EP3482044B1 - Verfahren und vorrichtung zum vorspannen eines piezoelektrischen wandlers für akustische bohrlochkommunikation - Google Patents

Verfahren und vorrichtung zum vorspannen eines piezoelektrischen wandlers für akustische bohrlochkommunikation Download PDF

Info

Publication number
EP3482044B1
EP3482044B1 EP17826717.5A EP17826717A EP3482044B1 EP 3482044 B1 EP3482044 B1 EP 3482044B1 EP 17826717 A EP17826717 A EP 17826717A EP 3482044 B1 EP3482044 B1 EP 3482044B1
Authority
EP
European Patent Office
Prior art keywords
acoustic
downhole
piezoelectric transducer
preload
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17826717.5A
Other languages
English (en)
French (fr)
Other versions
EP3482044A1 (de
EP3482044A4 (de
Inventor
Xiaojun XIAO
Dave WHALEN
John-Peter Van Zelm
John Godfrey Mcrory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Baker Hughes Oilfield Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Oilfield Operations LLC filed Critical Baker Hughes Oilfield Operations LLC
Publication of EP3482044A1 publication Critical patent/EP3482044A1/de
Publication of EP3482044A4 publication Critical patent/EP3482044A4/de
Application granted granted Critical
Publication of EP3482044B1 publication Critical patent/EP3482044B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/16Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the drill string or casing, e.g. by torsional acoustic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier

Definitions

  • This disclosure relates generally to a downhole acoustic transmitter having a pre-loaded piezoelectric transducer and a method for pre-loading a piezoelectric transducer for use in downhole communication such as downhole acoustic telemetry.
  • Downhole sensor measurements such as downhole bore and annular pressure, drill string torque and tension, and temperature can be transferred from a downhole location to the surface through one of several known telemetry methods.
  • EM electromagnetic
  • EM telemetry does not require the flow drilling fluid and can provide a higher data transmission rate than mud pulse telemetry, but can be sensitive to the nature of the formations surrounding the well and may not be well suited for deeper wells.
  • a fourth type of downhole communication is acoustic telemetry, which has proven to be well suited for the modern drilling environment. Acoustic telemetry is capable of transmitting hundreds of bits per second, and since it uses the body of the drill pipe as its transmission medium it is insensitive to the surrounding formation or casing, and does not require any fluid flow to enable the transmission of data.
  • probe-based There are currently three different implementations of acoustic telemetry systems in downhole tools that use acoustic telemetry: probe-based, clamp-on, and collar-based. These systems typically comprise components including sensors, electronics, batteries and an acoustic transmitter.
  • the probe-based implementation is mounted at least partially within the bore of the drill pipe.
  • the clamp-on implementation is mounted on the external wall of the drill pipe.
  • the collar-based implementation places the components within an annular space in the downhole tool.
  • a number of acoustic transmitters can be spaced along the length of the drill string.
  • the most common type of acoustic transducer used within downhole tools comprises a cylindrical piezoelectric stack mounted in a collar-based implementation.
  • Such a stack comprises a number of thin piezoceramic discs layered with thin electrodes between each disc which are connected electrically in parallel.
  • an advantage of the piezoelectric stack when compared to other acoustic transducer types is that the acoustic impedance of the stacked ring structure can be closely matched to the acoustic impedance of the tool's structure thereby optimizing the transfer of acoustic energy from the stack into the tool body, and subsequently into the drill string. Any acoustic impedance mismatch between the stack and the tool surrounding structure results in a reduction in the acoustic output power of the tool.
  • the piezoelectric stack structure offers a large displacement force combined with a high energy conversion efficiency and high compressive strength, but offers little resistance to tension, even that incurred when voltage is applied. Due to its low tensile strength, it is common practice to place a piezoelectric stack under a mechanical compressive preload along the stack's axis of operation in order to maintain stack integrity while being actuated. The magnitude of the preload can compensate for dynamic forces, but also affects the mechanical energy output from the stack. If there is no compressive preload or if the compressive preload exceeds the blocking force of the piezoelectric material, then there is no mechanical energy output from the stack. An optimum preload level that will maximize the output mechanical energy from the stack occurs when the stiffness of the preloaded stack is equal to the stiffness of the mechanical load.
  • a prior art collar-based piezoelectric stack-type acoustic transmitter 301 comprises first and second thermal expansion compensation rings 302a and 302b, a retaining ring 303, end coupling 304, a steel outer housing 305, a mandrel 306, a pin 307, and a piezoelectric stack 308.
  • the first and second thermal expansion rings 302a and 302b are designed to compensate for the difference between the thermal expansion of the steel housing 305 and the piezoelectric stack 308.
  • the mandrel 306 is threaded into the end coupling 304, and the first thermal expansion compensation ring 302a is slid down the mandrel 306 to an inner face 309 of the end coupling 304.
  • the piezoelectric stack 308 is slid down the mandrel 306 to rest against the first thermal compensation ring 302a.
  • the second thermal compensation ring 302b is slid down the mandrel 306 to rest against the end of the piezoelectric stack 308, and the retaining ring 303 is placed on the mandrel 306 against the second thermal compensation ring 302b.
  • the outer housing 305 is placed over the mandrel 306, first and second thermal compensation rings 302a, 302b and the retaining ring 303 and threaded onto the end coupling 304.
  • the pin 307 is threaded into the housing 305 until the thread is shouldered, and the inner face of the pin 310 is forced against the retaining ring 303 which in turn forces the thermal compensation rings 302a, 302b and the piezoelectric stack 308 against the immoveable inner face 309 of the end coupling 304, thereby creating a compressive preload force on the piezoelectric stack 308.
  • the amount of compressive force on the piezoelectric stack can be controlled by varying the length of the retaining ring 303.
  • the prior art acoustic transmitter 301 will maintain a positive compressive preload on the piezoelectric stack 308 over a limited range of tension/compression on the downhole tool.
  • the tension/compression applied to the downhole tool by external forces can result in the tool flexing enough to either reduce the preload to zero, or to compress the piezoelectric stack beyond its compressive limits.
  • a method of applying a compressive preload to the piezoelectric stack in a downhole acoustic transmitter that will maintain an effective preload over the entire range of tension and compression applied to the downhole tool by the drill string while operating in a downhole environment.
  • US 6137747 discloses an acoustic transmitter that imparts vibratory stresses onto a signal propagation medium such as oil well tubing when actuated by an electric driver.
  • the present invention provides a downhole acoustic transmitter for use in downhole communication as claimed in claim 1.
  • the adjustable preload means can comprise one or more spacers contacting an inner face of the second end coupling, or be a retaining ring attached to an inner surface of the outer housing, or be a threaded nut attached to the mandrel.
  • the piezoelectric transducer can comprise an annular stack of annular piezoceramic discs with annular electrodes between each disc, wherein the annular stack is slidable over the mandrel.
  • the preload spring can be a metal tube slidable over the mandrel, or can be one or more metal rods or tubes each extending in the axial direction in the annular space.
  • the downhole acoustic transmitter further comprises an acoustic tuning element in the annular space and attached to the second end of the piezoelectric transducer.
  • the acoustic tuning element has a selected acoustic impedance that when combined with the acoustic impedance of the preload spring, equals the acoustic impedance of the inner face of the first end coupling.
  • the acoustic tuning element can comprise a metal cylinder having a first end attached to the second end of the piezoelectric transducer and a free second end.
  • One or more of a mass density, mass distribution, length and cross sectional area of the acoustic tuning element can be selected to provide the selected acoustic impedance.
  • a downhole acoustic telemetry node which comprises one or more sensors for measuring a local borehole environment and one or more mechanical conditions of a drill string (e.g. pressure, temperature, tension, compression and torque), a processor and memory communicative with the one or more sensors for storing measurements taken by the one or more sensors, and the downhole acoustic transmitter, which is communicative with the processor and memory and is operable to transmit the measurements.
  • a drill string e.g. pressure, temperature, tension, compression and torque
  • the downhole acoustic transmitter which is communicative with the processor and memory and is operable to transmit the measurements.
  • the present invention also provides a method for acoustic transmission from a downhole location as claimed in claim 14.
  • Couple and variants of it such as “coupled”, “couples”, and “coupling” as used in this description is intended to include indirect and direct connections unless otherwise indicated. For example, if a first device is coupled to a second device, that coupling may be through a direct connection or through an indirect connection via other devices and connections. Similarly, if the first device is communicatively coupled to the second device, communication may be through a direct connection or through an indirect connection via other devices and connections.
  • the embodiments described herein relate generally to a downhole acoustic transmitter having a pre-loaded piezoelectric transducer and a method for pre-loading a piezoelectric transducer for use in downhole acoustic communication such as downhole telemetry.
  • the transmitter comprises an enclosure in which the piezoelectric transducer is housed, a preload spring that biases the transducer against a first end coupling of the enclosure, and an adjustable preload means mounted to the enclosure such that a selected compressive force is applied to the preload spring, which in turn urges the transducer against a face of the first end coupling such that a mechanical preload is applied to the transducer.
  • the position of the adjustable preload means and the spring compliance are selected so that the level of mechanical preload applied to the transducer compensates for an expected amount of flexing of the acoustic telemetry transmitter due to varying tension and compression applied to the transmitter, thereby maintaining an effective preload on the transducer.
  • the downhole acoustic transmitter further comprises an acoustic tuning element positioned to contact the piezoelectric transducer at the same end as the preload spring.
  • the acoustic tuning element is tuned such that the acoustic impedance seen by the piezoelectric transducer at that end, comprising the combination of the acoustic impedance of the tuning element and the acoustic impedance of the preload spring at that end, is equal to the acoustic impedance offered to the transducer at the other end by the face of the first end coupling, thereby maintaining the output power of the transducer while compensating for any variations in the mechanical preload applied by the preload spring.
  • one or more of the acoustic telemetry transmitters can be installed in a drill string.
  • Drill string tubing 103 is suspended in a borehole 108 from a drilling rig 102.
  • the tubing 103 can extend for thousands of feet (1000 feet is 304.8m), and in a typical deployment an acoustic transmitter is part of a telemetry tool 105 in a bottom hole assembly (BHA) 104.
  • BHA bottom hole assembly
  • Additional acoustic transmitters can be included in repeaters 106 along the length of the tubing 103, with the number of repeaters 106 and the spacing between them determined by the along-string measurements required, if any, at each of the additional locations, and the possible necessity to repeat the acoustic signal if the distance to the surface is too far to transmit successfully with a single acoustic transmitter.
  • the acoustic signal is received at the surface by a receiver 107.
  • the acoustic transmitters in this embodiment have a collar-based configuration, with the components of the acoustic transmitter including the piezoelectric transducer, sensors, electronics and batteries being mounted in a wall of a tubular section of the repeater 106 or the telemetry tool 105.
  • the acoustic transmitters can have a probe-based or clamp- on configuration according to other embodiments (not shown).
  • each acoustic transmitter comprises a mandrel defining a through-bore which allows fluid to pass through repeater 106 or telemetry tool 105.
  • Each acoustic transmitter is operable to transmit a modulated acoustic signal as an extensional wave through the drill string components.
  • the connection of several lengths of tubing 103 of similar size and dimensions is well known to form an acoustic frequency response similar to a bandpass comb filter which comprises a number of passbands alternating with stopbands as shown in Figure 3 .
  • the bandwidth of the modulated acoustic signal is limited by the bandwidth of the acoustic passband used for the transmission, although more than one passband can be used to transmit simultaneously which increases the total bandwidth available for the signal and hence the data rate.
  • the telemetry signal travels to the surface, either directly or through the repeaters 106, where it is received and decoded by the receiver 107.
  • the acoustic transmitter 401 used in the telemetry tool 105 and repeater 106 generally comprises an enclosure, a transducer 405 housed within the enclosure, a preload spring 407 contacting one end of the transducer 405, and one or more spacers 409 which provide an adjustable means for applying a selected compressive load (herein referred to as "preload") on the transducer 405 via the preload spring 407.
  • the enclosure comprises a first end coupling 402, a tubular outer housing 403, a cylindrical inner mandrel 404 and a second end coupling 410 (also referred to as a "pin").
  • the first end coupling 402 has a body with threads on the outer surface of the body ("external threads"), and a central bore extending through the body.
  • a first end of the inner mandrel 404 is externally threaded and engages internal threads in the central bore of the first end coupling 402 along a central axis.
  • Both ends of the outer housing 403 are internally threaded, with an internally threaded first end engaging the external threads of the first end coupling 402 and an internally threaded second end engaging external threads of the second end coupling 410.
  • the second end coupling 410 has a body with a bore extending through the body, and which engages a second end of the inner mandrel 404 by a threaded connection.
  • the enclosure When assembled, the enclosure defines a through bore that extends through the central bores of the end couplings 402, 410 and the bore of the mandrel 404, such that drilling fluid can flow through the acoustic transmitter 401.
  • the assembled enclosure also defines a fluid-tight annular space 408 for housing the transducer 405, preload spring 407, and spacers 409.
  • the transducer 405 comprises a stack of thin annular piezoceramic discs layered with thin annular electrodes between each disc which are connected electrically in parallel (the transducer is herein alternatively referred to as a "piezoelectric stack” 405).
  • the stack's electrical behavior is primarily capacitive. Applying a high voltage charges the piezoelectric stack 405 and causes it to increase and decrease in length. It is this deflection that launches extensional waves into the drill pipe (not shown). Data can be carried by the extensional waves by modulating the voltage applied to the piezoelectric stack 405.
  • the piezoelectric stack 405 slides over the mandrel 404 and has a first end that contacts an inner face of the first end coupling 402.
  • the preload spring 407 is shown in Figure 4 as a coil spring that slides over the mandrel 404 with a first end that contacts a second end of the piezoelectric stack 405.
  • the preload spring 407 can alternatively have different forms, including a metal cylinder (not shown) of selected length and spring constant that slides over the mandrel 404, or one or more metal rods or tubes (not shown) that extend axially in the annular space between the mandrel 404 and the outer housing 403.
  • One or more spacers 409 slide over the mandrel 404 to contact a second end of the preload spring 407.
  • the pin 410 is threaded onto the internally threaded second end of the outer housing 403 such that an inner face of the pin 410 applies axial pressure against the spacer(s) 409, which in turn applies an axial compressive preload against the piezoelectric stack 405.
  • additional spacers 409 can be inserted depending on the desired preload to be applied to the piezoelectric stack 405; that is, each spacer 409 has a certain thickness, and the more spacers 409 inserted between the pin end and the preload spring end, the higher the compressive preload will be applied to the transducer 405.
  • the properties of the preload spring 407 are selected to provide a degree of compliance in the preload applied against the transducer 405, i.e. to mitigate against the varying external tensile and compressive forces imposed on the acoustic transmitter 401 during drill string operation.
  • the physical environment imposed on the acoustic transmitter 401 can be particularly challenging, with the telemetry tool 106 in particular being subjected to extreme ranges of pressure, temperature, and tension/compression, all of which vary as a function of the tool's placement in the drill string, depth, and the rig's operational state.
  • the orientation of the borehole 108 containing the tubing 103 can be vertical with an inclination of 0 degrees, or may have one or more deviations in orientation along its length resulting in changes of inclination as high as 90 degrees. Due to the length of the tubing 103 and the deviations in its orientation, the tensile and compressive forces that the telemetry tool 106 are subjected to during rig operations can be very high.
  • the telemetry tool 106 may be subject to pressures up to 206843 kPa (30 kpsi), tensions over 453592kg (1,000,000 pounds), and temperatures up to 175 °C.
  • pressures up to 206843 kPa (30 kpsi), tensions over 453592kg (1,000,000 pounds), and temperatures up to 175 °C.
  • the piezoelectric stack 405 can affect the mechanical energy output by the piezoelectric stack 405 as the compressive load on the piezoelectric stack 405 varies. In the extreme, the piezoelectric stack 405 can be depolarized due to excessive compression caused by compression on the tool 106, or be damaged when the stack compression falls below safe operating levels during periods of high tension on the tool 106.
  • the piezoelectric stack 405 can be subjected to relatively large variations in compressive load as the tool 106 is subjected to changes in the drill string tension and compression during the rig's operations.
  • the amount of compressive preload applied to the piezoelectric stack 405 by the preload spring 407 and spacers 409 can be selected by selecting the spring constant of the preload spring 407 and selecting the number of spacers 409 between the preload spring 407 and the pin 410.
  • An appropriate compressive preload maintains a positive compressive preload on the stack 405 over the entire range of tension and compression expected to be applied to the telemetry tool 105 by the drill string during a drilling operation. Determining the appropriate preload will be evident to one skilled in art based on certain properties of the drill string, borehole, reservoir, and drilling operation. Once the appropriate preload is determined, a spring 407 with a suitable spring constant and a suitable number of spacers 409 can be selected to provide the appropriate preload.
  • a retaining ring 509 is used instead of spacers 409 to apply a compressive preload to a transducer 505 via a suitable preload spring 507.
  • this alternative arrangement also comprises an enclosure having first and second end couplings 502, 510, and an outer housing 503 and a mandrel 504 that connect to the end couplings 502, 510 to form a fluid-tight annular space 508 in which the transducer 505, preload spring 507 and retaining ring 509 are housed.
  • the retaining ring 509 is fixedly mounted to the inner surface of the outer housing 503 in a location that provides the desired compressive preload to the transducer 505.
  • an acoustic transmitter 601 has the same elements as the acoustic transmitter 501 shown in Figure 5 , and is further provided with an acoustic tuning element 606 that serves to match the acoustic impedance of the piezoelectric stack 605 with the first end coupling 602, thereby maintaining optimal power output by the acoustic transmitter 601.
  • the acoustic transmitter 601 generally comprises an enclosure, a transducer 605 comprising the piezoelectric stack, a preload spring 607, and a retaining ring 609 for applying an axial compressive preload on the transducer 605 via the preload spring 607.
  • the enclosure comprises a first end coupling 602 with an inner face 611, a tubular outer housing 603, a cylindrical inner mandrel 604 and a second end coupling 610 ("pin").
  • the acoustic tuning element 606 has a metal tubular body with a first end for contacting the piezoelectric stack 605 and an open second end 612.
  • the acoustic tuning element 606 is slid over the mandrel 604 such that the first end attaches to the piezoelectric stack 605 by a threaded connection, while leaving an annular space 608 between the outer surface of the mandrel 604 and the inner face of the acoustic tuning element 606.
  • the preload spring 607 is slid over the mandrel 604 into the annular space 608 between the mandrel 604 and the acoustic tuning element 606 to contact the end of the piezoelectric stack 605.
  • the outer housing 603 is slid over the assembly and threaded onto the external threads of the first end coupling 602, and the retaining ring 609 is slid over the mandrel 604 and comprises external threads which engage with internal threads of the outer housing 603 such that a compressive preload is applied to the piezoelectric stack 605 via the preload spring 607; consequently the piezoelectric stack 605 is compressed between the preload spring 607 and the inner face 611 of the first end coupling 602.
  • the retaining ring 609 does not contact the second end 612 of the tuning element 606; therefore, the second end 612 of the tuning element remains "open".
  • the pin 610 is threaded into the outer housing 603 and mandrel 604 to close and seal the annular space 608 but does not contribute to the preload on the piezoelectric stack 605.
  • the acoustic tuning element 606 comprises a resonant structure that is tuned such that when it is attached to the end of the piezoelectric stack 605 its acoustic impedance reduces the piezoelectric stack 605 compliance at the frequencies being transmitted, and restores the acoustic match between the piezoelectric stack 605 and the first end coupling 603 without affecting the preload applied to the piezoelectric stack 605 by the preload spring 607.
  • the piezoelectric stack 605 should be matched at either end with acoustic impedances equal to that of the piezoelectric stack 605; however the additional compliance of the preload spring 607 reduces the acoustic impedance seen by the piezoelectric stack 605 at the end at which the preload force is applied.
  • a steel cylinder 3.2 m long and 0.1 m in diameter and a 3800 mm 2 cross sectional area can be used to represent the combined acoustic impedance of a preload spring and an acoustic tuning element; the acoustic impedance at a first end of the cylinder given a free end at the second end of the cylinder can be calculated using Equation 2.
  • the resulting acoustic impedance contains resonant peaks and nulls which occur at frequencies corresponding to integer multiples of quarter wavelengths of the first resonant frequency.
  • the resonant impedance peak shown in Figure 9(a) is too high to be of any use, however the acoustic impedance level on the higher frequency side of the resonance peak is low enough to be useful.
  • Figure 9(b) shows the magnitude of the cylinder's acoustic impedance across the third acoustic passband of the drill string as shown in Figure 3 .
  • the properties of the tuning element disclosed here is only one possible example; the impedance behavior of the tuning element can be controlled through choice of materials, the length of the tuning element, the mass of the tuning element and the distribution of the mass along the length of the tuning element.
  • Figure 6(b) shows a detailed view of the internal components of the acoustic transmitter 601.
  • a first mechanical interface 613 is shown between the first end coupling 602 and the piezoelectric stack 605
  • a second mechanical interface 615 is shown between the the piezoelectric stack 605 and both the cylindrical acoustic tuning element 606 and the preload spring 607.
  • the acoustic impedance Z 1 of the first end coupling 602 would be the same as the acoustic impedance of the piezoelectric stack 605. This condition is also true for the acoustic impedance Z 2 at the second mechanical interface 615.
  • the acoustic tuning element 606 reduces the compliance of the preload, restoring the acoustic impedance to the required value.
  • the acoustic tuning element 606 has a selected impedance that when combined with the acoustic impedance of the preload spring 607, equals the acoustic impedance at the first mechanical interface 613, i.e. the acoustic impedance of the first end coupling 602.
  • FIG. 10 shows that the combined acoustic impedance of the tuning element and the preload spring (labeled "cylinder” in Figure 10 ) is equal to that of the piezoelectric stack at 640 Hz ("center frequency"), with a useable operating frequency bandwidth across the 600 Hz to 700 Hz bandwidth of the third passband of the drill string.
  • the usable range of acoustic impedance of the tuning element 606 in this example is between 70 kg/s and 160 kg/s for a selected operating frequency bandwidth of 600-700 Hz. While the usable operating frequency bandwidth of the tuning element in this case is about 15% of the center frequency, the usable operating frequency bandwidth and resulting usable acoustic impedance range of the tuning element can vary based on the physical properties of the piezoelectric stack and enclosure, as well as on the operating conditions. Generally speaking, the acoustic impedance of the tuning element is within a selected range that maximizes acoustic power transfer from the piezoelectric stack into the enclosure over a selected usable operating frequency bandwidth.
  • an acoustic transmitter 701 comprises a threaded nut 709 that is mounted to a mandrel 704 to apply a selected compressive preload to a transducer 705 via a preload spring 707.
  • an enclosure comprising first and second end couplings 702, 710, an outer housing 703 and the mandrel 704 provides a fluid tight space 708 to house the transducer 705, preload spring 707, and threaded nut 709.
  • an acoustic tuning element 706 similar to the previous arrangements is installed to match the acoustic impedance of the transducer 705 with the first end coupling 702, thereby maintaining optimal power output by the acoustic transmitter 701.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Claims (14)

  1. Akustischer Bohrlochsender (601, 701) zur Verwendung in der Bohrlochkommunikation, umfassend:
    (a) eine Einfassung, umfassend eine erste Endkopplung (602, 702), eine zweite Endkopplung (610, 710), ein rohrförmiges Außengehäuse (603, 703), das ein erstes Ende, das mit der ersten Endkopplung (602, 702) gekoppelt ist, und ein zweites Ende aufweist, das mit der zweiten Endkopplung (610, 710) gekoppelt ist, und einem inneren Dorn (404, 504, 604, 704) innerhalb des Außengehäuses (603, 703), der sich zwischen der ersten und der zweiten Endkopplung erstreckt, sodass ein ringförmiger Raum (608) zwischen dem Dorn (404, 504, 604, 704) und dem Außengehäuse (603, 703) definiert ist;
    (b) einen piezoelektrischen Wandler (605, 705) in dem ringförmigen Raum (608) und der ein erstes Ende aufweist, das eine Innenfläche der ersten Endkopplung (602) in einer axialen Richtung kontaktiert;
    (c) eine Vorspannfeder (607, 707) in dem ringförmigen Raum (608) und der ein erstes Ende aufweist, das ein zweites Ende des piezoelektrischen Wandlers (605, 705) in der axialen Richtung kontaktiert;
    (d) ein einstellbares Vorspannmittel, welches das Gehäuse und ein zweites Ende der Vorspannfeder (607, 707) kontaktiert, sodass eine Druckkraft in der axialen Richtung auf die Vorspannfeder (607, 707) ausgeübt wird, die wiederum den piezoelektrischen Wandler (605, 705) gegen die Innenfläche der ersten Kopplung (602, 702) drückt;
    der Bohrlochsender (601, 701), gekennzeichnet durch:
    (e) ein akustisches Abstimmelement (606) in dem ringförmigen Raum (608) und an dem zweiten Ende des piezoelektrischen Wandlers (605) befestigt, wobei eine akustische Impedanz des akustischen Abstimmelements (606) in Kombination mit einer akustischen Impedanz der Vorspannfeder (607) innerhalb eines ausgewählten Bereichs von akustischen Impedanzen liegt, der eine akustische Impedanz des piezoelektrischen Wandlers (605) umfasst, um die Leistungssendung von dem piezoelektrischen Wandler (605) in das Gehäuse über eine ausgewählte Betriebsfrequenzbandbreite zu maximieren.
  2. Akustischer Bohrlochsender (601, 701) nach Anspruch 1, wobei das einstellbare Vorspannmittel ein oder mehrere Abstandshalter (409) umfasst, die eine Innenfläche der zweiten Endkopplung (402) kontaktieren.
  3. Akustischer Bohrlochsender (601, 701) nach Anspruch 1, wobei das einstellbare Vorspannmittel ein Haltering (509) ist, der an einer Innenoberfläche des Außengehäuses (503) befestigt ist.
  4. Akustischer Bohrlochsender (601, 701) nach Anspruch 1, wobei das einstellbare Vorspannmittel eine Gewindemutter (709) ist, die an dem Dorn (704) befestigt ist.
  5. Akustischer Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 4, wobei der piezoelektrische Wandler (605, 705) einen ringförmigen Stapel ringförmiger piezokeramischer Scheiben mit Elektroden zwischen jeder Scheibe umfasst, wobei der ringförmige Stapel über den Dorn (404, 504, 604, 704) geschoben werden kann.
  6. Akustischer Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 4, wobei die Vorspannfeder (607, 707) ein Metallrohr ist, das über den Dorn (404, 504, 604, 704) geschoben werden kann.
  7. Akustischer Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 4, wobei die Vorspannfeder (607, 707) einen oder mehrere Metallstäbe oder -rohre umfasst, die sich jeweils in axialer Richtung in den ringförmigen Raum (608, 708) erstrecken.
  8. Akustischer Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 7, wobei das akustische Abstimmelement (606) eine Mittenfrequenz aufweist, wobei die akustische Impedanz des akustischen Abstimmelements (606) mit der akustischen Impedanz des piezoelektrischen Wandlers (605, 705) übereinstimmt und die ausgewählte Betriebsfrequenzbandbreite bis zu 15 % der Mittenfrequenz beträgt.
  9. Akustischer Bohrlochsender (601, 701) nach Anspruch 8, wobei das akustische Abstimmelement (606) einen Metallzylinder umfasst, der ein erstes Ende, das an dem zweiten Ende des piezoelektrischen Wandlers (605) befestigt ist, und ein freies zweites Ende (612) aufweist.
  10. Akustischer Bohrlochsender (601, 701) nach Anspruch 8, wobei eine oder mehrere von Massendichte, Massenverteilung, Länge und Querschnittsfläche des akustischen Abstimmelements (606) ausgewählt werden, um die akustische Impedanz des akustischen Abstimmelements (606) bereitzustellen, sodass die akustische Impedanz des akustischen Abstimmelements in Kombination mit der akustischen Impedanz der Vorspannfeder (607) innerhalb des ausgewählten Bereichs der akustischen Impedanzen liegt.
  11. Akustischer Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 10, der in einem Telemetriewerkzeug (105) oder einem Repeater (106) eines Bohrstrangs (103) montiert ist, wobei der akustische Bohrlochsender (601, 701) eine Konfiguration aufweist, die aus einer Gruppe ausgewählt ist, die besteht aus: kragenbasiert, anklemmbar und sondenbasiert.
  12. Akustischer Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 11, wobei die akustische Impedanz des akustischen Abstimmelements (606) in Kombination mit der akustischen Impedanz der Vorspannfeder (607) der akustischen Impedanz der Innenfläche der ersten Endkopplung (602, 702) entspricht, wobei das Ende des piezoelektrischen Wandlers (605, 705), welches das akustische Abstimmelement (606) kontaktiert, auch die Vorspannfeder (607, 707) kontaktiert.
  13. Akustischer Bohrloch-Telemetrieknoten, umfassend:
    (a) einen oder mehrere Sensoren zum Messen einer lokalen Bohrlochumgebung und eines oder mehrerer mechanischer Zustände eines Bohrstrangs (103);
    (b) einen Prozessor und Speicher, die mit dem einen oder den mehreren Sensoren zum Speichern von Messungenkommunizieren, um Messungen zu speichern, die durch den einen oder die mehreren Sensoren vorgenommen wurden; und
    (c) den akustischen Bohrlochsender (601, 701) nach einem der Ansprüche 1 bis 12, der mit dem Prozessor und dem Speicher zum Senden der Messung kommuniziert.
  14. Verfahren für eine akustische Sendung von einem Bohrlochstandort, umfassend:
    (a) Anlegen einer Druckvorspannung in einer axialen Richtung gegen eine Vorspannfeder (607, 707), die wiederum einen piezoelektrischen Wandler (605, 705) gegen eine Innenfläche einer ersten Endkopplung (602, 702) eines Gehäuses eines akustischen Bohrlochsenders (601, 701) drückt, wobei die Druckvorspannung ausgewählt ist, um den piezoelektrischen Wandler (605, 705) über einen Bereich von erwarteten Betriebsbedingungen des akustischen Bohrlochsenders (601, 701) in Druck zu versetzen;
    (b) Anlegen einer Spannung an den piezoelektrischen Wandler (605, 705), um eine akustische Sendung zu erzeugen;
    wobei das Verfahren gekennzeichnet ist durch:
    (c) Abstimmen einer akustischen Impedanz des piezoelektrischen Wandlers (605, 705) durch Kontaktieren eines Endes des piezoelektrischen Wandlers (605, 705) mit einem akustischen Abstimmelement (606), das eine ausgewählte akustische Impedanz aufweist, sodass in Kombination mit einer akustischen Impedanz der Vorspannfeder (607, 707) diese der akustischen Impedanz der Innenfläche der ersten Endkopplung (602, 702) entspricht, wobei das Ende des piezoelektrischen Wandlers (605, 705), welches das akustische Abstimmelement (606) kontaktiert, auch die Vorspannfeder (607, 707) kontaktiert.
EP17826717.5A 2016-07-11 2017-07-07 Verfahren und vorrichtung zum vorspannen eines piezoelektrischen wandlers für akustische bohrlochkommunikation Active EP3482044B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662360717P 2016-07-11 2016-07-11
PCT/CA2017/050823 WO2018010015A1 (en) 2016-07-11 2017-07-07 Method and apparatus for pre-loading a piezoelectric transducer for downhole acoustic communication

Publications (3)

Publication Number Publication Date
EP3482044A1 EP3482044A1 (de) 2019-05-15
EP3482044A4 EP3482044A4 (de) 2020-06-03
EP3482044B1 true EP3482044B1 (de) 2023-08-30

Family

ID=60951617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17826717.5A Active EP3482044B1 (de) 2016-07-11 2017-07-07 Verfahren und vorrichtung zum vorspannen eines piezoelektrischen wandlers für akustische bohrlochkommunikation

Country Status (4)

Country Link
US (1) US20190301280A1 (de)
EP (1) EP3482044B1 (de)
CA (1) CA3030368A1 (de)
WO (1) WO2018010015A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713653B2 (en) * 2017-05-31 2023-08-01 Bona Developments Inc. Self-powered wellbore motor
GB2573305A (en) * 2018-05-01 2019-11-06 Tribosonics Ltd An ultrasonic transducer
US11618056B2 (en) 2019-10-25 2023-04-04 Boe Technology Group Co., Ltd. Capacitive micromachined ultrasonic transducer, method for preparing the same, panel, and device
US11835371B2 (en) 2020-05-29 2023-12-05 Schlumberger Technology Corporation Multiphase flowmeter aperture antenna transmission and pressure retention

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129850A (en) * 1973-11-12 1978-12-12 Raytheon Company Balanced transducer
US3992694A (en) * 1975-02-20 1976-11-16 Raytheon Company Transducer with half-section active element
US4283780A (en) * 1980-01-21 1981-08-11 Sperry Corporation Resonant acoustic transducer system for a well drilling string
US4518888A (en) * 1982-12-27 1985-05-21 Nl Industries, Inc. Downhole apparatus for absorbing vibratory energy to generate electrical power
US5274606A (en) * 1988-04-21 1993-12-28 Drumheller Douglas S Circuit for echo and noise suppression of accoustic signals transmitted through a drill string
WO1992001955A1 (en) * 1990-07-16 1992-02-06 Atlantic Richfield Company Torsional force transducer and method of operation
US6144316A (en) * 1997-12-01 2000-11-07 Halliburton Energy Services, Inc. Electromagnetic and acoustic repeater and method for use of same
US6137747A (en) * 1998-05-29 2000-10-24 Halliburton Energy Services, Inc. Single point contact acoustic transmitter
US6791470B1 (en) 2001-06-01 2004-09-14 Sandia Corporation Reducing injection loss in drill strings
US7889601B2 (en) * 2007-06-19 2011-02-15 Lockheed Martin Corporation Lightweight acoustic array
US8416098B2 (en) * 2009-07-27 2013-04-09 Schlumberger Technology Corporation Acoustic communication apparatus for use with downhole tools
US8750075B2 (en) * 2009-12-22 2014-06-10 Schlumberger Technology Corporation Acoustic transceiver with adjacent mass guided by membranes
US8727040B2 (en) * 2010-10-29 2014-05-20 Hydril USA Distribution LLC Drill string valve and method
US10196862B2 (en) * 2013-09-27 2019-02-05 Cold Bore Technology Inc. Methods and apparatus for operatively mounting actuators to pipe
CN103774993B (zh) * 2014-03-02 2015-09-30 吉林大学 一种压电陶瓷式声波钻头
WO2015156768A1 (en) * 2014-04-07 2015-10-15 Donald Kyle Acoustically coupled transmitter for downhole telemetry
GB2553219B (en) * 2015-04-22 2020-12-02 Halliburton Energy Services Inc Automatic adjustment of magnetostrictive transducer preload for acoustic telemetry in a wellbore
US10697288B2 (en) * 2017-10-13 2020-06-30 Exxonmobil Upstream Research Company Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same

Also Published As

Publication number Publication date
US20190301280A1 (en) 2019-10-03
WO2018010015A1 (en) 2018-01-18
EP3482044A1 (de) 2019-05-15
CA3030368A1 (en) 2018-01-18
EP3482044A4 (de) 2020-06-03

Similar Documents

Publication Publication Date Title
US11105197B2 (en) Method and apparatus for pre-loading a piezoelectric transducer for downhole acoustic communication
EP3482044B1 (de) Verfahren und vorrichtung zum vorspannen eines piezoelektrischen wandlers für akustische bohrlochkommunikation
CA2332875C (en) Single point contact acoustic transmitter
US8040249B2 (en) Acoustic telemetry transceiver
US10036244B2 (en) Acoustic transceiver with adjacent mass guided by membranes
US7377315B2 (en) Complaint covering of a downhole component
US10221683B2 (en) Acoustically coupled transmitter for downhole telemetry
EP0033192A1 (de) System zur akustischen Datenweiterleitung entlang einem Bohrloch-Gestängestrang
Kyle et al. Acoustic telemetry for oilfield operations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAKER HUGHES OILFIELD OPERATIONS LLC

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 47/14 20060101AFI20200128BHEP

Ipc: E21B 47/16 20060101ALI20200128BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20200506

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 47/16 20060101ALI20200428BHEP

Ipc: E21B 47/14 20060101AFI20200428BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221209

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017073511

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230830

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1605687

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017073511

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240620

Year of fee payment: 8

26N No opposition filed

Effective date: 20240603