-09-13 | 2010-11-30 | Plastro Irrigation Systems Ltd | Dual component drip emitter and its production means |
RU2275791C1 (en) | 2004-09-20 | 2006-05-10 | Š¤ŠµŠ“ŠµŃŠ°Š»ŃŠ½Š¾Šµ Š³Š¾ŃŃŠ“Š°ŃŃŃŠ²ŠµŠ½Š½Š¾Šµ Š¾Š±ŃŠ°Š·Š¾Š²Š°ŃŠµŠ»ŃŠ½Š¾Šµ ŃŃŃŠµŠ¶Š“ŠµŠ½ŠøŠµ Š²ŃŃŃŠµŠ³Š¾ ŠæŃŠ¾ŃŠµŃŃŠøŠ¾Š½Š°Š»ŃŠ½Š¾Š³Š¾ Š¾Š±ŃŠ°Š·Š¾Š²Š°Š½ŠøŃ "ŠŠ¾Š»Š³Š¾Š³ŃŠ°Š“ŃŠŗŠ°Ń Š³Š¾ŃŃŠ“Š°ŃŃŃŠ²ŠµŠ½Š½Š°Ń ŃŠµŠ»ŃŃŠŗŠ¾Ń Š¾Š·ŃŠ¹ŃŃŠ²ŠµŠ½Š½Š°Ń Š°ŠŗŠ°Š“ŠµŠ¼ŠøŃ" | Dropper (versions) |
ITMI20041915A1 (en) | 2004-10-08 | 2005-01-08 | Agriplast Srl | IRRIGATION DROP PIPE WITH INTERNAL EMITTERS AND EMITTERS FOR THE SAME |
US7284302B2 (en) | 2004-12-21 | 2007-10-23 | Heyco, Inc. | Band clamp |
US20060144965A1 (en) | 2005-01-05 | 2006-07-06 | Ron Keren | Irrigation flushing system |
US7219684B2 (en) | 2005-01-28 | 2007-05-22 | Rain Bird Corporation | Saddle tee and tool for irrigation lines |
IL167015A (en) | 2005-02-21 | 2013-01-31 | Plastro Irrigation Systems Ltd | In-line system of mini sprinklers and method and apparatus for making same |
US20060186228A1 (en) | 2005-02-23 | 2006-08-24 | Belford James W | Irrigation dripper and pipe |
US7108205B1 (en) | 2005-03-01 | 2006-09-19 | D.R.T.S. Enterprises Ltd. | Drip irrigation system employing parallel adjacent flowpaths |
EP1701147B1 (en) | 2005-03-10 | 2008-04-23 | The Thomas Machines SA | Apparatus for producing pipes and method for corresponding fault detection |
CN101147108B (en) | 2005-03-22 | 2010-06-02 | ēÆēåäøęęÆåå·„ēØęéå ¬åø | Constant flow valve |
US7363938B1 (en) | 2005-03-22 | 2008-04-29 | Global Agricultural Technology And Engineering, Llc | Constant flow valve assembly |
US8302887B2 (en) | 2005-03-31 | 2012-11-06 | Rain Bird Corporation | Drip emitter |
US7445168B2 (en) | 2005-05-04 | 2008-11-04 | A.I. Innovations, N.V. | Anti-syphon emitter |
US7681807B2 (en) | 2005-07-06 | 2010-03-23 | Rain Bird Corporation | Sprinkler with pressure regulation |
GB0516530D0 (en) | 2005-08-11 | 2005-09-21 | Guest John Int Ltd | Improvements in or relating to liquid flow control devices |
AU2006281078A1 (en) | 2005-08-17 | 2007-02-22 | Netafim Ltd. | Foam silicone parts in irrigation emitters |
WO2007046105A2 (en) | 2005-10-19 | 2007-04-26 | Plastro Irrigation Systems Ltd. | Drip emitter |
IL171482A (en) | 2005-10-19 | 2014-12-31 | Zvi Einav | Drip emitter with an independent non-drain valve |
WO2007052272A2 (en) | 2005-11-01 | 2007-05-10 | Naandan Jain Irrigation C.S. Ltd. | Drip irrigation apparatus |
US20070108318A1 (en) | 2005-11-14 | 2007-05-17 | Shay Mamo | Irrigation emitter |
ITSV20050042A1 (en) | 2005-12-15 | 2007-06-16 | Siplast S P A | IRRIGATOR TUBE |
US20070138323A1 (en) | 2005-12-16 | 2007-06-21 | Seo Won Co., Ltd. | Drip irrigation hose |
EP1966666B1 (en) | 2005-12-27 | 2009-11-25 | Netafim Ltd. | Fluid flow control regulator |
US8469294B2 (en) | 2006-01-30 | 2013-06-25 | The Toro Company | Continuous molded emitter |
ES2318663T5 (en) | 2006-02-10 | 2012-12-28 | The Machines Yvonand Sa | Installation and manufacturing procedure of irrigation pipes drop by drop |
US7648085B2 (en) | 2006-02-22 | 2010-01-19 | Rain Bird Corporation | Drip emitter |
US8091800B2 (en) | 2006-04-09 | 2012-01-10 | Netafim, Ltd. | Drippers and pipe couplers |
US7802592B2 (en) | 2006-04-18 | 2010-09-28 | Fisher Controls International, Llc | Fluid pressure reduction devices |
US7455094B2 (en) | 2006-04-18 | 2008-11-25 | Seo Won Co., Ltd. | Apparatus and method for manufacturing agricultural water supply hose |
IL176056A (en) | 2006-05-31 | 2012-02-29 | Avraham Shekalim | Drip irrigation system using two lumen tubes |
US20090159726A1 (en) | 2006-06-26 | 2009-06-25 | Toh Products Llc | Drip tape loop with mat application |
ITSV20060018A1 (en) | 2006-07-10 | 2008-01-11 | Irritec S R L | ADJUSTABLE EMITTER FOR FLUIDS IN PARTICULAR IRRIGATION SYSTEMS |
US8141589B2 (en) | 2006-07-19 | 2012-03-27 | Netafim, Ltd. | Fluid flow labyrinth |
IL177552A (en) | 2006-08-17 | 2014-08-31 | Ron Keren | Irrigation pipe |
US7735758B2 (en) | 2006-09-18 | 2010-06-15 | Amir Cohen | Drip irrigation hoses of the labyrinth type and flow-control elements for producing such hoses |
EP1905570A1 (en) | 2006-09-28 | 2008-04-02 | Aisapack Holding SA | Process and apparatus for internal welding of plastic tubes |
EP1929859B1 (en) | 2006-11-07 | 2011-03-23 | THE Machines Yvonand SA | Dosing elements for a drip irrigation pipe, process and device for the production of said dosing elements |
DE112007002804T5 (en) | 2006-11-20 | 2009-10-29 | PPG Industries Ohio, Inc., Cleveland | Organic-inorganic nanocomposite materials and process for their preparation and their use |
KR100748604B1 (en) | 2007-02-14 | 2007-08-10 | ģģ¬ģ© | Emitting pipe boring method and emitting pipe with hole there of |
KR100754779B1 (en) | 2007-02-21 | 2007-09-03 | ģ£¼ģķģ¬ ģģģķ | Pressure control drip tape and hose |
US20100219265A1 (en) | 2007-07-09 | 2010-09-02 | Tanhum Feld | Water irrigation system including drip irrigation emitters |
US20090020634A1 (en) | 2007-07-19 | 2009-01-22 | Netafim Ltd. | Flexible diaphragm for an irrigation system |
DE102007036018B4 (en) | 2007-07-30 | 2012-04-19 | Igg Internationale Geotextil Gmbh | Irrigation mat for large-scale distribution of water |
CN101848634B (en) | 2007-08-20 | 2014-03-12 | å å”č¬ęéå ¬åø | Irrigation control system |
GB2452685A (en) | 2007-09-12 | 2009-03-18 | Netafim Ltd | Cross-laminate film for irrigation pipe |
IL187355A0 (en) | 2007-11-14 | 2008-02-09 | Itai Gross | Dripper |
CA2703839A1 (en) | 2007-11-15 | 2009-05-22 | Belimo Holding Ag | Flow restrictor |
US7681810B2 (en) | 2008-02-21 | 2010-03-23 | Netafim, Ltd. | Irrigation emitter |
WO2009123929A2 (en) | 2008-04-03 | 2009-10-08 | Rodney Ruskin | Low friction lining for drip irrigation conduits |
US8079385B2 (en) | 2008-04-09 | 2011-12-20 | Liquid Molding Systems, Inc. | Valve assembly |
ES2367670T3 (en) | 2008-05-05 | 2011-11-07 | The Machines Yvonand Sa | PROCEDURE FOR MANUFACTURING DRIP IRRIGATION TUBES. |
JP5108667B2 (en) | 2008-07-23 | 2012-12-26 | ę Ŗå¼ä¼ē¤¾ę„ē«č£½ä½ę | Remote copy system and remote site power saving method |
EP2315516B8 (en) | 2008-08-28 | 2019-06-12 | Antelco Pty Ltd | Watering device |
US8372326B2 (en) | 2008-10-20 | 2013-02-12 | D.R.T.S. Enterprises Ltd. | Pressure compensated non-clogging drip emitter |
US7988076B2 (en) | 2008-10-20 | 2011-08-02 | D.R.T.S. Enterprises Ltd. | Non-clogging non-pressure compensated drip emitter |
ATE503378T1 (en) | 2008-11-25 | 2011-04-15 | Mach Yvonand Sa | METHOD FOR MAKING DRIP IRRIGATION PIPES |
US8511585B2 (en) | 2008-12-23 | 2013-08-20 | Netafim, Ltd. | Drip irrigation emitter |
US8628032B2 (en) | 2008-12-31 | 2014-01-14 | Rain Bird Corporation | Low flow irrigation emitter |
US20100175408A1 (en) | 2009-01-09 | 2010-07-15 | Lukjan Metal Products, Inc. | Leak free semi-stackable drain pan |
RU2415565C2 (en) | 2009-02-02 | 2011-04-10 | ŠŠ»Šø-ŠŠ¼Š°Ń ŠŠ°Š³Š¾Š¼ŠµŠ“Š¾Š²ŠøŃ ŠŃ Š¼ŠµŠ“Š¾Š² | Device to feed and install droppers in watering pipeline of trickle irrigation |
US8439282B2 (en) | 2009-02-06 | 2013-05-14 | Rain Bird Corporation | Low flow irrigation emitter |
IL197110A0 (en) | 2009-02-18 | 2009-11-18 | Plastro Irrigation Systems Ltd | Means for defining a flow passage in a dripper and method and an apparatus for its implementation |
ES2388983T3 (en) | 2009-03-10 | 2012-10-22 | The Machines Yvonand Sa | Device for manufacturing a drip irrigation tube |
US8496193B2 (en) | 2009-03-23 | 2013-07-30 | Gideon Rosenberg | Fluid control devices particularly useful in drip irrigation emitters |
US9004098B2 (en) | 2009-04-03 | 2015-04-14 | Ctb, Inc. | Pressure regulator for watering system |
EP2424682A1 (en) | 2009-05-01 | 2012-03-07 | D.R.T.S. Enterprises, Ltd. | Internally pressure compensated non-clogging drip emitter |
US20100282873A1 (en) | 2009-05-06 | 2010-11-11 | Mattlin Jeffrey L | Drip Emitter and Methods of Assembly and Mounting |
CH701470A1 (en) | 2009-07-14 | 2011-01-14 | Belimo Holding Ag | Flow. |
IL200148A (en) | 2009-07-29 | 2014-05-28 | Erez Yiflach | Apparatus and method for producing a plastic strip |
AU331012S (en) | 2009-11-18 | 2010-05-26 | Deere & Co | Apparatus for irrigation of plants |
CN102057823B (en) | 2009-11-18 | 2012-05-30 | č”å®ē | Vertical greening device |
US8317111B2 (en) | 2010-01-31 | 2012-11-27 | Amirim Products Development & Patents Ltd. | Bi-component drip emitter |
WO2011104722A2 (en) | 2010-02-03 | 2011-09-01 | Parixit Amrutbhai Patel | A non pressure compensated drip irrigation emitter with multiflow facility |
USD648191S1 (en) | 2010-02-08 | 2011-11-08 | Thayer Industries, Inc. | Multi-purpose micro-irrigation tool |
WO2011101842A2 (en) | 2010-02-18 | 2011-08-25 | Netafim Ltd | Drip irrigation emitter |
US8381437B2 (en) | 2010-03-12 | 2013-02-26 | Marc E. Hankin | Irrigation device and method of promoting deep root growth of a plant |
US20110226354A1 (en) | 2010-03-17 | 2011-09-22 | Petur Thordarson | Flow Controller |
US8689484B2 (en) | 2010-05-28 | 2014-04-08 | Rodney Ruskin | Weed control and root barrier |
CN201821716U (en) | 2010-07-16 | 2011-05-11 | åä»å®é¦čę°“ēęŗč®¾å¤å·„ēØęéå ¬åø | Multilayer co-extrusion ultrathin pressure-resistance plastic drip irrigation tape |
WO2012015655A1 (en) | 2010-07-30 | 2012-02-02 | Rain Bird Corporation | Dual flow path drip irrigation apparatus and methods |
CN201871438U (en) | 2010-08-20 | 2011-06-22 | ęØåē§¦å·čę°“ēęŗč®¾å¤å·„ēØęéå ¬åø | Inlaid cylindrical drip irrigation tube |
GR20100100517A (en) | 2010-09-20 | 2012-04-30 | ĪĻĪ¹ĻĻĪµĪ¹Ī“Ī·Ļ ĪĪ¼Ī¼Ī±Ī½ĪæĻ Ī·Ī» ĪĪµĻĪ¼Ī¹ĻĪ¶Ī±ĪŗĪ·Ļ | Dripper and method for the perforation of water exit orifices in irrigation pipes |
US8714205B2 (en) | 2010-10-06 | 2014-05-06 | Naandan Jain Irrigation C.S. Ltd. | Delayed degradability drip irrigation pipe |
US8579215B2 (en) | 2010-10-21 | 2013-11-12 | Zujii Tech Llc | Drip irrigation emitters with manually adjustable water directing structure |
GB2484924A (en) | 2010-10-25 | 2012-05-02 | Amirim Products Dev & Patents Ltd | An on line drip irrigation emitter having an inlet filtering dvice |
US9027856B2 (en) | 2011-01-04 | 2015-05-12 | Jain Irrigation Systems, Ltd. | Apparatus and method of manufacturing pressure compensator type drip irrigation tubes with desired molecular orientation and tubes obtained thereby |
PE20141235A1 (en) | 2011-03-30 | 2014-09-29 | Netafim Ltd | IRRIGATION VALVE |
IL212105A (en) | 2011-04-03 | 2016-07-31 | Einav Zvi | Integral dripper with an elongated exit pool |
US8511586B2 (en) | 2011-04-20 | 2013-08-20 | Deere & Company | Disc shaped regulated drip irrigation emitter |
GB2496832B (en) | 2011-05-16 | 2013-11-13 | Uri Alkalay | Cylindrical drip irrigation emitter |
BR112013029732A2 (en) | 2011-05-26 | 2017-01-24 | Maillefer Sa | system for manufacturing an irrigation pipe and a device and method for detecting holes in the irrigation pipe wall |
ES2503564T3 (en) | 2011-07-27 | 2014-10-07 | The Machines Yvonand Sa | Procedure for the manufacture of drip irrigation pipes |
US10440903B2 (en) | 2012-03-26 | 2019-10-15 | Rain Bird Corporation | Drip line emitter and methods relating to same |
US20130248622A1 (en) | 2012-03-26 | 2013-09-26 | Jae Yung Kim | Drip line and emitter and methods relating to same |
US9877440B2 (en) | 2012-03-26 | 2018-01-30 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
US9485923B2 (en) | 2012-03-26 | 2016-11-08 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
WO2013155173A2 (en) | 2012-04-13 | 2013-10-17 | Regents Of The University Of Minnesota | Methods and compositions relating to biodegradable epoxy elastomers |
CN202617872U (en) | 2012-05-14 | 2012-12-26 | ę°ēčå±±å±Æę²³čę°“ē§ęęéå ¬åø | Buried drop irrigation belt |
US9668431B2 (en) | 2013-11-22 | 2017-06-06 | Rain Bird Corporation | Conduit with connector and assembly thereof |
TR201901681T4 (en) | 2012-06-18 | 2019-02-21 | Maillefer Sa | Method and system for producing an irrigation pipe. |
US20130341431A1 (en) | 2012-06-20 | 2013-12-26 | Mark M. Ensworth | Drip Emitter with Outlet Tube |
IL221089A (en) | 2012-07-24 | 2016-05-31 | Einav Zvi | Integral drip irrigation emitter with an easy spreadable exit pool |
DE102012107655B4 (en) | 2012-08-21 | 2017-04-27 | Aqua Vital Int. Ltd. & Co. KG | irrigation hose |
CN104602511B (en) | 2012-09-06 | 2018-01-09 | ę©ę®ä¹č”份ęéå ¬åø | Drip irrigation water dropper and the drip irrigation appliance for possessing the drip irrigation water dropper |
BR112015005074A2 (en) | 2012-09-28 | 2017-07-04 | Enplas Corp | drip irrigation dripper and drip irrigation device |
US9253950B1 (en) | 2012-10-04 | 2016-02-09 | Hunter Industries, Inc. | Low flow emitter with exit port closure mechanism for subsurface irrigation |
GB2523479B (en) | 2012-10-26 | 2017-07-12 | Edward Brown Michael | Adjustable emitter and preform |
ES2604934T3 (en) | 2012-11-09 | 2017-03-10 | Abu Dhabi Polymers Company Limited (Borouge) | Polymeric composition comprising a mixture of a multimodal polyethylene and an additional ethylene polymer suitable for the manufacture of a drip irrigation tube |
US9253951B2 (en) | 2012-11-20 | 2016-02-09 | Wadeco, Inc. | Emitter tubing clip |
CN104853592B (en) | 2012-12-17 | 2017-10-03 | ę©ę®ä¹č”份ęéå ¬åø | Drip irrigation water dropper and the drip irrigation appliance for possessing the drip irrigation water dropper |
ES2925547T3 (en) | 2012-12-27 | 2022-10-18 | Jain Irrigation Systems Ltd | Drip emitter for continuous flow |
US9872444B2 (en) | 2013-03-15 | 2018-01-23 | Rain Bird Corporation | Drip emitter |
US9258949B2 (en) | 2013-06-19 | 2016-02-16 | National Diversified Sales, Inc. | Adjustable drip emitter |
US9949448B2 (en) | 2015-01-14 | 2018-04-24 | Amirim Products Development & Patents Ltd. | Modular in line button drip emitter system |
US9462760B2 (en) | 2013-07-09 | 2016-10-11 | Amirim Products Development & Patents Ltd. | In line button drip emitter |
WO2015023624A1 (en) | 2013-08-12 | 2015-02-19 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
US10285342B2 (en) | 2013-08-12 | 2019-05-14 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
USD811179S1 (en) | 2013-08-12 | 2018-02-27 | Rain Bird Corporation | Emitter part |
US10631473B2 (en) | 2013-08-12 | 2020-04-28 | Rain Bird Corporation | Elastomeric emitter and methods relating to same |
WO2015044801A1 (en) | 2013-09-25 | 2015-04-02 | Netafim Ltd | Drip emitter |
US9307705B2 (en) | 2013-10-02 | 2016-04-12 | Eurodrip Industrial Commercial Agricultural Societe Anonyme | Pressure compensating drip irrigation emitter |
US9380749B2 (en) | 2013-10-02 | 2016-07-05 | Eurodrip Industrial Commercial Agricultural Societe Anonyme | Drip tape irrigation emitter |
WO2015052107A1 (en) * | 2013-10-10 | 2015-04-16 | Maillefer Sa | Device and method for detecting a dripper |
US9883640B2 (en) | 2013-10-22 | 2018-02-06 | Rain Bird Corporation | Methods and apparatus for transporting elastomeric emitters and/or manufacturing drip lines |
IL245403B (en) | 2013-10-24 | 2018-12-31 | Jain Irrigation Systems Ltd | Method and system for detection of blowout in pipes/tubes |
CN105792639B (en) | 2013-11-27 | 2019-11-19 | ę©ę®ä¹č”份ęéå ¬åø | Transmitter and trickle irrigation delivery pipe |
JP6444313B2 (en) | 2013-11-27 | 2018-12-26 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tubes |
EP3075236B1 (en) | 2013-11-27 | 2019-04-24 | Enplas Corporation | Emitter, and tube for drip irrigation |
US10517236B2 (en) | 2013-12-03 | 2019-12-31 | Netafim, Ltd. | Drip emitter |
US9980443B2 (en) | 2013-12-16 | 2018-05-29 | Enplas Corporation | Emitter and drip irrigation tube |
ES2718402T3 (en) | 2013-12-27 | 2019-07-01 | Enplas Corp | Emitter and drip irrigation tube |
US10091955B2 (en) | 2013-12-31 | 2018-10-09 | Steel Table Group LLC | Irrigation spike watering system and method |
WO2015105082A1 (en) | 2014-01-10 | 2015-07-16 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tube |
USD740940S1 (en) | 2014-02-28 | 2015-10-13 | American Eagle Instruments, Inc. | Irrigation tip |
EP2952091B1 (en) | 2014-06-05 | 2020-02-05 | THE Machines Yvonand SA | Drip irrigation pipe with dosing elements inserted therein |
USD781115S1 (en) | 2014-08-29 | 2017-03-14 | Rivulis Irrigation Ltd. | Dripper |
US20160057947A1 (en) | 2014-09-02 | 2016-03-03 | Rain Bird Corporation | Drip emitter with copper and partition |
US10330559B2 (en) | 2014-09-11 | 2019-06-25 | Rain Bird Corporation | Methods and apparatus for checking emitter bonds in an irrigation drip line |
EP2998091A1 (en) | 2014-09-17 | 2016-03-23 | Advanced Automation Systems Ltd. | Continuous molded irrigation emitter strip |
DE102014219449A1 (en) | 2014-09-25 | 2016-03-31 | Christine Haub | Irrigation mat for providing fluids to the root area of plants and irrigation system |
HUE035924T2 (en) | 2014-10-02 | 2018-06-28 | The Machines Yvonand Sa | Drip irrigation tube with metering elements inserted therein |
US20170205013A1 (en) | 2014-11-21 | 2017-07-20 | Duane K. Smith | Fittings and connectors for irrigation systems |
US9938680B2 (en) | 2014-11-21 | 2018-04-10 | Duane K. Smith | Fittings for irrigation systems |
USD816439S1 (en) | 2014-12-31 | 2018-05-01 | Steel Table Group LLC | Irrigation spike |
IL239847A (en) | 2015-02-01 | 2017-04-30 | Guilboa S A C | Integral valve |
JP6532763B2 (en) | 2015-02-25 | 2019-06-19 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tube |
GB2536960B (en) | 2015-04-02 | 2021-02-24 | Exel Industries Sa | Irrigation connectors |
JP6532757B2 (en) | 2015-05-28 | 2019-06-19 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tube |
JP6541220B2 (en) | 2015-05-28 | 2019-07-10 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tube |
JP6532759B2 (en) | 2015-05-29 | 2019-06-19 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tube |
WO2017046686A1 (en) | 2015-09-17 | 2017-03-23 | Netafim Ltd | A drip emitter and a membrane for a drip emitter |
FR3042576B1 (en) | 2015-10-14 | 2018-04-27 | Aqualone | FLUID VALVE HYSTERESIS |
US10070595B2 (en) | 2015-11-03 | 2018-09-11 | THE Machines Yvonand S.A. | Drip irrigation tube having dosing elements inserted therein |
US20180317406A1 (en) | 2015-11-04 | 2018-11-08 | Terracuity Technologies Ltd. | Drip irrigation emitter, an irrigation pipe with a plurality of such emitters, method for producing such emitters and method of irrigation using them |
US10426104B2 (en) | 2015-11-20 | 2019-10-01 | Massachusetts Institute Of Technology | Pressure compensating emitter having very low activation pressure and large operating range |
CN112703994B (en) | 2015-12-03 | 2023-05-02 | čē¹č²å§ęéå ¬åø | Drip irrigation emitter |
JP6639212B2 (en) | 2015-12-09 | 2020-02-05 | ę Ŗå¼ä¼ē¤¾ćØć³ćć©ć¹ | Emitter and drip irrigation tube |
CN107258475A (en) | 2016-04-07 | 2017-10-20 | éæē±³å°Ā·ē§ę© | Embedded button drip emitter |
US10375904B2 (en) | 2016-07-18 | 2019-08-13 | Rain Bird Corporation | Emitter locating system and related methods |
BR112019006874B1 (en) | 2016-10-26 | 2022-07-12 | Netafim Ltd | METHOD TO REINFORCE A THIN WALL TUBE AND DRIP IRRIGATION TUBE |
US10626998B2 (en) | 2017-05-15 | 2020-04-21 | Rain Bird Corporation | Drip emitter with check valve |
US20180338434A1 (en) | 2017-05-23 | 2018-11-29 | Rain Bird Corporation | Manual Flush Drip Emitter |
-
2017
- 2017-07-14 US US15/650,379 patent/US10375904B2/en active Active
- 2017-07-17 IL IL300957A patent/IL300957A/en unknown
- 2017-07-17 ES ES17831631T patent/ES2897971T3/en active Active
- 2017-07-17 WO PCT/US2017/042378 patent/WO2018017476A1/en unknown
- 2017-07-17 EP EP17831631.1A patent/EP3484274B1/en active Active
-
2019
- 2019-01-17 IL IL264297A patent/IL264297B2/en unknown
- 2019-08-05 US US16/532,006 patent/US10750684B2/en active Active
-
2021
- 2021-11-22 CY CY20211101011T patent/CY1124765T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US10750684B2 (en) | 2020-08-25 |
IL264297A (en) | 2019-02-28 |
EP3484274A4 (en) | 2020-03-04 |
US20180014477A1 (en) | 2018-01-18 |
IL264297B1 (en) | 2023-03-01 |
IL300957A (en) | 2023-04-01 |
IL264297B2 (en) | 2023-07-01 |
US20190357456A1 (en) | 2019-11-28 |
EP3484274B1 (en) | 2021-10-13 |
US10375904B2 (en) | 2019-08-13 |
WO2018017476A1 (en) | 2018-01-25 |
ES2897971T3 (en) | 2022-03-03 |
CY1124765T1 (en) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10750684B2 (en) | Emitter locating system and related methods | |
US11422055B2 (en) | Methods and apparatus for checking emitter bonds in an irrigation drip line | |
US10420293B2 (en) | Methods and apparatus for transporting emitters and/or manufacturing drip line | |
KR102040894B1 (en) | Cutting apparatus for hose | |
US11187257B2 (en) | Methods of installing pre-molded seal caps | |
JP2008169002A (en) | Winding device and manufacturing device for long member | |
KR100970080B1 (en) | Positioning apparatus for carrier tape | |
AU2010201524A1 (en) | Irrigation pipe | |
CN1302699C (en) | Drilling apparatus for drip irrigation tubes | |
JPH0416386B2 (en) | ||
DE102015104005B4 (en) | tire testing | |
EP0621096B1 (en) | Device for forming drilled needle blanks | |
JPH0445047A (en) | Winding device for bead core forming band | |
US5820008A (en) | Machine for processing electrical wires having improved wire guide | |
US20180014827A1 (en) | Method and apparatus for fabricating self-retaining sutures with calibration | |
US20180141695A1 (en) | Tubular banding applicator and method | |
JP2009539728A (en) | Component control apparatus, system, and method | |
KR20180122654A (en) | Balancing weight application machines and methods of using them | |
DE102008031236A1 (en) | Method and device for strapping at least one stack of shaped fuel bodies | |
JP2022041118A (en) | Taping device | |
KR20220124516A (en) | safety net manufacturing equipment | |
EP1279635B1 (en) | Apparatus for winding a profiled strip on a bobbin | |
DE4241722A1 (en) | ||
CN117735313A (en) | Carrier tape processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200203 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B29C 48/88 20190101ALI20200128BHEP Ipc: A01G 25/02 20060101AFI20200128BHEP Ipc: B29C 48/00 20190101ALI20200128BHEP Ipc: B29C 48/09 20190101ALI20200128BHEP Ipc: B29C 48/28 20190101ALI20200128BHEP Ipc: B29L 31/00 20060101ALN20200128BHEP Ipc: B29L 23/00 20060101ALN20200128BHEP Ipc: B29C 48/157 20190101ALI20200128BHEP Ipc: B29L 9/00 20060101ALN20200128BHEP Ipc: B29C 48/92 20190101ALI20200128BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A01G 25/02 20060101AFI20210323BHEP Ipc: B29C 48/00 20190101ALI20210323BHEP Ipc: B29C 48/09 20190101ALI20210323BHEP Ipc: B29C 48/157 20190101ALI20210323BHEP Ipc: B29C 48/28 20190101ALI20210323BHEP Ipc: B29C 48/88 20190101ALI20210323BHEP Ipc: B29C 48/92 20190101ALI20210323BHEP Ipc: B29L 23/00 20060101ALN20210323BHEP Ipc: B29L 9/00 20060101ALN20210323BHEP Ipc: B29L 31/00 20060101ALN20210323BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210511 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017047688 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1437443 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211013 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2897971 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220303 Ref country code: GR Ref legal event code: EP Ref document number: 20210403414 Country of ref document: GR Effective date: 20220211 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1437443 Country of ref document: AT Kind code of ref document: T Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220113 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220213 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220113 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017047688 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220717 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220717 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230720 Year of fee payment: 7 Ref country code: ES Payment date: 20230804 Year of fee payment: 7 Ref country code: CY Payment date: 20230706 Year of fee payment: 7 Ref country code: CH Payment date: 20230802 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240729 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240726 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 8 |