EP3482914B1 - Verfahren zum bestimmen der neigung der achsen einer maschine mit fünf oder mehr achsen zum herstellen von objekten durch additive fertigung, system zum herstellen von objekten nach diesem verfahren - Google Patents

Verfahren zum bestimmen der neigung der achsen einer maschine mit fünf oder mehr achsen zum herstellen von objekten durch additive fertigung, system zum herstellen von objekten nach diesem verfahren Download PDF

Info

Publication number
EP3482914B1
EP3482914B1 EP18205707.5A EP18205707A EP3482914B1 EP 3482914 B1 EP3482914 B1 EP 3482914B1 EP 18205707 A EP18205707 A EP 18205707A EP 3482914 B1 EP3482914 B1 EP 3482914B1
Authority
EP
European Patent Office
Prior art keywords
contour line
point
worktable
plane
section plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18205707.5A
Other languages
English (en)
French (fr)
Other versions
EP3482914A1 (de
Inventor
Francesco Bandini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Venturaplus Srl
Original Assignee
Venturaplus Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Venturaplus Srl filed Critical Venturaplus Srl
Publication of EP3482914A1 publication Critical patent/EP3482914A1/de
Application granted granted Critical
Publication of EP3482914B1 publication Critical patent/EP3482914B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention concerns a method for determining the inclination of the axes of a machine with five or more axes for producing objects by addictive manufacturing, system for producing objects by said method.
  • Addictive manufacturing technologies are emerging from the prototype manufacturing field alone, for which they were initially only intended, in order to become a tool for the manufacturing of finished parts.
  • addictive manufacturing i.e. addictive manufacturing or production
  • finds a counterbalance in the market evolution which is increasingly more oriented towards customized manufacturing and individual pieces and which therefore requires quick and highly reconfigurable manufacturing processes that are able to pass through the smallest number of operations possible from the project, only existing in digital format, to the physical object version.
  • the addictive manufacturing (AM) technology provides starting from digital models to obtain finished products with the progressive addition of construction material distributed over material layers previously generated according to the geometry provided by the digital model, in contrast with the traditional subtractive techniques, such as those used for chip removal, which allow to obtain an object through the removal of material from a rough starting block.
  • a digital three-dimensional model is subdivided into layers by software through orthogonal planes at a given direction.
  • Each layer (or 'slice') is delimited by its contour line, hereinafter named "profile", determined by the geometry of the intersection between the 3D object and the plane of intersection; this profile guides a material dispenser intended to form the layer along a path that allows to obtain the profile with the material deposited and solidified. Once the profile has been deposited, it is also possible to fill the section in order to obtain a solid object.
  • addictive manufacturing allows almost total freedom with regard to the definition of the shape of the object to be obtained. Thanks to the fact of being able to lay down sections, layer after layer, the constructive constraints connected to undercuts and internal cavities are overcome, and possible jutting parts are managed with the creation of ad hoc supports that are subsequently removed once the printing is finished.
  • the addictive manufacturing techniques are applicable to different types of materials, such as, for example, plastics, metals and their alloys, and also plastic and metal material mixtures.
  • a known variant provides for feeding the material in the form of a plastic or metal thread.
  • a layer is deposited and bound to the next one by melting the material by means of a laser, electric arc or electron beam.
  • much less intense heat sources are required to allow the thermoplastic material to pass to the semi-liquid state so that to be able to mold it as desired and to make it bond with the lower layer.
  • Known systems for manufacturing pieces by addictive manufacturing provide different architectures of the manufacturing machines depending on the embodiment of the method variant selected and/or on the way the object is moved.
  • Patent application publication US2015266244 claims a system for fabricating an object comprising an extruder comprising a nozzle for material deposition coupled with a controller configured to apply a correction factor calculated for a path of the nozzle based on a slope of the surface of the object to be fabricated wherein the extruder is configured and arranged to cause movement of the nozzle along the path to deposit a material on a slope of the surface of the object and the correction factor removes differences in thickness of the deposited material caused by the slope in relation to the path.
  • Patent application publication WO2016040507 claims for a method for adapting a three-dimensional printing device to create low-fidelity prototypes with fast fabrication processes replacing surfaces with wireframe meshes i.e. printing edges and meshes instead of continuous surfaces thus reducing time and materials needed to create a prototype.
  • the method can include slicing an original 3D model into segments.
  • Patent application publication US2014197576 claims for a device for production of a three-dimensional object from a solidifiable material by a sequential discharge of drops, comprising an object carrier, a discharge unit, control means for controlling the reciprocal movements and aligning the object carrier carrying the object at least partially fabricated and the discharge unit wherein the axis in the mutually aligned state is arranged in reference to a tangent surface in the direction of gravity without further specifying how the tangent surface is defined.
  • Direct Energy Deposition addictive technologies are known on the market.
  • Direct Energy Deposition technology on the market is named Laser Cladding or Laser Powder Deposition and provides for using fine metal powers that are placed on the flame of a laser beam to allow the melting and subsequent solidification thereof in order to obtain a continuous bead of material.
  • the main obstacle to the use of Direct Energy Deposition technologies on multi-axis machines is constituted by the complexity of the management software: in fact, in order to overcome the necessity of supports for the protruding profiles, a translatory and relative orientation movement of the deposition head and the worktable must be programmed; this movement must occur simultaneously and fluidically along all five axes available in order to obtain a regular and controlled deposition of the material.
  • software for the generation of the deposition movement of the layers along 5 axes is available on the market and derives from software for the generation of the milling paths along five axes.
  • This software has considerable drawbacks, among which a degree of complexity of use that makes them hardly acceptable in the 3D printing world, in which the philosophy is to pass from the virtual model to the physical object in just a few clicks.
  • the present invention introduces a method for calculating the material deposition paths for Addictive Manufacturing and which intends to overcome both the limitations of conventional 3D Printing systems for parallel planes, the so-called 'slicers', and the limitations of the most sophisticated addictive manufacturing systems of CAM (Computer Aided Manufacturing) derivation conceived for calculating the milling tool paths of multi-axis machine tools.
  • CAM Computer Aided Manufacturing
  • slicers are advantageously extremely simple to use since the deposition path is generated automatically, without practically requiring the intervention of the user, however, their limitation lies in the fact that in order to be able to deposit objects with strong undercuts with respect to the vertical, or jutting portions, auxiliary structures, named supports, must be added and laid down to support the jutting layers during the deposition. These supports imply a waste of material and deposition times, as well as of time and specialized manpower of a user for their subsequent removal.
  • Another problem of slicers is the impossibility to deposit objects having strong variations in the cross section, which generate empty zones between the adjacent slices, without resorting to the complete filling of the object.
  • the novelty of the present invention consists in the fact that, thanks to the original methods described and claimed hereunder, it integrates itself in the state of the art as the "missing connection" between conventional slicers and sophisticated CAM derivation systems, because it solves the limitations of the firsts while preserving their extreme simplicity of use and the automaticity of the calculation.
  • the object of the present invention is to implement a method that allows to generate material layer deposition paths for the manufacturing of objects with an addictive manufacturing technology, which method is extremely simple and can be, in most cases, carried out automatically, without requiring the intervention of specialized personnel.
  • a further object of the present invention consists in obtaining a method of the aforesaid type and which can be carried out locally by the machine tool control units or remotely online, and possibly also offline, without requiring any assistance from the service personnel aside from the loading or sending of the digital three-dimensional model of the object to be produced in a predetermined and widely used file format.
  • the present invention aims at a method that automatically detects and automatically carries out at least one of the following operations:
  • a further aspect aims to obtain an addictive manufacturing system for which no service personnel with high technical qualifications is required.
  • a first embodiment of the invention consists in a method for calculating the addictive manufacturing deposition path by using a system comprising a worktable on which the object to be produced is obtained by feeding material performed by a deposition head, in the form of material layers deposited one on the other; the material deposition direction with respect to the piece has a predetermined direction, said deposition head and said worktable being movable with respect to each other and orientable with respect to each other according to at least five axes, and a processing unit being provided for determining the movement path of the deposition head and/or the worktable, which method comprises the following steps:
  • the digital three-dimensional model can be in the form of a CAD file of the parametric type and the contour lines on each section plane are subject to approximation with a polygonal line.
  • An embodiment variant provides that said points of the polygonal line are constituted by interpolation points of the contour line.
  • An alternative embodiment provides that the digital three-dimensional model is in the form of an STL file, in which the surfaces are approximated by a set of triangles and therefore the contour lines along the section planes are constituted by polygonal lines in a native way.
  • An embodiment variant can provide for the conversion of the digital three-dimensional model in a parametric CAD format into a digital three-dimensional model in STL format.
  • step d2 is replaced by the alternative step to determine the plane that intersects the lower section line, which consists in the derivation of the Tangent Vector at the upper contour line, said tangent vector constitutes the normal of this intersection plane and said Tangent Vector being determined at the points defined on the contour line in step d1).
  • the method provides automatic identification steps for identifying the empty spaces between the adjacent material layers defined according to the contour lines in the adjacent section planes and i.e.:
  • the method allows to automatically identify the presence of empty spaces (Gaps) between two adjacent material layers and, therefore, the lack of a lower profile on which the profile immediately above can be deposited and by which it can be supported.
  • the filling profiles are rested one on the other and end at the point of intersection with the contour line coinciding with the profile of the upper layer, constituting the support in the zones delimiting the empty space.
  • the method provides, for each point of the filling profile, to carry out the step of determining whether these points are inside or outside of the empty space, i.e. of the area delimited by said line delimiting the empty space, the points falling out of the contour delimiting the empty space being rejected for determining the deposition path of the corresponding filling profile and only the points falling in said empty space being maintained.
  • the points of intersection of the filling profile path with the contour line defining the profile of the upper layer are defined as starting or ending points of the filling profile and, therefore, starting and ending points of the material to be dispensed.
  • the method allows to generate filling profiles, also when the geometry of the empty space is so that the offset profiles of the lower layer do not intersect the profiles delimiting said empty spaces.
  • the method allows to generate filling profiles also whenever there is no intersection between the geometry of the object and the successive section plane, whereby the empty space is determined by the profile of the lower section, which would remain empty for not finding correspondence with the contour line defining the profile of the upper layer, therefore making the deposition of the object incomplete.
  • determining the points of intersection of the profile of each filling material layer with the material layer of the upper slice is provided, by starting or ending each filling layer at said point of intersection.
  • the orientation between the deposition head and the worktable for the deposition of the filling profiles of the empty spaces is determined according to the following steps:
  • the linking of the points for determining the contour line delimiting an empty space as at step viii) is carried out by following a clockwise and anticlockwise linking direction order, the clockwise linking direction corresponding to islands and the anticlockwise linking direction corresponding to a line delimiting an outer or isolated empty space.
  • the method provides for depositing the material of the upper layer after having deposited all of the filling profiles.
  • the aforesaid method is applicable automatically both for the identification and determination of the successive material layers used to obtain supports also in the presence of isolated profiles that are not supported by any underlying material layer deriving from the object shape.
  • the method immediately determines the lack of a lower support layer for the protruding part, which involves the definition of a plurality of overlying material layers that generate supporting columns of the isolated layers.
  • the invention uses a system for the manufacturing of objects by means of a method according to one or more of the embodiments and embodiment variants described above and which system comprises:
  • the steps of the method according to one or more of the preceding embodiments and embodiment variants are encoded in the form of instructions in a processor program and are stored or can be stored in a hard disk of a processor or are stored on a portable storage device, such as a portable hard disk, a USB pen drive, an optical disk, for example a CD or DVD ROM or CD or DVD RAM, or optical disks of other formats.
  • any processing unit can be configured to generate the deposition paths and to provide, in the form of instructions stored on storage support readable by the system, i.e. the machine tool or by communicating to said system or said machine tool, the path data from which to generate the commands of the movement actuators, respectively of the deposition head and the worktable.
  • the object of a further embodiment is a control method for an addictive manufacturing machine, which control method uses one or more of the above described variants and embodiments of the deposition path calculation method for addictive manufacturing.
  • tool axis refers to the axis that defines the direction in which the deposition material for the formation of a layer is dispensed by a nozzle or the like.
  • orientation of the axis of the tool or of the deposition direction or the extrusion direction refers to the relative orientation of this axis or this direction with reference to the piece being processed and/or to the worktable and must be understood as comprising the configurations in which the tool is stationary and the worktable moves along the five axes, the worktable is stationary and the tool moves along the five axes, both the tool and the table move along one or more of the axes or along said five axes.
  • contour line or layer although specifically referred to as different bodies, are to be understood as equal. In fact, when considering the central axes of the layer profiles defined by the section planes, these would only be moved of an offset value of the contour lines generated on the section planes and, therefore, the method and system would operate indifferently from the reference to the contour line or the layer.
  • Figure 1 shows a schematic example of a system for producing objects by addictive manufacturing, with tool 101 and worktable 111 movements along five axes, which, in the example, consist in the three Cartesian axes x, y, and z and in the rotation around the z axis and around the x axis. With the respective angular ranges + ⁇ , - ⁇ , + ⁇ , - ⁇ .
  • a system of actuators 102, 114 carries out the movement on the basis of the command signals transmitted by a control signal generator 130. Different configurations are possible and provide for the movement of either the tool 101 or the worktable 111, or for a combined movement, such as in the example shown.
  • a preferred embodiment provides that the tool 101 and relative assembly are stationary and oriented along the z axis, while the worktable 111 carries out all of the orientation and translation movements with respect to the tool 101.
  • the worktable can be mounted on a support constituted by mobile elements 112, such as the one shown or, in a more complex version, a robotized arm is moved.
  • the control signal generator 130 operates under the control of a processing unit 120. It can have any architecture of processor or peripheral device, such as for example a PLC, a Microprocessor or a conventional PC and it comprises a basic configuration of storage system 140 , in which the operative system, the control programs of the hardware unit, the processing programs of the virtual three-dimensional models, from which to generate the deposition paths of the material layers and possibly the programs for generating three-dimensional models, are stored.
  • processor or peripheral device such as for example a PLC, a Microprocessor or a conventional PC and it comprises a basic configuration of storage system 140 , in which the operative system, the control programs of the hardware unit, the processing programs of the virtual three-dimensional models, from which to generate the deposition paths of the material layers and possibly the programs for generating three-dimensional models, are stored.
  • the unit 120 can also be provided with an external storage support reader denoted by numeral 150, thanks to which said programs and/or files relative to the digital three-dimensional models can be loaded by importing them from other systems.
  • a display 170 allows to visualize both the imagines relative to the digital three-dimensional model and the command and/or setting interface, as well as to the other interfaces of the programs installed and run by the unit 120.
  • a user interface 160 allows the user to enter commands and data or setting parameters and also to carry out processing or controlling steps in a manual way by launching the corresponding interfaces of the programs installed and carried out.
  • a further Rx/Tx communication interface thanks to which the system can be directly connected, either by a network, by cables or by wireless communication, with one or more external and delocalized servers, can be provided.
  • delocalized servers can be limited to a mere monitoring and/or diagnostic function of the operations of the system.
  • the system can be provided in combination with other similar systems or these can be connected to one another by means of a network.
  • the delocalized server can carry out the functional monitoring and diagnostic activities on all of the network systems.
  • a further embodiment provides that the delocalized server also carries out the function of generating instruction files relative to the deposition paths of the layers and to send them to the different network systems, each for manufacturing an identical object or each for manufacturing a different piece.
  • the delocalized server also carries out the function of generating instruction files relative to the deposition paths of the layers and to send them to the different network systems, each for manufacturing an identical object or each for manufacturing a different piece.
  • only a specialized user can preside and control the preparatory operations of the description files of the paths by intervening manually, when required, in the automatic procedures so that to correct or change some solutions.
  • the calculation operation of the deposition paths can be carried out by the processing unit of a system and delivered to the processing units of the other systems for the control signal generation steps of the actuators and the deposition heads 101.
  • the processing units 120 of different systems connected with the network can each assume a part of the processing with respect to the determination of the deposition paths of the material layers, therefore reducing the calculation times.
  • the operations of the different units 120 to 180 can, as far as possible, also be acquired by dedicated software that is run by the processing unit 120 and that configures the latter to acquire one or more of said operations. Obviously, this is limited to the operations that do not require a specific hardware, such as the display, input devices, storage medium readers and other.
  • the method and system according to the present invention can be applied to different technologies of addictive manufacturings, which differ by the type of material, material deposition method and consolidation thereof, as well as by the adhesion to the lower layers.
  • a preferred embodiment of the method and system according to the present invention provides, in combination with said method and with said system, the use of the technology named Laser or Arc Direct Energy Deposition, in which welding or micro-welding, laser or arc techniques are used in combination with the use of welding material in the form of a metal thread.
  • plastic polymer thread both thermoplastic and thermosetting
  • thermoplastic and thermosetting both thermoplastic and thermosetting
  • Figure 2 shows an example of an object that can be manufactured by addictive manufacturing, denoted by obj.
  • the obj object of figure 2 is represented by a digital three-dimensional model that can be generated thanks to any CAD system or also starting from an existing object, thanks to three-dimensional images acquired by a 3D scanning system.
  • the digital three-dimensional object is in the form of a digital file that is connoted by an extension.
  • the method and system according to the present invention use a first step of defining the section planes SP in order to generate slices of said model from a digital three-dimensional model and which is typically used in 3D printing, in which the movement of the tools with respect to a worktable occurs along three linear axes.
  • the section planes are provided spaced equidistant and are therefore parallel to each other.
  • the processor processing the three-dimensional model for generating the deposition paths of the material layers calculates, for each section plane, the contour line that molds the object shape in the section plane.
  • the profiles constituted by the contour lines defined in the section planes are used to determine the deposition direction of the material that forms a new layer, which is rested on the layer previously deposited, and the relative path between the tools, i.e. the deposition head 101 and the already deposited layers of the object being manufactured, i.e. the worktable 111.
  • the selection of the slicing direction SD can be carried out manually by the service personnel in a preparatory step of the system to the manufacturing process, or the system can automatically select the direction SD on the basis of an analysis of the digital three-dimensional model and which is based on the minimization of the number of special conditions, such as the number of different jutting layers present after selecting a certain direction SD, the number of empty spaces requiring the deposition of filling layers and possibly also on the basis of the identification of predetermined preponderant symmetries in the shape of the object to be manufactured.
  • the distance of the section planes and therefore of the single layers to be deposited must respect a maximum value.
  • the thickness of the material deposited in a layer is not sufficient to adhere against the layer immediately below and previously deposited and consolidated.
  • this maximum distance is a parameter that mainly depends on the deposition technology used and on the type of material deposited.
  • Figure 4 shows an example of two contour lines Cnt(lower) and Cnt(upper) of an object shape generated by intersecting two adjacent section planes oriented perpendicularly to the slicing direction SD.
  • Figures 3 a), b), c) schematically show the steps of the method for determining the orientation of the deposition direction with respect to the worktable, i.e. in this case of the deposition head 101 and the tool axis z thereof.
  • the curves must be approximated with a series of interpolation points, i.e. with a polygonal line.
  • the interpolation settings are also given in this case by the operational parameters of the hardware and the deposition material, such as the diameter or thickness of the thread or bead of material deposited for example.
  • the contour line of each section plane is automatically in the form of a polygonal line.
  • the method provides for carrying out, for each point Pi on said contour line, a step of identifying a conjugate point P con .
  • the vector connecting the preselected point Pi with the corresponding conjugate point P con denoted by O(i) in figure 3c )
  • the deposition direction i.e. the relative direction between the tool axis Z and the worktable 111 for the deposition of the material layer at the point Pi.
  • the method according to the invention provides for using the points Pi-i and Pi+i immediately preceding and following the point Pi of the set of points on the contour line of the upper section plane and which defines the profile of the upper layer to be deposited in order to define a connection vector V(P i-1 , P i+1 ).
  • the point P con on the contour line in the lower section plane and conjugate to each corresponding point Pi is determined as the intersection point of said contour line Cnt(lower) in the lower section plane with a plane of intersection Int that is perpendicular to said vector V(P i-1 , P i+1 ).
  • the orientations of the deposition directions of each point of the profile to be deposited are determined, as schematically depicted in figure 4 .
  • the dotted line pth indicates the path of a fixed point on the axis of the deposition head, while the lines O(i), O(i-1) and O(i+1) indicate the orientations of the deposition directions in the corresponding points P i , P i-1 , P i+1 .
  • Figure 2d shows one of the advantages of the selection relative to the single and fixed slicing axis SD and of the relative section planes parallel to each other and fixed.
  • the section plane allows not to necessarily consider the possible interference between the already deposited layers and the deposition head 101, as is instead necessary in the methods of the state of the art, which provide for a change in the position and orientation of the section planes correspondingly to the shape of the constructive parts of the object to be manufactured and as is highlighted in figure 2e) .
  • Figure 5 schematically shows a further characteristic of the method according to the present invention, thanks to which it is possible to fill the empty spaces that form between adjacent deposition material layers in combination with predetermined shapes of the object to be produced.
  • the object obj to be produced is subject, as previously described, to the steps for determining the slicing direction, the definition of the section planes SP and the calculation of the contour lines of the shape of the digital three-dimensional model in said section planes.
  • the shape of the base has a convexity towards the support plane, which has a large curvature radius to the extent that empty spaces, or Gaps named G1 and G2, are formed between the first lower material layer L(lower) and that immediately above it L(upper). Because of these empty spaces G1, G2, the upper material layer L(upper) does not find supports in the lower material layer L(lower) and cannot therefore be deposited.
  • An embodiment of the present method provides to use the contour lines Cnt(upper) and Cnt(lower) in two adjacent section planes of which one lower SP(lower) and the other upper SP(upper) in order to identify the presence of material deposition gaps G1, G2 and to generate deposition paths of the filling profiles FL of said gaps G1, G2 that form, at the end of their deposition process, the support for the initially missing material layer L(upper) .
  • the points on the segments of the contour lines that are spaced higher than said printing threshold or that do not find a conjugate point on the contour line of the adjacent section plane are considered 'orphan' points that, once linked, define the line delimiting an empty space zone G1 and G2.
  • the filling profiles FLj can have a starting point and an ending point or they can also be continuous and closed, as in the case of figure 20 for example.
  • the determination of the orientation of the deposition direction occurs by determining, for each point of the current filling profile, the connection vector for connecting the origin point on the previous filling profile or on the contour line delimiting the empty space in the lower plane section.
  • Figures 7 to 19 show the steps of an embodiment of the aforesaid method for identifying the empty spaces between two successive deposition layers and for determining the deposition path of the filling layers in detail.
  • Figure 7 respectively shows the contour lines Cnt(upper) and Cnt(lower) in the section plane SP(upper) and SP(lower) of the object obj according to figure 5 and on which the points P i , P i-1 , P i+i provided at a given distance one from the other are depicted.
  • Figure 8 shows the application of the method of the plane of intersection in figure 3 applied to two contours Cnt(upper) and Cnt(lower) to identify the presence of empty spaces (Gaps) between said two contour lines on the basis of the distance between them.
  • Figure 8 shows the application of the method of the plane of intersection with reference to three points P i , P i-1 , P i+i provided on the upper contour line Cnt (upper) .
  • the connection vector of the points P i-1 and P i+1 is denoted by V(P i-1 , P i+1 ) and the plane of intersection passing through the point Pi is denoted by Ins.
  • the point of intersection of the plane Ins with the lower contour line Cnt(lower) is denoted by P cor(i) . If the distance of the two points P i and P cor(i) is higher than the maximum distance defined as the printing threshold, i.e.
  • the point Pi is considered 'orphan,' i.e. is considered not to have a valid conjugate point and cannot therefore be deposited without filling profiles. If, as in the example shown, the distance of said two points is lower than or equal to the printing threshold, then the point P i and the point P cor(i) are considered conjugate points and this quality is associated to said points as depicted with the star symbol in figures 8 and 9 . As is clear, that which was described for point Pi is also valid for point P i-1 .
  • the vector V(P i , P i-2 ) connects the points P i and P i-2 , while the plane of intersection originating from the point P i-i on the contour line Cnt(upper) crosses the line Cnt(lower) in the point of intersection P cor(i-1) .
  • the distance between the points P i-i and P cor(i-1) is within the printing threshold, so even in this case these two points are not considered 'orphans,' i.e. are conjugate as depicted by the star symbols in figures 8 and 9 .
  • the vector connecting said pair of conjugate points, respectively P i and P cor(i) and P i-1 and P cor(i-1) defines the orientation of the deposition direction of the material at said points, i.e. the relative orientation between the tool axis z and the worktable.
  • the points on the upper contour line Cnt(upper) that are at a higher distance than the printing threshold from the corresponding point of intersection on the contour line Cnt(lower) or that do not find any corresponding point on said contour line Cnt (lower) are also identified and marked as 'orphan' points, as shown in figure 9 , which graphically represents the situation at the end of the calculation loop on all points of the upper contour line Cnt(upper).
  • the calculation loop on the points of the upper contour line Cnt(upper) is followed by a calculation loop on the contour line Cnt(lower) of the lower layer in which, for each point on the contour line of the lower layer Cnt(lower), the minimum distance between a facing segment of the upper contour line Cnt(upper) is defined.
  • the process is graphically shown schematically for one point of the lower contour line Cnt(lower) in figure 10 , in which the distance Dist q , with respect to different points on the segment of the upper contour line Cnt(sup) facing the point on the lower contour line Cnt(inf) is defined.
  • the minimum distance Dmin is higher than the printing threshold and therefore the point is considered an 'orphan' point, as denoted by P orf in figure 10 .
  • the successive step shown in figures 13 and 14 consists in determining the lines delimiting the empty spaces G1 and G2 whose contours were identified in the preceding steps.
  • the 'orphan' points P orf on the contour line Cnt(upper) of the upper layer and on the contour line Cnt(lower) of the lower layer are joined by a polyline or broken line which is defined as the line of delimitation Cnt(G1) and Cnt(G2) of the empty spaces G1 and G2.
  • the successive step provides for determining the deposition paths of the filling profiles FLj of the empty spaces G1 and G2, by using a series of offsets of the lower profile.
  • the path is determined by applying, to the lower contour profile Cnt(lower) of the lower layer, an offset in direction of the contour line Cnt(upper) of the upper layer, as shown in figure 17 .
  • the contour line of the lower layer after the first offset step which is denoted by OFF[Step 1, Cnt(lower)], is shown in this figure.
  • the offset distance d off preselected for the construction of a path of a successive filling profile FLj+1 from a previous filling profile FLj is selected so that to result lower or at most equal to the printing threshold and the offset vector is calculated as graphically depicted in three cases of the figures 15 a), b) and c) , for the convex condition, concave condition and aligned condition of the segments of the line connecting one point Pi on the contour line Cnt (lower) or on the previous filling line FLj with a point P INS (stpj) on the immediately successive filling profile FLj+1.
  • the points P OUT are those clearly falling outside of the line delimiting the empty spaces.
  • the points P INS are the ones still inside the line delimiting the empty spaces, respectively G1 and G2, while the points denoted by P INT are the intersection points of the filling line OFF[Step1, Cnt(Inf)] with the line Cnt(G1) delimiting the empty space G1. Obviously, in the present case, this is also valid for the empty space G2 and the corresponding line of delimitation Cnt(G2).
  • each point P INT(stpj) on a filling profile FLj and of the corresponding point P INT(stpj+1) on the successive filling profile FLj+1 is connected by a vector that defines the orientation of the deposition direction of the filling profile FLj+1, i.e. the direction of relative orientation between the deposition head and the worktable.
  • Figure 18 schematically and graphically shows the entire determination step of the sequence of filling profiles and, for the points P INT of the filling lines relative to step 1 and step 2, the vectors O(i-1) , O(i) and O(i+1) that define the orientation of the deposition direction in the points P INS inside the empty space G1 and belonging to the filling profiles OFF[Step(1),Cnt(Lower)] and OFF[Step(2),Cnt(Lower].
  • the offset curve relative to the step offset Step(Last) named OFF[Step(Last),Cnt(Lower)] is the last curve with the points inside the line delimiting the two gaps G1 and G2, while the further offset generates a curve in which the points are all outside of the delimitation line Cnt(G1) and Cnt(G2) of the empty spaces G1 and G2.
  • the points of intersection P INT also constitute the support points of the material layer along the path defined by the contour line Cnt(upper) in the upper section plane that can therefore be deposited, the Gaps G1 and G2 being now filled as shown in figure 19 .
  • Figures 20 and 21 show further variants of conditions in which, between the two material layers, there are gaps, therefore the layer immediately above does not find the possibility to rest on the lower layer.
  • the inclined cylinder of figure 21 forms two gaps that are filled automatically by the method according to the present invention with the application of the steps described above to this example.
  • the method according to the invention also allows to generate layers for which it is not possible to define a slice since the distance of the successive section plane is higher than the protrusion of the shape of the object beyond the previous section plane.
  • the method allows to define the filling layers for the closing of the object, as depicted in figure 22 .
  • the aforesaid method also allows to automatically determine the deposition paths of the material layers that constitute a support to deposition profiles suddenly protruding or jutting out from the object shape under them.
  • this case concerns 'new' or 'isolated' profiles that are generated at a certain height during the intersection procedure between the slicing plane and the geometry of the object and which do not have any other underlying layer, such as in case of the cup handle 230 referred to in figure 23 for example.
  • the method described for identifying the gaps and the filling profiles, as well as the relative deposition paths also detects the presence of isolated profiles and automatically constructs the supporting column 231 to support them.
  • the method steps according to the invention are encoded in the form of instructions in a program that can be loaded and carried out by a processing unit.
  • the program can be loaded in an internal storage of the system or in a processing unit that operates in combination or that is part of said system.
  • the program is stored on a removable storage support that can be read by a reading device and that is obtained according to any of the existing types of storage supports and according to any of the existing storage protocols.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Claims (13)

  1. Verfahren zur Berechnung der Auftragsstrecke bei der additiven Fertigung unter Verwendung eines Systems mit einem Arbeitstisch (111), auf dem das herzustellende Objekt (obj) durch sequenzweises Auftragen und Härten von übereinanderliegenden Materialschichten mittels eines Auftragskopfes (101) mit einer vorbestimmte Zuführungsrichtung des Schichtmaterials hergestellt wird, wobei der Auftragskopf und der Arbeitstisch relativ zueinander gemäß mindestens fünf Achsen beweglich und ausrichtbar sind,
    und mit einer Verarbeitungseinheit (120) zum Bestimmen der Bewegungsstrecke des Werkzeugs und/oder des Arbeitstisches (111), wobei das Verfahren die folgenden Schritte umfasst:
    a) Bereitstellen eines digitalen dreidimensionalen Modells des zu fertigenden Objekts (obj);
    b) Definieren einer Folge von Schnittebenen des digitalen dreidimensionalen Modells, wobei die Schnittebenen eine vorbestimmte relative Ausrichtung und einen vorbestimmten relativen Abstand zueinander haben, während jeweils zwischen den zwei aufeinanderfolgenden Schnittebenen eine Schicht oder Scheibe des digitalen dreidimensionalen Modells gebildet wird und in jeder der zwei aufeinanderfolgenden Schnittebenen eine Konturlinie aufweist;
    c) Bestimmen der digitalen Linie (Cnt(n)) der Kontur des Objekts (obj) in jeder Schnittebene, wobei diese durch Schneiden jeder Schnittebene mit dem digitalen dreidimensionalen Modell erhalten wird;
    d) Bestimmen der Strecke des eine Materialschicht ablegenden Auftragskopfes (101) und der relativen Ausrichtung (O(i)) zwischen dem Auftragskopf (101) und dem Arbeitstisch (111) zum Ablegen einer Materialschicht entsprechend der Form der Oberflächen, die als Schnittstelle zur Außenseite oder zu einem Hohlraum der durch zwei benachbarte Schnittebenen begrenzten Scheibe des dreidimensionalen Modells dienen;
    e) Auftragen der Materialschicht durch Bewegen des Auftragskopfes und/oder des Arbeitstisches entsprechend der Strecke (pth) und der relativen Ausrichtung (O(i+n)) des Auftragskopfes (101) und des Arbeitstisches, die im vorhergehenden Schritt d) bestimmt wurden;
    f) Wiederholen der Schritte d) und e) bis zum Auftragen der Materialschichten für jede der durch die Folge der Schnittebenen definierten Scheiben des dreidimensionalen Modells,
    gekennzeichnet durch die folgenden Schritte:
    beim Schritt b)
    b1) Definieren einer Raumrichtung in Bezug auf das Objekt, wie durch das digitale dreidimensionale Modell dargestellt, wobei die Raumrichtung die Richtung senkrecht zur Arbeitstischebene ist, auf der das Material abgeleget wird;
    b2) Definieren von Schnittebenen (SP) des digitalen dreidimensionalen Modells die parallel zueinander und orthogonal zu der genannten Raumrichtung verlaufen, wobei die besagten Schnittebenen um ein vorbestimmtes Maß voneinander beabstandet sind, das sich von einem minimalen Abstand zu einem maximalen Abstand der besagten Schnittebenen ändern kann;
    beim Schritt d)
    d1) Definieren eines Satzes von Punkten auf jeder der Konturlinien, die durch Schneiden jeder der Schnittebenen (SP) mit der äußeren Oberfläche oder der Oberfläche, die die inneren Hohlräume des digitalen dreidimensionalen Modells begrenzt, erzeugt werden;
    d2) für jeden Punkt (Pi) einer Konturlinie (Cnt(upper)) in einer ersten Schnittebene, Verbinden der beiden unmittelbar benachbarten Punkte (Pi-1, Pi+1) durch ein Verbindungssegment und Berechnen der Position eines Punktes auf der Konturlinie in einer zweiten Schnittebene direkt unterhalb der ersten Schnittebene in Bezug auf die in Schritt b1) definierte Raumrichtung als der Schnittpunkt der zweiten Konturlinie in der unteren Ebene mit einer Schnittebene parallel zu der Raumrichtung und senkrecht zu dem Verbindungssegment;
    d3) Definieren, als die Richtung der relativen Ausrichtung zwischen dem Arbeitstisch (111) und dem Auftragskopf (101), die Richtung des Vektors V(Pi-1, Pi+1), der durch das Segment definiert ist, das den Punkt auf der Konturlinie der oberen Schnittebene verbindet und durch das die Schnittebene mit dem Schnittpunkt dieser Ebene mit der Konturlinie (Cnt(lower)) der unteren Schnittebene verläuft;
    d4) Erstellen der Strecke des Auftragskopfes (101) in Bezug auf den Arbeitstisch (111) und des relativen Ausrichtungswinkels (O(i)) des Auftragskopfes (101) und des Arbeitstisches (111) für das Auftragen der Materialschicht, die der Oberfläche des dreidimensionalen Objektes (obj) entspricht, welche zwischen der unteren Schnittebene und der oberen Schnittebene liegt, durch Wiederholen der Schritte d2) und d3) für jeden Punkt der Konturlinie in der oberen Schnittebene.
  2. Verfahren nach Anspruch 1, wobei das digitale dreidimensionale Modell eine dreidimensionale Datei im STL-Format ist und die Konturlinie auf jeder Schnittebene eine polygonale Linie ist.
  3. Verfahren zur Berechnung der Auftragsstrecke bei der additiven Fertigung unter Verwendung eines Systems mit einem Arbeitstisch (111), auf dem das herzustellende Objekt (obj) durch sequenzweises Auftragen und Härten von übereinanderliegenden Materialschichten mittels eines Auftragskopfes (101) hergestellt wird, der eine vorbestimmte Zuführungsrichtung des Materials der Schichten aufweist, wobei der Auftragskopf und der Arbeitstisch in Bezug zueinander gemäß mindestens fünf Achsen beweglich und ausrichtbar sind, und mit einer Verarbeitungseinheit (120) zum Bestimmen der Bewegungsstrecke des Werkzeugs und/oder des Arbeitstisches (111), wobei das Verfahren die folgenden Schritte umfasst:
    a) Bereitstellen eines digitalen dreidimensionalen Modells des zu fertigenden Objekts (obj);
    b) Definieren einer Folge von Schnittebenen des digitalen dreidimensionalen Modells, wobei die Schnittebenen eine vorbestimmte relative Ausrichtung und einen vorbestimmten relativen Abstand zueinander haben, während jeweils zwischen den zwei aufeinanderfolgenden Schnittebenen eine Schicht oder Scheibe des digitalen dreidimensionalen Modells gebildet wird und in jeder der zwei aufeinanderfolgenden Schnittebenen eine Konturlinie aufweist;
    c) Bestimmen der digitalen Linie (Cnt(n)) der Kontur des Objekts (obj) in jeder Schnittebene, wobei diese durch Schneiden jeder Schnittebene mit dem digitalen dreidimensionalen Modell erhalten wird;
    d) Bestimmen der Strecke des eine Materialschicht ablegenden Auftragskopfes (101) und der relativen Ausrichtung (O(i)) zwischen dem Auftragskopf (101) und dem Arbeitstisch (111) zum Ablegen einer Materialschicht entsprechend der Form der Oberflächen, die als Schnittstelle zur Außenseite oder zu einem Hohlraum der durch zwei benachbarte Schnittebenen begrenzten Scheibe des dreidimensionalen Modells dienen;
    e) Auftragen der Materialschicht durch Bewegen des Auftragskopfes und/oder des Arbeitstisches entsprechend der Strecke (pth) und der relativen Ausrichtung (O(i+n)) des Auftragskopfes (101) und des Arbeitstisches, die im vorhergehenden Schritt d) bestimmt wurden;
    f) Wiederholen der Schritte d) und e) bis zum Ablegen der Materialschichten für jede der durch die Folge der Schnittebenen definierten Scheiben des dreidimensionalen Modells,
    gekennzeichnet durch die folgenden Schritte:
    beim Schritt b)
    b1) Definieren einer Raumrichtung in Bezug auf das Objekt, wie durch das digitale dreidimensionale Modell dargestellt, wobei die Raumrichtung die Richtung senkrecht zur Arbeitstischebene ist, auf der das Material abgeleget wird;
    b2) Definieren von Schnittebenen (SP) des digitalen dreidimensionalen Modells, die parallel zueinander und orthogonal zu der genannten Raumrichtung verlaufen, wobei die besagten Schnittebenen um ein vorbestimmtes Maß voneinander beabstandet sind, das sich von einem minimalen Abstand zu einem maximalen Abstand der besagten Schnittebenen ändern kann;
    beim Schritt d)
    d1) Definieren eines Satzes von Punkten auf jeder der Konturlinien, die durch Schneiden jeder der Schnittebenen (SP) mit der äußeren Oberfläche oder der Oberfläche, die die inneren Hohlräume des digitalen dreidimensionalen Modells begrenzt, erzeugt werden;
    d2) für jeden Punkt (Pi) einer Konturlinie (Cnt (oben)) in einer ersten Schnittebene, Ableiten des Tangentenvektors an der genannten oberen Konturlinie,
    wobei der Tangentenvektor die Normale einer Schnittebene parallel zu der Raumrichtung und senkrecht zu dem Tangentenvektor bildet und
    wobei der Tangentenvektor an den Punkten bestimmt wird, die in Schritt d1) auf der Konturlinie definiert sind,
    d3) Definieren, als die Richtung der relativen Ausrichtung zwischen dem Arbeitstisch (111) und dem Auftragskopf (101), die Richtung des Vektors V(Pi-1, Pi+1), der durch das Segment definiert ist, das den Punkt auf der Konturlinie der oberen Schnittebene verbindet und durch das die Schnittebene mit dem Schnittpunkt dieser Ebene mit der Konturlinie (Cnt(lower)) der unteren Schnittebene verläuft;
    d4) Erstellen der Strecke des Auftragskopfes (101) in Bezug auf den Arbeitstisch (111) und des relativen Ausrichtungswinkels (O(i)) des Auftragskopfes (101) und des Arbeitstisches (111) für das Auftragen der Materialschicht, die der Oberfläche des dreidimensionalen Objektes (obj) entspricht, welche zwischen der unteren Schnittebene und der oberen Schnittebene liegt, durch Wiederholen der Schritte d2) und d3) für jeden Punkt der Konturlinie in der oberen Schnittebene.
  4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, bei dem die automatische Erkennung von Leerräumen zwischen benachbarten Materialschichten vorgesehen ist, die in Bezug auf die Konturlinien in den benachbarten Schnittebenen definiert sind, und das folgende Schritte umfasst:
    - Definieren eines maximal zulässigen Abstandsschwellwerts (sogenannter Druckschwellwert) zwischen der Konturlinie des digitalen dreidimensionalen Modells in einer ersten unteren Schnittebene und der Konturlinie des digitalen dreidimensionalen Modells in der Schnittebene unmittelbar über der ersten Schnittebene, wobei der maximale Abstandsschwellwert noch ein Aufliegen der Materialschicht der oberen Scheibe auf der Materialschicht der unteren Scheibe durch geeignetes Ausrichten des zu fertigenden Teils ermöglicht;
    - Ausführen von Schritt dl) für die Konturlinien in den beiden benachbarten Schnittebenen;
    - Bestimmen, für jeden Punkt entlang der oberen und unteren Konturlinie, des Abstandes zu den Segmenten der Konturlinie der benachbarten Schnittschicht, jeweils unten und oben;
    - Vergleichen der Abstände mit dem Druckschwellenwert und Bestimmen der Kontur des Leerraumes zwischen den beiden Konturlinien, Verbinden der Punkte auf jeder der beiden Konturlinien, die einen Abstand zu den Segmenten der anderen Konturlinie haben, der größer ist als der Druckschwellenwert;
    - Berücksichtigen mindestens des Teils der Konturlinie, der den Leerraum begrenzt und der einem Segment der Konturlinie der unteren Scheibe entspricht
    wobei die Linie die Abstützung für ein nachfolgendes benachbartes Füllungsprofil bildet und
    - Bestimmung der Material-Auftragsstrecke des aufeinanderfolgenden Füllungsprofils durch Bereitstellung einer Offset-Verschiebung der unmittelbar darunter liegenden Schicht,
    wobei der Offset höchstens gleich dem Wert des Druckschwellenwertes ist, während
    dieser Schritt für jedes neue Füllungsprofil, das auf einem benachbarten vorherigen Füllungsprofil aufgetragen wird, wiederholt wird, bis ein letztes abgelegtes Füllungsprofil geeignet ist, die Abstützung für mindestens ein Segment der Materialschicht der oberen Scheibe zu bilden, d. h. einen Abstand von der Materialschicht der oberen Scheibe hat, der nicht größer als der Druckschwellenwert ist.
  5. Verfahren nach Anspruch 4, bei dem für jeden Punkt des Füllungsprofils ermittelt wird, ob sich diese Punkte innerhalb oder außerhalb des Leerraums befinden, d.h. des Bereichs, der durch die den Leerraum begrenzende Linie begrenzt wird, wobei die Punkte, die aus der den Leerraum begrenzenden Kontur herausfallen, für die Bestimmung der Auftragsstrecke verworfen werden und nur die Punkte, die in den Leerraum liegen, beibehalten werden.
  6. Verfahren nach Anspruch 4 oder 5, wobei die Schnittpunkte des Profils jeder Füllungsmaterialschicht mit der Materialschicht der oberen Scheibe bestimmt werden, indem jede Füllungsschicht an diesem Schnittpunkt beginnt oder endet.
  7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 4 bis 6, wobei die folgenden Schritte vorgesehen sind:
    i) für jeden Punkt der Konturlinie der oberen Schnittebene wird ein entsprechender Punkt auf der Konturlinie in der unteren Schnittebene bestimmt, wobei der Punkt dem Schnittpunkt der Konturlinie in der unteren Schnittebene mit einer Schnittebene entspricht, die durch den Punkt auf der Konturlinie der oberen Schnittebene verläuft und die senkrecht zu dem Segment ist, das die beiden dem Punkt unmittelbar benachbarten Punkte auf gegenüberliegenden Seiten davon verbindet;
    ii) für jeden Punkt entlang der Konturlinie der oberen Schnittebene wird der Abstand zum zugehörigen Punkt bestimmt, der durch die Schnittebene auf der Konturlinie in der unteren Schnittebene definiert ist, und dieser Abstand wird mit dem Druckschwellenwert verglichen,
    iii) Markieren der Punkte auf der Konturlinie in der oberen Schnittebene, deren Abstand von dem entsprechenden Schnittpunkt auf der Linie der unteren Schnittebene kleiner als der Druckschwellenwert ist, in unterschiedlicher Weise von denjenigen Punkten, für die der vorgenannte Abstand von dem entsprechenden Schnittpunkt auf der Konturlinie in der unteren Schnittebene größer als der Druckschwellenwert ist;
    iv) Übertragen der auf der unteren Konturlinie erzeugten Schnittpunkte auf diese Linie;
    v) während die Verbindungslinie jedes Punktpaares, das durch einen Punkt auf der Konturlinie der oberen Schnittebene und durch einen entsprechenden Schnittpunkt auf der Konturlinie der unteren Schnittebene gebildet wird, deren Abstand kleiner als der Druckschwellenwert ist, die Ausrichtungsachse des Auftragskopfes (101) in Bezug auf den Arbeitstisch (I11) definiert und während
    vi) anschließend für jeden Punkt auf der Konturlinie in der unteren Schnittebene der minimale Abstand zu einem gegenüberliegenden Segment der Konturlinie in der oberen Schnittebene bestimmt wird,
    vii) wobei dieser Abstand mit dem Druckschwellenwert verglichen wird und die Punkte, für die dieser Abstand größer als der Druckschwellenwert ist, identifiziert und auf eine andere Weise markiert werden als die Punkte, für die dieser Abstand kleiner als der Druckschwellenwert ist,
    viii) die Punkte auf der Konturlinie in der oberen Schnittebene und diejenigen auf der Konturlinie in der unteren Schnittebene, für die der Abstand von dem entsprechenden Schnittpunkt auf der Konturlinie der unteren Schnittebene mit dem gegenüberliegenden Segment der Konturlinie in der oberen Schnittebene jeweils größer ist als der Druckschwellenwert, durch eine Interpolationslinie verbunden werden, die die Kontur eines Leerraums zwischen den Materialschichten von zwei benachbarten Scheiben bildet.
  8. Verfahren nach Anspruch 7, wobei die Ausrichtung zwischen dem Auftragskopf (101) und dem Arbeitstisch (111) zum Auftragen der Füllungsschichten der Leerräume gemäß den folgenden Schritten bestimmt wird:
    ix) ausgehend von dem einen Leerraum begrenzenden und in der unteren Schnittebene liegenden Segment der Konturlinie, wird die Konturlinie für das unmittelbar an die Konturlinie des vorhergehenden Füllungsprofils angrenzende Füllungsprofil mit einem Offset von vorbestimmtem Abstand von der Konturlinie der vorhergehenden Füllungsschicht bestimmt,
    x) Bestimmen, welche Punkte der Konturlinie für die neue Füllungsschicht jeweils innerhalb des Leerraums, außerhalb des Leerraums und am genauen Schnittpunkt mit der Kontur des Leerraums liegen, während für jeden Punkt der Konturlinie des neuen Füllungsprofils, der in den Leerraum liegt, die Ausrichtung des Auftragskopfes (101) in Bezug auf den Arbeitstisch (111) entsprechend der Richtung des Vektors bestimmt wird, der diesen Punkt mit dem Ursprungspunkt der Konturlinie des vorherigen Füllungsprofils oder des den Leerraum begrenzenden Segments der Konturlinie in der unteren Schnittebene verbindet;
    xi) die Strecke des Auftragskopfes (101) in Bezug auf den Arbeitstisch (111) durch die Strecke von dem einen zu dem anderen Punkt entlang der Konturlinie der aufzutragenden Füllungsschicht bestimmt wird;
    xii) Wiederholen der vorgenannten Schritte, bis für mindestens einen Punkt festgestellt wird, dass er sich innerhalb des Leerraums befindet, und Beenden des Zyklus, wenn alle Punkte der Konturlinie für die neue Füllungsschicht alle außerhalb der den Leerraum begrenzenden Kontur liegen.
  9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 7 oder 8, wobei die Verbindung der Punkte zur Bestimmung der einen Leerraum abgrenzenden Konturlinie wie in Schritt viii), durch Folgen einer Verbindungsrichtungsreihenfolge im Uhrzeigersinn und gegen den Uhrzeigersinn durchgeführt wird, wobei die Verbindungsrichtung im Uhrzeigersinn Inseln entspricht und die Verbindungsrichtung gegen den Uhrzeigersinn einer Linie entspricht, die einen äußeren oder isolierten Leerraum abgrenzt.
  10. Verfahren nach einem oder mehreren der Ansprüche 7 bis 9, wobei nach dem Auftragen aller Füllungsschichten das Schichtmaterial der oberen Scheibe aufgetragen wird.
  11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, wobei das Programm zum Erzeugen oder Laden eines digitalen dreidimensionalen Modells des herzustellenden Objekts (obj) ein parametrisches CAD oder ein Konverter und/oder Generator von Dateien im STL-Format ist.
  12. Feste oder tragbare Speichereinheit (140), in der ein Programm gespeichert ist, das die Anweisungen zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche 1 bis 11 enthält.
  13. System umfassend einen Arbeitstisch (111), auf dem das herzustellende Objekt (obj) durch sequenzweises Auftragen und Härten von übereinanderliegenden Materialschichten mittels eines Auftragskopfes (101) mit einer vorbestimmten Zuführungsrichtung des Schichtmaterials hergestellt wird, wobei der Auftragskopf und der Arbeitstisch relativ zueinander beweglich sind und nach mindestens fünf Achsen zueinander ausrichtbar sind, und eine Verarbeitungseinheit (120) zum Bestimmen der Bewegungsstrecke des Werkzeugs und/oder des Arbeitstisches (111), dadurch gekennzeichnet, dass die Verarbeitungseinheit (120) dazu eingerichtet ist, die Auftragsstrecke mit dem Berechnungsverfahren nach einem oder mehreren der vorhergehenden Ansprüche 1 bis 11 zu steuern.
EP18205707.5A 2017-11-14 2018-11-12 Verfahren zum bestimmen der neigung der achsen einer maschine mit fünf oder mehr achsen zum herstellen von objekten durch additive fertigung, system zum herstellen von objekten nach diesem verfahren Active EP3482914B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT201700129458 2017-11-14

Publications (2)

Publication Number Publication Date
EP3482914A1 EP3482914A1 (de) 2019-05-15
EP3482914B1 true EP3482914B1 (de) 2021-08-04

Family

ID=61527250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18205707.5A Active EP3482914B1 (de) 2017-11-14 2018-11-12 Verfahren zum bestimmen der neigung der achsen einer maschine mit fünf oder mehr achsen zum herstellen von objekten durch additive fertigung, system zum herstellen von objekten nach diesem verfahren

Country Status (1)

Country Link
EP (1) EP3482914B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783260A (zh) * 2020-08-14 2020-10-16 广东科学技术职业学院 一种面向stl文件的截面轮廓线段连接方法
CN112659544B (zh) * 2020-12-02 2022-06-07 西安交通大学 五轴3d打印机的薄壁管状模型切片方法、系统及打印方法
CN113370524B (zh) * 2021-05-15 2024-02-02 深圳市创必得科技有限公司 切片预处理3d模型对称加支撑方法
CN114274505B (zh) * 2021-12-23 2022-08-30 山东大学 一种三明治板熔融沉积打印支撑结构生成方法及系统
CN114986687B (zh) * 2022-05-31 2024-07-19 江苏乾度智造高科技有限公司 一种3d打印件内部孔洞沟槽清理方法
CN117301527B (zh) * 2023-10-30 2024-04-05 科路睿(天津)生物技术有限公司 四轴3d打印片状模型的单路切片方法及打印方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106614A1 (de) * 2011-06-16 2014-03-06 Arburg Gmbh + Co Kg Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Gegenstandes
US10005126B2 (en) * 2014-03-19 2018-06-26 Autodesk, Inc. Systems and methods for improved 3D printing
EP3191992B1 (de) * 2014-09-09 2020-11-25 Cornell University System und verfahren zum dreidimensionalen drucken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3482914A1 (de) 2019-05-15

Similar Documents

Publication Publication Date Title
EP3482914B1 (de) Verfahren zum bestimmen der neigung der achsen einer maschine mit fünf oder mehr achsen zum herstellen von objekten durch additive fertigung, system zum herstellen von objekten nach diesem verfahren
Dave et al. Introduction to fused deposition modeling based 3D printing process
EP3442775B1 (de) Optimiertes dreidimensionales drucken unter verwendung vorgefertigter träger
Mercado Rivera et al. Additive manufacturing methods: techniques, materials, and closed-loop control applications
Kruth Material incress manufacturing by rapid prototyping techniques
Yan et al. A review of rapid prototyping technologies and systems
US6405095B1 (en) Rapid prototyping and tooling system
US6180049B1 (en) Layer manufacturing using focused chemical vapor deposition
US6934600B2 (en) Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US6401001B1 (en) Layer manufacturing using deposition of fused droplets
KR100291953B1 (ko) 가변 용착 적층식 쾌속조형방법 및 쾌속조형장치
US20220266342A1 (en) Method of determining a tool path for controlling a printing tool
EP3589477B1 (de) 3d-druck mittels sprühformung
JP2018531815A (ja) 工作物の製造における、付加製造機械を含む機械のチェーンの制御の改善、またはそれに関する改善
US10549477B2 (en) Methods and apparatus for controlling an applicator head during additive manufacturing
US10682821B2 (en) Flexible tooling system and method for manufacturing of composite structures
CN105643921A (zh) 立体打印装置与立体打印方法
US10981330B2 (en) Systems and methods for printing components using additive manufacturing
EP3334588A1 (de) 3d-drucken mit vorgeformter wiederverwendbarer tragstruktur
CN113601833A (zh) 一种fdm三维打印控制系统
CN112805406A (zh) 喷射成型的结构接头
US20220334555A1 (en) Apparatus and method for producing a 3d part using implicit representation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1416545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018021134

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1416545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018021134

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211112

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231016

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231016

Year of fee payment: 6

Ref country code: DE

Payment date: 20231024

Year of fee payment: 6

Ref country code: CH

Payment date: 20231201

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804