EP3481956A1 - Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter - Google Patents

Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter

Info

Publication number
EP3481956A1
EP3481956A1 EP17824801.9A EP17824801A EP3481956A1 EP 3481956 A1 EP3481956 A1 EP 3481956A1 EP 17824801 A EP17824801 A EP 17824801A EP 3481956 A1 EP3481956 A1 EP 3481956A1
Authority
EP
European Patent Office
Prior art keywords
seq
nucleotide sequence
set forth
promoter
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17824801.9A
Other languages
German (de)
French (fr)
Other versions
EP3481956A4 (en
Inventor
Vinod JASKULA-RANGA
Donald Zack
Derek S. WELSBIE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Publication of EP3481956A1 publication Critical patent/EP3481956A1/en
Publication of EP3481956A4 publication Critical patent/EP3481956A4/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10344Chimeric viral vector comprising heterologous viral elements for production of another viral vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • cas CRISPR-associated genes
  • CRISPR consists of arrays of short conserved repeat sequences interspaced by unique variable DNA sequences of similar size called spacers, which often originate from phage or plasmid DNA (Barrangou et al. (2007) Science 315: 1709-12; Bolotin et al. (2005) Microbiology 151 :2551-61; Mojica et al. (2005) J. Mol. Evol. 60: 174-82).
  • the CRISPR-Cas system functions by acquiring short pieces of foreign DNA (spacers) which are inserted into the CRISPR region and provide immunity against subsequent exposures to phages and plasmids that carry matching sequences (Barrangou et al.
  • CRISPR constructs that rely upon the nuclease activity of the Cas9 protein (Makarova et al. (2011) Nat. Rev. Microbiol. 9:467-77) coupled with a synthetic guide RNA (gRNA) has recently revolutionized genomic-engineering, allowing for
  • CRISPR/Cas9 constructs are simple and fast to synthesize and can be multiplexed.
  • CRISPRs have technological restrictions related to their access to targetable genome space, which is a function of both the properties of Cas9 itself and the synthesis of its gRNA.
  • Cleavage by the CRISPR system requires complementary base pairing of the gRNA to a 20-nucleotide DNA sequence and the requisite protospacer-adjacent motif (PAM), a short nucleotide motif found 3' to the target site (Jinek et al. (2012) Science 337: 816-821).
  • PAM protospacer-adjacent motif
  • the DNA binding specificity of the PAM sequence which varies depending upon the species of origin of the specific Cas9 employed, provides one constraint.
  • the least restrictive and most commonly used Cas9 protein is from S. pyogenes, which recognizes the sequence NGG, and thus, any unique 21 -nucleotide sequence in the genome followed by two guanosine nucleotides (N20NGG) can be targeted.
  • NGG guanosine nucleotides
  • Expansion of the available targeting space imposed by the protein component is limited to the discovery and use of novel Cas9 proteins with altered PAM requirements (Cong et al. (2013) Science 339: 819-823; Hou et al. (2013) Proc. Natl. Acad. Sci. U.S.A. 110(39): 15644-9), or pending the generation of novel Cas9 variants via mutagenesis or directed evolution.
  • the second technological constraint of the CRISPR system arises from gRNA expression initiating at a 5' guanosine nucleotide.
  • Use of the type III class of RNA polymerase III promoters has been particularly amenable for gRNA expression because these short non-coding transcripts have well-defined ends, and all the necessary elements for transcription, with the exclusion of the 1+ nucleotide, are contained in the upstream promoter region.
  • the commonly used U6 promoter requires a guanosine nucleotide to initiate transcription
  • use of the U6 promoter has further constrained genomic targeting sites to GN19NGG (Mali et al. (2013) Science 339:823-826; Ding et al.
  • RNA interference RNA interference
  • Non- limiting descriptions of certain of these techniques are found in the following publications: Ausubel, F., et al., (eds.), Current Protocols in Molecular Biology, Current Protocols in Immunology, Current Protocols in Protein Science, and Current Protocols in Cell Biology, all John Wiley & Sons, N.Y., edition as of December 2008; Sambrook, Russell, and Sambrook, Molecular Cloning. A Laboratory Manual, 3 ed., Cold Spring Harbor
  • compositions and methods comprising improvements of a
  • the improvements comprise modifications to the HI promoter region.
  • the compositions comprise enhancing HI bidirectional pol II expression using 5'UTR modifications.
  • the compositions comprise modulating bidirectional expression through use of different orthologous sequences of the HI promoter.
  • the compositions comprise novel compact
  • the method comprises an expression screen for bidirectional promoters with both RNA pol II and RNA pol III activities.
  • the compositions comprise conditional pol II/pol III bidirectional promoter expression (e.g., TetR and TetO sites) which can regulate ribonucleoprotein enzymatic activity or RNA-directed nucleases.
  • the improvements comprise addition of a donor template sequence for correcting mutations (e.g., homology directed repair (HDR)).
  • HDR homology directed repair
  • the improvements comprise modifications to a component of the CRISPR/Cas9 system.
  • the modifications are made to nucleases (e.g., RNA-guided nucleases).
  • the nuclease e.g., Cas9
  • the nuclease is modified through post-transcriptional cell-cycle regulation (e.g., fusion proteins comprising Geminin (Gem) or Cdtl).
  • the nuclease (e.g., Cas9) is modified by engineering partial target sites such that the nuclease can bind without DNA cleavage.
  • the nuclease (e.g., Cas9) is modified by modulating its half-life using N-terminal amino acid identity.
  • One aspect of the invention relates to a non-naturally occurring nuclease system comprising one or more vectors comprising: a) a promoter operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule or RNA molecule in a cell, and wherein the DNA molecule or RNA encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease,
  • gRNA nuclease system guide RNA
  • components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule or RNA to alter expression of the one or more gene products.
  • the system is CRISPR (e.g. CRISPR associated (Cas) 9
  • CRISPR-Cas9 non-Cas9 CRISPR systems, CRISPR-Cpf-1 system, and the like.
  • the system is packaged into a single adeno-associated virus (AAV) particle.
  • AAV adeno-associated virus
  • the adeno-associated packaging virus is selected from adenovirus serotype 2, adenovirus serotype 5, or adenovirus serotype 35.
  • the adeno-associated packaging virus is adenovirus serotype
  • the system inactivates one or more gene products.
  • the nuclease system excises at least one gene mutation.
  • the promoter is selected from the group consisting of HI promoter, 7sk, human RPPHl -PARP2, SRP-RPS29, 7skl-GSTA4, SNAR-G-l-CGBl, SNAR- CGB2, RMRP-CCDC 107, tRNA(Lys)-ALOXE3, RNU6-9-MED16: tRNA (Gly)- DPP9, RNU6-2-THEM259, SNORD13-C8orf41, mouse RPPHl -PARP2, and rat RPPH1- PARP2.
  • the promoter is a HI promoter.
  • the HI promoter comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32.
  • the HI promoter comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 12.
  • the HI promoter comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 32.
  • the promoter is orthologous to the HI promoter.
  • the orthologous HI promoter is derived from eutherian mammals.
  • the orthologous HI promoter is derived from ailuropoda melanoleuca, bos taurus, callithrix jacchus, canis familiaris, cavia porcellus, chlorocebus sabaeus, choloepus hoffinanni, dasypus novemcinctus, dipodomys ordii, equus caballus, erinaceus europaeus, felis catus, gorilla gorilla, homo sapiens, ictidomys tridecemlineatus, loxodonta africana, macaca mulatta, mus musculus, mustela putorius furo, myotis lucifugus, nomascus leucogenys, ochotona princeps, oryctolagus cuniculus, otolemur garnettii, ovis aries, pan troglodytes, papio anubis, pongo abel
  • the orthologous HI promoter is derived from mouse or rat.
  • the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84-119.
  • the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119.
  • the HI promoter is bidirectional.
  • the HI promoter is both a pol II and pol III promoter
  • the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease.
  • the promoter is a 7sk promoter.
  • the 7sk promoter is derived from human, rat, or mouse.
  • the 7sk promoter is selected from the group consisting of 7skl, 7sk2, and 7sk3.
  • the 7sk promoter is 7skl .
  • the 7skl is derived from human.
  • the human 7skl comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 3.
  • the human 7skl comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 3.
  • the 7skl is derived from mouse.
  • the mouse 7skl comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 6.
  • the mouse 7skl comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 6.
  • the 7sk promoter is 7sk2.
  • the 7sk2 is derived from human.
  • the human 7sk2 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 4.
  • the human 7sk2 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 4.
  • the 7sk2 is derived from mouse.
  • the mouse 7sk2 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 7.
  • the mouse 7sk2 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 7.
  • the 7sk promoter is 7sk3.
  • the 7sk3 is derived from human.
  • the human 7sk3 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 5.
  • the human 7sk3 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 5.
  • the 7sk3 is derived from mouse.
  • the mouse 7sk3 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 8.
  • the mouse 7sk3 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 8.
  • the promoter has at least one modification.
  • the at least one modification of the promoter comprises an element that allows conditional regulation.
  • the element is a tet-responsive promoter.
  • the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter.
  • TetR Tet repressor
  • TetO Tet operator
  • the TetR comprises an amino acid sequence having at least 80% identity to SEQ ID NO: 14.
  • the TetR comprises an amino acid sequence having the amino acid sequence set forth in SEQ ID NO: 14.
  • the TetO comprises a nucleotide sequence having at least
  • the TetO comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 11.
  • the HI -TetO comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 13.
  • the HI -TetO comprises a nucleotide sequence having the nucletoide sequence set forth in SEQ ID NO: 13.
  • the at least one modification of the promoter comprises a site that allows auto-regulation.
  • the auto-regulation site comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34.
  • the auto-regulation site comprises the nucleotide sequence set forth in SEQ ID NO: 33. In some embodiments, the auto-regulation site comprises the nucleotide sequence set forth in SEQ ID NO: 34.
  • the method further comprises at least one terminator sequence.
  • the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences.
  • the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence.
  • the terminator sequences is a SPA 49 base pair equence.
  • the method further comprises 5' untranslated region (5'UTR) sequences.
  • the method further comprises a Kozak sequence.
  • the Kozak sequence comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 1 or 2.
  • the Kozak sequence comprises the nucleotide sequence set forth in SEQ ID NO: 1.
  • the Kozak sequence comprises the nucleotide sequence set forth in SEQ ID NO: 2.
  • the method further comprises a RNA sequence that mediates cap-independent initiation of translation.
  • the RNA sequence is selected from the group consisting of 6.947 or 6.967.
  • the genome-targeted nuclease is Cas9 protein.
  • the Cas9 comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 61.
  • the Cas9 comprises the nucleotide sequence set forth in SEQ ID NO: 61.
  • the Cas9 comprises at least one modification.
  • the at least one modification in the Cas9 comprises an alteration in the cleaving sequence.
  • the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A.
  • the T2A comprises an amino acid sequence, having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 36.
  • the T2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 36.
  • the P2A comprises an amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least one amino acid sequence having at least
  • the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35.
  • the E2A comprises an amino acid sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 37.
  • the E2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 37.
  • the F2A comprises an amino acid sequence having at least 80%) identity to the nucleotide sequence set forth in SEQ ID NO: 38.
  • the F2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 38.
  • the at least one modification in the Cas9 comprises a codon optimized for expression in the cell.
  • the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion).
  • the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCAl, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 (NDC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, NBSl,
  • the cell cycle-dependent protein is Geminin.
  • the cell cycle-dependent protein is human Geminin.
  • the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l lO)).
  • the hGem(l-l 10) comprises an amino acid sequence having at least 80% identity to the amimo acid sequence set forth in SEQ ID NO: 19.
  • the hGem(l-l 10) comprises the amino acid sequence set forth in SEQ ID NO: 19.
  • the cell cycle-dependent protein is Cdtl .
  • the cell cycle-dependent protein is human Cdtl .
  • the human Cdtl comprises amino acids from positions 30- 120 (hCdtl(30-120)).
  • the hCdtl(30-120) comprises an amino acid sequence having at least 80% identity to the amino acid sequence set forth in SEQ ID NO: 18.
  • the hCdtl(30-120) comprises the amino acid sequence set forth in SEQ ID NO: 18.
  • the Cas9 fusion comprises an amino acid sequence having at least 80%) identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
  • the Cas9 fusion comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
  • the Cas9 is operably fused in frame to a ubiquitin protein
  • the Ub-Cas9 at least one N-terminal modification.
  • the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%> identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58
  • the N-terminal modified Ub-Cas9 comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58.
  • the ubiquitin protein comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 60.
  • the ubiquitin protein comprises the nucleotide sequence set forth in SEQ ID NO: 60.
  • the method further comprises a SaCas9 nickase.
  • the method further comprises a donor template sequence.
  • the at least one vector comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67.
  • the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 62.
  • the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 67.
  • the donor template sequence corrects at least one gene mutation.
  • the at least one gene mutation is rdlO or rdl2.
  • the at least one vector comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64.
  • the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 63.
  • the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 64.
  • the at least one vector comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66.
  • the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 65.
  • the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 66.
  • the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA.
  • the target sequence comprises the nucleotide sequence AN19NGG, GN19NGG, CN19NGG, or TN19NGG.
  • the cell is a eukaryotic or or non-eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the eukaryotic cell is a retinal photoreceptor cell.
  • the one or more gene products are rhodopsin.
  • the expression of the one or more gene products is decreased.
  • Another aspect of the invention relates to amethod of altering expression of one or more gene products in a cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring nuclease system as set forth above.
  • the system inactivates one or more gene products.
  • the nuclease system excises at least one gene mutation.
  • the expression of the one or more gene products is decreased.
  • the cell is a eukaryotic or non-eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the cell is a retinal photoreceptor cell.
  • the cell is a retinal ganglion cell.
  • the eukaryotic cell is a cancerous cell.
  • cell proliferation is inhibited or reduced in the cancerous cell.
  • apoptosis is enhanced or increased in the cancerous cell.
  • Another aspect of the invention relates to a method for treating a disease selected from the group consisting of retinal dystrophy, corneal dystrophy, microsatellite expansion diseases, and cancer in a subject in need thereof, the method comprising: (a) providing a non-naturally occurring nuclease system as set forth above; and (b) administering to the subject an effective amount of the system.
  • the disease is corneal dystrophy.
  • the disease is a retinal dystrophy.
  • the retinal dystrophy is selected from the group consisting of Leber's congenital amaurosis (LCA), retinitis pigmentosa (RP), and glaucoma.
  • LCA Leber's congenital amaurosis
  • RP retinitis pigmentosa
  • glaucoma glaucoma
  • the corneal dystrophy is selected from the group consisting of Epithelial Basement Membrane Dystrophy, Epithelial Recurrent Erosion Dystrophies, Subepithelial Mucinous Corneal Dystrophy, Meesmann Corneal Dystrophy, Lisch
  • Epithelial Corneal Dystrophy Gelatinous Drop-like Corneal Dystrophy, Reis-Bucklers Corneal Dystrophy, Thiel-Behnke Corneal Dystrophy, Lattice Corneal Dystrophy, Type 1 (Classic), Lattice Corneal Dystrophy, Type 2, Lattice Corneal Dystrophy, Type III, Lattice Corneal Dystrophy, Type IIIA, Lattice Corneal Dystrophy, Type I/IIIA, Lattice Corneal Dystrophy, Type IV, Polymorphic (Corneal) Amyloidosis, Granular Corneal Dystrophy, Type 1, Granular Corneal Dystrophy, Type 2, Macular Corneal Dystrophy, Schnyder Corneal Dystrophy, Congenital Stromal Corneal Dystrophy, Fleck Corneal Dystrophy, Posterior Amorphous Corneal Dystrophy, Central Cloudy Dy
  • the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly,
  • Cleidocranial dysplasia Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD
  • SCAl Spinocerebellar ataxia Type 1
  • SCA12 Spinocerebellar ataxia Type 12
  • SCA17 Spinocerebellar ataxia Type 12
  • SCA6 Spinocerebellar ataxia Type 6
  • SCA7 Spinocerebellar ataxia Type 7
  • SCA8 Spinocerebellar ataxia Type 8
  • Synpolydactyly
  • administering to the subject occurs by implantation, injection, or virally.
  • administering to the subject occurs by subretinal injection. In some embodiments, administering to the subject occurs topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously, intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, peritumorally, inhalationly, systematically, perfusionly, lavagely, directly via injection, or orally via administration and formulation.
  • administering to the subject occurs topically to the surface of the eye.
  • administering to the subject occurs on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids.
  • the subject is treated with at least one additional anti-cancer agent.
  • the anti-cancer agent is selected from the group consisting of paclitaxel, cisplatin, topotecan, gemcitabine, bleomycin, etoposide, carboplatin, docetaxel, doxorubicin, topotecan, cyclophosphamide, trabectedin, olaparib, tamoxifen, letrozole, and bevacizumab.
  • the subject is treated with at least one additional anti-cancer therapy.
  • the anti-cancer therapy is radiation therapy, chemotherapy, or surgery.
  • the cancer is a solid tumor.
  • the cancer is selected from the group consisting of brain cancer, gastrointestinal cancer, oral cancer, breast cancer, ovarian cancer, prostate cancer, pancreatic cancer, lung cancer, liver cancer, throat cancer, stomach cancer, and kidney cancer.
  • the cancer is brain cancer.
  • the systematic administration is selected from the group consisting of oral, intravenous, intradermal, intraperitoneal, subcutaneous, and
  • the subject is a mammal.
  • the mammal is human.
  • FIG. 1 comprises six panels, A-F showing the effects of 5'UTR sequences on HI Pol II expression.
  • FIG. 1A-1C show the effects of 5'UTR and translation enhancerson HI Pol II expression.
  • FIG. ID and IE show the effects of 5'UTR Kozak sequences on HI Pol II expression.
  • FIG. IF depicts terminator sequences. The functional terminators were roughly equivalent. The shortest effective terminator is the 49bp SPA terminator.
  • FIG. 2 comprises three panels, A, B, and C showing modulating bidirectional expression through the use of different orthologous sequences.
  • FIG. 3 comprises two panels, A and B showing HI alignments of different orghologous sequences.
  • FIG. 4 comprises two panels, A and B showing a screen for Pol II and Pol III mutants from bidirectional promoters.
  • FIG. 5 shows further HI alignments of different orghologous sequences.
  • FIG. 6 comprises two panels, A and B, showing conditional expression of HI Pol III expression using TetO on regulating ribonucleoprotein enzymatic activity.
  • FIG. 6A shows a schematic of the engineered TetO sites in the HI promoter.
  • FIG. 6B shows that Pol II expression from engineered HI is not greatly affected by the presence of Tet operator sequences.
  • FIG. 7 comprises two panels, A and B, showing conditional expression of HI Pol III expression regulating ribonucleoprotein enzymatic activity.
  • FIG. 7A shows that Pol III expression is repressed in the presence of TetR and absence of doxycycline.
  • FIG. 7B shows that Pol III expression is derepressed in the presence of TetR and presence of doxycycline.
  • FIG. 8 comprises two panels, A and B, showing show conditional expression of HI Pol III expression regulating ribonucleoprotein enzymatic activity.
  • FIG. 8A shows the active enzyme complex in the presence of doxycycline.
  • FIG. 8B shows the inactive enzyme complex in the absence of doxycycline.
  • FIG. 9 comprises three panels, A, B, and C, showing a schematic of the cellular response to DNA breaks.
  • FIG. 9A shows that the cellular response to DNA breaks is modulated by the cell-cycle.
  • FIG. 9B shows that the phase of the cell-cycle largely dictates the choice of DNA pathway.
  • FIG. 9C shows thatRNA-directed nucleases can be fused to either hGEMl or hCDTl domains, resulting in cell-cycle dependent regulation of these proteins.
  • FIG. 10 comprises three panels, A, B, and C.
  • FIG. 10A shows the cell-cycle regulated construct that is active during S, G2 and M phase (top), and the cell-cycle regulated construct that is active during Gl phase (bottom).
  • FIG. 10B shows the oligo sequence used to knock-in an EcoRI site into the Rhodopsin gene, and the location of the CRISPR target and cut site.
  • FIG. IOC shows the sequence after successful HDR into the Rhodopsin gene and the incorporation of an EcoRI site into the gene.
  • FIG. 11 comprises three panels, A, B, and C.
  • FIG. 11A shows the quantification of NHEJ using T7 Endol assay for the different cell-cycle regulated constructs and with different amounts of the donor oligo sequence.
  • FIG. 10A shows the cell-cycle regulated construct that is active during S, G2 and M phase (top), and the cell-cycle regulated construct that is active during Gl phase (bottom).
  • FIG. 10B shows the oligo
  • FIG. 11B shows the quantification of HDR using EcoRI assay for the different cell-cycle regulated constructs and with different amounts of the donor oligo sequence.
  • FIG. 11C shows the quantification of the NHEJ and HDR data.
  • the Gem constructs preferentially induce HDR while Cdt constructs preferentially induce NHEJ. Mixture of both (gem/cdt) is similar Cas9 with no fusion, and the overall rate of NHEJ and HDR is approximately equal across all conditions, as is expected.
  • FIG. 12 comprises two panels, A and B, showing auto-regulation of RNA-guided nucleases using partial target sites.
  • FIG. 12A shows Cas9 with perfect complementarity at a target site results in DNA cleavage (white arrows).
  • FIG. 12B shows Cas9 with extensive base pairing but without complementarity still binds, however there is no DNA cleavage activity.
  • FIG. 13 comprises three panels, A, B, and C, showing auto-regulation of RNA- guided nucleases using partial target sites.
  • FIG. 13A shows polymerase binding to a 20 base target sequence.
  • FIG. 13B shows dCas9 (nuclease-dead version of Cas9), binds to DNA but does not cut. When bound to a promoter region and areas of active transcription, this can inhibit transcription, likely due to steric effects.
  • FIG. 13C shows Cas9 with extensive base pairing but without complementarity still binds, however there is no DNA cleavage activity.
  • FIG. 14 shows auto-regulation of RNA-guided nucleases using partial target sites. Perfect complementarity at desired site results in DNA cleavage (white arrows) (left bottom depiction). Imperfect complementarity at engineered promoter site results in no DNA cleavage and suppression of its own expression (right bottom depiction).
  • FIG. 15 shows auto-regulation of RNA-guided nucleases using partial target sites:GFP reporter.
  • the bar graphs show that Pol II expression from engineered HI is not greatly affected by presence of partial target sequences.
  • FIG. 16 shows auto-regulation of RNA-guided nucleases using partial target sites :Cas9 and gRNA.
  • FIG. 17 comprises two panels, A and B.
  • FIG. 17A shows Methionine (Met) followed by a glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), alanine (Ala), valine (Val), or cysteine (Cys) are processed by Methionineaminopeptidases, which cleave off the N-terminal methionine.
  • FIG. 17B shows that the N-end rule serves as an estimation of a proteins half-life within a cell
  • FIG. 18 shows that linear poly-ubiquitin is recognized in the cell by deubiquitin enzymes which cleave the individual Ub peptides. This process can be co-opted to generate specific N-terminal residues by fusing Ub to the N-terminus of any protein.
  • FIG. 19 comprises two panels, A and B, showing that simple changes in the N- terminal amino acids, either through Met-aminopeptidases, deubiquintation, or alternative methods, can accomplish the regulation of RNA-guided nuclease half-life.
  • FIG. 19A and 19B show that the levels of Cas9, an RNA-guided nuclease, can be modulated by the identity of the N-terminal amino acid, by as much as 8-10-fold, a significant range of expression for a nuclease.
  • FIG. 20 shows how commonly used 2A peptides can also be leveraged to modulate protein levels in the cell.
  • FIG. 21 comprises three panels, A-C, depicting an illustration of the AAV packaging capacity. Wildtype AAV is -4.7 kb and recombinant AAV can be stuffed up to 5.2kb.
  • FIG. 21B depicts an illustration of AAV virus size using the HI bidirectional promoter to express SpCas9 and a single gRNA.
  • FIG. 21C depicts a construct using the stronger mouse promoter. The first set of experiments were carried out using the human promoter.
  • FIG. 21B constructs used the SV40 terminator which was replaced with the smaller SPA terminator
  • FIG. 22 comprises nine panels, A-I.
  • FIG. 22A depicts the AAV delivery problem.
  • FIG. 22B shows the S. aureus Cas9 is ⁇ lkb smaller than the S. pyogenes Cas9 which allows it to be packaged into AAV.
  • FIG. 22A depicts the AAV delivery problem.
  • FIG. 22C depicts the HI genomic locus indicating the H1RNA (a poi III transcript) expressed in the forward orientation, and the PARP-2 gene (a pol II transcript) transcribed in the opposite orientation. This ⁇ 200bp sequence is an extremely compact bidirectional promoter.
  • FIG. 22D depicts shrinking the "instructions" to delliver SpCas9, the most-commonly used and most-wideiy studied Cas9 protein. Importantly, the SpCas9 protein can target a far greater numbers of genomic sites than the SaCas9 protein. This means that more mutations/diseases can be targeted.
  • FIG. 22E shows shrinking the "instructions" to deliver a number of other Cas9 proteins that have been shown to be effective at genome-editing in eukarytoic cells. We can also delivers' SaCas9 in a much more compact vector than by using standard promoters.
  • FIG. 22F shows that the present invention is able to potential for far-far greater number of genomic targets, and hence a far greater number of potential mutations and diseases.
  • FIG. 22G depicts an illustration of AAV virus size using the HI bidirectional promoter to express SaCas9 and a single gRNA. Approximately lkb of space is available as an HDR template.
  • FIG. 22H depicts an illustration of AAV virus size using the HI bidirectional promoter to express SaCas9 and a single gRNA and a template.
  • FIG. 221 shows the following: 1.
  • Adeno Associated Virus (AAV) is the safest and rnost-cornmoniy used vector in gene therapy. The virus has one drawback: It is very small. 2. Naturally, it consists of a single-stranded DNA genome of 4700 nucleotides. The ends of the genome are inverted repeat sequences known as ITRs (orange). 3. These sequences (- 150bp each) are the only required elements for packaging DNA into AAV, so the viral sequences ⁇ Rep and Cap) can be gutted. 4.
  • Any cargo can be inserted in between the ITRs and the virus can be stuffed up to 5200 nucleotides total, meaning that the virus can accomodate cargo up to 4900 nucleotides.
  • rAAV Recombinant Adeno Associated Virus
  • FIG. 23 shows the mechanism for site-specific recombination from a single AAV virus containing Cas9 a single gRNA and a template.
  • FIG. 24 comprises two panels, A and B.
  • FIG. 24A shows potential configurations for HDR delivery within AAV vector.
  • FIG. 24B shows potential configurations for HDR delivery within an intronic region of an RNA-directed polymerase within an AAV vector.
  • FIG. 25 comprises two panels, A and B.
  • FIG. 25A shows an illustration of the Cas9 Nickase approach using the SaCas9 and a single gRNA and a template.
  • FIG. 25B shows a depiction of the rdl2 targeting sequence to correct a recessive RPE65 mutation.
  • FIG. 26 comprises two panels, A and B.
  • FIG. 26A shows an illustration of AAV virus size using the HI bidirectional promoter to express SpCas9 and a single gRNA.
  • FIG. 26B shows a generic approach for delivery of an RNA-directed nucleases, guide RNA, and template in a single AAV.
  • FIG. 27 depicts the rdlO targeting sequence to correct a recessive PDE6b mutation
  • FIG. 28 depicts a cloning vector that is easily customizable by insertion of HDR templates.
  • FIG. 29 contains two panels, A and B.
  • FIG. 29A depicts a cartoon schematic and table of compact bidirectional promoter sequences with both pol II and III activity.
  • FIG. 29B depicts a bar graph showing GFP expression of constructs comprising the compact bidirectional promoter sequences shown in FIG. 29A.
  • FIG. 29A depicts the rdlO targeting sequence to correct a recessive PDE6b mutation
  • FIG. 28 depicts a cloning vector that is easily customizable by insertion of HDR templates.
  • FIG. 29 contains two panels, A and B.
  • FIG. 29A depicts a cartoon schematic and table of compact bidirectional promoter sequences with both pol II and III activity.
  • FIG. 29B depicts a bar graph showing GFP expression of constructs comprising the compact
  • 29B shows starting from the y- axis on the right and moving left along the x-axis, the following labels for the bars, 1) minus control, 2) hHlKoz (SEQ ID NO: 71 (or SEQ ID NO: 12 or 32)), 3) hSkl (SEQ ID NO: 73), 4) biSRP (SEQ ID NO: 72), 5) biCGB l (SEQ ID NO: 74), 6) biAloxE3 (SEQ ID NO: 77), 7) biDPP9 (SEQ ID NO: 79), 8) biTHEM (SEQ ID NO: 83), and 9) biORF (SEQ ID NO: 80).
  • FIG. 30 contains two panels, A and B.
  • FIG. 30A depicts a cartoon schematic and table of orthologous bidirectional promoter sequences with both pol II and III activity.
  • FIG. 30B depicts a bar graph showing GFP expression of constructs comprising the orthologous bidirectional promoter sequences shown in FIG. 30A.
  • FIG. 30B shows starting from the y-axis on the right and moving left along the x-axis, the following labels for the bars, 1) minus control, 2) hHl+ (corresponding to human RPPH1-PARP2), 3) mHl+ (corresponding to mouse RPPH1-PARP2), and 4) rHl+ (corresponding to rat RPPH1-PARP2).
  • Genome-editing technologies such as zinc fingers nucleases (ZFN) (Porteus, and Baltimore (2003) Science 300: 763; Miller et al. (2007) Nat. Biotechnol. 25:778-785;
  • CRISPR constructs which rely upon the nuclease activity of the Cas9 protein coupled with a synthetic guide RNA (gRNA), are simple and fast to synthesize and can be multiplexed.
  • gRNA synthetic guide RNA
  • CRISPRs have technological restrictions related to their access to targetable genome space, which is a function of both the properties of Cas9 itself and the synthesis of its gRNA.
  • Cleavage by the CRISPR system requires complementary base pairing of the gRNA to a 20-nucleotide DNA sequence and the requisite protospacer-adjacent motif (PAM), a short nucleotide motif found 3' to the target site (Jinek et al. (2012) Science 337: 816-821).
  • PAM protospacer-adjacent motif
  • the DNA binding specificity of the PAM sequence which varies depending upon the species of origin of the specific Cas9 employed, provides one constraint.
  • the least restrictive and most commonly used Cas9 protein is from S. pyogenes, which recognizes the sequence NGG, and thus, any unique 21 -nucleotide sequence in the genome followed by two guanosine nucleotides (N20NGG) can be targeted.
  • NGG guanosine nucleotides
  • Expansion of the available targeting space imposed by the protein component is limited to the discovery and use of novel Cas9 proteins with altered PAM requirements (Cong et al. (2013) Science 339: 819-823; Hou et al. (2013) Proc. Natl. Acad. Sci. U.S.A., 110(39): 15644-9), or pending the generation of novel Cas9 variants via mutagenesis or directed evolution.
  • the second technological constraint of the CRISPR system arises from gRNA expression initiating at a 5' guanosine nucleotide.
  • Use of the type III class of RNA polymerase III promoters has been particularly amenable for gRNA expression because these short non- coding transcripts have well-defined ends, and all the necessary elements for transcription, with the exclusion of the 1+ nucleotide, are contained in the upstream promoter region.
  • the commonly used U6 promoter requires a guanosine nucleotide to initiate transcription
  • use of the U6 promoter has further constrained genomic targeting sites to GN19NGG (Mali et al. (2013) Science 339:823-826; Ding et al.
  • compositions and methods comprising improvements of a CRISPR/Cas9 system (i.e., CRISPR guide RNAs using the HI promoter; WO2015/19561, herein incorporated by reference in its entirety).
  • a modified CRISPR/Cas9 system may comprise modifications to the HI promoter region.
  • the modified CRISPR/Cas9 system comprises enhancing HI bidirectional pol II expression using 5'UTR modifications.
  • the modified CRISPR/Cas9 system comprises modulating bidirectional expression through use of different orthologous sequences of the HI promoter.
  • the modified CRISPR/Cas9 system comprises novel compact bidirectional promoter (including compact and orthologous promoter) sequences with both pol II and pol III activity (e.g., 7sk, 5'UTRs, Kozak consensus sequences, or combinations thereof).
  • novel compact bidirectional promoter including compact and orthologous promoter sequences with both pol II and pol III activity (e.g., 7sk, 5'UTRs, Kozak consensus sequences, or combinations thereof).
  • the modified CRISPR/Cas9 system comprises conditional pol II/pol III bidirectional promoter (including compact and orthologous promoter) expression (e.g., TetR and TetO sites) which can regulate ribonucleoprotein enzymatic activity or RNA-directed nucleases.
  • the improvements comprise addition of a donor template sequence for correcting mutations (e.g., homology directed repair (HDR)).
  • HDR homology directed repair
  • compact bidirectional promoters include, but not limited to, RPPH1-PARP2 (Human), SRP-RPS29, 7skl-GSTA4, SNAR-G-l-CGBl, SNAR-CGB2, RMRP-CCDC 107, tRNA(Lys)-ALOXE3, RNU6-9-MED16: tRNA (Gly)-DPP9, RNU6-2- THEM259, or SNORD13-C8orf41.
  • orthologous bidirectional promoters include, but not limited to, RPPH1-PARP2 (Mouse) or RPPH1-PARP2 (Rat), or those derived from ailuropoda melanoleuca, bos taurus, callithrix jacchus, canis familiaris, cavia porcellus, chlorocebus sabaeus, choloepus hoffinanni, dasypus novemcinctus, dipodomys ordii, equus caballus, erinaceus europaeus, felis catus, gorilla gorilla, homo sapiens, ictidomys tridecemlineatus, loxodonta africana, macaca mulatta, mus musculus, mustela putorius furo, myotis lucifugus, nomascus leucogenys, ochotona princeps, oryctolagus cuniculus, oto
  • the modifications are made to nucleases (e.g., RNA-guided nucleases).
  • the nuclease e.g., Cas9
  • the nuclease is modified through post- transcriptional Cell-cycle regulation (e.g., fusion proteins comprising Geminin (Gem) or Cdtl).
  • the nuclease e.g., Cas9
  • the nuclease is modified by engineering partial target sites such that the nuclease can bind without DNA cleavage.
  • the nuclease (e.g., Cas9) is modified by modulating its half-life using N-terminal amino acid identity.
  • Such a modified CRISPR/Cas9 system can precisely target genomic sites, or facilitate the repair of a defective genomic sites, with greater efficacy, safety, and precision. Moreover, this modification provides a compact CRISPR/Cas9 system that allows for higher-resolution targeting of oncogenes over existing CRISPR, TALEN, or Zinc-finger technologies.
  • aspects of the invention relate to methods comprising expression screens for additional bidirectional promoters with both RNA pol II and RNA pol III activities.
  • compositions A. Compositions
  • compositions comprising improvements of a CRISPR/Cas9 system previously described in
  • Such improvements comprise a non-naturally occurring nuclease system (e.g., CRISPR-Cas9) comprising one or more vectors comprising: a) a promoter (e.g., orthogolous HI promoter or 7sk) operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease (e.g., modified Cas9 protein), wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease
  • gRNA nuclease system guide RNA
  • the system is packaged into a single adeno-associated virus (AAV) particle.
  • the system inactivates one or more gene products.
  • the system excises at least one gene mutation.
  • the HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32.
  • the orthologous HI promoter is derived from mouse or rat.
  • the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84- 119. In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119. In some embodiments, the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease.
  • the promoter is the human, mouse, or rat 7sk promoter.
  • the 7sk is selected from the group consisting of 7skl (variant 1 of 7sk which uses the endogenous GSTA4 5'UTR), 7sk2 (variant 2 of 7sk which uses just a kozak sequence in the 5'UTR), and 7sk3 (variant of 7sk which uses the beta globin 5'UTR).
  • the human 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 3.
  • the mouse 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6.
  • the human 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 4.
  • the mouse 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7.
  • the human 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 5.
  • the mouse 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 8.
  • the orthologous HI promoter or 7sk promoter has at least one modification.
  • the at least one modification of the promoter comprises an element that allows conditional regulation.
  • the element is a tet-responsive promoter.
  • the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter.
  • TetR comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14.
  • TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 11.
  • the HI -TetO comprises a nucleotide sequence having at least 80%, 85%,
  • the at least one modification of the promoter comprises a site that allows auto-regulation.
  • the auto-regulation site comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34.
  • the nuclease system further comprising at least one terminator sequence.
  • the terminator sequence is any nucleic acid selected from the group consisting of SEQ ID NOs: 120-130.
  • the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences.
  • the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence.
  • the terminator sequences is a SPA 49 base pair equence.
  • the nuclease system further comprises 5' untranslated region (5'UTR) sequences.
  • the nuclease system further comprises a Kozak sequence.
  • the Kozak sequence comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%), or 100%) identity to SEQ ID NO: 1 or 2.
  • the nuclease system further comprises a RNA sequence that mediates cap-independent initiation of translation.
  • the RNA sequence is selected from the group consisting of 6.947 or 6.967 (Wellensiek I. (2013) Nature Methods, 10:747-750).
  • the Cas9 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 61.
  • the Cas9 comprises at least one modification.
  • the at least one modification in the Cas9 comprises an alteration in the cleaving sequence.
  • the nuclease is seleted from the group consisting of Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and €sxl2), CaslO, Casl 3a, Csyl, Csy2, Csy3, Csel , Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csb L Csb2, Csb3, Csxl7, Csxl4, Csx O, Csxl6, CsaX, Csx3, Csxl, Csxl5,
  • the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A.
  • the T2A comprises an amino acid sequence, having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 36.
  • the P2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 35.
  • the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35.
  • the E2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 37.
  • the F2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 38.
  • the at least one modification in the Cas9 comprises a codon optimized for expression in the cell.
  • the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion).
  • the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, 53BP1, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, CtIP, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1,
  • the cell cycle-dependent protein is Geminin. In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)). In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amimo acid sequence set forth in SEQ ID NO: 19. In some embodiments, the cell cycle-dependent protein is Cdtl . In some embodiments, the cell cycle-dependent protein is human Cdtl . In some embodiments, the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)).
  • the hCdtl(30-120) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence set forth in SEQ ID NO: 18.
  • the Cas9 fusion comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
  • the Cas9 is operably fused in frame to ubiquitin (Ub- Cas9).
  • the Ub-Cas9 at least one N-terminal modification.
  • the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58.
  • the ubiquitin protein comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 60.
  • the nuclease system further comprises a SaCas9 nickase.
  • the nuclease system further comprises a donor template sequence.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67.
  • the donor template sequence corrects at least one gene mutation.
  • the at least one gene mutation is rdlO or rdl2.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66.
  • the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA.
  • the target sequence comprises the nucleotide sequence AN19NGG, GN19NGG, CN19NGG, or TN19NGG.
  • the cell is a eukaryotic or or non-eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the eukaryotic cell is a retinal photoreceptor cell.
  • the one or more gene products are rhodopsin. In some embodiments, the expression of the one or more gene products is decreased.
  • GAGAAAGAAAGGCTC AAACCT AGCCTT AT AAGGCTCCC AAATGTCGGTATATT TTTTGGTTATGGTGACTTCCCACAATGCATAGCGATATGTAGATATTGCCAGGA GTACCTCCCACTTCTGGTCCTGTCAGCTCTTTTCTAGGACGCGCGCGCTGCAGGT TTCCAGCCTGTGATTGGGCCAGCAATTCCGGGAATGAATTGATGACGTCAGCGT TTGAATTCC (SEQ ID NO: 88)
  • GGCGAACAATGCGCGC AAAC AGCATTTATAATGAGCTCATACCTAAAGCC ACT TTACGGTTACGGTGACTTCCCACAAGACATTGC
  • GGC ATGC AAAT ATTTTAGTGC GTCCCGCCCCTGGTAGTTCCACGCTAGGACGCACACGCACTACGGTTCCCGCCT TTAGACTGCGCTGGCGATTCCAGGAGCGGACTGATGACGTCAGCGTTGGGGCT CC (SEQ ID NO: 111)
  • homologous refers to the "% homology” and is used interchangeably herein with the term “% identity” herein, and relates to the level of nucleic acid sequence identity when aligned using a sequence alignment program.
  • 80% homology means the same thing as 80% sequence identity determined by a defined algorithm, and accordingly a homologue of a given sequence has greater than 80% sequence identity over a length of the given sequence.
  • Preferred levels of sequence identity include, but are not limited to about, 60%, 65%, 70%,75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%) or more sequence identity to the nucleotide sequences set forth in SEQ ID NOs: 1- 82.
  • Exemplary levels of sequence identity include, but are not limited to about, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or more sequence identity to the nucleotide sequences set forth in SEQ ID NO: 1-82.
  • the presently disclosed subject matter provides a non- naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule to alter expression of the one or more gene products.
  • gRNA CRISPR-Cas system guide RNA
  • the presently disclosed subject matter provides a non- naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a eukaryotic cell, and wherein the DNA molecule encodes one or more gene products expressed in the eukaryotic cell; and b) a regulatory element operable in a eukaryotic cell operably linked to a nucleotide sequence encoding a Type-II Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered.
  • gRNA CRISPR-Cas system guide RNA
  • the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG.
  • the target sequence comprises the nucleotide sequence GN19NGG.
  • the target sequence comprises the nucleotide sequence CN19NGG.
  • the target sequence comprises the nucleotide sequence TN19NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG.
  • the Cas9 protein is codon optimized for expression in the cell.
  • the Cas9 protein is codon optimized for expression in the eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the expression of the one or more gene products is decreased.
  • the presently disclosed subject matter also provides a non-naturally occurring CRISPR-Cas system comprising a vector comprising a bidirectional HI promoter, wherein the bidirectional HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a eukaryotic cell, and wherein the DNA molecule encodes one or more gene products expressed in the eukaryotic cell; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a Type-II Cas9 protein, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered.
  • gRNA CRISPR-Cas system guide RNA
  • the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG.
  • the target sequence comprises the nucleotide sequence GN19NGG.
  • the target sequence comprises the nucleotide sequence CN19NGG.
  • the target sequence comprises the nucleotide sequence TN19NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG.
  • the Cas9 protein is codon optimized for expression in the cell.
  • the Cas9 protein is codon optimized for expression in the eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the expression of the one or more gene products is decreased.
  • the CRISPR complex comprises one or more nuclear localization sequences of sufficient strength to drive accumulation of the CRISPR complex in a detectable amount in the nucleus of a cell (e.g., eukaryotic cell).
  • a nuclear localization sequence is not necessary for CRISPR complex activity in eukaryotes, but that including such sequences enhances activity of the system, especially as to targeting nucleic acid molecules in the nucleus.
  • the CRISP enzyme is a type II CRISPR system enzyme.
  • the CRISPR enzyme is a Cas9 enzyme.
  • the Cas9 enzyme is C. jejuni, G. stear other mophilus, N.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • Vectors include, but are not limited to, nucleic acid molecules that are single-stranded. double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g.
  • vectors refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.
  • viral vector e.g. retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses.
  • Viral vectors also include polynucleotides carried by a virus for transfection into a host cell.
  • vectors are capable of autonomous replication in a host cell into which they are introduced (e.g. bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors.” Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • Recombinant expression vectors can comprise a nucleic acid of the presently disclosed subject matter in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulator ⁇ - elements, which may be selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed.
  • operably linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory el em en t( s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
  • regulator ⁇ 7 element is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences).
  • IRES internal ribosomal entry sites
  • regulator ⁇ ' elements are described, for example, in Goeddel (1990) Gene Expression
  • Regulator ⁇ ' elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences).
  • tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes).
  • Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-ty pe specific.
  • a vector comprises one or more pol III promoters, one or more pol II promoters, one or more pol I promoters, or combinations thereof
  • pol III promoters include, but are not limited to, U6 and HI promoters.
  • pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RS V enhancer), the cytomegaloviais (CMV) promoter (optionally with the CMV enhancer) (e.g., Boshart et al.
  • RSV Rous sarcoma virus
  • CMV cytomegaloviais
  • enhancer elements such as
  • WPRE WPRE
  • CMV enhancers the R-U5' segment in LTR of HTLV-I (Takebe et al. (1988) Mol Cell. Biol.8:466-472); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit ⁇ -globin (O'Hare et al. (1981) /OC. Natl. Acad. Sci. USA. 78(3): 1527-31).
  • the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc.
  • a vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., clustered regularly interspersed short palindromic repeats (CRISPR) transcripts, proteins, enzymes, mutant forms thereof, fusion proteins thereof, etc).
  • CRISPR clustered regularly interspersed short palindromic repeats
  • Advantageous vectors include lenti viruses and adeno-associated viruses, and types of such vectors can also be selected for targeting particular types of cells.
  • polynucleotide refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
  • Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown.
  • the following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short. interfering RNA (siR A), short-hairpin RNA (shRNA), micro-RNA.
  • a polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer.
  • the sequence of nucleotides may ⁇ be interrupted by non-nucleotide components.
  • a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
  • chimeric RNA In aspects of the presently disclosed subject matter the terms “chimeric RNA”, “chimeric guide RNA”, “guide RNA”, “single guide RNA”, “synthetic guide RNA” and
  • crRNA are used interchangeably and refer to the polynucleotide sequence comprising the guide sequence.
  • the terra "guide sequence” refers to the about 20 bp sequence within the guide RNA that specifies the target site and may be used interchangeably with the terms “guide” or "spacer”.
  • wild type is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms.
  • variable should be taken to mean the exhibition of qualities that have a pattern that deviates from what occurs in nature.
  • nucleic acid molecules or polypeptides mean that the nucleic acid molecule or the polypeptide is at least substantially free from at least one other component with which they are naturally associated in nature and as found in nature.
  • “Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick or other non- traditional types.
  • a percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary).
  • Perfectly complementary means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.
  • Substantially complementary refers to a degree of complementarity that is at least 60%, 65%, 70%), 75%, 80%, 85%, 90%, 95%. 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions.
  • stringent conditions for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences. Stringent conditions are generally sequence-dependent, and vary depending on a number of factors, in general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence. Non-limiting examples of stringent conditions are described in detail in Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology -Hybridization With Nucleic Acid Probes Part 1, Second Chapter “Overview of principles of hybridization and the strategy of nucleic acid probe assay", Elsevier, N.Y.
  • Hybridization refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues.
  • the hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner.
  • the complex may comprise two strands forming a duplex structure, three or more strands forming a muiti stranded complex, a single self hybridi ing strand, or any combination of these.
  • a hybridization reaction may constitute a step in a more extensive process, such as the initiation of PGR, or the cleavage of a polynucleotide by an enzyme.
  • a sequence capable of hybridizing with a given sequence is referred to as the "complement" of the given sequence.
  • expression refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
  • Transcripts and encoded polypeptides may be collectively referred to as "gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
  • polypeptide polypeptide
  • peptide protein
  • polymers of amino acids of any length may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non amino acids.
  • the terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
  • amino acid includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.
  • Vectors can be designed for expression of CRISPR transcripts (e.g. nucleic acid transcripts, proteins, or enzymes) in prokaryotic or eukaryotic cells.
  • CRISPR transcripts e.g. nucleic acid transcripts, proteins, or enzymes
  • CRISPR transcripts can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors), yeast cells, or mammalian ceils. Suitable host cells are discussed further in Goeddel (1990) Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif.
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Vectors may be introduced and propagated in a prokaryote.
  • a prokaryote is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g. amplifying a pi asm id as part of a viral vector packaging system).
  • a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism. Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins.
  • Fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus of the recombinant protein.
  • Such fusion vectors may serve one or more purposes, such as: (!) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
  • Such enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
  • Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67: 31-40), pMAL (New England Bioiabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, ' N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A. respectively, to the target recombinant protein.
  • Suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al. (1988) Gene 69:301-315) and pET l id (Studier et al. (1990) Gene
  • a vector is a yeast expression vector.
  • yeast Saccharomyces cerivisae examples include pYepSecl (Baldari, et al.(1987) EMBO .J. 6: 229-234), pMFa (Kuijan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schu!tz et al. (1987) Gene 54: 1 13-123), pYES2 (Invitrogen Corporation, San Diego, Calif), and picZ (InVitrogen Corp, San Diego, Calif.).
  • a vector is capable of driving expression of one or more sequences in mammalian cells using a mammalian expression vector.
  • mammalian expression vectors include pCDM8 (Seed (1921) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195).
  • the expression vector's control functions are typically provided by one or more regulatory elements.
  • commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, simian virus 40, and others disclosed herein and known in the art.
  • the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1 : 268-277), lymphoid-specific promoters (Calame and Eaton (1988) A/v.
  • Immunol 43 : 235- 275 in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.8: 729-733) and immunoglobulins (Baneiji et al. (1983) Cell 33 : 729-740; Queen and Baltimore (1983) Cell 33 : 741-748), neuron-specific promoters (e.g., the neurofi lament promoter; Byrne and Ruddle (1989) Proc, Natl Acad. Sci.
  • pancreas-specific promoters Eslund et al.(1985) Science 230: 912-916
  • mammary gland- specific promoters e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264, 166
  • Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Grass (1990) Science 249: 374- 379) and the a-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3 : 537- 546).
  • a regulatory element is operably linked to one or more elements of a CRiSPR system so as to drive expression of the one or more elements of the CRISPR system.
  • CRISPRs Clustered Regularly Interspaced Short Palindromic Repeats
  • SPIDRs Sacer Interspersed Direct Repeats
  • the CRISPR locus comprises a di stinct class of interspersed short sequence repeats (SSRs) that were recognized in E. coli (Ishino et al. ( 1987) J. Bacterial, 169: 5429-5433; and Nakata et al.
  • the CRISPR loci typically differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al. (2002) OMICSJ. Integ.
  • the repeats are short elements that occur in clusters that are regularly spaced by unique intervening sequences with a substantially constant length (Mojica et al. (2000) Mo/. Microbiol, 36:244-246).
  • the repeat sequences are highly conserved between strains, the number of interspersed repeats and the sequences of the spacer regions typically differ from strain to strain (van Embden et al . (2000) J. Bacieriol , 1 82:2393-2401 ).
  • CRISPR loci have been identified in more than 40 prokaryotes (e.g., Jansen el al. (2002) Mol.
  • Methanobacteriumn Methanococcus, Methanosarcina, Metkanopyrus, Pyrococcus, PicrophUus, Thernioplasnia, Corynehacterium, Mycobacterium, Sirepiomyces, Aqui hc, Porphvromonas, CMorohium, Thermns, Bacillus, Listeria, Staphylococcus, Clostridium, Thermoanaerobacter, Mycoplasma, Fusobacterium, Azarcus, Chromobacterium, Neisseria, Nitrosomonas, Desulfovibrio, Geobacter, Myrococcus, Campylobacter, WolineUa,
  • Photobacterium Salmonella, Xanthomonas, Yersinia, Treponema, and Thermotoga.
  • CRISPR system refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR -associated (“Cas") genes, including sequences encoding a Cas gene, a guide sequence (also referred to as a "spacer” in the context of an endogenous CRISPR system), or other sequences and transcripts from a CRISPR locus.
  • one or more elements of a CRISPR system is derived from a type I, type II, or type III CRISPR system.
  • one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes.
  • a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
  • target sequence refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. Full complementarity is not necessarily required, provided there is sufficient complementarity to cause hybridization and promote formation of a CRISPR complex.
  • a target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides.
  • a target sequence is located in the nucleus or cytoplasm of a cell.
  • the target sequence may be within an organelle of a eukaryotic ceil, for example, mitochondrion or chloroplast.
  • a sequence or template that may be used for recombination into the targeted locus comprising the target sequences is referred to as an "editing template” or “editing polynucleotide” or “editing sequence”.
  • an exogenous template polynucleotide may be referred to as an editing template.
  • the recombination is homologous recombination.
  • a vector comprises one or more insertion sites, such as a restriction endonuciease recognition sequence (also referred to as a "cloning site").
  • one or more insertion sites are located upstream and/or downstream of one or more sequence elements of one or more vectors.
  • a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell.
  • a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences.
  • about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
  • a vector comprises a regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, such as a Cas protein.
  • Cas proteins include Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), Cas!
  • pyogenes Cas9 protein may be found in the SwissProt database under accession number Q99ZW2.
  • the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9.
  • the CRISPR enzyme is Cas9, and may be Cas9 from S.
  • the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence. In some embodiments, the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
  • a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence.
  • an enzyme coding sequence encoding a CRISP enzyme is codon optimized for expression in particular cells, such as eukaryotic cells.
  • the eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, mouse, rat, rabbit, dog, or non-human primate.
  • codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g. about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codon s that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence.
  • Codon bias differs in codon usage between organisms
  • niRNA messenger RNA
  • tRNA transfer RNA
  • the predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the "Codon Usage Database", and these tables can be adapted in a number of ways. See Nakamura et al. (2000) Nucl. Acids Res. 28:292.
  • codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, Pa.), are also available.
  • one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
  • one or more codons in a sequence encoding a CRISPR enzyme correspond to the most frequently used codon for a particular amino acid.
  • a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence.
  • the degree of complementarity between a guide sequence and its corresponding target sequence when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more.
  • Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith- Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows- Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies, ELAND (Illumina, San Diego, Calif.), SOAP
  • a guide sequence is about or more than about 5, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length.
  • the ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.
  • the components of a CRISPR system sufficient to form a CRISPR complex, including the guide sequence to be tested may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
  • cleavage of a target may be assessed by any suitable assay.
  • the components of a CRISPR system sufficient to form a CRISPR complex, including the guide sequence to be tested may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
  • cleavage of a target such as by Surveyor assay as described
  • polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRiSPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions.
  • Other assays are possible, and will occur to those skilled in the art.
  • a guide sequence may be selected to target any target sequence.
  • the target sequence is a sequence within a genome of a ceil.
  • Exemplary target sequences include those that are unique in the target genome.
  • the CRISPR enzyme is part of a fusion protein comprising one or more heterologous protein domains (e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more domains in addition to the CRISPR enzyme).
  • a CRISPR enzyme fusion protein may comprise any additional protein sequence, and optionally a linker sequence between any two domains.
  • protein domains that may be fused to a CRISP enzyme include, without limitation, epitope tags, reporter gene sequences, and protein domains having one or more of the following activities: methyl ase activity, demethylase activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity and nucleic acid binding activity.
  • epitope tags include histidine (His) tags, V5 tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags.
  • reporter genes include, but are not limited to, giutathione-5-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-gal actosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and autofluorescent proteins including blue fluorescent protein (BFP).
  • GST giutathione-5-transferase
  • HRP horseradish peroxidase
  • CAT chloramphenicol acetyltransferase
  • beta-gal actosidase beta-gal actosidase
  • beta-glucuronidase beta-gal actosidase
  • luciferase green fluorescent protein
  • GFP green fluorescent protein
  • HcRed HcRed
  • DsRed cyan fluorescent protein
  • a CRISPR enzyme may be fused to a gene sequence encoding a protein or a fragment of a protein that bind DNA molecules or bind other cellular molecules, including but not limited to maltose binding protein (MBP), S-tag, Lex A DNA binding domain (DBD) fusions, GAL4A DNA binding domain fusions, and herpes simplex virus (HSV) BP 16 protein fusions. Additional domains that may form part of a fusion protein
  • a tagged CRISPR enzyme is used to identify the location of a target sequence.
  • a reporter gene which includes but is not limited to glutathione-5-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-galactosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and autofluorescent proteins including blue fluorescent protein (BFP), may be introduced into a cell to encode a gene product which serves as a marker by which to measure the alteration or modification of expression of the gene product.
  • GST glutathione-5-transferase
  • HRP horseradish peroxidase
  • CAT chloramphenicol acetyltransferase
  • beta-galactosidase beta-galactosidase
  • beta-glucuronidase beta-galactosidase
  • luciferase
  • the DNA molecule encoding the gene product may be introduced into the cell via a vector.
  • the gene product is luciferase.
  • the expression of the gene product is decreased.
  • promoter embodiments of the present presently disclosed subject matter comprise: 1) a complete Pol III promoter, which includes a TATA box, a Proximal Sequence Element (PSE), and a Distal Sequence Element (DSE); and 2) a second basic Pol III promoter that includes a PSE and TATA box fused to the 5' terminus of the DSE in reverse orientation.
  • the TATA box which is named for its nucleotide sequence, is a major determinant of Pol III specificity. It is usually located at a position between nt. -23 and -30 relative to the transcribed sequence, and is a primar determinant of the beginning of the transcribed sequence.
  • the PSE is usually located between nt. -45 and -66.
  • the DSE enhances the activity of the basic Pol III promoter. In the HI promoter, there is no gap between the PSE and the DSE.
  • Bidirectional promoters refer to any promoter (typically pol II) that are orientated in head-tail-tail-head fasion -basically any control region that direct divergent transcription.
  • the bidirectional HI promoter could be pol II and pol II or pol III and pol III, or combinations thereof.
  • the HI bidirectional, as well as 7Sk and others described herein, are unique in that they are bidirectional, which is itself uncommon in eukaryotic genomes, but most importantly here, directs a protein coding gene on one side (pol II), and an RNA gene on the other side (pol III).
  • bidirectional promoters consists of: 1) a complete, conventional, unidirectional Pol III promoter that contains 3 external control elements: a DSE, a PSE, and a TATA box, and 2) a second basic ⁇ III promoter that includes a PSE and a TATA box fused to the 5' terminus of the DSE in reverse orientation.
  • the TATA box which is recognized by the TATA binding protein, is essential for recruiting Pol III to the promoter region. Binding of the TATA binding protein to the TATA box is stabilized by the interaction of SNAPc with the PSE. Together, these elements position Pol III correctly so that it can transcribe the expressed sequence.
  • the DSE is also essential for full activity of the Pol III promoter (Murphy et al. (1992) Mol, Cell Biol. 12:3247-3261 ; Mittal et al. (1996) Mo/. Cell Biol 16: 1955-1965; Ford and Hernandez (1997) J.Biol.Chem., 272: 16048-16055; Ford et al. (1998) Genes, Dev., 12:3528-3540; Hovde et al. (2002)
  • the DSE is adjacent to the PSE and the TATA, box (Myslinski et al. (2001) Nucl. Acid Res. 29:2502-2509).
  • this promoter was rendered bidirectional by creating a hybrid promoter, in which transcription in the reverse direction is controlled by appending a PSE and TATA box derived from the U6 promoter.
  • a small spacer sequence may also inserted between the reverse oriented basic promoter and the DSE.
  • cell cycle dependent proteins may comprise any of the following:
  • UNG UNG, MBD4, TDG, NTH1, NEIL2, NEIL3, APE2, PARP1, PNK, Polb, OGG1, APEl, XRCC1, Ligase3, SMUG1, TDG, MYH, MPG, NEILl, ADPRT, ADPRTL2, MGMT, ABHl, ABH2, ABH3
  • XPC Rad23A, Rad23B, CSA, CSB, XPG, XPF, DDB 1, DDB2, XAB2, XPB, ERCC1, XPD, XPA, DDB2, Mmsl9, CETN2, RPA70, RPA34, RPAI4, GTF2H1, GTF2H2, GTF2H3, GTF2H4, CDK7, CCNH, MNAT1, Ligasel, CSA, CSB
  • FANCA FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG
  • (a) to (p) include the genes described in Examples below. More specifically, examples of such genes are as follows: APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDBl, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBHl, FEN1, Geminin, Husl, KNTC2 (NDC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, McmlO, MGMT, MLH3, Mms4, MPG, MSH2, Mus81,
  • gene names described in the present specification are names which are widely and generally known, those skilled in the art are able to suitably acquire data on the nucleotide sequences of said genes from a public reference database or gene database (e.g., GenBank) based on the gene name.
  • GenBank Gene database
  • the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a eukaryotic or non- eukaryotic cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell an improved and modified non- naturally occurring CRISPR-Cas system previously described in WO2015/195621 (herein incorporated by reference in its entirety).
  • Such improvements comprise a non-naturally occurring nuclease system (e.g., CRISPR-Cas9) comprising one or more vectors comprising: a) a promoter (e.g., orthogolous HI promoter or 7sk) operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease (e.g., modified Cas9 protein), wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule to alter expression of the one or more gene
  • the system is packaged into a single adeno-associated virus (AAV) particle.
  • the system inactivates one or more gene products.
  • the system excises at least one gene mutation.
  • the HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32.
  • the orthologous HI promoter is derived from mouse or rat.
  • the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84- 119. In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119. In some embodiments, the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome- targeted nuclease.
  • the promoter is the human, mouse, or rat 7sk promoter.
  • the 7sk is selected from the group consisting of 7skl (variant 1 of 7sk which uses the endogenous GSTA4 5'UTR), 7sk2 (variant 2 of 7sk which uses just a kozak sequence in the 5'UTR), and 7sk3 (variant of 7sk which uses the beta globin 5'UTR).
  • the human 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 3.
  • the mouse 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6.
  • the human 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 4.
  • the mouse 7sk2 comprises a nucleotide sequence having at least 80%>, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7.
  • the human 7sk3 comprises a nucleotide sequence having at least 80%>, 85%>, 90%, 95%, 98%>, 99%), or 100%) identity to SEQ ID NO: 5.
  • the mouse 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 8.
  • the orthologous HI promoter or 7sk promoter has at least one modification.
  • the at least one modification of the promoter comprises an element that allows conditional regulation.
  • the element is a tet-responsive promoter.
  • the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter.
  • TetR comprises an amino acid sequence having at least 80%>, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14.
  • TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 11.
  • the HI -TetO comprises a nucleotide sequence having at least 80%>, 85%>, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 13.
  • the at least one modification of the promoter comprises a site that allows auto-regulation.
  • the auto-regulation site comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34.
  • the nuclease system further comprising at least one terminator sequence.
  • the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences.
  • the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence.
  • the terminator sequences is a SPA 49 base pair equence.
  • the nuclease system further comprises 5' untranslated region (5'UTR) sequences.
  • the nuclease system further comprises a Kozak sequence.
  • the Kozak sequence comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 1 or 2.
  • the nuclease system further comprises a RNA sequence that mediates cap-independent initiation of translation.
  • the RNA sequence is selected from the group consisting of 6.947 or 6.967.
  • the Cas9 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 61.
  • the Cas9 comprises at least one modification.
  • the at least one modification in the Cas9 comprises an alteration in the cleaving sequence.
  • the nuclease is seleted from the group consisting of Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl 2), CaslO, Casl 3a, Csyl , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4,
  • the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A.
  • the T2A comprises an amino acid sequence, having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 36.
  • the P2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 35.
  • the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35.
  • the E2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 37.
  • the F2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 38.
  • the at least one modification in the Cas9 comprises a codon optimized for expression in the cell.
  • the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion).
  • the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 (NDC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, NBS1, NEIL2, NEIL3, NTH1, Or
  • the cell cycle-dependent protein is Geminin. In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)). In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amimo acid sequence set forth in SEQ ID NO: 19. In some embodiments, the cell cycle-dependent protein is Cdtl . In some embodiments, the cell cycle-dependent protein is human Cdtl . In some embodiments, the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)).
  • the hCdtl(30-120) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence set forth in SEQ ID NO: 18.
  • the Cas9 fusion comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
  • the Cas9 is operably fused in frame to a ubiquitin protein (Ub-Cas9).
  • Ub-Cas9 ubiquitin protein
  • the Ub-Cas9 at least one N-terminal modification.
  • the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58.
  • the ubiquitin protein comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 60.
  • the nuclease system further comprises a SaCas9 nickase.
  • the nuclease system further comprises a donor template sequence.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67.
  • the donor template sequence corrects at least one gene mutation.
  • the at least one gene mutation is rdlO or rdl2.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66.
  • the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA.
  • the target sequence comprises the nucleotide sequence AN19NGG,
  • the cell is a eukaryotic or or non-eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the eukaryotic cell is a retinal photoreceptor cell.
  • the one or more gene products are rhodopsin.
  • the expression of the one or more gene products is decreased.
  • the system inactivates one or more gene products.
  • the nuclease system excises at least one gene mutation. In some embodiments, the expression of the one or more gene products is decreased.
  • the cell is a retinal ganglion cell.
  • the eukaryotic cell is a cancerous cell.
  • cell proliferation is inhibited or reduced in the cancerous cell.
  • the apoptosis is enhanced or increased in the cancerous cell.
  • the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of the DNA molecule; and b) a regulatory element operable in the cell operably linked to a nucleotide sequence encoding a Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule to alter expression of the one or more gene products.
  • gRNA CRISPR-Cas system guide RNA
  • the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a eukaryotic cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of the DNA molecule; and b) a regulatory element operable in the eukaryotic cell operably linked to a nucleotide sequence encoding a Type-II Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or
  • the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG.
  • the target sequence comprises the nucleotide sequence GN19NGG.
  • the target sequence comprises the nucleotide sequence CN19NGG.
  • the target sequence comprises the nucleotide sequence TN19NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG.
  • the Cas9 protein is codon optimized for expression in the cell.
  • the Cas9 protein is codon optimized for expression in the eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the expression of the one or more gene products is decreased.
  • the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a eukaryotic cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring CRISPR-Cas system comprising a vector comprising a bidirectional HI promoter, wherein the bidirectional HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of the DNA molecule; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a Type-II Cas9 protein, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered.
  • gRNA CRISPR-C
  • the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG.
  • the target sequence comprises the nucleotide sequence GN19NGG.
  • the target sequence comprises the nucleotide sequence CN19NGG.
  • the target sequence comprises the nucleotide sequence TN19NGG.
  • the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG.
  • the Cas9 protein is codon optimized for expression in the cell.
  • the Cas9 protein is codon optimized for expression in the eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the expression of the one or more gene products is decreased.
  • the presently disclosed subject matter provides methods comprising delivering one or more polynucleotides, such as or one or more vectors as described herein, one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell.
  • the presently disclosed subject matter further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells.
  • a CRISPR enzyme in combination with (and optionally complexed with) a guide sequence is delivered to a cell.
  • Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues.
  • Non-viral vector delivery systems include DNA plasmids, RNA (e.g. a transcript of a vector described herein), naked nucleic acid, and nucleic acid complexed with, a delivery vehicle, such as a liposome.
  • Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell
  • TIBTECH 11 a review of gene therapy procedures, see Anderson ( 1992) Science 256:808-813; Nabel and Feigner (1993) TIBTECH 11 :2 ⁇ 1-217; Mitani and Caskey (1993) TIBTECH 11 : 162-166; Dillon (1993) TIBTECH 1 1 : 167-175; Miller (1992) Nature 357:455-460; Van Brunt (1998) Biotechnology 6(10): 1149-1154; Vigne (1995) Restorative Neurology and Neuroscience 8:35-36; Kremer and Perricaudet ( 1995) British Medical Bulletin 51 (1):31-44; Haddada et al. (1995) Current Topics in Microbiology and Immunology. Doerfler and Bohrn (eds), and Yu et al. (1994) Gene Therapy 1 : 13 -26.
  • Methods of non-viral delivery of nucleic acids include lipofection, nucleofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, poly cation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA.
  • Lipofection is described in e.g., U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355) and lipofection reagents are sold commercially (e.g., TransfectamTM and LipofectinTM).
  • Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Feigner, WO 91/17424; WO 91/16024. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration).
  • lipid:nucleic acid complexes including targeted liposomes such as imm nolipid complexes
  • RNA or DNA viral based systems for the delivery of nucleic acids take advantage of highly evolved processes for targeting a virus to specific ceils in the body and trafficking the viral payload to the nucleus.
  • Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro, and the modified cells may optionally be administered to patients (ex vivo).
  • Conventional viral based systems could include retroviral, lentivims, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivims, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
  • Lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis- acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target ceil to provide permanent transgene expression.
  • Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency vims (HIV), and combinations thereof (e.g., Buchscher et ai. (1992) J. Virol 66:2731-2739, Johann et al. (1992) J. Virol 66: 1635-1640; Sommnerfelt et al. (1990) J, Virol 176:58-59; Wilson et ai. (1989) J. Virol 63 :2374-2378; Miller et al. (1991) J.
  • MiLV murine leukemia virus
  • GaLV gibbon ape leukemia virus
  • SIV Simian Immuno deficiency virus
  • HAV human immuno deficiency vims
  • Adenoviral based systems may be used.
  • Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system .
  • Adeno-associated virus (“AAV") vectors may also be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (e.g., West et al.
  • Packaging cells are typically used to form virus particles that are capable of infecting a host ceil. Such cells include 293 cells, which package adenovims, and ⁇ 2 cells or PA317 cells, which package retrovirus.
  • Viral vectors used in gene therapy are usually generated by producing a cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the polynucleotide(s) to be expressed. The missing viral functions are typically supplied in trans by the packaging cell line.
  • AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome.
  • Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences.
  • the cell line may also be infected with adenovirus as a helper.
  • the helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid.
  • the helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV. Additional methods for the delivery of nucleic acids to cells are known to those skilled in the art. See, for example,
  • a host cell is transiently or non-transiently transfected with one or more vectors described herein.
  • a cell is transfected as it naturally occurs in a subject.
  • a cell that is transfected is taken from a subject.
  • the cell is derived from cells taken from a subject, such as a cell line. A wide variety of cell lines for tissue culture are known in the art.
  • cell lines include, but are not limited to, C8161, CCRF-CEM, MOLT, mIMCD-3, NHDF, HeLa-83, Huhl, Huh4, Huh7, HIJVEC, HASMC, HEKn, HEKa, MiaPaCell, Panel, PC-3, TF1, CTLL-2, C1R, Rat6, CVI, RPTE, AIO, T24, J82, A375, ARH-77, Calul, SW480, SW620, SKOV3, SK-UT, CaCo2, P388D1, SEM-K2, WEHI-231 , HB56, TIBS 5, Jurkat, J45.Q1, LRMB, Bcl-1, BC-3, IC21, DLD2, Raw264.7, NRK, NRK-52E, MRC5, MEF, Hep G2, HeLa B, HeLa T4, COS, COS-1 , COS-6, COS-M6A, BS-C-1 monkey kidney epitheli
  • KYO LNCap, Ma-Mel 1 -48, MC-38, MCF-7, MCF-IOA, MDA-MB-231 , MDA-MB-468, MDA-MB-435, MDCK II, MDCK II, MOR/0.2R, MONO-MAC 6, MTD-1A, MyEnd, NCI-H69/CPR, NCLH69/LX 0, NCI-H69/LX20, NCI-H69/LX4, NIH-3T3, NALM-1 , NW- 1 5, OPCN/OPCT cell lines, Peer, PNT-IA/PNT 2, RenCa, RTN-5F, RMA/RMAS, Saos-2 ceils, Sf-9, SkBr3, T2, T-47D, T84, THP1 cell line, U373, U87, U937, VCaP, Vero cells, VVM39, WT-49, X63, YAC-1 , YAR, and transgenic varieties thereof.
  • a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences.
  • a ceil transiently transfected with the components of a CRISPR system as described herein (such as by transient transfection of one or more vectors, or transfection with RNA), and modified through the activity of a CRISPR complex, is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
  • cells transiently or non-transiently transfected with one or more vectors described herein, or cell lines derived from such cells are used in assessing one or more test compounds.
  • one or more vectors described herein are used to produce a non-human transgenic animal.
  • the transgenic animal is a mammal, such as a mouse, rat, or rabbit.
  • the organism or subject is a plant.
  • Methods for producing transgenic animals are known in the art, and generally begin with a method of ceil transfection, such as described herein.
  • the presently disclosed subject matter provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
  • the method comprises sampling a cell or population of cells from a human or non-human animal, and modifying the cell or cells. Culturing may occur at any stage ex vivo. The cell or cells may even be re-introduced into the non-human animal .
  • the presently disclosed subject matter provides for methods of modifying a target polynucleotide in a eukaryotic cell.
  • the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of the target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme compiexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
  • the presently disclosed subject matter provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
  • the method comprises allowing a CRISPR complex to bind to the polynucleotide such that the binding results in increased or decreased expression of the polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme compiexed with a guide sequence hybridized to a target sequence within the polynucleotide.
  • the presently disclosed subject matter provides methods for using one or more elements of a CRISPR system.
  • the CRJSPR complex of the presently disclosed subject matter provides an effective means for modifying a target polynucleotide.
  • the CRISPR complex of the presently disclosed subject matter has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types.
  • modify e.g., deleting, inserting, translocating, inactivating, activating
  • a target polynucleotide in a multiplicity of cell types.
  • An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
  • the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
  • the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
  • the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
  • a gene product e.g., a protein
  • a non-coding sequence e.g., a regulatory polynucleotide or a junk DNA
  • PAM protospacer adjacent motif
  • the precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence). Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme.
  • target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or
  • target polynucleotides include a disease associated gene or polynucleotide.
  • a "disease-associated" gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or ceils of a non disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease.
  • a disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.
  • the transcribed or translated products may be known or unknown, and mav be at a normal or abnormal level.
  • Embodiments of the presently disclosed subject matter also relate to methods and compositions related to knocking out genes, amplifying genes and repairing particular mutations associated with DNA repeat instability and neurological disorders (Robert D. Wells, Tetsuo Ashizawa, Genetic Instabilities and Neurological Diseases, Second Edition, Academic Press, Oct. 13, 2011 -Medical). Specific aspects of tandem repeat sequences have been found to be responsible for more than twenty human diseases (Mclvor et al. (2010) RNA Biol 7(5):551-8). The CRISPR-Cas system may be harnessed to correct these defects of genomic instability.
  • the CRISPR-Cas system may be used to correct ocular defects that arise from several genetic mutations further described in Traboulsi, ed. (2012) Genetic Diseases of the Eye, Second Edition, Oxford University Press.
  • genetic brain diseases may include but are not limited to Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Aicardi Syndrome, Alpers' Disease. Alzheimer's Disease, Barth Syndrome, Batten Disease, CADASIL, Cerebellar Degeneration, Fabry's Disease, Gerstmann- Straussler-Scheinker Disease, Huntington's Disease and other Triplet Repeat Disorders,
  • the condition may be neoplasia. In some embodiments, the condition may be Age-related Macular Degeneration. In some embodiments, the condition may be a Schizophrenic Disorder. In some embodiments, the condition may be a
  • the condition may be Fragile X Syndrome. In some embodiments, the condition may be a Secretase Related Disorder. In some embodiments, the condition may be a Prion—elated disorder. In some embodiments, the condition may be ALS. In some embodiments, the condition may be a drug addiction. In some embodiments, the condition may be Autism. In some embodiments, the condition may be Alzheimer's Disease. In some embodiments, the condition may be inflammation. In some
  • the condition may be Parkinson's Disease.
  • proteins associated with Parkinson's disease include but are not limited to a-synuclein, DJ-1, LRRK2, PINK1, Parkin, UCHL1, Synphilin-1, and MRR ! .
  • addiction-related proteins may include ABAT for example.
  • inflammation-related proteins may include the monocyte
  • MCP1 C— C chemokine receptor type 5
  • FCGR2b IgG receptor KB
  • FCERlg Fc epsilon Rig
  • cardiovascular disease associated proteins may include IE IB
  • Examples of Alzheimer's disease associated proteins may include the very low density lipoprotein receptor protein (VLDLR.) encoded by the VLDLR gene, the ubiquitin- like modifier activating enzyme 1 (UBA1) encoded by the UBA1 gene, or the NEDD8- activating enzyme El catalytic subunit protein (UBEIC) encoded by the IJBA3 gene, for example.
  • VLDLR very low density lipoprotein receptor protein
  • UBA1 ubiquitin- like modifier activating enzyme 1
  • UBEIC El catalytic subunit protein
  • proteins associated Autism Spectrum Disorder may include the benzodiazapine receptor (peripheral ) associated protein 1 (BZRAP1) encoded by the BZRA 1 gene, the AF4/FMR2 family member 2 protein (AFF2) encoded by the AFF2 gene (also termed MFR2), the fragile X mental retardation autosomal homolog 1 protein (FXRl) encoded by the FXRl gene, or the fragile X mental retardation autosomal homolog 2 protein (FXR2) encoded by the FXR2 gene, for example.
  • BZRAP1 benzodiazapine receptor (peripheral ) associated protein 1
  • AFF2 AF4/FMR2 family member 2 protein
  • FXRl fragile X mental retardation autosomal homolog 1 protein
  • FXR2 fragile X mental retardation autosomal homolog 2 protein
  • proteins associated Macular Degeneration may include the ATP- binding cassette, sub-family A (ABC1 ) member 4 protein (ABCA4) encoded by the ABCR gene, the apolipoprotein E protein (APOE) encoded by the APOE gene, or the chemokine (C— € motif) Ligand 2 protein (CCL2) encoded by the CCL2 gene, for example.
  • ABC1 sub-family A
  • APOE apolipoprotein E protein
  • CCL2 Ligand 2 protein
  • proteins associated Schizophrenia may include NRG1, ErbB4, CPLX1, TPH1, TPH2, RXN1, GSK3A, BD F, DISC 1, GSK3B, and combinations thereof.
  • proteins involved in tumor suppression may include ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3 related), EGFR (epidermal growth factor receptor), ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2), ERBB3 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 3), ERBB4 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 4), Notch 1 , Notch2, Notch 3, or Notch 4, for example.
  • ATM ataxia telangiectasia mutated
  • ATR ataxia telangiectasia and Rad3 related
  • EGFR epidermatitise
  • ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
  • ERBB3 v-erb-b2 erythroblastic leukemia
  • proteins associated with a secretase disorder may include PSENEN
  • Presenilin enhancer 2 homolog C. elegans
  • CTSB cathepsin B
  • PSEN1 presenilin 1
  • APP amphiphilic beta (A4) precursor protein
  • APHIB anterior pharynx defective 1 homolog B (C elegans ⁇
  • PSEN2 presenilin 2 (Alzheimer disease 4)
  • BACE1 beta-site APP- cleaving enzyme 1
  • proteins associated with Amyotrophic Lateral Sclerosis may include
  • SOD1 superoxide dismutase 1
  • ALS2 amyotrophic lateral sclerosis 2
  • FUS fluorescence-activated protein
  • TARDBP TAR DNA binding protein
  • VAGFA vascular endothelial growth factor A
  • VAGFB vascular endothelial growth factor B
  • VAGFC vascular endothelial growth factor C
  • proteins associated with prion diseases may include SODI (superoxide dismutase 1), ALS2 (amyotrophic lateral sclerosis 2), FUS (fused in sarcoma), TARDBP (TAR DNA binding protein), VAGFA (vascular endothelial growth factor A), VAGFB (vascular endothelial growth factor B), and VAGFC (vascular endothelial growth factor C), and any combination thereof.
  • proteins related to neurodegenerative conditions in prion disorders may include A2M (Alpha ⁇ 2 -Microglobulin), AATF (Apoptosis antagonizing transcription factor), ACPP (Acid phosphatase prostate), ACTA2 (Actin alpha 2 smooth muscle aorta), ADAM22 (ADAM metaliopeptidase domain), ADORA3 (Adenosine A3 receptor), or ADRA1D (Alpha-I D adrenergic receptor for Alpha-ID adrenoreceptor), for example.
  • A2M Alpha ⁇ 2 -Microglobulin
  • AATF Apoptosis antagonizing transcription factor
  • ACPP Acid phosphatase prostate
  • ACTA2 Actin alpha 2 smooth muscle aorta
  • ADAM22 ADAM metaliopeptidase domain
  • ADORA3 Addenosine A3 receptor
  • ADRA1D Alpha-I D adrenergic receptor for Alpha-ID a
  • proteins associated with immunodeficiency may include A2M [alpha-
  • ABCA1 ATP -binding cassette, sub-family A (ABCl ), member 1]
  • ABCA2 ATP -binding cassette, sub-family A (ABC ), member 2]
  • ABC A3 ATP-binding cassette, sub-family A. (ABCl), member 3], for example.
  • proteins associated with Trinucleotide Repeat Disorders include AR
  • DMPK distrophia myotonica-protein kinase
  • FXN frataxin
  • ATXN2 ataxin 2
  • proteins associated with Neurotransmission Disorders include SST (somatostatin), NO SI (nitric oxide synthase 1 (neuronal)), ADRA2A (adrenergic, aipha- 2A-, receptor), ADRA2C (adrenergic, alpha ⁇ 2C-, receptor), TACR1 (tachykinin receptor 1), or HTR2c (5-hydroxytryptamine (serotonin) receptor 2C), for example.
  • neurodevelopmental-associated sequences include A2BP1 (ataxin 2- binding protein 1 ), AADAT (ami noadi ate aminotransferase), AANAT (arylalkylamine N- acetyitransferase), ABAT (4-aminobutyrate aminotransferase), ABCA1 (ATP -binding cassette, sub-family A (ABCl ), member 1), or ABCA13 (ATP-binding cassette, sub-family A (ABCl), member 13), for example.
  • A2BP1 ataxin 2- binding protein 1
  • AADAT ami noadi ate aminotransferase
  • AANAT arylalkylamine N- acetyitransferase
  • ABAT 4-aminobutyrate aminotransferase
  • ABCA1 ATP -binding cassette, sub-family A (ABCl ), member 1
  • ABCA13 ATP-binding cassette, sub-family A (ABCl), member 13
  • preferred conditions treatable with the present system include may be selected from: Aicardi-Goutieres Syndrome; Alexander Disease; Allan-Herndon- Dudley Syndrome, POLG-Related Disorders; Aipha-Mannosidosis (Type II and III);
  • COFSl Cerebrotendinous Xanthomatosis
  • Cornelia de Lange Syndrome MAPT- Related Disorders
  • Genetic Prion Diseases Dravet Syndrome, Early-Onset Familial Alzheimer Disease; Friedreich Ataxia [FRDA]; Fryns Syndrome; Fucosidosis; Fukuyama Congenital Muscular Dystrophy; Gaiactosialidosis; Gaucher Disease; Organic Acidemias; Hemophagocytic Lymphohistiocytosis; Hutchinson-Gilford Progeria Syndrome;
  • the presently disclosed subject matter also provides methods for treating a disease selected from the group consisting of retinal dystrophy, corneal dystrophy, microsatellite expansion diseases, cancer, and neurodegenerative diseases in a subject in need thereof, the method comprising: (a) providing a non-naturally occurring nuclease system (e.g., CRISPR associated (Cas) 9 (CRISPR-Cas9, non-Cas9 CRISPR systems, CRISPR-Cpf-1 system, and the like) comprising one or more vectors comprising: a) a promoter (e.g., orthogolous HI promoter or 7sk) operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell oper
  • the system is packaged into a single adeno-associated virus (AAV) particle.
  • the system inactivates one or more gene products.
  • the system excises at least one gene mutation.
  • the HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32.
  • the orthologous HI promoter is derived from mouse or rat. In some embodiments, the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84-119. In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119.
  • the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease.
  • the promoter is the human, mouse, or rat 7sk promoter.
  • the 7sk is selected from the group consisting of 7skl (variant 1 of 7sk which uses the endogenous GSTA4 5'UTR), 7sk2 (variant 2 of 7sk which uses just a kozak sequence in the 5'UTR), and 7sk3 (variant of 7sk which uses the beta globin 5'UTR).
  • the human 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 3.
  • the mouse 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6.
  • the human 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 4.
  • the mouse 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7.
  • the human 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 5.
  • the mouse 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 8.
  • the orthologous HI promoter or 7sk promoter has at least one modification.
  • the at least one modification of the promoter comprises an element that allows conditional regulation.
  • the element is a tet-responsive promoter.
  • the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter.
  • TetR comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14.
  • TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 11.
  • the Hl-TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 13.
  • the at least one modification of the promoter comprises a site that allows auto-regulation.
  • the auto-regulation site comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34.
  • the nuclease system further comprising at least one terminator sequence.
  • the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences.
  • the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence.
  • the terminator sequences is a SPA 49 base pair equence.
  • the nuclease system further comprises 5' untranslated region (5'UTR) sequences.
  • the nuclease system further comprises a Kozak sequence.
  • the Kozak sequence comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 1 or 2.
  • the nuclease system further comprises a RNA sequence that mediates cap-independent initiation of translation.
  • the RNA sequence is selected from the group consisting of 6.947 or 6.967.
  • the Cas9 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 61.
  • the Cas9 comprises at least one modification.
  • the at least one modification in the Cas9 comprises an alteration in the cleaving sequence.
  • the nuclease is seleted from the group consisting of Casl , CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Casl 3a, Csy l , Csy2, Csy3, Csel, Cse2, Csc , Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl 6, CsaX, Csx3, Csxl , Csxl S, Csfl , C
  • the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A.
  • the T2A comprises an amino acid sequence, having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 36.
  • the P2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 35.
  • the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35.
  • the E2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 37.
  • the F2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 38.
  • the at least one modification in the Cas9 comprises a codon optimized for expression in the cell.
  • the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion).
  • the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 ( DC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, BS1, NEIL2, EIL3, NTH1, Orel, Orc3, PARPl, PCNA, Pifl, PMS1, PMS2, P K,
  • the cell cycle-dependent protein is Geminin. In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)). In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amimo acid sequence set forth in SEQ ID NO: 19. In some embodiments, the cell cycle-dependent protein is Cdtl . In some embodiments, the cell cycle-dependent protein is human Cdtl . In some embodiments, the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)).
  • the hCdtl(30-120) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence set forth in SEQ ID NO: 18.
  • the Cas9 fusion comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
  • the Cas9 is operably fused in frame to a ubiquitin protein (Ub-Cas9).
  • Ub-Cas9 ubiquitin protein
  • the Ub-Cas9 at least one N-terminal modification.
  • the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58.
  • the ubiquitin protein comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 60.
  • the nuclease system further comprises a SaCas9 nickase.
  • the nuclease system further comprises a donor template sequence.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67.
  • the donor template sequence corrects at least one gene mutation.
  • the at least one gene mutation is rdlO or rdl2.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64.
  • the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66.
  • the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA.
  • the target sequence comprises the nucleotide sequence AN19NGG,
  • the cell is a eukaryotic or or non-eukaryotic cell.
  • the eukaryotic cell is a mammalian or human cell.
  • the eukaryotic cell is a retinal photoreceptor cell.
  • the one or more gene products are rhodopsin.
  • the expression of the one or more gene products is decreased.
  • the system inactivates one or more gene products.
  • the nuclease system excises at least one gene mutation. In some embodiments, the expression of the one or more gene products is decreased.
  • the cell is a retinal ganglion cell.
  • the eukaryotic cell is a cancerous cell.
  • cell proliferation is inhibited or reduced in the cancerous cell.
  • the apoptosis is enhanced or increased in the cancerous cell.
  • the disease is corneal dystrophy.
  • the disease is a retinal dystrophy.
  • the retinal dystrophy is selected from the group consisting of Leber's congenital amaurosis (LCA), retinitis pigmentosa (RP), and glaucoma.
  • LCA Leber's congenital amaurosis
  • RP retinitis pigmentosa
  • the corneal dystrophy is selected from the group consisting of Epithelial Basement Membrane Dystrophy, Epithelial Recurrent Erosion Dystrophies, Subepithelial Mucinous Corneal Dystrophy, Meesmann Corneal Dystrophy, Lisch Epithelial Corneal Dystrophy, Gelatinous Drop-like Corneal Dystrophy, Reis-Bucklers Corneal Dystrophy, Thiel-Behnke Corneal Dystrophy, Lattice Corneal Dystrophy, Type 1 (Classic), Lattice Corneal Dystrophy, Type 2, Lattice Corneal Dystrophy, Type III, Lattice Corneal Dystrophy, Type IIIA, Lattice Corneal Dystrophy, Type I/IIIA, Lattice Corneal Dystrophy, Type IV, Polymorphic (Corneal) Amyloidosis, Granular Corneal Dystrophy, Type 1, Granular
  • Corneal Dystrophy Fuchs Endothelial Corneal Dystrophy, Posterior Polymorphous Corneal Dystrophy, Congenital Hereditary Endothelial Dystrophy, and X-linked Endothelial Corneal Dystrophy.
  • the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly, Cleidocranial dysplasia, Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD
  • SCA1 Spinocerebellar ataxia Type 1
  • SCA12 Spinocerebellar ataxia Type 12
  • SCA17 SCA17
  • administering to the subject occurs by implantation, injection, or virally. In some embodiments, administering to the subject occurs by subretinal injection.
  • administering to the subject occurs topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously, intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, peritumorally, inhalationly, systematically, perfusionly, lavagely, directly via injection, or orally via administration and formulation.
  • administering to the subject occurs topically to the surface of the eye.
  • administering to the subject occurs on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids.
  • the subject is treated with at least one additional anti-cancer agent.
  • the anti-cancer agent is selected from the group consisting of paclitaxel, cisplatin, topotecan, gemcitabine, bleomycin, etoposide, carboplatin, docetaxel, doxorubicin, topotecan, cyclophosphamide, trabectedin, olaparib, tamoxifen, letrozole, and bevacizumab.
  • the subject is treated with at least one additional anticancer therapy.
  • the anti-cancer therapy is radiation therapy, chemotherapy, or surgery.
  • the cancer is a solid tumor.
  • the cancer is selected from the group consisting of brain cancer,
  • the cancer is brain cancer.
  • the systematic administration is selected from the group consisting of oral, intravenous, intradermal, intraperitoneal, subcutaneous, and intramuscular administration.
  • the subject is a mammal. In some embodiments, the mammal is human.
  • the presently disclosed subject matter provides a method for treating an ocular neurodegenerative disease in a subject in need thereof, the method comprising: (a) providing a non-naturally occurring CRISPR-Cas system comprising one or more vectors comprising: i) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell of the subject, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and ii) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a Cas9 protein, wherein components (i) and (ii) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule to alter expression of the one or more gene products;
  • neurodegenerative disease, disorder, or condition is meant a disease, disorder, or condition (including a neuropathy) associated with degeneration or dysfunction of neurons or other neural cells, such as retinal photoreceptor cells.
  • a neurodegenerative disease, disorder, or condition can be any disease, disorder, or condition in which decreased function or dysfunction of neurons, or loss or neurons or other neural cells, can occur.
  • Such diseases, disorders, or conditions include, but are not limited to, glaucoma, and neurodegenerative diseases, disorders, or conditions of the nervous systems, such as or associated with amyotrophic lateral sclerosis (ALS), trigeminal neuralgia, glossopharyngeal neuralgia, Bell's Palsy, myasthenia gravis, muscular dystrophy, progressive muscular atrophy, primary lateral sclerosis (PLS), pseudobulbar palsy, progressive bulbar palsy, spinal muscular atrophy, inherited muscular atrophy, invertebrate disk syndromes, cervical spondylosis, plexus disorders, thoracic outlet destruction syndromes, peripheral
  • ALS amyotrophic lateral sclerosis
  • trigeminal neuralgia glossopharyngeal neuralgia
  • Bell's Palsy myasthenia gravis
  • muscular dystrophy progressive muscular atrophy
  • primary lateral sclerosis (PLS) pseudobulbar palsy
  • progressive bulbar palsy progressive bulbar
  • Alzheimer's disease Huntington's disease, Parkinson's disease, Parkinson' s-plus diseases, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, frontotemporal dementia, demyelinating diseases, Guillain-Barre syndrome, multiple sclerosis, Charcot-Marie-Tooth disease, prion diseases, Creutzfeldt- Jakob disease, Gerstmann-Straussler-Scheinker syndrome (GSS), fatal familial insomnia (FFI), bovine spongiform encephalopathy (BSE), Pick's disease, epilepsy, and AIDS demential complex.
  • GSS Gerstmann-Straussler-Scheinker syndrome
  • FFI fatal familial insomnia
  • BSE bovine spongiform encephalopathy
  • neurodegenerative diseases, disorders, or conditions of the nervous systems such as or associated with alcoholism, Alexander's disease, Alper's disease, ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjogren-Batten disease), Canavan disease, Cockayne syndrome, diabetic neuropathy, frontotemporal lobar degeneration, HIV-associated dementia, Kennedy's disease, Krabbe's disease,
  • Neuroborreliosis Machado- Joseph disease (Spinocerebellar ataxia type 3), wet or dry macular degeneration, Niemann Pick disease, Pelizaeus-Merzbacher Disease, photoreceptor degenerative diseases, such as retinitis pigmentosa and associated diseases, Refsum's disease, Sandhoff s disease, Schilder's disease, subacute combined degeneration of spinal cord secondary to pernicious anemia, Eisenmeyer-Vogt- Sjogren-Batten disease (also known as Batten disease), spinocerebellar ataxia (multiple types with varying
  • ocular-related neurodegeneration examples include, but are not limited to, glaucoma, lattice dystrophy, retinitis pigmentosa, age-related macular degeneration (AMD), photoreceptor degeneration associated with wet or dry AMD, other retinal degeneration such as retinitis pigmentosa (RP), optic nerve drusen, optic neuropathy, and optic neuritis, such as optic neuritis resulting from multiple sclerosis.
  • the ocular neurodegenerative disease is selected from the group consisting of glaucoma, retinal degeneration, and age-related macular degeneration.
  • the ocular neurodegenerative disease is retinitis pigmentosa (RP).
  • Non-limiting examples of different types of glaucoma that can be prevented or treated according to the presently disclosed subject matter include primary glaucoma (also known as primary open-angle glaucoma, chronic open-angle glaucoma, chronic simple glaucoma, and glaucoma simplex), low-tension glaucoma, primary angle- closure glaucoma (also known as primary closed-angle glaucoma, narrow-angle glaucoma, pupil-block glaucoma, and acute congestive glaucoma), acute angle-closure glaucoma, chronic angle- closure glaucoma, intermittent angle-closure glaucoma, chronic open-angle closure glaucoma, pigmentary glaucoma, exfoliation glaucoma (also known as pseudoexfoliative glaucoma or glaucoma capsulare), developmental glaucoma (e.g., primary congenital glaucoma and infantile glaucoma), secondary glaucoma
  • disorder in general refers to any condition that would benefit from treatment with a compound against one of the identified targets, or pathways, including any disease, disorder, or condition that can be treated by an effective amount of a compound against one of the identified targets, or pathways, or a pharmaceutically acceptable salt thereof.
  • the term "treating" can include reversing, alleviating, inhibiting the progression of, preventing or reducing the likelihood of the disease, disorder, or condition to which such term applies, or one or more symptoms or manifestations of such disease, disorder or condition (e.g., a disease or disorder that causes dysfunction and/or death of retinal photoreceptor cells).
  • the treatment reduces the dysfunction and/or death of retinal photoreceptor cells.
  • the treatment can reduce the dysfunction and/or death of retinal photoreceptor cells by at least 5%, 10%, 15%, 20%, 25%, 30%, 33%, 35%, 40%, 45%, 50%, 55%, 60%, 66%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more as compared to the dysfunction and/or death of retinal photoreceptor cells in a subject before undergoing treatment or in a subject who does not undergo treatment.
  • the treatment completely inhibits dysfunction and/or death of retinal photoreceptor cells in the subject.
  • a "retinal photoreceptor cell” is a specialized type of neuron found in the retina that is capable of phototransduction.
  • at least one gene product is rhodopsin.
  • the system is packaged into a single adeno-associated virus (AAV) particle before administering to the subject.
  • administering to the subject occurs by subretinal injection.
  • the treatment, administration, or therapy can be consecutive or intermittent. Consecutive treatment, administration, or therapy refers to treatment on at least a daily basis without interruption in treatment by one or more days. Intermittent treatment or administration, or treatment or administration in an intermittent fashion, refers to treatment that is not consecutive, but rather cyclic in nature. Treatment according to the presently disclosed methods can result in complete relief or cure from a disease, disorder, or condition, or partial amelioration of one or more symptoms of the disease, disease, or condition, and can be temporary or permanent. The term "treatment” also is intended to encompass prophylaxis, therapy and cure.
  • an effective amount or “therapeutically effective amount” refers to the amount of an agent that is sufficient to effect beneficial or desired results.
  • therapeutically effective amount may vary depending upon one or more of: the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
  • the term also applies to a dose that will provide an image for detection by any one of the imaging methods described herein.
  • the specific dose may vary depending on one or more of: the particular agent chosen, the dosing regimen to be followed, whether it is administered in combination with other compounds, timing of administration, the tissue to be imaged, and the physical delivery system in which it is carried.
  • a “subject” can include a human subject for medical purposes, such as for the treatment of an existing condition or disease or the prophylactic treatment for preventing the onset of a condition or disease, or an animal subject for medical, veterinary purposes, or developmental purposes.
  • Suitable animal subjects include mammals including, but not limited to, primates, e.g., humans, monkeys, apes, and the like; bovines, e.g., cattle, oxen, and the like; ovines, e.g., sheep and the like; caprines, e.g., goats and the like; porcines, e.g., pigs, hogs, and the like; equines, e.g., horses, donkeys, zebras, and the like; felines, including wild and domestic cats; canines, including dogs; lagomorphs, including rabbits, hares, and the like; and rodents, including mice, rats, and the like.
  • mammals including, but not limited to, primates, e.g., humans, monkeys, apes, and the like; bovines, e.g., cattle, oxen, and the like; ovines, e.g., sheep and the like; cap
  • An animal may be a transgenic animal.
  • the subject is a human including, but not limited to, fetal, neonatal, infant, juvenile, and adult subjects.
  • a "subject" can include a patient afflicted with or suspected of being afflicted with a condition or disease.
  • the term "about,” when referring to a value can be meant to encompass variations of, in some embodiments, ⁇ 100% in some embodiments ⁇ 50%, in some embodiments ⁇ 20%, in some embodiments ⁇ 10%, in some embodiments ⁇ 5%, in some embodiments ⁇ 1%, in some embodiments ⁇ 0.5%, and in some embodiments ⁇ 0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
  • the development of CPJSPR-Cas9 technology has revolutionized the field of gene- editing and offers a profoundly new approach to treating genetic diseases.
  • the CRISPR- Cas9 system is composed of a guide RNA (gRNA) that targets the Cas9 nuclease in a sequence-specific fashion. Cleavage by the CRISPR system requires complementary base pairing of the gRNA to a DNA sequence and the requisite protospaceradjacent motif (PAM), a short nucleotide motif found 3' to the target site (Dalkara, D. et al. Science translational medicine 5, 189ral76 (2013); Berns, KI et al. Fundamental Virology (ed B.N. Fields , and Knipe, D.M.
  • gRNA guide RNA
  • PAM protospaceradjacent motif
  • AAV ocular gene therapy injection
  • AAV vectors provide a safe means of delivering therapeutic CRISPR components, there is one major technical obstacle that limits their utility - their size.
  • Wild type AAV genomes are ⁇ 4.7kb in length and recombinant viruses can package up to ⁇ 5.2kb (Mancuso, K. et al. Nature 461, 784-787 (2009); Beltran, WA et al.
  • This packaging capacity defines the upper limit of the DNA that can be used for a single viral vector.
  • One approach to AAV delivery challenge is a two-vector approach: one AAV vector to deliver the Cas9, and another AAV vector for the gRNA (Petrs-Silva, H. et al. Molecular therapy : the journal of the American Society of Gene Therapy 19, 293-301 (2011)).
  • the double AAV approach utilizes the small mouse Mecp2 promoter, a gene that has been found to be expressed in retinal cells - with the critical exception of rods (Song, C. et al. Epigenetics & chromatin 7, 17 (2014); Jain, D. et al. Pediatric neurology 43, 35-40 (2010)) - suggesting that, aside from the potential toxicity due to increased viral delivery load, the co-delivery approach would likely fail to target the vast majority of LCA mutations a priori. While this is a potentially viable approach for other gene therapy-mediated genomic editing, provided herein is a single vector approach for retinal gene editing that should increase efficiency, target
  • photoreceptors specifically, and reduce potential toxicity from viral load delivery.
  • eGFP reporter construct was created to better optimize its pol II activity (FIG. 1 A).
  • Human (HEK293) and mouse cells (NIH3T3) demonstrated a weak, but clearly detectable GFP fluorescence, indicating that the HI promoter could direct pol II expression.
  • experiments were performed to increase pol II expression while maintaining compactness by evaluating the three variable components in the system: (a) the promoter sequence, (b) the 5'UTR, and (c) the terminator sequence.
  • RNA sequences that mediate cap-independent initiation of translation were also effective (6.947, and 6.967).
  • Genomic alignments were performed from the orthologous region of 36 eutherian mammals using the HI promoter sequence. These provide additional sequences (SEQ ID NOs: 84-119) that can be used to fine-tune bidirectional expression.
  • ChIP sites that were identified from the human genome include, but not limited to:
  • the 7sk bidirectional promoter or the region between the GSTA4 gene (pol II gene) and the RN7SK gene (pol III gene) were tested using our GFP reporter assay.
  • the pol III activity of this promoter is well-documented.
  • Bidirectional promoter sequences could be used as starting points for the identification of different variants of pol II/pol III activity.
  • a custom perl script was developed to compare the 5' transcriptional start sites of pol III genes with that of pol II genes. The results were filtered for those that are orientated in opposite directions
  • the input files could be annotated genome files or transcriptional data (pol II or pol III ChIP sites). Using this information, bidirectional promoters were identified with both RNA pol II and RNA pol III activity. These sequences could be used to generated derivative sequences
  • Promoter sequences could be used to identify transcription binding sites, or multiple promoter sequences could be aligned to identify transcription factor binding sites which could in turn be used to design a bidirectional promoter. Identification of transcription binding factor sites could be determined by consensus, or by using a differential distance matrix or multidimensional scaling (De Bleser P et al. Genome Biol. 2007;8(5):R83.). Random sequence library:
  • a synthetic library of random sequences could be used as a starting point to screen for sequences with bidirectional activity. By randomizing, shuffling, or mutating the bidirectional sequence, one can search for DNA sequences that have different pol II or pol III promoter activity.
  • Screens could be set up using qPCR or fluorescence to read-out pol II and pol III activity.
  • a simple fluorescence screen would use a reporter (GFP, mCherry, etc.) as described, and an RNA aptamer, such as Broccoli that becomes fluorescent in the presence of a small molecule like DFHB1-1T.
  • the screen could use protein readouts such as drug resistance (e.g. antibiotics), antigenic pepdies, or cell-surface markers, etc.
  • Alternative reporters could be function complexes that are comprised of both protein and RNA.
  • the MS2 coat protein binding stem loop could be incorporated into the RNA and the pol II transcription could encode the MS2 coat protein which would in turn bind the RNA sequence. If two binding sites are incorporated into the RNA, then fluorescence complementarity (split protein complementarity) could be used as a readout.
  • Screens can also be performed by separating and assessing the pol II activity and then the pol III activity. Finally, these sequences could then be combined in a fashion that allows for divergent transcription by both RNA pol II or RNA pol III.
  • GFP reporter plasmids were constructed by Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
  • HEK Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (heat- inactivated) (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX
  • N2A cell line (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
  • DMEM Dulbecco's modified Eagle's Medium
  • fetal bovine serum Gibco, Life Technologies, Grand Island, NY
  • 2mM GlutaMAX Invitrogen
  • Cells were transfected (Lipofectamine 3000) with each construct. GFP expression was analyzed using flow cytometry.
  • TetR Tet repressor
  • TetO Tet operator
  • This system has not been previously combined with the bidirectional component of the HI promoter, a system that could allow for regulation of pol II and pol III transcripts.
  • Ribonucleoprotein enzymes or RNA-directed nucleases could be regulated by tetracycline using an engineered bidirectional promoter system.
  • TetO operator sites This provides a mechanism for the inducible activity of ribonucleoprotein enzymes or RNA-directed nucleases, such as Cas9/gRNA. Additionally, placement of the TetO sites could be placed as to specifically repress either the pol II or pol
  • Such a system would have tremendous clinical advantages for regulating CRISPR activity delivered by AAV viruses and could be used to other compact bidirectional promoters.
  • HEK Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (heat- inactivated) (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX
  • N2A cell line (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
  • DMEM Dulbecco's modified Eagle's Medium
  • Cells were transfected (Lipofectamine 3000) with each construct. GFP expression was analyzed using flow cytometry.
  • mm079 target sequence GAAGAAGGTTCGAGATCTCA (SEQ ID NO: 9)
  • mm079 genomic target site GAAGAAGGTTCGAGATCTCAAGG (SEQ ID NO: 10) TetO site: TCCCTATCAGTGATAGAGA (SEQ ID NO: 11)
  • NHEJ nonhomologous end-joining
  • HDR Homology Directed Repair
  • NHEJ is generally considered to be an error-prone pathway which results sequence changes around the break point.
  • NHEJ is the more efficient or dominant pathway for DNA repair.
  • HDR pathways are far less error-prone, but require stretches of homology to template and repair.
  • NHEJ NHEJ
  • Both pathways have properties that are favorable for different outcomes. For example, if one wishes to "knock-out" a gene, NHEJ is the preferable pathway, as DNA breaks in that gene will largely result in sequence changes. In the laboratory, many genetic screens are dependent on eliminating gene function, and for therapeutic approaches, complete disruption of a gene with a dominant or gain-of-function mutation would be highly desirable. However, if one wishes to introduce a specific sequence change (“knock-in”), one would try to favor repair though a HDR pathway thus allowing for precise cut and paste outcomes. For many scientific applications and most clinical applications this pathway is favorable, as it can allow for precise mutation repair.
  • proteolytic proteins are regulated in cell-cycle-dependent fashion, largely through transcriptional regulation and post-transcriptional mechanisms, notably ubiquitin-mediated proteolysis. Generally, regulation through transcriptional mechanisms are slower, while proteolytic mechanisms are rapid. For genome-editing applications, proteolytic
  • Cdtl accumulates in the Gl phase of the cell-cycle, while Gem accumulates during S/G2/M phases.
  • the specific regions of these proteins that are required for cell-cycle regulation have been mapped: amino acids 30-120 for hCdtl, and amino acids 1-110 for hGem (Sakaue-Sawano A et al. Cell 132, 487-498 (2008)).
  • proteins fused to these domains can be made to exhibit cell-cycle-dependent regulation, even if the respective mRNA is constantly being transcribed throughout the cell- cycle. In essence, cellular proteins only recognize the domain during specific phases of the cell-cycle, which results in ubiquitination and then rapid degradation of the fusion protein.
  • the method described is tremendously powerful in its elegance and simplicity.
  • Other attempts to regulate the outcome of genome-editing technologies have utilized cumbersome methods of arresting cells in certain phases of the cell-cycle followed by technically challenging and inefficient methods of direct protein/RNA delivery.
  • the method described here relies on simple delivery of a plasmid, mRNA, or protein encoding a fusion to the respective regulatory sequences.
  • Plasmid construction To generate the cell-cycle regulated nucleases proteins, the human codon optimized Cas9 gene from a Cas9:T2A:GFP vector (Addgene 44719) was modified to replace the T2A with a better cleaving P2A sequence. Next the GFP fluorescent reporter was replace with the sequence encoding the mKate2 fluorescent protein.
  • the vector was linearized and gBlocks encoding a flexible 15 amino acid sequence linker fused to either the hGem(l-l 10) or hCdtl(30-120) domains were inserted in frame to generate Cas9: linker: hGem and Cas9:linker:hCdtl (referred to as Cas9-Gem or Cas9-Cdt, respectively). All cloning steps were preformed using Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
  • HEK Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% C0 2 / 20% O2 in Dulbecco's modified Eagle's
  • DMEM fetal bovine serum
  • 2mM GlutaMAX Invitrogen
  • AGTACTGTGGGTACTCGAAGGGG (SEQ ID NO: 68)) (see Jaskula-Ranga, V., & Zack, D. J. (2016). grID: A CRISPR-Cas9 guide RNA. Database and Resource for Genome- Editing. hioRxiv, 097352) was generated by overlapping oligos that were annealed and amplified by PCR using two-step amplification Phusion Flash DNA polymerase (Thermo Fisher Scientific, Rockford, IL), and subsequently purified using Zymo DNA clean and concentrator columns. The purified PCR products were then resuspended in H20 and quantitated using a NanoDrop 1000 (Thermo Fisher Scientific).
  • the gRNA-expressing constructs were generated using the Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. Nature Methods 6:343-345 (2009)) with slight modifications. The total reaction volume was reduced from 20 ⁇ 1 to 2 ⁇ 1.
  • HEK293 cells were co-transfected with Cas9 (unmodified, or cell-cycle regulated versions) and the gRNA construct targeting rhodopsin. 48hrs post transfection, genomic DNA was harvested and the sequence surrounding the target cut sites were amplified according to the primers listed below. The PCR products were then purified and quantitated before performing the T7 Endo I assay.
  • Cas9 unmodified, or cell-cycle regulated versions
  • HDR frequencies were calculated using the equation: ; where the values of "a” and “b” are equal to the integrated area of the cleaved fragments after background subtraction and "c” is equal to the integrated area of the un-cleaved PCR product after background subtraction.
  • Rho HDR F TGGAGCCCTGAGTGGCTGAG (SEQ ID NO: 16)
  • Rho HDR R CC ACCT AGGACC ATGAAGAGGTC AG (SEQ ID NO : 17)
  • VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMR KP AFL S GEQKK AI VDLLFKTNRK VT VKQLKED YFKKIECFD S VEI SGVEDRFN A SLG TYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMK QLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFK EDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ EKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIWQSFLKDDSID KVLTRSDK RGKSDNVPS EEVVKKMKNYWRQLLNA
  • AGGCATAAGCCCGAGAATATCGTTATCGAGATGGCCCGAGAACCAAACTAC CC AGAAGGGAC AGAAGAAC AGT AGGGAAAGGATGAAGAGGATTGAAGAGGGT ATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTGAAAACACCCA GCTTCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAGGGACATGT ACGTGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGATCAT ATCGTGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACA AGATCCGATAAAAATAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGT CAAGAAAATGAAAAATTATTGGCGGCAGCTGCTGAACGCCAAACTGATCACAC AACGGAAGTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTG GATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACG
  • RNA-directed nuclease activity can be beneficial towards reducing the potential for off-target effects. In a clinical setting, this would be highly significant with viral delivery methods, such as AAV, which are characterized by prolonged or life-time expression.
  • Cas9 an RNA- guided nuclease
  • Cas9 binding (without cleavage) has been shown by numerous studies to be effective at regulating gene expression. Most studies use the nuclease-dead version of Cas9 to prevent cleavage activity, however a system which allows for both cleavage and self-regulation would be highly desirable.
  • Cas9 By using engineered sequences that correspond to partial target sites, the cutting and binding activities of Cas9 can be separated; partial sequence complementarity allows Cas9 to bind without DNA cleavage. Using this binding propensity, Cas9 can be directed back to regulating its own expression. For SpCas9, sites that are generally below 17nt of complementarity do not result in cleavage, and even single mismatches can result in no cleavage with high-fidelity or high-specificity Cas9 mutants.
  • GFP reporter plasmids were constructed by Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
  • HEK Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (heat- inactivated) (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX
  • N2A cell line (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
  • DMEM Dulbecco's modified Eagle's Medium
  • fetal bovine serum Gibco, Life Technologies, Grand Island, NY
  • 2mM GlutaMAX Invitrogen
  • Cells were transfected (Lipofectamine 3000) with each construct. GFP expression was analyzed using flow cytometry.
  • mm079 target sequence GAAGAAGGTTCGAGATCTCA (SEQ ID NO: 28)
  • mm079 genomic target site GAAGAAGGTTCGAGATCTCAAGG (SEQ ID NO: 29)
  • Autol site GTTCGAGATCTCAGGGAAT (SEQ ID NO: 30)
  • Methionine (Met) followed by a glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), alanine (Ala), valine (Val), or cysteine (Cys) are processed by
  • Methionineaminopeptidases which cleave off the N-terminal met (FIG. 1 A). The identity of the position 2 amino-acid then either stabilizes or destabilizes the entire protein. Thus, by changing the identity of the second amino acid, one can alter some proteins half-life through Met-aminopeptidases.
  • Ubiquitin is a highly conserved protein of 76 amino acids that is typically associated with protein degradation; Ub molecules are conjugated to target proteins marking those proteins for destruction by the proteasome.
  • Linear poly-ubiquitin is recognized in the cell by deubiquitin enzymes which cleave the individual Ub peptides. This process can be co-opted to generate specific N-terminal residues by fusing Ub to the N-terminus of any protein (FIG. 18). Once inside the cell, deubiquitin enzymes recognize and cleave the Ub moiety, releasing the fused protein. This process can be used to generate precise N-terminal amino-acid residues on a given protein, the identity of which determines the proteins half-life.
  • RNA-guided nuclease or the guide RNA can modulate the entire holoenzyme complex; for the CRISPR-Cas9 system, this can be done either by regulating the levels of Cas9 or the gRNA.
  • deubiquintation or alternative methods, can accomplish this regulation (FIG. 19A).
  • Reducing Cas9 half-life can be beneficial towards reducing the potential for off- target effects. In a clinical setting, this would be highly significant with viral delivery methods, such as AAV, which are characterized by prolonged or life-time expression. Conversely, with inefficient methods of delivery, increased protein half-life could be desirable or necessary to elicit an effect. In various diverse settings, the ability to tune the levels of the nuclease would be highly desirable. Additionally, this approach to regulation is simple and can be used in conjunction with other forms of regulation, such as degrons, inducible degrons, or split variants of RNA-guided nucleases.
  • levels of Cas9 an RNA-guided nuclease
  • levels of Cas9 can be modulated by the identity of the N-terminal amino acid, by as much as 8-10-fold, a significant range of expression for a nuclease (FIG. 19A).
  • FIG. 20 Also shown is how commonly used 2A peptides can be leveraged to modulate protein levels in the cell (FIG. 20).
  • HEK Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
  • DMEM Dulbecco's modified Eagle's Medium
  • Cells were transfected with each construct at either 2000ng, 500ng, or 125ng. 48hrs later cells were harvested for protein and then analyzed on a Simple Simon machine for Cas9 expression or GAPDH for control. The ratios were used to normalize values and to determine protein stability.
  • P2A GSGAT F SLLKQ AGDVEE PGP (SEQ ID NO: 35)
  • T2A GSGEGRGSLLTCGDVEENPGP (SEQ ID NO: 36)
  • E2A GSGQCTNYALLKLAGDVESNPGP (SEQ ID NO: 37)
  • F2A GSGVKQTLNFDLLKLAGDVESNPGP (SEQ ID NO: 38)
  • CRISPR RNA-directed nuclease, guide RNA, and HDR templates
  • a revolutionary genome-editing technology known as CRISPR is transforming biological research and ushering in a new era for genetic medicine.
  • Each cell in our body contains 3 billion base-pairs of DNA and even single changes - or mutations - can cause a wide variety of inherited or acquired diseases.
  • CRISPR technology allows researchers to
  • AAV adeno-associated viruses
  • Recessive mutations are the result of inheriting two bad copies of a gene. These diseases require delivering CRISPR as well as a long stretch of DNA surrounding the mutation (a template) so that the cell can edit out the mutations by copying in the correct sequence. While the vast majority of diseases fall into this category, no means exists to deliver CRISPR components and the template DNA via a single AAV virus exist due to the size limitations of AAV.
  • AAV served as a method to deliver templates for site-specific DNA change.
  • AAV templates are the most recombinogenic, although the rates were still low and on the order of less than 1 in 104 prior to gene-editing methods.
  • DNA breaks are highly recombinogenic, and that co-delivery of CRISPR-Cas9 with an AAV template has the ability to recombine at a high frequency.
  • ssDNA templates are highly recombinogenic, and that co-delivery of CRISPR-Cas9 with an AAV template has the ability to recombine at a high frequency.
  • HI bidirectional promoter system is so compact, we can deliver both the cutting (Cas9 and gRNA) and pasting (HDR template) elements through a single AAV virus.
  • the therapeutic potential for this class of diseases is far larger both in terms of the numbers of diseases and people that can be treated.
  • HEK Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
  • DMEM Dulbecco's modified Eagle's Medium
  • G-3' (SEQ ID NO: 69), where N's represent the template region is used, or after Hpal digestion, the following sequence 5'- GGCACCGAGTCGGTGCTTTTTTGTTNNNNNNAACGCGGCCGCCTAGAGTCGAC- 3' (SEQ ID NO: 70), where N's represent the template region is used.
  • gRNAs (see Jaskula-Ranga, V., & Zack, D. J. (2016).
  • grID A CRISPR-Cas9 guide R A Database and Resource for Genome-Editing. bioRxiv, 097352) were generated by overlapping oligos that were annealed and amplified by PCR using two-step amplification Phusion Flash DNA polymerase (Thermo Fisher Scientific, Rockford, IL), and
  • HEK293 cells were co-transfected with Cas9 (unmodified, or cell-cycle regulated versions) and the gRNA construct targeting rhodopsin. 48hrs post transfection, genomic DNA was harvested and the sequence surrounding the target cut sites were amplified according to the primers listed in the Appendix. The PCR products were then purified and quantitated before performing the T7 Endo I assay.
  • Cas9 unmodified, or cell-cycle regulated versions

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The presently disclosed subject matter provides compositions and methods comprising improvements of a CRISPR system (e.g. CRISPR associated (Cas) 9 (CRISPR-Cas9, non-Cas9 CRISPR systems). Such compositions may comprise modifications to the H1 promoter region, addition of 5'UTR modifications, different orthologous sequences of the H1 promoter, novel compact bidirectional promoter sequences with both pol II and pol III activity, addition of Kozak consensus sequences, termination sequences, addition of conditional pol II/pol III bidirectional promoter expression, addition of a donor template sequence for correcting mutations, or combinations thereof. Other aspects of the invention relate to modifications to Cas9 through post-transcriptional cell-cycle regulation fusions, engineered partial target sites such that the nuclease can bind without DNA cleavage, auto-regulation sites, and N-terminal modifications to modulate half-life.

Description

COMPOSITIONS AND METHODS COMPRISING IMPROVEMENTS OF CRISPR GUIDE RNAS USING THE HI PROMOTER
CROSS-REFERENCE
This application claims the benefit of U.S. Provisional Application No. 62/358,335, filed July 5, 2016, the entirety of which is hereby incorporated by reference.
BACKGROUND
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) together with cas (CRISPR-associated) genes comprise an adaptive immune system that provides acquired resistance against invading foreign nucleic acids in bacteria and archaea
(Barrangou et al. (2007) Science 315: 1709-12). CRISPR consists of arrays of short conserved repeat sequences interspaced by unique variable DNA sequences of similar size called spacers, which often originate from phage or plasmid DNA (Barrangou et al. (2007) Science 315: 1709-12; Bolotin et al. (2005) Microbiology 151 :2551-61; Mojica et al. (2005) J. Mol. Evol. 60: 174-82). The CRISPR-Cas system functions by acquiring short pieces of foreign DNA (spacers) which are inserted into the CRISPR region and provide immunity against subsequent exposures to phages and plasmids that carry matching sequences (Barrangou et al. (2007) Science 315: 1709-12; Brouns et al. (2008) Science 321 :960-64). It is this CRISPR-Cas interference/immunity that enables crRNA-mediated silencing of foreign nucleic acids (Horvath & Barrangou (2010) Science 327: 167-70; Deveau et al.
(2010) Annu. Rev. Microbiol. 64:475-93; Marraffini & Sontheimer (2010) Nat. Rev. Genet. 11 : 181-90; Bhaya et al. (20\ \) Annu. Rev. Genet. 45:273-97; Wiedenheft et al. (2012) Nature 482:331-338).
Use of CRISPR constructs that rely upon the nuclease activity of the Cas9 protein (Makarova et al. (2011) Nat. Rev. Microbiol. 9:467-77) coupled with a synthetic guide RNA (gRNA) has recently revolutionized genomic-engineering, allowing for
unprecedented manipulation of DNA sequences. CRISPR/Cas9 constructs are simple and fast to synthesize and can be multiplexed. However, despite the relative ease of their synthesis, CRISPRs have technological restrictions related to their access to targetable genome space, which is a function of both the properties of Cas9 itself and the synthesis of its gRNA.
Cleavage by the CRISPR system requires complementary base pairing of the gRNA to a 20-nucleotide DNA sequence and the requisite protospacer-adjacent motif (PAM), a short nucleotide motif found 3' to the target site (Jinek et al. (2012) Science 337: 816-821). One can, theoretically, target any unique N20-PAM sequence in the genome using CRISPR technology. The DNA binding specificity of the PAM sequence, which varies depending upon the species of origin of the specific Cas9 employed, provides one constraint.
Currently, the least restrictive and most commonly used Cas9 protein is from S. pyogenes, which recognizes the sequence NGG, and thus, any unique 21 -nucleotide sequence in the genome followed by two guanosine nucleotides (N20NGG) can be targeted. Expansion of the available targeting space imposed by the protein component is limited to the discovery and use of novel Cas9 proteins with altered PAM requirements (Cong et al. (2013) Science 339: 819-823; Hou et al. (2013) Proc. Natl. Acad. Sci. U.S.A. 110(39): 15644-9), or pending the generation of novel Cas9 variants via mutagenesis or directed evolution.
The second technological constraint of the CRISPR system arises from gRNA expression initiating at a 5' guanosine nucleotide. Use of the type III class of RNA polymerase III promoters has been particularly amenable for gRNA expression because these short non-coding transcripts have well-defined ends, and all the necessary elements for transcription, with the exclusion of the 1+ nucleotide, are contained in the upstream promoter region. However, since the commonly used U6 promoter requires a guanosine nucleotide to initiate transcription, use of the U6 promoter has further constrained genomic targeting sites to GN19NGG (Mali et al. (2013) Science 339:823-826; Ding et al. (2013) Cell Stem Cell 12:393-394 Ranganathan, V et al. Nature communications 5, 4516 (2014)). Alternative approaches, such as in vitro transcription by T7, T3, or SP6 promoters, would also require initiating guanosine nucleotide(s) (Adhya et al. (1981) Proc. Natl. Acad. Sci. U.S.A. 78: 147-151; Melton et al. (1984) Nucleic Acids Res. 12:7035-7056; Pleiss et al. (1998) RA¾ 4: 1313-1317).
SUMMARY
The practice of the present invention will typically employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant nucleic acid (e.g., DNA) technology, immunology, and RNA interference (RNAi) which are within the skill of the art. Non- limiting descriptions of certain of these techniques are found in the following publications: Ausubel, F., et al., (eds.), Current Protocols in Molecular Biology, Current Protocols in Immunology, Current Protocols in Protein Science, and Current Protocols in Cell Biology, all John Wiley & Sons, N.Y., edition as of December 2008; Sambrook, Russell, and Sambrook, Molecular Cloning. A Laboratory Manual, 3 ed., Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, 2001; Harlow, E. and Lane, D., Antibodies— A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1988; Freshney, R. I, "Culture of Animal Cells, A Manual of Basic Technique", 5th ed., John Wiley & Sons, Hoboken, N.J., 2005. Non-limiting information regarding therapeutic agents and human diseases is found in Goodman and Gilman's The Pharmacological Basis of Therapeutics, 11th Ed., McGraw Hill, 2005, Katzung, B. (ed.) Basic and Clinical
Pharmacology, McGraw-Hill/Appleton & Lange 10thed. (2006) or 11th edition (July 2009). Non-limiting information regarding genes and genetic disorders is found in McKusick, V. A. : Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders. Baltimore: Johns Hopkins University Press, 1998 (12th edition) or the more recent online database: Online Mendelian Inheritance in Man, OMIM™. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, Md.) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, Md.), as of May 1, 2010, available on the World Wide Web: http://www.ncbi.nlm.nih.gov/omim/ and in
Online Mendelian Inheritance in Animals (OMIA), a database of genes, inherited disorders and traits in animal species (other than human and mouse), available on the World Wide Web: http://omia.angis.org.au/contact.shtml. All patents, patent applications, and other publications (e.g., scientific articles, books, websites, and databases) mentioned herein are incorporated by reference in their entirety. In case of a conflict between the specification and any of the incorporated references, the specification (including any amendments thereof, which may be based on an incorporated reference), shall control. Standard art- accepted meanings of terms are used herein unless indicated otherwise. Standard abbreviations for various terms are used herein.
Provided herein are compositions and methods comprising improvements of a
CRISPR/Cas9 system (i.e., CRISPR guide RNAs using the HI promoter). In some embodiments, the improvements comprise modifications to the HI promoter region. In some embodiments, the compositions comprise enhancing HI bidirectional pol II expression using 5'UTR modifications. In some embodiments, the compositions comprise modulating bidirectional expression through use of different orthologous sequences of the HI promoter. In some embodiments, the compositions comprise novel compact
bidirectional promoter sequences with both pol II and pol III activity (e.g., 7sk, 5'UTRs, Kozak consensus sequences, or combinations thereof). In some embodiments, the method comprises an expression screen for bidirectional promoters with both RNA pol II and RNA pol III activities. In some embodiments, the compositions comprise conditional pol II/pol III bidirectional promoter expression (e.g., TetR and TetO sites) which can regulate ribonucleoprotein enzymatic activity or RNA-directed nucleases. In some embodiments, the improvements comprise addition of a donor template sequence for correcting mutations (e.g., homology directed repair (HDR)).
In other embodiments of the present invention, the improvements comprise modifications to a component of the CRISPR/Cas9 system. In some embodiments, the modifications are made to nucleases (e.g., RNA-guided nucleases). In some embodiments, the nuclease (e.g., Cas9) is modified through post-transcriptional cell-cycle regulation (e.g., fusion proteins comprising Geminin (Gem) or Cdtl). In some embodiments, the nuclease (e.g., Cas9) is modified by engineering partial target sites such that the nuclease can bind without DNA cleavage. In some embodiments, the nuclease (e.g., Cas9) is modified by modulating its half-life using N-terminal amino acid identity.
One aspect of the invention relates to a non-naturally occurring nuclease system comprising one or more vectors comprising: a) a promoter operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule or RNA molecule in a cell, and wherein the DNA molecule or RNA encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease,
wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule or RNA to alter expression of the one or more gene products.
In some embodiments, the system is CRISPR (e.g. CRISPR associated (Cas) 9
(CRISPR-Cas9, non-Cas9 CRISPR systems, CRISPR-Cpf-1 system, and the like).
In some embodiments, the system is packaged into a single adeno-associated virus (AAV) particle.
In some embodiments, the adeno-associated packaging virus is selected from adenovirus serotype 2, adenovirus serotype 5, or adenovirus serotype 35.
In some embodiments, the adeno-associated packaging virus is adenovirus serotype
5.
In some embodiments, the system inactivates one or more gene products. In some embodiments, the nuclease system excises at least one gene mutation.
In some embodiments, the promoter is selected from the group consisting of HI promoter, 7sk, human RPPHl -PARP2, SRP-RPS29, 7skl-GSTA4, SNAR-G-l-CGBl, SNAR- CGB2, RMRP-CCDC 107, tRNA(Lys)-ALOXE3, RNU6-9-MED16: tRNA (Gly)- DPP9, RNU6-2-THEM259, SNORD13-C8orf41, mouse RPPHl -PARP2, and rat RPPH1- PARP2.
In some embodiments, the promoter is a HI promoter.
In some embodiments, the HI promoter comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32.
In some embodiments, the HI promoter comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 12.
In some embodiments, the HI promoter comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 32.
In some embodiments, the promoter is orthologous to the HI promoter.
In some embodiments, the orthologous HI promoter is derived from eutherian mammals.
In some embodiments, the orthologous HI promoter is derived from ailuropoda melanoleuca, bos taurus, callithrix jacchus, canis familiaris, cavia porcellus, chlorocebus sabaeus, choloepus hoffinanni, dasypus novemcinctus, dipodomys ordii, equus caballus, erinaceus europaeus, felis catus, gorilla gorilla, homo sapiens, ictidomys tridecemlineatus, loxodonta africana, macaca mulatta, mus musculus, mustela putorius furo, myotis lucifugus, nomascus leucogenys, ochotona princeps, oryctolagus cuniculus, otolemur garnettii, ovis aries, pan troglodytes, papio anubis, pongo abelii, procavia capensis, pteropus vampyrus, rattus norvegicus, sus scrofa, tarsius syrichta, tupaia belangeri, tursiops truncatus, vicugna pacos.
In some embodiments, the orthologous HI promoter is derived from mouse or rat.
In some embodiments, the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84-119.
In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119.
In some embodiments, the HI promoter is bidirectional. The HI promoter is both a pol II and pol III promoter In some embodiments, the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease.
In some embodiments, the promoter is a 7sk promoter.
In some embodiments, the 7sk promoter is derived from human, rat, or mouse.
In some embodiments, the 7sk promoter is selected from the group consisting of 7skl, 7sk2, and 7sk3.
In some embodiments, the 7sk promoter is 7skl .
In some embodiments, the 7skl is derived from human.
In some embodiments, the human 7skl comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 3.
In some embodiments, the human 7skl comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 3.
In some embodiments, the 7skl is derived from mouse.
In some embodiments, the mouse 7skl comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 6.
In some embodiments, the mouse 7skl comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 6.
In some embodiments, the 7sk promoter is 7sk2.
In some embodiments, the 7sk2 is derived from human.
In some embodiments, the human 7sk2 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 4.
In some embodiments, the human 7sk2 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 4.
In some embodiments, the 7sk2 is derived from mouse.
In some embodiments, the mouse 7sk2 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 7.
In some embodiments, the mouse 7sk2 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 7.
In some embodiments, the 7sk promoter is 7sk3.
In some embodiments, the 7sk3 is derived from human. In some embodiments, the human 7sk3 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 5.
In some embodiments, the human 7sk3 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 5.
In some embodiments, the 7sk3 is derived from mouse.
In some embodiments, the mouse 7sk3 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 8.
In some embodiments, the mouse 7sk3 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 8.
In some embodiments, the promoter has at least one modification.
In some embodiments, the at least one modification of the promoter comprises an element that allows conditional regulation.
In some embodiments, the element is a tet-responsive promoter.
In some embodiments, the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter.
In some embodiments, the TetR comprises an amino acid sequence having at least 80% identity to SEQ ID NO: 14.
In some embodiments, the TetR comprises an amino acid sequence having the amino acid sequence set forth in SEQ ID NO: 14.
In some embodiments, the TetO comprises a nucleotide sequence having at least
80%) identity to the nucleotide sequence set forth in SEQ ID NO: 11.
In some embodiments, the TetO comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 11.
In some embodiments, the HI -TetO comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 13.
In some embodiments, the HI -TetO comprises a nucleotide sequence having the nucletoide sequence set forth in SEQ ID NO: 13.
In some embodiments, the at least one modification of the promoter comprises a site that allows auto-regulation.
In some embodiments, the auto-regulation site comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34.
In some embodiments, the auto-regulation site comprises the nucleotide sequence set forth in SEQ ID NO: 33. In some embodiments, the auto-regulation site comprises the nucleotide sequence set forth in SEQ ID NO: 34.
In some embodiments, the method further comprises at least one terminator sequence.
In some embodiments, the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences.
In some embodiments, the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence.
In some embodiments, the terminator sequences is a SPA 49 base pair equence.
In some embodiments, the method further comprises 5' untranslated region (5'UTR) sequences.
In some embodiments, the method further comprises a Kozak sequence.
In some embodiments, the Kozak sequence comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 1 or 2.
In some embodiments, the Kozak sequence comprises the nucleotide sequence set forth in SEQ ID NO: 1.
In some embodiments, the Kozak sequence comprises the nucleotide sequence set forth in SEQ ID NO: 2.
In some embodiments, the method further comprises a RNA sequence that mediates cap-independent initiation of translation.
In some embodiments, the RNA sequence is selected from the group consisting of 6.947 or 6.967.
In some embodiments, the genome-targeted nuclease is Cas9 protein.
In some embodiments, the Cas9 comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 61.
In some embodiments, the Cas9 comprises the nucleotide sequence set forth in SEQ ID NO: 61.
In some embodiments, the Cas9 comprises at least one modification.
In some embodiments, the at least one modification in the Cas9 comprises an alteration in the cleaving sequence.
In some embodiments, the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A. In some embodiments, the T2A comprises an amino acid sequence, having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 36.
In some embodiments, the T2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 36.
In some embodiments, the P2A comprises an amino acid sequence having at least
80% identity to the nucleotide sequence set forth in SEQ ID NO: 35.
In some embodiments, the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35.
In some embodiments, the E2A comprises an amino acid sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 37.
In some embodiments, the E2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 37.
In some embodiments, the F2A comprises an amino acid sequence having at least 80%) identity to the nucleotide sequence set forth in SEQ ID NO: 38.
In some embodiments, the F2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 38.
In some embodiments, the at least one modification in the Cas9 comprises a codon optimized for expression in the cell.
In some embodiments, the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion).
In some embodiments, the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCAl, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 (NDC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, NBSl,
NEIL2, NEIL3, NTHl, Orel, Orc3, PARPl, PCNA, Pifl, PMSl, PMS2, PNK, Pola pl80, Pola p70, Pola Sppl (Prim2a), Polb, Pold pl25, Pole Dpb3, Pole Dpb4, Pole Pol2, Poli, Poll, Polm, Psfl, Psf2, Psf3, Radl, Radl8, Rad23A, Rad23B, Rad51, Rad51D, Rad54, Rad6A, RPA34, RPA70, Sccl, Scc3, Sir2, SIRT1 (Sirtuin), TDG, TDP1, TIMELESS, Tin2, Topoisomerase I, Topoisomerase Ilia, Topoisomerase Illb, Ubcl3, UNG, XAB2, XPC, XPF, XPG, Xrcc2, and XRCC4.
In some embodiments, the cell cycle-dependent protein is Geminin.
In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l lO)).
In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80% identity to the amimo acid sequence set forth in SEQ ID NO: 19.
In some embodiments, the hGem(l-l 10) comprises the amino acid sequence set forth in SEQ ID NO: 19.
In some embodiments, the cell cycle-dependent protein is Cdtl .
In some embodiments, the cell cycle-dependent protein is human Cdtl .
In some embodiments, the human Cdtl comprises amino acids from positions 30- 120 (hCdtl(30-120)).
In some embodiments, the hCdtl(30-120) comprises an amino acid sequence having at least 80% identity to the amino acid sequence set forth in SEQ ID NO: 18.
In some embodiments, the hCdtl(30-120) comprises the amino acid sequence set forth in SEQ ID NO: 18.
In some embodiments, the Cas9 fusion comprises an amino acid sequence having at least 80%) identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
In some embodiments, the Cas9 fusion comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
In some embodiments, the Cas9 is operably fused in frame to a ubiquitin protein
(Ub-Cas9).
In some embodiments, the Ub-Cas9 at least one N-terminal modification.
In some embodiments, the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%> identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58
In some embodiments, the N-terminal modified Ub-Cas9 comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58.
In some embodiments, the ubiquitin protein comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 60.
In some embodiments, the ubiquitin protein comprises the nucleotide sequence set forth in SEQ ID NO: 60.
In some embodiments, the method further comprises a SaCas9 nickase.
In some embodiments, the method further comprisesa donor template sequence. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67.
In some embodiments, the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 62.
In some embodiments, the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 67.
In some embodiments, the donor template sequence corrects at least one gene mutation.
In some embodiments, the at least one gene mutation is rdlO or rdl2.
In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64.
In some embodiments, the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 63.
In some embodiments, the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 64.
In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66.
In some embodiments, the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 65.
In some embodiments, the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 66.
In some embodiments, the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA.
In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG, GN19NGG, CN19NGG, or TN19NGG.
In some embodiments, the cell is a eukaryotic or or non-eukaryotic cell.
In some embodiments, the eukaryotic cell is a mammalian or human cell.
In some embodiments, the eukaryotic cell is a retinal photoreceptor cell.
In some embodiments, the one or more gene products are rhodopsin.
In some embodiments, the expression of the one or more gene products is decreased.
Another aspect of the invention relates to amethod of altering expression of one or more gene products in a cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring nuclease system as set forth above.
In some embodiments, the system inactivates one or more gene products.
In some embodiments, the nuclease system excises at least one gene mutation.
In some embodiments, the expression of the one or more gene products is decreased.
In some embodiments, the cell is a eukaryotic or non-eukaryotic cell.
In some embodiments, the eukaryotic cell is a mammalian or human cell.
In some embodiments, the cell is a retinal photoreceptor cell.
In some embodiments, the cell is a retinal ganglion cell.
130. In some embodiments, the eukaryotic cell is a cancerous cell.
In some embodiments, cell proliferation is inhibited or reduced in the cancerous cell.
In some embodiments, apoptosis is enhanced or increased in the cancerous cell.
Another aspect of the invention relates to a method for treating a disease selected from the group consisting of retinal dystrophy, corneal dystrophy, microsatellite expansion diseases, and cancer in a subject in need thereof, the method comprising: (a) providing a non-naturally occurring nuclease system as set forth above; and (b) administering to the subject an effective amount of the system.
In some embodiments, the disease is corneal dystrophy.
In some embodiments, the disease is a retinal dystrophy.
In some embodiments, the retinal dystrophy is selected from the group consisting of Leber's congenital amaurosis (LCA), retinitis pigmentosa (RP), and glaucoma.
In some embodiments, the corneal dystrophy is selected from the group consisting of Epithelial Basement Membrane Dystrophy, Epithelial Recurrent Erosion Dystrophies, Subepithelial Mucinous Corneal Dystrophy, Meesmann Corneal Dystrophy, Lisch
Epithelial Corneal Dystrophy, Gelatinous Drop-like Corneal Dystrophy, Reis-Bucklers Corneal Dystrophy, Thiel-Behnke Corneal Dystrophy, Lattice Corneal Dystrophy, Type 1 (Classic), Lattice Corneal Dystrophy, Type 2, Lattice Corneal Dystrophy, Type III, Lattice Corneal Dystrophy, Type IIIA, Lattice Corneal Dystrophy, Type I/IIIA, Lattice Corneal Dystrophy, Type IV, Polymorphic (Corneal) Amyloidosis, Granular Corneal Dystrophy, Type 1, Granular Corneal Dystrophy, Type 2, Macular Corneal Dystrophy, Schnyder Corneal Dystrophy, Congenital Stromal Corneal Dystrophy, Fleck Corneal Dystrophy, Posterior Amorphous Corneal Dystrophy, Central Cloudy Dystrophy of Francois, Pre- Descemet Corneal Dystrophy, Fuchs Endothelial Corneal Dystrophy, Posterior
Polymorphous Corneal Dystrophy, Congenital Hereditary Endothelial Dystrophy, and X- linked Endothelial Corneal Dystrophy.
In some embodiments, the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly,
Cleidocranial dysplasia, Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD
(Huntington's disease), Holoprosencephaly, Mental retardation with growth hormone deficiency, Mental retardation, epilepsy, West syndrome, Partington syndrome,
Oculopharyngeal muscular dystrophy, SBMA (Spinal and bulbar muscular atrophy), SCAl (Spinocerebellar ataxia Type 1), SCA12 (Spinocerebellar ataxia Type 12), SCA17
(Spinocerebellar ataxia Type 17), SCA2 (Spinocerebellar ataxia Type 2), SCA3
(Spinocerebellar ataxia Type 3 or Machado- Joseph disease), SCA6 (Spinocerebellar ataxia Type 6), SCA7 (Spinocerebellar ataxia Type 7), SCA8 (Spinocerebellar ataxia Type 8), and Synpolydactyly.
In some embodiments, administering to the subject occurs by implantation, injection, or virally.
In some embodiments, administering to the subject occurs by subretinal injection. In some embodiments, administering to the subject occurs topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously, intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, peritumorally, inhalationly, systematically, perfusionly, lavagely, directly via injection, or orally via administration and formulation.
In some embodiments, administering to the subject occurs topically to the surface of the eye.
In some embodiments, administering to the subject occurs on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids.
In some embodiments, the subject is treated with at least one additional anti-cancer agent. In some embodiments, the anti-cancer agent is selected from the group consisting of paclitaxel, cisplatin, topotecan, gemcitabine, bleomycin, etoposide, carboplatin, docetaxel, doxorubicin, topotecan, cyclophosphamide, trabectedin, olaparib, tamoxifen, letrozole, and bevacizumab.
In some embodiments, the subject is treated with at least one additional anti-cancer therapy.
In some embodiments, the anti-cancer therapy is radiation therapy, chemotherapy, or surgery.
In some embodiments, the cancer is a solid tumor.
In some embodiments, the cancer is selected from the group consisting of brain cancer, gastrointestinal cancer, oral cancer, breast cancer, ovarian cancer, prostate cancer, pancreatic cancer, lung cancer, liver cancer, throat cancer, stomach cancer, and kidney cancer.
In some embodiments, the cancer is brain cancer.
In some embodiments, the systematic administration is selected from the group consisting of oral, intravenous, intradermal, intraperitoneal, subcutaneous, and
intramuscular administration.
In some embodiments, the subject is a mammal.
In some embodiments, the mammal is human.
Certain aspects of the presently disclosed subject matter having been stated hereinabove, which are addressed in whole or in part by the presently disclosed subject matter, other aspects will become evident as the description proceeds when taken in connection with the accompanying Examples and Figures as best described herein below.
BRIEF DESCRIPTION OF THE FIGURES
Having thus described the presently disclosed subject matter in general terms, reference will now be made to the accompanying Figures, which are not necessarily drawn to scale, and wherein:
FIG. 1 comprises six panels, A-F showing the effects of 5'UTR sequences on HI Pol II expression. FIG. 1A-1C show the effects of 5'UTR and translation enhancerson HI Pol II expression. FIG. ID and IE show the effects of 5'UTR Kozak sequences on HI Pol II expression. FIG. IF depicts terminator sequences. The functional terminators were roughly equivalent. The shortest effective terminator is the 49bp SPA terminator. FIG. 2 comprises three panels, A, B, and C showing modulating bidirectional expression through the use of different orthologous sequences.
FIG. 3 comprises two panels, A and B showing HI alignments of different orghologous sequences.
FIG. 4 comprises two panels, A and B showing a screen for Pol II and Pol III mutants from bidirectional promoters.
FIG. 5 shows further HI alignments of different orghologous sequences.
FIG. 6 comprises two panels, A and B, showing conditional expression of HI Pol III expression using TetO on regulating ribonucleoprotein enzymatic activity. FIG. 6A shows a schematic of the engineered TetO sites in the HI promoter. FIG. 6B shows that Pol II expression from engineered HI is not greatly affected by the presence of Tet operator sequences.
FIG. 7 comprises two panels, A and B, showing conditional expression of HI Pol III expression regulating ribonucleoprotein enzymatic activity. FIG. 7A shows that Pol III expression is repressed in the presence of TetR and absence of doxycycline. FIG. 7B shows that Pol III expression is derepressed in the presence of TetR and presence of doxycycline.
FIG. 8 comprises two panels, A and B, showing show conditional expression of HI Pol III expression regulating ribonucleoprotein enzymatic activity. FIG. 8A shows the active enzyme complex in the presence of doxycycline. FIG. 8B shows the inactive enzyme complex in the absence of doxycycline.
FIG. 9 comprises three panels, A, B, and C, showing a schematic of the cellular response to DNA breaks. FIG. 9A shows that the cellular response to DNA breaks is modulated by the cell-cycle. FIG. 9B shows that the phase of the cell-cycle largely dictates the choice of DNA pathway. FIG. 9C shows thatRNA-directed nucleases can be fused to either hGEMl or hCDTl domains, resulting in cell-cycle dependent regulation of these proteins.
FIG. 10 comprises three panels, A, B, and C. FIG. 10A shows the cell-cycle regulated construct that is active during S, G2 and M phase (top), and the cell-cycle regulated construct that is active during Gl phase (bottom). FIG. 10B shows the oligo sequence used to knock-in an EcoRI site into the Rhodopsin gene, and the location of the CRISPR target and cut site. FIG. IOC shows the sequence after successful HDR into the Rhodopsin gene and the incorporation of an EcoRI site into the gene. FIG. 11 comprises three panels, A, B, and C. FIG. 11A shows the quantification of NHEJ using T7 Endol assay for the different cell-cycle regulated constructs and with different amounts of the donor oligo sequence. FIG. 11B shows the quantification of HDR using EcoRI assay for the different cell-cycle regulated constructs and with different amounts of the donor oligo sequence. FIG. 11C shows the quantification of the NHEJ and HDR data. The Gem constructs preferentially induce HDR while Cdt constructs preferentially induce NHEJ. Mixture of both (gem/cdt) is similar Cas9 with no fusion, and the overall rate of NHEJ and HDR is approximately equal across all conditions, as is expected.
FIG. 12 comprises two panels, A and B, showing auto-regulation of RNA-guided nucleases using partial target sites. FIG. 12A shows Cas9 with perfect complementarity at a target site results in DNA cleavage (white arrows). FIG. 12B shows Cas9 with extensive base pairing but without complementarity still binds, however there is no DNA cleavage activity.
FIG. 13 comprises three panels, A, B, and C, showing auto-regulation of RNA- guided nucleases using partial target sites. FIG. 13A shows polymerase binding to a 20 base target sequence. FIG. 13B shows dCas9 (nuclease-dead version of Cas9), binds to DNA but does not cut. When bound to a promoter region and areas of active transcription, this can inhibit transcription, likely due to steric effects. FIG. 13C shows Cas9 with extensive base pairing but without complementarity still binds, however there is no DNA cleavage activity.
FIG. 14 shows auto-regulation of RNA-guided nucleases using partial target sites. Perfect complementarity at desired site results in DNA cleavage (white arrows) (left bottom depiction). Imperfect complementarity at engineered promoter site results in no DNA cleavage and suppression of its own expression (right bottom depiction).
FIG. 15 shows auto-regulation of RNA-guided nucleases using partial target sites:GFP reporter. The bar graphs show that Pol II expression from engineered HI is not greatly affected by presence of partial target sequences.
FIG. 16 shows auto-regulation of RNA-guided nucleases using partial target sites :Cas9 and gRNA.
FIG. 17 comprises two panels, A and B. FIG. 17A shows Methionine (Met) followed by a glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), alanine (Ala), valine (Val), or cysteine (Cys) are processed by Methionineaminopeptidases, which cleave off the N-terminal methionine. FIG. 17B shows that the N-end rule serves as an estimation of a proteins half-life within a cell
FIG. 18 shows that linear poly-ubiquitin is recognized in the cell by deubiquitin enzymes which cleave the individual Ub peptides. This process can be co-opted to generate specific N-terminal residues by fusing Ub to the N-terminus of any protein.
FIG. 19 comprises two panels, A and B, showing that simple changes in the N- terminal amino acids, either through Met-aminopeptidases, deubiquintation, or alternative methods, can accomplish the regulation of RNA-guided nuclease half-life. FIG. 19A and 19B show that the levels of Cas9, an RNA-guided nuclease, can be modulated by the identity of the N-terminal amino acid, by as much as 8-10-fold, a significant range of expression for a nuclease.
FIG. 20 shows how commonly used 2A peptides can also be leveraged to modulate protein levels in the cell.
FIG. 21 comprises three panels, A-C, depicting an illustration of the AAV packaging capacity. Wildtype AAV is -4.7 kb and recombinant AAV can be stuffed up to 5.2kb. FIG. 21B depicts an illustration of AAV virus size using the HI bidirectional promoter to express SpCas9 and a single gRNA. FIG. 21C depicts a construct using the stronger mouse promoter. The first set of experiments were carried out using the human promoter. FIG. 21B constructs used the SV40 terminator which was replaced with the smaller SPA terminator
FIG. 22 comprises nine panels, A-I. FIG. 22A depicts the AAV delivery problem. The DNA required to express Cas9 and the gRNA, by conventional methods, exceeds 5.2kb: Pol II promoter (~0.5kb), SpCas9 (~4.1kb), Pol II terminator (~0.2kb), U6 promoter (~0.3kb), and the gRNA (~0. lkb). FIG. 22B shows the S. aureus Cas9 is ~lkb smaller than the S. pyogenes Cas9 which allows it to be packaged into AAV. FIG. 22C depicts the HI genomic locus indicating the H1RNA (a poi III transcript) expressed in the forward orientation, and the PARP-2 gene (a pol II transcript) transcribed in the opposite orientation. This ~200bp sequence is an extremely compact bidirectional promoter. FIG. 22D depicts shrinking the "instructions" to delliver SpCas9, the most-commonly used and most-wideiy studied Cas9 protein. Importantly, the SpCas9 protein can target a far greater numbers of genomic sites than the SaCas9 protein. This means that more mutations/diseases can be targeted. FIG. 22E shows shrinking the "instructions" to deliver a number of other Cas9 proteins that have been shown to be effective at genome-editing in eukarytoic cells. We can also delivers' SaCas9 in a much more compact vector than by using standard promoters. FIG. 22F shows that the present invention is able to potential for far-far greater number of genomic targets, and hence a far greater number of potential mutations and diseases. FIG. 22G depicts an illustration of AAV virus size using the HI bidirectional promoter to express SaCas9 and a single gRNA. Approximately lkb of space is available as an HDR template. FIG. 22H depicts an illustration of AAV virus size using the HI bidirectional promoter to express SaCas9 and a single gRNA and a template. FIG. 221 shows the following: 1. Adeno Associated Virus (AAV) is the safest and rnost-cornmoniy used vector in gene therapy. The virus has one drawback: It is very small. 2. Naturally, it consists of a single-stranded DNA genome of 4700 nucleotides. The ends of the genome are inverted repeat sequences known as ITRs (orange). 3. These sequences (- 150bp each) are the only required elements for packaging DNA into AAV, so the viral sequences {Rep and Cap) can be gutted. 4. Any cargo (blue) can be inserted in between the ITRs and the virus can be stuffed up to 5200 nucleotides total, meaning that the virus can accomodate cargo up to 4900 nucleotides. 5. Recombinant Adeno Associated Virus (rAAV) is used as a high-efficiency vehicle for delivering cargo into a cell Once inside the cell the single-stranded genome will become double-stranded and will remain inside for the lifetime of the cell .
FIG. 23 shows the mechanism for site-specific recombination from a single AAV virus containing Cas9 a single gRNA and a template.
FIG. 24 comprises two panels, A and B. FIG. 24A shows potential configurations for HDR delivery within AAV vector. FIG. 24B shows potential configurations for HDR delivery within an intronic region of an RNA-directed polymerase within an AAV vector.
FIG. 25 comprises two panels, A and B. FIG. 25A shows an illustration of the Cas9 Nickase approach using the SaCas9 and a single gRNA and a template. FIG. 25B shows a depiction of the rdl2 targeting sequence to correct a recessive RPE65 mutation.
FIG. 26 comprises two panels, A and B. FIG. 26A shows an illustration of AAV virus size using the HI bidirectional promoter to express SpCas9 and a single gRNA.
Approximately 0.7kb of space is available as an HDR template. FIG. 26B shows a generic approach for delivery of an RNA-directed nucleases, guide RNA, and template in a single AAV.
FIG. 27 depicts the rdlO targeting sequence to correct a recessive PDE6b mutation FIG. 28 depicts a cloning vector that is easily customizable by insertion of HDR templates. FIG. 29 contains two panels, A and B. FIG. 29A depicts a cartoon schematic and table of compact bidirectional promoter sequences with both pol II and III activity. FIG. 29B depicts a bar graph showing GFP expression of constructs comprising the compact bidirectional promoter sequences shown in FIG. 29A. FIG. 29B shows starting from the y- axis on the right and moving left along the x-axis, the following labels for the bars, 1) minus control, 2) hHlKoz (SEQ ID NO: 71 (or SEQ ID NO: 12 or 32)), 3) hSkl (SEQ ID NO: 73), 4) biSRP (SEQ ID NO: 72), 5) biCGB l (SEQ ID NO: 74), 6) biAloxE3 (SEQ ID NO: 77), 7) biDPP9 (SEQ ID NO: 79), 8) biTHEM (SEQ ID NO: 83), and 9) biORF (SEQ ID NO: 80).
FIG. 30 contains two panels, A and B. FIG. 30A depicts a cartoon schematic and table of orthologous bidirectional promoter sequences with both pol II and III activity. FIG. 30B depicts a bar graph showing GFP expression of constructs comprising the orthologous bidirectional promoter sequences shown in FIG. 30A. FIG. 30B shows starting from the y-axis on the right and moving left along the x-axis, the following labels for the bars, 1) minus control, 2) hHl+ (corresponding to human RPPH1-PARP2), 3) mHl+ (corresponding to mouse RPPH1-PARP2), and 4) rHl+ (corresponding to rat RPPH1-PARP2).
DETAILED DESCRIPTION
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Figures, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Figures. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Genome-editing technologies such as zinc fingers nucleases (ZFN) (Porteus, and Baltimore (2003) Science 300: 763; Miller et al. (2007) Nat. Biotechnol. 25:778-785;
Sander et al. (2011) Nature Methods 8:67-69; Wood et al. (2011) Science 333 :307) and transcription activator-like effectors nucleases (TALEN) (Wood et al. (2011) Science 333 :307; Boch et al. (2009) Science 326: 1509-1512; Moscou and Bogdanove (2009) Science 326: 1501; Christian et al. (2010) Genetics 186:757-761; Miller et al. (2011) Nat. Biotechnol. 29: 143-148; Zhang et al. (2011) Nat. Biotechnol. 29: 149-153; Reyon et al. (2012) Nat. Biotechnol. 30:460-465) have empowered the ability to generate targeted genome modifications and offer the potential to correct disease mutations with precision. While effective, these technologies are encumbered by practical limitations as both ZFN and TALEN pairs require synthesizing large and unique recognition proteins for a given DNA target site. Several groups have recently reported high-efficiency genome editing through the use of an engineered type II CRISPR/Cas9 system that circumvents these key limitations (Cong et al. (2013) Science 339:819-823; Jinek et al. (2013) eLife 2:e00471; Mali et al. (2013) Science 339:823-826; Cho et al. (2013) Nat. Biotechnol. 31 :230-232; Hwang et al. (2013) Nat. Biotechnol. 31 :227-229). Unlike ZFNs and TALENs, which are relatively time consuming and arduous to make, the CRISPR constructs, which rely upon the nuclease activity of the Cas9 protein coupled with a synthetic guide RNA (gRNA), are simple and fast to synthesize and can be multiplexed. However, despite the relative ease of their synthesis, CRISPRs have technological restrictions related to their access to targetable genome space, which is a function of both the properties of Cas9 itself and the synthesis of its gRNA.
Cleavage by the CRISPR system requires complementary base pairing of the gRNA to a 20-nucleotide DNA sequence and the requisite protospacer-adjacent motif (PAM), a short nucleotide motif found 3' to the target site (Jinek et al. (2012) Science 337: 816-821). One can, theoretically, target any unique N20-PAM sequence in the genome using CRISPR technology. The DNA binding specificity of the PAM sequence, which varies depending upon the species of origin of the specific Cas9 employed, provides one constraint.
Currently, the least restrictive and most commonly used Cas9 protein is from S. pyogenes, which recognizes the sequence NGG, and thus, any unique 21 -nucleotide sequence in the genome followed by two guanosine nucleotides (N20NGG) can be targeted. Expansion of the available targeting space imposed by the protein component is limited to the discovery and use of novel Cas9 proteins with altered PAM requirements (Cong et al. (2013) Science 339: 819-823; Hou et al. (2013) Proc. Natl. Acad. Sci. U.S.A., 110(39): 15644-9), or pending the generation of novel Cas9 variants via mutagenesis or directed evolution. The second technological constraint of the CRISPR system arises from gRNA expression initiating at a 5' guanosine nucleotide. Use of the type III class of RNA polymerase III promoters has been particularly amenable for gRNA expression because these short non- coding transcripts have well-defined ends, and all the necessary elements for transcription, with the exclusion of the 1+ nucleotide, are contained in the upstream promoter region. However, since the commonly used U6 promoter requires a guanosine nucleotide to initiate transcription, use of the U6 promoter has further constrained genomic targeting sites to GN19NGG (Mali et al. (2013) Science 339:823-826; Ding et al. (2013) Cell Stem Cell 12:393-394). Alternative approaches, such as in vitro transcription by T7, T3, or SP6 promoters, would also require initiating guanosine nucleotide(s) (Adhya et al. (1981) Proc. Natl. Acad. Sci. U.S.A. 78: 147-151; Melton et al. (1984) Nucleic Acids Res. 12:7035-7056; Pleiss et al. (1998) RNA 4: 1313-1317).
The presently disclosed subject matter relates to compositions and methods comprising improvements of a CRISPR/Cas9 system (i.e., CRISPR guide RNAs using the HI promoter; WO2015/19561, herein incorporated by reference in its entirety). Such a modified CRISPR/Cas9 system may comprise modifications to the HI promoter region. In some embodiments, the modified CRISPR/Cas9 system comprises enhancing HI bidirectional pol II expression using 5'UTR modifications. In some embodiments, the modified CRISPR/Cas9 system comprises modulating bidirectional expression through use of different orthologous sequences of the HI promoter. In some embodiments, the modified CRISPR/Cas9 system comprises novel compact bidirectional promoter (including compact and orthologous promoter) sequences with both pol II and pol III activity (e.g., 7sk, 5'UTRs, Kozak consensus sequences, or combinations thereof).
In some embodiments, the modified CRISPR/Cas9 system comprises conditional pol II/pol III bidirectional promoter (including compact and orthologous promoter) expression (e.g., TetR and TetO sites) which can regulate ribonucleoprotein enzymatic activity or RNA-directed nucleases. In some embodiments, the improvements comprise addition of a donor template sequence for correcting mutations (e.g., homology directed repair (HDR)).
In some embodiments, compact bidirectional promoters include, but not limited to, RPPH1-PARP2 (Human), SRP-RPS29, 7skl-GSTA4, SNAR-G-l-CGBl, SNAR-CGB2, RMRP-CCDC 107, tRNA(Lys)-ALOXE3, RNU6-9-MED16: tRNA (Gly)-DPP9, RNU6-2- THEM259, or SNORD13-C8orf41.
In some embodiments, orthologous bidirectional promoters include, but not limited to, RPPH1-PARP2 (Mouse) or RPPH1-PARP2 (Rat), or those derived from ailuropoda melanoleuca, bos taurus, callithrix jacchus, canis familiaris, cavia porcellus, chlorocebus sabaeus, choloepus hoffinanni, dasypus novemcinctus, dipodomys ordii, equus caballus, erinaceus europaeus, felis catus, gorilla gorilla, homo sapiens, ictidomys tridecemlineatus, loxodonta africana, macaca mulatta, mus musculus, mustela putorius furo, myotis lucifugus, nomascus leucogenys, ochotona princeps, oryctolagus cuniculus, otolemur garnettii, ovis aries, pan troglodytes, papio anubis, pongo abelii, procavia capensis, pteropus vampyrus, rattus norvegicus, sus scrofa, tarsius syrichta, tupaia belangeri, tursiops truncatus, vicugna pacos.
Table 3: Examples of compact bidirectional promoters
RPPH1-PARP2 (Human):
GGAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTG AGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA AATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTAT GAGACCACTTTTTCCC (SEQ ID NO: 71) SRP-RPS29:
CTTGCTCTCAGCAGTGCAACGAGGTAAAAGGAAGAAGCTGGCCCACGCATGCG CTCTTCAAATTTTTGAGACAGTTTACCCAGAATGCAGTGCTCAAAGGAAACGCG TGCGCAGTGTGGTCAGGTTGTTTCGCTGGGTGAGTAAAATGAAATCTTAGAGGC GTTGTGGGCTGGCCCAGTTGATGACGTCACCATACCACAGCTTCTAGTGCTATT CTGCGCCGGTATCCGACC (SEQ ID NO: 72)
7skl-GSTA4:
AGTATTTAGCATGCCCCACCCATCTGCAAGGCATTCTGGATAGTGTCAAAACAG CCGGAAATC AAGTCCGTTTATCTC AAACTTTAGC ATTTTGGGAATAAATGAT AT TTGCTATGCTGGTTAAATTAGATTTTAGTTAAATTTCCTGCTGAAGCTCTAGTAC GATAAGCAACTTGACCTAAGTGTAAAGTTGAGACTTCCTTCAGGTTTATATAGC TTGTGCGCCGCTTGGGTACCTC (SEQ ID NO: 73) SNAR-G-l- CGBl :
GTCTCTCTCTTAGCGGGATATCTTCCGCAAGCACTGGGAATGTGGACATGGAAA GTAAATTGAGTCTCCGTGGGGGAGTGAGACAGGGAGTGAGGGGTGTTGGACGC GGCACGGGAACCTGGCCAGAGTCAGCGGACCCAATTGGCTGCTCTCTCTCAGA TGCAGTTCCCCTTCCTCCCTCCAGGGGGCGCCACGGAACGCAGGGCCCTCACTG GCCCTGGGGACTGGGTGACGTCAGGGATGAGCCTCTTGTGATTGGCTCCATCAC CCTGCGTAAGATCAAAGGGAAGAAAGGATGGGCCCGACAA (SEQ ID NO: 74)
SNAR- CGB2:
GTCTCTCTCTTAGCGGGATATCTTCCGCAAGCACTGGGGATGTGGACATGGAAA GTAAATTGAGTCTCCGTGGGGGAGTGAGACAGGGAGTGAGGGGTGTTGGACGC GGCACGGGAACCCGGCCGGAGTCAGCGGACCCAATTGGCTGCTCTCTCTCAGA TACAGTTCCCCTTCCTCCCTCCAGGGGGCGCCACGGAACGCAGGGCCCTCACTG GCCCTGGGGACTGGGTGACGTCAGGGGTGAGCCTCTCCTGATTGGCTCCATCAC CCTGCGTAAGGTCAAAAGGAAGAAAGGAGATCCCCGACAC (SEQ ID NO: 75)
RMRP-CCDC 107:
TGCCGGCCCACGGGTGGAGGGATCGGGCGGGCGGTGCCGAAGCGGTCCGGCAT TGGCCGGCCGCCCCAACGCGCACGCGCACGCGAGCAGGCCGGCCGGCTCCGGG GAGGCCACGCCCACTCCCCGTAGGGCGGGGCCAGACCATATTTGCATAAGATA GTGTCATTCTAGCTTTCCTGTATTTGTTCATTTCGTGTCTATTAGCTATTCTGCTA GCCACAATGCCTCTGAAAGCCTATAGTCTTAGAAAGTTATGCCCGAAAACGGTT TTTTTAATCTCACGCCACCAACTTTCTCACCCTAATCATAAAACACAATTTCTTT AGGGCTATAAAATACTACTCTGTGAAGCTGAGGACGT (SEQ ID NO: 76) tRNA(Lys)-ALOXE3 :
TCTTTCCGCTCCAGGACCGCCCTGGGCCTGCAGGATCCTGGGCGGGAGCCCAGG TGTCCGGGATCTGGGCCACTAGGGACTGGGGAGGAACCTCTCAGAGAAGCCCA T AGCCCGC AGCGGCCCCGCGCGGCCGGTTCCGGCGCCGC ACTGTTCC AGCCTCT ACTATGGTACAGTCCCTGCGTCGCAGCCTCGGCGGGGGCTCTAAGAACGGGAG GCAGAAAAAGCTCAATCAGCAGCAGGCGAGCTTCACCCGCTGCTTCCAAATCT GTGCCAAAATATTCTATGCTGCACAGATAAAATCCTCTGTCGGTTCTACAAGCC TGGCTTTTCCTATAGAGAACCCTCTTATAAGCAAAAAGTAAAGCTCTCGTGAAG
A (SEQ ID NO: 77)
RNU6-9-MED16:
GAGGGCAGTCACCAGCTCCTGGCCCGTGCGCCAAGCTCAGCGGGCGTCCGCGG TGCGATCTTCCCTAGCGCCTCGGGTCTGGCGCCGCCATCTTCCTCGGTAACAAC CAGTCGCCTGAGGCGTGGGGCCGCCTCCCAAAGACTTCTGGGAGGGCGGTGCG GCTCAGGCTCTGCCCCGCCTCCGGGGCTATTTGCATACGACCATTTCCAGTAAT TCCCAGCAGCCACCGTAGCTATATTTGGTAGAACAACGAGCACTTTCTCAACTC CAGTCAATAACTACGTTAGTTGCATTACACATTGGGCTAATATAAATAGAGGTT AAATCTCTAGGTCATTTAAGAGAAGTCGGCCTATGTGTACAGACATTTGTTCCA GGGGCTTTAAATAGCTGGTGGTGGAACTCAATATTC (SEQ ID NO: 78) tRNA (Gly)-DPP9:
TAACCGCTCAGCTGACCTCAGGAGGGCAGGGGTGCCTTCTAAAGGGTCCAGAG AGCCTCCATTCCAGCTGCAGGCGTGGGACACAGACCGGGACGTGGGGCGGCGG CCGGACTGGGCAGGTCGTCCCGGGTCCAGCGGCGCCTCACGGTCGCGGCTCCA TGCCCGGGACTGCGACCCCGGAAGTGGCGGGAGCGGGGGACGACAGCCGCGG CGGACACAGGGGACCCGCCGGCTCAGGCACCTTTGACCCGGAAGTTGAGCGAC CCAGGCGGCGGCCTGGGATTGGACACCACCAGGCACGTACCAAGGCGTCCGCG GCGCTTGGGGGGGAGCCCGCGGCGCGGCGGCCTAAGGTGCGTAACGCCCCATG AACGACATCTTCCGGTGGGTTAGGGAGAGACACCCCCCTGTGACTTGGTATCAC TCAGTCAAACCCATGATCCCCCACTATTAAGGATATCCGGAGAGGATGCTACCT ATCAGG (SEQ ID NO: 79)
SNORD13- C8orf41 :
TCCTGACTGCAGCACCAGAAGGCTGGTCTCTCCCACAGAACGAGGATGGAGGC GGGGAGGGATCCGTTGAAGAGGGAAGGAGCGATCACCCAAAGAGAACTAAAA TCAAATAAAATAAAACAGAGAGATGTCTTGGAGGAGGGGGCGAGTCTGACCGG GAT AAGAAT AAAGAGAAAGGGTGAACCCGGGAGGCGGAGTTTGC AGTGAGCC GAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGTGAGACTCCGTCTCAG TAAAAAAAAAAAAAAAAAAAAGAATAAAGAGGAAAGGACGCAAGAAAGGGA AAGGGGACTCTCAGGGAGTAAAAGAGTCTTACACTTTTAACAGTGACGTTAAA AGACTACTGTTGCCTTTCTGAAGACTAAAAAGAAAAAAAACTTAAAAATTTAA AGAAATAAACTTCTGAGCCATGTCACC AACTTAACCACCCCC AGGTACCTGCAA CGGCTCGCGCCCGCCGGTGTCTAACAGGATCCGGACCTAGCTCATATTGCTGCC GCAAAACGCAAGGCTAGCTTCCGCCAGTACTGCCGCAACACCTTCTTATTTCAC GACGTATGGTCGTAAAGCAATAAAGATCCAGGCTCGGGAAAATGACGGAGAG GTGGAACTATAGAGAATAAATTTGCATATATAATAATCCGCTCGCTAATTGTGT TTCTGTTTTCCTTTGCTAAGGTAGAAACAAAAGAATAATCACAGAATCTCAGTG GGACTTTGAAAATATCCAGGATTTTATACGTGAAGAATGGATGTATCGCATTAC GGTAGTCACCCTATGTGTAAATTAGTGGCACATACTTGGCACTCCTTAATGTCA ACTATAAGATG (SEQ ID NO: 80) RNU6-2-THEM259;
GCCTCCCAGCGTCGCGCCCTAACGACCCGCAAGTGTCCGAGGGCGCCTCCCGG CCGCCATCGGCCGCCCTCGCAGCCGCCGCTCTCCTCACGGCCTCCCGGCCGCCG CCGCCATCTTCCGCTTTCTCGTCCGGCTGCGGCGCTGCTGACGCTAGCGAGTCG CCACGCCGGGCAAGAGCGGCCCCCCTGCGCCCGCAGAGAACGCTGGGATGCCA GCGGCGCCCGCGGAGGCCTCACCCCCTACCTCGGCCGCTCCAGGGGGCGGGCC TGCATCTGGGCCACCTCTTTTGCATATTGGCACCCACAATCCACCGCGGCTATG AGGCCAGTATAAGGCGGTAAAATTACGATAAGATATGGGATTTTACGTGATCG AAGACATCAAAGTAAGCGTAAGCACGAAAGTTGTTCTGCAACATACCACTGTA GGAAATTATGCTAAATATGAAACCGACCATAAGTTATCCTAACCAAAAGATGA TTTGATTGAAGGGCTTAAAATAGGTGTGACAGTAACCCTTGAGTC (SEQ ID NO: 83) Table 4: Examples of orthologous bidirectional promoters
RPPH1-PARP2 (Mouse):
CGCTCTTGAAGGACGACGTCATCATCCCTTGCCCGGATGCGCGGGCTTCTTGTC TAGCACAGGAGCCTGGGGTAGAGCGCATGCAAATTACGCGCTGTGCTTTGTGG GAAATC ACCCT AAACGAAAAATTT ATTCCTCTTTCGAGCCTT AT AGTGGCGGCC GGTCTACATCC (SEQ ID NO: 81)
RPPH1-PARP2 (Rat):
GGCTGATGAGCTTCCCCCGCCCACTAGGAGTGTGAAGACCTGCCGCCATAATA AGACTCC AAAAGAC AGTGAATTTAACACTTACGGTGACTTCCCAC AAAGCAC A GCGTGTAATTTGCATGCGCTCTAGCCCAGGCTCCAGCTCCGGACCAGAAGCCCG CGCATCCCGGCAAAGGGTGATGACGTCGTCCTTCAAGCGCT (SEQ ID NO: 82)
In some embodiments, the modifications are made to nucleases (e.g., RNA-guided nucleases). In some embodiments, the nuclease (e.g., Cas9) is modified through post- transcriptional Cell-cycle regulation (e.g., fusion proteins comprising Geminin (Gem) or Cdtl). In some embodiments, the nuclease (e.g., Cas9) is modified by engineering partial target sites such that the nuclease can bind without DNA cleavage. In some embodiments, the nuclease (e.g., Cas9) is modified by modulating its half-life using N-terminal amino acid identity.
Such a modified CRISPR/Cas9 system can precisely target genomic sites, or facilitate the repair of a defective genomic sites, with greater efficacy, safety, and precision. Moreover, this modification provides a compact CRISPR/Cas9 system that allows for higher-resolution targeting of oncogenes over existing CRISPR, TALEN, or Zinc-finger technologies.
Other aspects of the invention relate to methods comprising expression screens for additional bidirectional promoters with both RNA pol II and RNA pol III activities.
I. IMPROVEMENTS/MODIFICATIONS CRISPR/CAS9 SYSTEM.
A. Compositions
In some embodiments, the presently disclosed subject matter relates to compositions comprising improvements of a CRISPR/Cas9 system previously described in
WO2015/195621 (herein incorporated by reference in its entirety). Such improvements comprise a non-naturally occurring nuclease system (e.g., CRISPR-Cas9) comprising one or more vectors comprising: a) a promoter (e.g., orthogolous HI promoter or 7sk) operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease (e.g., modified Cas9 protein), wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule to alter expression of the one or more gene products. In some embodiments, the system is packaged into a single adeno-associated virus (AAV) particle. In some embodiments, the system inactivates one or more gene products. In some embodiments, the system excises at least one gene mutation. In some embodiments, the HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32. In some embodiments, the orthologous HI promoter is derived from mouse or rat. In some embodiments, the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84- 119. In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119. In some embodiments, the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease. In some embodiments, the promoter is the human, mouse, or rat 7sk promoter. In some embodiments, the 7sk is selected from the group consisting of 7skl (variant 1 of 7sk which uses the endogenous GSTA4 5'UTR), 7sk2 (variant 2 of 7sk which uses just a kozak sequence in the 5'UTR), and 7sk3 (variant of 7sk which uses the beta globin 5'UTR). In some embodiments, the human 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 3. In some embodiments, the mouse 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6. In some embodiments, the human 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 4. In some embodiments, the mouse 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7. In some embodiments, the human 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 5. In some embodiments, the mouse 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 8. In some embodiments, the orthologous HI promoter or 7sk promoter has at least one modification. In some embodiments, the at least one modification of the promoter comprises an element that allows conditional regulation. In some embodiments, the element is a tet-responsive promoter. In some embodiments, the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter. In some embodiments, the TetR comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14. In some embodiments, the TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 11. In some embodiments, the HI -TetO comprises a nucleotide sequence having at least 80%, 85%,
90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 13. In some embodiments, the at least one modification of the promoter comprises a site that allows auto-regulation. In some embodiments, the auto-regulation site comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34. In some embodiments, the nuclease system further comprising at least one terminator sequence. In some
embodiments, the terminator sequence is any nucleic acid selected from the group consisting of SEQ ID NOs: 120-130. In some embodiments, the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences. In some embodiments, the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence. In some embodiments, the terminator sequences is a SPA 49 base pair equence. In some embodiments, the nuclease system further comprises 5' untranslated region (5'UTR) sequences. In some embodiments, the nuclease system further comprises a Kozak sequence. In some embodiments, the Kozak sequence comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%), or 100%) identity to SEQ ID NO: 1 or 2. In some embodiments, the nuclease system further comprises a RNA sequence that mediates cap-independent initiation of translation. In some embodiments, the RNA sequence is selected from the group consisting of 6.947 or 6.967 (Wellensiek I. (2013) Nature Methods, 10:747-750). In some embodiments, the Cas9 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 61. In some
embodiments, the Cas9 comprises at least one modification. In some embodiments, the at least one modification in the Cas9 comprises an alteration in the cleaving sequence. In some embodiments, the nuclease is seleted from the group consisting of Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and€sxl2), CaslO, Casl 3a, Csyl, Csy2, Csy3, Csel , Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csb L Csb2, Csb3, Csxl7, Csxl4, Csx O, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Cs£2, Csf3, Csf4, Cpfl, C2cl, C2c2, and C2c3. In some embodiments, the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A. In some embodiments, the T2A comprises an amino acid sequence, having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 36. In some embodiments, the P2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 35. In some
embodiments, the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35. In some embodiments, the E2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 37. In some embodiments, the F2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 38. In some
embodiments, the at least one modification in the Cas9 comprises a codon optimized for expression in the cell. In some embodiments, the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion). In some embodiments, the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, 53BP1, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, CtIP, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1,
Geminin, Husl, KNTC2 ( DC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, BS1, EIL2, EIL3, NTH1, Orel, Orc3, PARPl, PCNA, Pifl, Pinl, PMS1, PMS2, P K, Pola pl80, Pola p70, Pola Sppl (Prim2a), Polb, Pold pl25, Pole Dpb3, Pole Dpb4, Pole Pol2, Poli, Poll, Polm, Psfl, Psf2, Psf3, Radl, Radl8, Rad23A, Rad23B, Rad51, Rad51D, Rad54, Rad6A, Ragl, Rag2, RPA34, RPA70, Sccl, Scc3, Sir2, SIRT1 (Sirtuin), TDG, TDP1, TIMELESS, Tin2, Topoisomerase I, Topoisomerase Ilia, Topoisomerase Illb, Ubcl3, UNG, XAB2, XPC, XPF, XPG, Xrcc2, and XRCC4. In some embodiments, the cell cycle- dependent protein is Geminin. In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)). In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amimo acid sequence set forth in SEQ ID NO: 19. In some embodiments, the cell cycle-dependent protein is Cdtl . In some embodiments, the cell cycle-dependent protein is human Cdtl . In some embodiments, the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)). In some embodiments, the hCdtl(30-120) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence set forth in SEQ ID NO: 18. In some embodiments, the Cas9 fusion comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27. In some embodiments, the Cas9 is operably fused in frame to ubiquitin (Ub- Cas9). In some embodiments, the Ub-Cas9 at least one N-terminal modification. In some embodiments, the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58. In some embodiments, the ubiquitin protein comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 60. In some embodiments, the nuclease system further comprises a SaCas9 nickase. In some embodiments, the nuclease system further comprises a donor template sequence. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67. In some embodiments, the donor template sequence corrects at least one gene mutation. In some embodiments, the at least one gene mutation is rdlO or rdl2. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66. In some embodiments, the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG, GN19NGG, CN19NGG, or TN19NGG. In some embodiments, the cell is a eukaryotic or or non-eukaryotic cell. In some embodiments, the eukaryotic cell is a mammalian or human cell. In some embodiments, the eukaryotic cell is a retinal photoreceptor cell. In some embodiments, the one or more gene products are rhodopsin. In some embodiments, the expression of the one or more gene products is decreased.
Table 5: Examples of Orthologous HI sequences
mus musculus
TTCAGGATGTAGACCGGCCGCCACTATAAGGCTCGAAAGAGGAATAAATTTTT CGTTTAGGGTGATTTCCCACAAAGCACAGCGCGTAATTTGCATGCGCTCTACCC CAGGCTCCTGTGCTAGACAAGAAGCCCGCGCATCCGGGCAAGGGATGATGACG TCGTCCTTCAAGAGCG (SEQ ID NO: 84)
rattus norvegicus
AGGAGTGTGAAGACCTGCCGCCATAATAAGACTCCAAAAGACAGTGAATTTAA CACTTACGGTGACTTCCCACAAAGCACAGCGTGTAATTTGCATGCGCTCTAGCC CAGGCTCCAGCTCCGGACCAGAAGCCCGCGCATCCCGGCAAAGGGTGATGACG TCGTCCTTCAAGCGCT (SEQ ID NO: 85)
dipodomys ordii
AGGAAAGACTTCGCTGAGGC AGACTTTATAAGGCTCCCGCGC AGAAAGAAACT TTATAGTTATGGTGATTTCCCACAAGCCACTGCGTCATGCAAATAAAGCAGGGT ACGGCTTCCATGTACCTTAAGGTTTTTTTCTAGGCCGCGTACGCTCTGCGTATTC AGCCACGTGACCCTGAGCCAGTGGTTGTTGGGAGCACGTTGTGGACCTCTGCGT TTGGATTCC (SEQ ID NO: 86)
ictidomys tridecemlineatus
GAAAGGGACTCCGCACAAGCAGAGTTTATAAGGCTCCCATCTGTACAGCCATTT CTCGGTCATGGTAACTACCCACAACACACAGCGATATGCAAATATAGCAGAGC GTGTCTTCCCGCGCGCGCCTGGTCGTCTCGGCGCCGGCGCGCTGCGTGGGGCGG AACTGTGACAGAGACCCTGCGATTCCTGGGAGCTGGCTGATGACATCAGTGTCT AACCTCC (SEQ ID NO: 87)
cavia porcellus
GAGAAAGAAAGGCTC AAACCT AGCCTT AT AAGGCTCCC AAATGTCGGTATATT TTTTGGTTATGGTGACTTCCCACAATGCATAGCGATATGTAGATATTGCCAGGA GTACCTCCCACTTCTGGTCCTGTCAGCTCTTTTCTAGGACGCGCGCGCTGCAGGT TTCCAGCCTGTGATTGGGCCAGCAATTCCGGGAATGAATTGATGACGTCAGCGT TTGAATTCC (SEQ ID NO: 88)
ochotona princeps
GGGGGAAGCTGGGCTCGATCAGCCTTTATAAAGCTCCAAAAACTCAAGACATT TTTCTGTTACGGTGGCTTCCCACAGTACACAGCGACATGCAAATAGCTTGCCAA TGAATTCGCGGACCGCTTCCCGCCCCGGCGCAGGCGCGCGGACGCTGTCTCCCC TGGACGCGCGCTCGCGGTTCCCGGGAGCTGGCTGATGACGTTCGGTCTCC (SEQ ID NO: 89)
oryctolagus cuniculus
GGGGAGAGGTGGATCCGAACAGACTTTATAAAGCTCCGAAAGCCCAAGGCATC TTTCCCTTACGGTAGCTTCCCACAAGACATAGCGACATGCAAATTTCTTGAAGT ATGCTTCAGACGCGCTTCTCGCCACAGCGCAAGCGCGCTGTGTGCTGACGCGGG AACGGGCCAGGGCGCGGTTCCCGGGAGCGGGTTGATGACGTTAGATCTCC (SEQ ID NO: 90)
callithr ix_j acchus
GAGGAAAAGTAGTCCCACAGACAACTTATAAGATTCCCATACCCTAAGACATT TCACGATTATGGTGACTTCCCAGAAGACACAGCGACATGCAAATATTGCAGGT CGTGTTTCGCCTGTCCCTCACAGTCGTCTTCCTGCCAGGGCGCACGCGCGCTGG GTTTCCCGCCAACTGACGCTGGGCTCGCGATTCCTTGGAGCGGGTTGATGACGT CAGCGTTTGAATTCC (SEQ ID NO: 91)
chlorocebus sabaeus GGGGAAGGGTGGTCCCTTACAGAACTTATAAGATTCCCAAACTCAAAGACATT TCACGTTTATGGTGACTTCCCAGAAGACATAGCGACATGCAAATATTGCAGGGC GTCACACCCCTCTCCCTCACAGTCATCTTCCTGCCAGGGCGCACGCGCGCTGGG TGTTCTCGCGTAGTGACACTGGGCCCGCGATTCCTTGGAGCGGGTTGATGACGT CAGCGTTCGAATTCC (SEQ ID NO: 92)
macaca mulatta
GGGGAAGGGTGGTCCCACACAGAACTTATAAGATTCCCATACTCAAAGACATT TCTCGTTTATGGTGACTTCCCAGAAGACACAGCGACATGCAAATATTGTAGGGC GTCACACCCCTGTCCCTCACAGTCATCTTCCTGCCAGGGCGCACGCGCGCTGGG TGTTCCCGCGT AGTGAC ACTGGGCCCGCGATTCCTTGGAGCGGGTTGATGACGT CAGCGTTCGAATTCC (SEQ ID NO: 93)
papio anubis
GGGGAAAGGTGGTACCATACAGAACTTATAAGATTCCCATACTCAAAGACATT TCACGATTATGGTGACTTCCCAGAAGACACAGCGACATGCAAATATTGTAGGG CGTCAC ACCCCCTGTCCCTCACAGTCATCTTCCTGCCAGGGCGCACGCGCGCTG GGTGTTCCCGCGTAGTGACACTGGGCCCGCGATTCCTTGGAGCGGGTTGATGAC GTCAGCGTTCGAATTCC (SEQ ID NO: 94)
gorilla gorilla
GGGAAAGGGTGGTCCCACACAGAACTTATAAGACTCCCATATCCAAAGACATT TCACGGTTATGGTGATTTCCCAGAACACATAGCGACATGTAAATATTGCAGGGC GCCACTCCCCAGTCCCTCACAGCCATCTTCCTGCCAGGGCGCACGCGCGCTGGG TGTTCCCGCCTAGTGACACTGGGCCCGCGATTCCTTGGAGCGGGTTGATGACGT CAGCGTTCGAATTCC (SEQ ID NO: 95)
homo sapiens
GGGAAAAAGTGGTCTCATACAGAACTTATAAGATTCCCAAATCCAAAGACATT TCACGTTTATGGTGATTTCCCAGAACACATAGCGACATGCAAATATTGCAGGGC GCCACTCCCCTGTCCCTCACAGCCATCTTCCTGCCAGGGCGCACGCGCGCTGGG TGTTCCCGCCTAGTGACACTGGGCCCGCGATTCCTTGGAGCGGGTTGATGACGT CAGCGTTCGAATTCC (SEQ ID NO: 96)
pan troglodytes
GGGAAAGGGTGGTGCCACACAGAACTTATAAGATTCCCATATGCAAAGACATT
TCACGTTTATGGTGATTTCCCAGAACACATAGCGACATGCAAATATTGCAGGGC
GCCACTCCCCTGTCCCTCACTGCCATCTTCCTGCCAGGGCGCACGCGCGCTGGG TGTTCCCGCCTAGTGACACTGGGCCCGCGATTCCTTGGAGCGGGTTGATGACGT CAGCGTTCGAATTCC (SEQ ID NO: 97)
pongo abelii
GAGAAAGGGTGGTCCCGTCCAGAACTTATAAGATTCCCATACCCAAAGACATT TCACGTTTATGGTGACTTCCCAGAATGCATAGCGACATGCAAATATTGCAGGGC GTCACTCCCCTGTCCCTCACAGCCATCTTCCTGCCAGGGCGCCCGCGCGCTGGT GTTCCCGCCTAGTGACACTGGGCCCACGATTCCTTGGAGCGGGTTGATGACGTC AGCGCTCGTATTCC (SEQ ID NO: 98)
nomascus leucogenys
GGGGAAAAGTAGT AGACCTTAT AAGATTCCC AAACCC AAAGAC ATTTCTCGTTT ATGGTGACTTCCCAGAAGACATAGCGACATGCAAATATTGCAGGGCGCCACTC CCCTGTCCCTCACAGCCATCTTCCTGCCAGGGCGCACGCGCGCTGGGTGTTCCC GCCTAGTGACACTCGGCCCGCGATTCCTTGGAGCGGGTTGATGACGTCAGCGTT CGAATTCC (SEQ ID NO: 99)
tarsius syrichta
GCGAGAGGGTGGGTCCACACAGAGCTTATAAGGTTCACAAGTAAAGATATTTC ACGGTGACGGTGACTTCCCACAATACACTGCGACATGCAAATATAGCCGGGCG TGCCTCCCCGATCCCGGAAGAGCGACTCCTAGCCAGTGCGCACGCGCGCTGCG TGTTCGCGTCCTAGGTCGCTGGGCCCGCGGTTCCTGGGAGCGGGTGGTGACGTC AGCGGCCCAGCTTC (SEQ ID NO: 100)
otolemur garnettii
GCCTAAAAGGGCGCTTGCACAGAATTTATAAGGTTCCCAAACAGAGACACATT TCATTATTATGGTGACTTCCCACAATGCACAGCGCCATGCAAATATGCTAGGAC GCCTCCCCCCGCTACCTTAAGGTCGTCAACTAACCAGTGCGCGCGCGCACTGCG CGTTTCCCGCCGGTGACTCAATGCCCGCGTTTGGTGGGAGCTAGTTGGTGACCT CAGTTCTGGAGGCTC (SEQ ID NO: 101)
tupaia belangeri
GGGGGAAGCTGGGTCCACTGAGTTCTTATAAGGTTTCCAGTCCTAGAGCGATTT TACCATTGCGGTGATTTCCCAGCATCCGTAGCTACATGCAAATAGCGCGGGGCG CGTCTCTCAGGTCCCTCCCCGCCCTCTCACTGTACGTACCCGCGTCCTAGGGAC GCCGCGCCCGGGGTTCCCGGACGTCAGCGTTCCGACGCA (SEQ ID NO: 102) ailuropoda melanoleuca AGGGAAAGCCGCGCCTGGGGCGGATTTATAAGGCTTCCATATCTAAAGGCATT TCACAGTCATGGTGACTTCCCACAATACATAGCAACATGCAAATATCGCGGGG AGAACCTCCCCTGTCCCTTGTACGCGGCTTCTAAAGACGCACGCGCGCTCTGTG TTCCCGCCCTGTGACTCTAGGCGGGCAATTCCTGGGACAGTGTTCTGACGGGAA CGTTCAGGCTCC (SEQ ID NO: 103)
mustela putorius furo
GGGAAAGGGTGGACCCACCGAGCATTTATAAGGCTCCCGCATCTAAAGACATT TTACAGTTATGGTGACTTCCCACAACGCGTAGCAACATGCAAATATCGTGGAGA GTACCGCCCCTGTCCCATGCACGCGTCTTCTCAGCAGCACGCACGCGCGCTGTG TTCCCGCCCTGTGACTCC AGGCGGGT ATTTCC AGGGGCGGGTTGCTGAC AGGAA CGTTCAGGCTTC (SEQ ID NO: 104)
canis familiaris
GCAGCGCAGCCCTCTCGCCGCTTATAAAGTGCCGCCCGCACGGCCCTTCTCGCT CACGGCGACTTCCCATAACACACAGCAGCATGCAAATACCGCGGGGAGCCCCG CCCCGCCCCGGCCCCCGCACCGCCTCGGGACGCATGCGCCGGCTCTCCGTTCCC GCCTTGGGCCGGCGGCGGGCGGGCGGGCGAGCGGGCGGGAGCGGCTCCGGCG GGGACGAGCGGGCGCC (SEQ ID NO: 105)
felis catus
GGGAAAGGGTGGCCCCGCCGAGCATTTATAAGACTCCCATACCTAAAGACATT TCTCAGTTATGGTGATTTCCCACAACACACAGCAACATGCAAATATCGAGGGGT GTACCGCCCCTGTCCTTTGTAGACGTCTTCTCTCCAGGACGCACGCGCGCTGTA TTCCCGCCTTGTGACTCTAGGCGGGCGATTCCTGGGAGAGGGTTGATGACGTCC AAGTTCTGGCTTC (SEQ ID NO: 106)
equus caballus
GGGGGAAAACAGCCCATGGCTGCATTTATAAGACTCACAGATCTAAAGCCATT TCACGAATAGGGTGACTTCCCACAATACACAGCGACATGCAAACATAGCGGGG CGTGCCTTTCCTGTACCCTGTGGGCATCTCTCCTGGACGCACGCGCGCCGGGTG TTCCCGCGCTGTGACTCTAGGCAAGCGCTTCCTGGGAGAGAGTTGATGACGGCA GCATTCGGGCTCC (SEQ ID NO: 107)
myotis lucifugus
GGGAGAAGGAGGCGTAGAGGATATATAAGGCCCCCTTATGTGTAGTCCTTTTA CGGTTAGGGTGACTTCCCACAACGCATAGCGACATGCAAATTTGACGGGCGTG CCTCCTCTGTCCCTGCGGGCAACTTCTCTCCTGGACGCGCGCGCGCTGCGTGTTC CCGCCTTTTGACTCCAGCCGAGCGAATCCTGGGAGAGGGCAGGTGACGTCAAC AGTCAGGCTCG (SEQ ID NO: 108)
pteropus vampyrus
GCGAGAAAAATTCTTCACGCAGAATATATAAGGATCCCATATCTGAAGACATTT TACGATTACGGCGATTTCCCACAACACATAGCGACATGTAAATGTAGTGGGGC ATGCCTCCCCTGTCCCTTGTGGGCAGCTTCTCGCCAGAACGCACGCGCGGTGCG TGTTCCCGCCTTGTGACTAAGTTGGCGAGTCAGGGAGGAGATTGATGACGTCAG CTCACCCGCTCC (SEQ ID NO: 109)
bos taurus
GGC AAAC ACCGC ACGC AAAT AGC ACTT AT AATGTGCTC ATACCT AGAGCC ACTT TTCGGTTACGGTGACTTCTCAAAAAGACAGTGGAACATGCAAATATTACAGTGC GTCCCGCCCCTGGTAGGTCTACGCTAGGACGCACGCGCACTACGGTTCCCGCCT ATAGACTGCGCTGGCGATTCCTGGGAGCGGACTGATGACGTCAGCGTTCGGGA TCC (SEQ ID NO: 110)
ovis aries
GGCGAACAATGCGCGC AAAC AGCATTTATAATGAGCTCATACCTAAAGCC ACT TTACGGTTACGGTGACTTCCCACAAGACATTGC GGC ATGC AAAT ATTTTAGTGC GTCCCGCCCCTGGTAGTTCCACGCTAGGACGCACACGCACTACGGTTCCCGCCT TTAGACTGCGCTGGCGATTCCAGGAGCGGACTGATGACGTCAGCGTTGGGGCT CC (SEQ ID NO: 111)
tursiops truncatus
GCCGAAAACCAGGCTCAAGCCACATTTATAAGGCTCCCAAATCTAAGTACATTT GTCGGTTATGGTGACTTCCCGCACCACATTGCGAC ATGC AAAT ACTGCGGAGCG TCCCTCCCCTGGCAACTCCTCGCTGGGACGCACGCGCGCTACGTGCTCCCGCCT TTTGACTGCGCCGGCGATACTTGGGAGAGGGTTGATGACGTCAGCGTTCTGGCT CC (SEQ ID NO: 112)
vicugna pacos
GGGAAAGGGTGGGCTCACGCAGCCTTTATAAGACTCCCAAACTTAAAGACATT TCTCGGTTATGGCGACTTCCCACAAGACATAGCGAC ATGC AAAT ACTGCAGGG CGCCGACCCGGTCCTGTGCAGCCATCTTTCGGCTGGGACGCACGCGCGCTGCGT GTTCCCGCCCTGTGACTGCGCCGGCGATTACTGGGAGAGGATTGATGACGTCAA CGTTCGGGTTCC (SEQ ID NO: 113)
sus scrofa GTAGGAAAACTGCTTCTGTGAGCACTTATAAAACTCCCATAAGTAGAGAGATTT CATAGTTATGGTGATTTCCCATAAGACATTGCGACATGCAAATATTGTGGCGCG TTCGTCCCCGTCCGGTGCAGGCAGCTTCGCTCCAGGACGCACGCGCAATACATG TTCCCGCCTTGAGACTGCGCCGGCAGATTCCTAGGAAGTGGTTGATGACGTCGA TGTTAGGGATCC (SEQ ID NO: 1 14)
erinaceus europaeus
GCCTAAACCGGCTCTTTCGACAGACTTATAAGGACCTCTTATCTTAGGACATTT TTTTGTTAGGGTAACTTCCCACGATGCATAGCGATATGTAAATATGGCGCCGCG AGTCTCTCCTAGGCGTCTCCCCAGGACGCAGGCGCACTGCTTGTTCCCGCGTTA ACATTGCTGATTCTGGGAGACTGCTGATGACGTCAGCGTCCAGTCTAC (SEQ ID NO: 115)
choloepus hoffmanni
AGAAAAAAATAGTTTATGCTGGATTTATAAGATTCCCAAATCTAAAGCCATTTC
ACAGTTACGGTGATTCCCCACTACACACGGCGATATGCAAATATAGCGGAAGT GTTCCTGAGGCGTGGTAAAGCGCGCGCGCGCTGAGAGTTCCCGCCCTGTGGTGC
TGGGCTGGAGATGCCTGAGAACTGGCTGATGACGGCAACGTTCGGGCTCC (SEQ
ID NO: 116)
dasypus novemcinctus
AAAGCGATAGTTTTTTAAACTGGACTTATAAGGCACCCATATCTACGTATATTT CATGGTTAGGGTGATTTCCCACAACACATAGCGAAATGCAAATATTGGAGGGC
GCTGAGGCGTGGTCGGGCGCAAGCGCGCTGCGACTTCCCGCCTTTCGGCCCTAG
GCCCCAGATTCCTGGGAGCTGGATGATGACGTTGACGTTCGGATACC (SEQ ID
NO: 117)
loxodonta africana
GGGAAGGAACAAATTCGTCAGGATTTATAAGACTCTCAGAGCTGTAGACATTT CACAGTTAGGGCGATGTCCCACAATACATAGCAACATGCAAATATTCTAGGAG GCCAGCCTCCCCGTCCGCGTGGTCATCTTCTCGCTAGGGCGCACGCCCGCTGCG TGTTCCCGCTCTGTGACCAGGCAGGCGATTCCTGAGAACCGCTTGGTGACGTCA GTGTTCTGGCTCC (SEQ ID NO: 118)
procavia capensis
AGGGTAAATCGGCGCTGCTCAGCATTTAAAAGAATCCCAAATGTGTCGC CATTTTACGCTTAGGGTGATATCCCACAAGACACAGCGACATGCAAATATCGTG AGTCTCTGTTTCCCTGTCCACGAGGGCGTCCTCTCGCTGGGGCGCACGCGCGGT GTGTGTGCCCCCGTTGTGTGTTCCCGCGATTCCAAAGAACTGGTTGATAACGTT AGACTTCCGGCTGC (SEQ ID NO: 119)
Table 6: Examples of terminators
SPA
AATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTG (SEQ ID NO: 120)
SPA and Pause
AATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGA T AGTACTAAC AT ACGCTCTCC ATC AAAAC AAAACGAAAC AAAAC AAACT AGC A AAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCT (SEQ ID NO: 121)
SV40 (240bp)
ATCTAGATAACTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGC TTTAAAAAACCTCCC ACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAAT TGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAG CATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTG TCCAAACTCATCAATGTATCTTA (SEQ ID NO: 122)
SV40-mini (120bp)
TTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTC ACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCA ATGTATCTTAT (SEQ ID NO: 123)
bGH polyA
CGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTC CTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAAT TGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCA GGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCG GTGGGCTCTATGG (SEQ ID NO: 124)
TK polyA
GGGGGAGGCTAACTGAAAC ACGGAAGGAGAC AAT ACCGGAAGGAACCCGCGC TATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTT CATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAG ACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCA AGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGC CAT AG (SEQ ID NO: 125)
sNRPl
GGTATCAAATAAAATACGAAATGTGACAGATT (SEQ ID NO: 126)
sNRPla
AAATAAAATACGAAATGTGACAGATT (SEQ ID NO: 127)
Histone H4B
GGTTGCTGATTTCTCCACAGCTTGCATTTCTGAACCAAAGGCCCTTTTCAGGGC CGCCCAACTAAACAAAAGAAGAGCTGTATCCATTAAGTCAAGAAGC (SEQ ID NO: 128)
MALAT-1
GATTCGTCAGTAGGGTTGTAAAGGTTTTTCTTTTCCTGAGAAAACAACCTTTTGT TTTCTCAGGTTTTGCTTTTTGGCCTTTCCCTAGCTTTAAAAAAAAAAAAGCAAA AGACGCTGGTGGCTGGCACTCCTGGTTTCCAGGACGGGGTTCAAGTCCCTGCGG TGTCTTTGCTT (SEQ ID NO: 129)
MALAT-compl4
AAAGGTTTTTCTTTTCCTGAGAAATTTCTCAGGTTTTGCTTTTTAAAAAAAAAGC AAAAGACGCTGGTGGCTGGCACTCCTGGTTTCCAGGACGGGGTTCAAGTCCCTG CGGTGTCTTTGCTT (SEQ ID NO: 130)
The term "homologous" refers to the "% homology" and is used interchangeably herein with the term "% identity" herein, and relates to the level of nucleic acid sequence identity when aligned using a sequence alignment program.
For example, as used herein, 80% homology means the same thing as 80% sequence identity determined by a defined algorithm, and accordingly a homologue of a given sequence has greater than 80% sequence identity over a length of the given sequence.
Preferred levels of sequence identity include, but are not limited to about, 60%, 65%, 70%,75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%) or more sequence identity to the nucleotide sequences set forth in SEQ ID NOs: 1- 82. Exemplary levels of sequence identity include, but are not limited to about, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or more sequence identity to the nucleotide sequences set forth in SEQ ID NO: 1-82. In some embodiments, the presently disclosed subject matter provides a non- naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule to alter expression of the one or more gene products.
In some embodiments, the presently disclosed subject matter provides a non- naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a eukaryotic cell, and wherein the DNA molecule encodes one or more gene products expressed in the eukaryotic cell; and b) a regulatory element operable in a eukaryotic cell operably linked to a nucleotide sequence encoding a Type-II Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered. In one aspect, the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence GN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence CN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence TN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG. In another aspect, the Cas9 protein is codon optimized for expression in the cell. In another aspect, the Cas9 protein is codon optimized for expression in the eukaryotic cell. In a further aspect, the eukaryotic cell is a mammalian or human cell. In yet another aspect, the expression of the one or more gene products is decreased.
The presently disclosed subject matter also provides a non-naturally occurring CRISPR-Cas system comprising a vector comprising a bidirectional HI promoter, wherein the bidirectional HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a eukaryotic cell, and wherein the DNA molecule encodes one or more gene products expressed in the eukaryotic cell; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a Type-II Cas9 protein, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered. In one aspect, the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence GN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence CN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence TN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG. In another aspect, the Cas9 protein is codon optimized for expression in the cell. In another aspect, the Cas9 protein is codon optimized for expression in the eukaryotic cell. In a further aspect, the eukaryotic cell is a mammalian or human cell. In yet another aspect, the expression of the one or more gene products is decreased.
In some embodiments, the CRISPR complex comprises one or more nuclear localization sequences of sufficient strength to drive accumulation of the CRISPR complex in a detectable amount in the nucleus of a cell (e.g., eukaryotic cell). Without wishing to be bound by theory, it is believed that a nuclear localization sequence is not necessary for CRISPR complex activity in eukaryotes, but that including such sequences enhances activity of the system, especially as to targeting nucleic acid molecules in the nucleus. In some embodiments, the CRISP enzyme is a type II CRISPR system enzyme. In some embodiments, the CRISPR enzyme is a Cas9 enzyme. In some embodiments, the Cas9 enzyme is C. jejuni, G. stear other mophilus, N. meningitidis, S. aureus, S. pneumoniae, S. pyogenes, or S. thermophilus Cas9, and may include mutated Cas9 derived from these organisms. The enzyme may be a Cas9 homolog or ortholog such as Cpfl or Casl3a/C2c2. in general, and throughout this specification, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include, but are not limited to, nucleic acid molecules that are single-stranded. double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g. circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. One type of vector is a "plasmid," which refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques. Another type of vector is a viral vector, wherein viral!y-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g. retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell.
Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g. bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors." Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
Recombinant expression vectors can comprise a nucleic acid of the presently disclosed subject matter in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulator}- elements, which may be selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed.
Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory el em en t( s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
The term "regulator}7 element" is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulator}' elements are described, for example, in Goeddel (1990) Gene Expression
Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif Regulator}' elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-ty pe specific.
In some embodiments, a vector comprises one or more pol III promoters, one or more pol II promoters, one or more pol I promoters, or combinations thereof Examples of pol III promoters include, but are not limited to, U6 and HI promoters. Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RS V enhancer), the cytomegaloviais (CMV) promoter (optionally with the CMV enhancer) (e.g., Boshart et al. (1985) Cell 41 :521-530), the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EFla promoter.
Also encompassed by the term "regulatory element" are enhancer elements, such as
WPRE; CMV enhancers; the R-U5' segment in LTR of HTLV-I (Takebe et al. (1988) Mol Cell. Biol.8:466-472); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit β-globin (O'Hare et al. (1981) /OC. Natl. Acad. Sci. USA. 78(3): 1527-31). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc. A vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., clustered regularly interspersed short palindromic repeats (CRISPR) transcripts, proteins, enzymes, mutant forms thereof, fusion proteins thereof, etc).
Advantageous vectors include lenti viruses and adeno-associated viruses, and types of such vectors can also be selected for targeting particular types of cells.
The terms "polynucleotide", "nucleotide", "nucleotide sequence", "nucleic acid" and "oligonucleotide" are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short. interfering RNA (siR A), short-hairpin RNA (shRNA), micro-RNA. (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may¬ be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
In aspects of the presently disclosed subject matter the terms "chimeric RNA", "chimeric guide RNA", "guide RNA", "single guide RNA", "synthetic guide RNA" and
"crRNA" are used interchangeably and refer to the polynucleotide sequence comprising the guide sequence. The terra "guide sequence" refers to the about 20 bp sequence within the guide RNA that specifies the target site and may be used interchangeably with the terms "guide" or "spacer".
As used herein the term "wild type" is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms.
As used herein the term "variant" should be taken to mean the exhibition of qualities that have a pattern that deviates from what occurs in nature.
The terms "non-natura!ly occurring" or "engineered" are used interchangeably and indicate the involvement of the hand of man. The terms, when referring to nucleic acid molecules or polypeptides mean that the nucleic acid molecule or the polypeptide is at least substantially free from at least one other component with which they are naturally associated in nature and as found in nature.
"Complementarity" refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick or other non- traditional types. A percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). "Perfectly complementary" means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence. "Substantially complementary" as used herein refers to a degree of complementarity that is at least 60%, 65%, 70%), 75%, 80%, 85%, 90%, 95%. 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions.
As used herein, "stringent conditions" for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences. Stringent conditions are generally sequence-dependent, and vary depending on a number of factors, in general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence. Non-limiting examples of stringent conditions are described in detail in Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology -Hybridization With Nucleic Acid Probes Part 1, Second Chapter "Overview of principles of hybridization and the strategy of nucleic acid probe assay", Elsevier, N.Y.
"Hybridization" refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a muiti stranded complex, a single self hybridi ing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of PGR, or the cleavage of a polynucleotide by an enzyme. A sequence capable of hybridizing with a given sequence is referred to as the "complement" of the given sequence.
As used herein, "expression" refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides may be collectively referred to as "gene product." If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
As used herein the term "amino acid" includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.
The practice of the present presently disclosed subject matter employs, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art (Sambrook, Fritsch and Maniatis (1989) Molecular Cloning: A Laboratoiy Manual, 2nd edition; Ausubel et al ., eds. (1987) Current Protocols in Molecular Biology); MacPherson et ai., eds. (1995) Methods in Enzymology (Academic Press, Inc.): PGR 2: A Practical Approach); Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual; Freshney, ed. (1987) Animal Cell Culture).
Several aspects of the presently disclosed subject matter relate to vector systems comprising one or more vectors, or vectors as such. Vectors can be designed for expression of CRISPR transcripts (e.g. nucleic acid transcripts, proteins, or enzymes) in prokaryotic or eukaryotic cells. For example, CRISPR transcripts can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors), yeast cells, or mammalian ceils. Suitable host cells are discussed further in Goeddel (1990) Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
Vectors may be introduced and propagated in a prokaryote. In some embodiments, a prokaryote is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g. amplifying a pi asm id as part of a viral vector packaging system). In some embodiments, a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism. Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins.
Fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus of the recombinant protein. Such fusion vectors may serve one or more purposes, such as: (!) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67: 31-40), pMAL (New England Bioiabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, 'N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A. respectively, to the target recombinant protein.
Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al. (1988) Gene 69:301-315) and pET l id (Studier et al. (1990) Gene
Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif).
In some embodiments, a vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSecl (Baldari, et al.(1987) EMBO .J. 6: 229-234), pMFa (Kuijan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schu!tz et al. (1987) Gene 54: 1 13-123), pYES2 (Invitrogen Corporation, San Diego, Calif), and picZ (InVitrogen Corp, San Diego, Calif.).
In some embodiments, a vector is capable of driving expression of one or more sequences in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1921) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are typically provided by one or more regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, simian virus 40, and others disclosed herein and known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual . 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
in some embodiments, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue- specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1 : 268-277), lymphoid-specific promoters (Calame and Eaton (1988) A/v. Immunol 43 : 235- 275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.8: 729-733) and immunoglobulins (Baneiji et al. (1983) Cell 33 : 729-740; Queen and Baltimore (1983) Cell 33 : 741-748), neuron-specific promoters (e.g., the neurofi lament promoter; Byrne and Ruddle (1989) Proc, Natl Acad. Sci. USA 86: 5473-5477), pancreas- specific promoters (Edlund et al.(1985) Science 230: 912-916), and mammary gland- specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264, 166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Grass (1990) Science 249: 374- 379) and the a-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3 : 537- 546).
In some embodiments, a regulatory element is operably linked to one or more elements of a CRiSPR system so as to drive expression of the one or more elements of the CRISPR system. In general, CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats), also known as SPIDRs (SPacer Interspersed Direct Repeats), constitute a family of DNA loci that are usually specific to a particular bacterial species. The CRISPR locus comprises a di stinct class of interspersed short sequence repeats (SSRs) that were recognized in E. coli (Ishino et al. ( 1987) J. Bacterial, 169: 5429-5433; and Nakata et al.
(1989) J. Bacterial, 171 :3553-3556), and associated genes. Similar interspersed SSRs have been identified in Haloferax mediterranei, Streptococcus pyogenes, Anabaena,
and Mycobacterium tuberculosis (Groenen et al. (1993) Mol. Microbiol, 10: 1057-1065; Hoe et al. (1999) Emerg. Infect. Dis., 5 :254-263; Masepohi et al. (1996) Biochim. Biophys. Acta 1307:26-30; and Mojica et al. (1995) Mol. Microbiol, 17:85-93). The CRISPR loci typically differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al. (2002) OMICSJ. Integ. Biol, 6:23- 33, and Mojica et al . (2000) Mol. Microbiol, 36:244-246). In general, the repeats are short elements that occur in clusters that are regularly spaced by unique intervening sequences with a substantially constant length (Mojica et al. (2000) Mo/. Microbiol, 36:244-246). Although the repeat sequences are highly conserved between strains, the number of interspersed repeats and the sequences of the spacer regions typically differ from strain to strain (van Embden et al . (2000) J. Bacieriol , 1 82:2393-2401 ). CRISPR loci have been identified in more than 40 prokaryotes (e.g., Jansen el al. (2002) Mol. Microbiol., 43: 1565- 1575; and Mojica et al. (2005) J Mol, Evol 60: 174-82) including, but not limited to Aeropyrum, Pyrobaculum, Sulfolobus, Archaeoglohus, lialocarcula,
Methanobacteriumn, Methanococcus, Methanosarcina, Metkanopyrus, Pyrococcus, PicrophUus, Thernioplasnia, Corynehacterium, Mycobacterium, Sirepiomyces, Aqui hc, Porphvromonas, CMorohium, Thermns, Bacillus, Listeria, Staphylococcus, Clostridium, Thermoanaerobacter, Mycoplasma, Fusobacterium, Azarcus, Chromobacterium, Neisseria, Nitrosomonas, Desulfovibrio, Geobacter, Myrococcus, Campylobacter, WolineUa,
Acinetobacter, Erwinia, Escherichia, Legionella, Methylococcus, Pasteurella,
Photobacterium, Salmonella, Xanthomonas, Yersinia, Treponema, and Thermotoga.
In general, "CRISPR system" refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR -associated ("Cas") genes, including sequences encoding a Cas gene, a guide sequence (also referred to as a "spacer" in the context of an endogenous CRISPR system), or other sequences and transcripts from a CRISPR locus. In some embodiments, one or more elements of a CRISPR system is derived from a type I, type II, or type III CRISPR system. In some embodiments, one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes. In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
In the context of formation of a CRISPR complex, "target sequence" refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. Full complementarity is not necessarily required, provided there is sufficient complementarity to cause hybridization and promote formation of a CRISPR complex. A target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell. In some embodiments, the target sequence may be within an organelle of a eukaryotic ceil, for example, mitochondrion or chloroplast. A sequence or template that may be used for recombination into the targeted locus comprising the target sequences is referred to as an "editing template" or "editing polynucleotide" or "editing sequence". In aspects of the presently disclosed subject matter, an exogenous template polynucleotide may be referred to as an editing template. In an aspect of the presently disclosed subject matter the recombination is homologous recombination.
In some embodiments, a vector comprises one or more insertion sites, such as a restriction endonuciease recognition sequence (also referred to as a "cloning site"). In some embodiments, one or more insertion sites (e.g. about or more than about I, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more insertion sites) are located upstream and/or downstream of one or more sequence elements of one or more vectors. When multiple different guide sequences are used, a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell. For example, a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
In some embodiments, a vector comprises a regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, such as a Cas protein. Non- limiting examples of Cas proteins include Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), Cas! O, Casl 3a, Csyl, Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Crnr4, Cmr5, Cmr6, Csb l, Csb2, Csb3, Cs l.7, Csxl4, CsxlO, Csxl6, CsaX, Csx3, Csxl, Csxl5, Csfl, Csf2, Csf3, Csf4, homoiogs thereof, or modified versions thereof. These enzymes are known; for example, the amino acid sequence of S. pyogenes Cas9 protein may be found in the SwissProt database under accession number Q99ZW2. In some embodiments, the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9. In some embodiments the CRISPR enzyme is Cas9, and may be Cas9 from S.
pyogenes or S. pneumoniae.
In some embodiments, the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence. In some embodiments, the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence. In some embodiments, a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence. In some embodiments, an enzyme coding sequence encoding a CRISP enzyme is codon optimized for expression in particular cells, such as eukaryotic cells. The eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, mouse, rat, rabbit, dog, or non-human primate. In general, codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g. about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codon s that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Various species exhibit particular bias for certain codons of a particular amino acid. Codon bias (differences in codon usage between organisms) often correlates with the efficiency of translation of messenger RNA (niRNA), which is in turn believed to be dependent on, among other things, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the "Codon Usage Database", and these tables can be adapted in a number of ways. See Nakamura et al. (2000) Nucl. Acids Res. 28:292.
Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, Pa.), are also available. In some embodiments, one or more codons (e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons) in a sequence encoding a CRISPR enzyme correspond to the most frequently used codon for a particular amino acid.
In general, a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence. In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith- Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows- Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies, ELAND (Illumina, San Diego, Calif.), SOAP
(available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). In some embodiments, a guide sequence is about or more than about 5, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length.
The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay. For example, the components of a CRISPR system sufficient to form a CRISPR complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein. Similarly, cleavage of a target
polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRiSPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art.
A guide sequence may be selected to target any target sequence. In some embodiments, the target sequence is a sequence within a genome of a ceil. Exemplary target sequences include those that are unique in the target genome.
In some embodiments, the CRISPR enzyme is part of a fusion protein comprising one or more heterologous protein domains (e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more domains in addition to the CRISPR enzyme). A CRISPR enzyme fusion protein may comprise any additional protein sequence, and optionally a linker sequence between any two domains. Examples of protein domains that may be fused to a CRISP enzyme include, without limitation, epitope tags, reporter gene sequences, and protein domains having one or more of the following activities: methyl ase activity, demethylase activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity and nucleic acid binding activity. Non-limiting examples of epitope tags include histidine (His) tags, V5 tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Examples of reporter genes include, but are not limited to, giutathione-5-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-gal actosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and autofluorescent proteins including blue fluorescent protein (BFP). A CRISPR enzyme may be fused to a gene sequence encoding a protein or a fragment of a protein that bind DNA molecules or bind other cellular molecules, including but not limited to maltose binding protein (MBP), S-tag, Lex A DNA binding domain (DBD) fusions, GAL4A DNA binding domain fusions, and herpes simplex virus (HSV) BP 16 protein fusions. Additional domains that may form part of a fusion protein
comprising a CR ISPR enzyme are described in US20110059502, incorporated herein by reference. In some embodiments, a tagged CRISPR enzyme is used to identify the location of a target sequence.
In an aspect of the presently disclosed subject matter, a reporter gene which includes but is not limited to glutathione-5-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-galactosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and autofluorescent proteins including blue fluorescent protein (BFP), may be introduced into a cell to encode a gene product which serves as a marker by which to measure the alteration or modification of expression of the gene product. In a further embodiment of the presently disclosed subject matter, the DNA molecule encoding the gene product may be introduced into the cell via a vector. In a preferred embodiment of the presently disclosed subject matter the gene product is luciferase. In a further embodiment of the presently disclosed subject matter the expression of the gene product is decreased.
Generally, promoter embodiments of the present presently disclosed subject matter comprise: 1) a complete Pol III promoter, which includes a TATA box, a Proximal Sequence Element (PSE), and a Distal Sequence Element (DSE); and 2) a second basic Pol III promoter that includes a PSE and TATA box fused to the 5' terminus of the DSE in reverse orientation. The TATA box, which is named for its nucleotide sequence, is a major determinant of Pol III specificity. It is usually located at a position between nt. -23 and -30 relative to the transcribed sequence, and is a primar determinant of the beginning of the transcribed sequence. The PSE is usually located between nt. -45 and -66. The DSE enhances the activity of the basic Pol III promoter. In the HI promoter, there is no gap between the PSE and the DSE.
Bidirectional promoters refer to any promoter (typically pol II) that are orientated in head-tail-tail-head fasion -basically any control region that direct divergent transcription. In some embodiments, the bidirectional HI promoter could be pol II and pol II or pol III and pol III, or combinations thereof. The HI bidirectional, as well as 7Sk and others described herein, are unique in that they are bidirectional, which is itself uncommon in eukaryotic genomes, but most importantly here, directs a protein coding gene on one side (pol II), and an RNA gene on the other side (pol III).
In some embodiments, bidirectional promoters consists of: 1) a complete, conventional, unidirectional Pol III promoter that contains 3 external control elements: a DSE, a PSE, and a TATA box, and 2) a second basic Ροί III promoter that includes a PSE and a TATA box fused to the 5' terminus of the DSE in reverse orientation. The TATA box, which is recognized by the TATA binding protein, is essential for recruiting Pol III to the promoter region. Binding of the TATA binding protein to the TATA box is stabilized by the interaction of SNAPc with the PSE. Together, these elements position Pol III correctly so that it can transcribe the expressed sequence. The DSE is also essential for full activity of the Pol III promoter (Murphy et al. (1992) Mol, Cell Biol. 12:3247-3261 ; Mittal et al. (1996) Mo/. Cell Biol 16: 1955-1965; Ford and Hernandez (1997) J.Biol.Chem., 272: 16048-16055; Ford et al. (1998) Genes, Dev., 12:3528-3540; Hovde et al. (2002)
Genes Dev. 16:2772-2777). Transcription is enhanced up to 100-fold by interaction of the transcription factors Oct-1 and/or SBF/Staf with their motifs within the DSE (Kunkel and Hixon (1998) Nucl. Acid Res., 26: 1536-1543). Since the forward and reverse oriented basic- promoters direct transcription of sequences on opposing strands of the double-stranded DNA templates, the positive strand of the reverse oriented basic promoter is appended to the 5' end of the negative strand of the DSE. Transcripts expressed under the control of the HI promoter are terminated by an unbroken sequence of 4 or 5 T's.
In the HI promoter, the DSE is adjacent to the PSE and the TATA, box (Myslinski et al. (2001) Nucl. Acid Res. 29:2502-2509). To minimize sequence repetition,
this promoter was rendered bidirectional by creating a hybrid promoter, in which transcription in the reverse direction is controlled by appending a PSE and TATA box derived from the U6 promoter. To facilitate construction of the bidirectional HI promoter, a small spacer sequence may also inserted between the reverse oriented basic promoter and the DSE.
Examples of cell cycle dependent proteins may comprise any of the following:
(a) Chromosomal DNA Replication Reaction Including Initiation of Chromosomal DNA Replication and Progression of Replication Fork
McmlO, Orel, Orc3, Cdc6, Cdtl, Geminin, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Cdc7, Cdc5, Psfl, Psf2, Psf3, Cdc45, Pola pl80, Pola p70, Pola Sppl(Prim2a), RPA70, RPA34, PCNA, Elgl, Ligasel, Pole Pol2, Pole Dpb3, Topoisomerase I, TDP1, Orc2, Orc4, Orc5, Orc6, Mcm2, Dbf4, TopBPl, Sld5, Pola Spp2, RFCl, RFC2, RFC3, RFC4, RFC5, Pifl, Pold p50, Pole Dpb2, Topoisomerase Iia, Topoisomerase lib, RPAI4, FEN1, DNA2, Pold pl25, Pold p68, Pold pl2, Pole Dpb4
(b) DNA Damage Checkpoints
ATR, Chkl, NBSl, Husl, Radl, Mad2, BubRl, ATM, Rad50, Mrel l, Mdcl, 53BP1, Radl7, BubRl, ATRIP, Chk2, H2AX, RFCl, RFC2, RFC3, RFC4, RFC5, ATM, BRCA1, Chkl, Chk2, 14-3-3eta, 14-3-3sigma, cdc25A, cdc25c, weel, ATR, ATRIP, Radl7, RFC2, RFC3, RFC4, RFC5, HUS1, Radl, Rad9, P53, Rad50, Mrel l, NBSl, TopBPl, 53BP1, H2AX
(c) Sister Chromatid Agglutination and Separation
Ctfl8, Sccl, Scc3, Dccl, Trf4-1, Trf4-2, Smcl, Smc3, Pdsl(Securin), Mad-2, BubRl, Espl
(d) Base Excision Repair
UNG, MBD4, TDG, NTH1, NEIL2, NEIL3, APE2, PARP1, PNK, Polb, OGG1, APEl, XRCC1, Ligase3, SMUG1, TDG, MYH, MPG, NEILl, ADPRT, ADPRTL2, MGMT, ABHl, ABH2, ABH3
(e) Mismatch Excision Repair
MSH2, PMS1, PMS2, MLH3, Exonucleasel, MSH3, MSH6, MSH5, MLH1, MSH4, PMS2L3, Trexl, Trex2, PMS2L4
(f) Nucleotide Excision Repair
XPC, Rad23A, Rad23B, CSA, CSB, XPG, XPF, DDB 1, DDB2, XAB2, XPB, ERCC1, XPD, XPA, DDB2, Mmsl9, CETN2, RPA70, RPA34, RPAI4, GTF2H1, GTF2H2, GTF2H3, GTF2H4, CDK7, CCNH, MNAT1, Ligasel, CSA, CSB
(g) Homologous Recombination Repair Rad51, Rad51Ll, Rad51C, Rad51L3, DMC1, XRCC2, XRCC3, Rad52, Rad54L, Rad54B, BRCA1, BRCA2, Rad50, Mrel l, NBSl, Topoisomerasellla, Topoisomeraselllb, WHIP, WRN, BLM, RecQl, RecQ5
(h) Non-Homologous End- Joining Repair (Non-Homologous Recombination Repair)
Ku70, Ku80, DNA-pk, Ligase4, XRCC4, Artemis, WRN
i) Double-Strand DNA Break Repair
Rad51, Rad51D, Xrcc2, Rad54, BRCA1, Ku80, XRCC4, Rad52, Rad51C, Dmcl, Rad54B, DNA-pk, Ku70, Ligase4, Rad51B, XRCC3, BRCA2, Artemis
(j) DNA Post-Replication Repair (DNA Damage Tolerance)
Rad6A, Rad6B, Radl8, Ubcl3, FBHl
(k) DNA Crosslink Damage Repair
FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG
(1) DNA-Protein Crosslink Damage Repair
TDP1
(m) DNA Polymerase
Poli, Polh, Polq, Polk, Polz (REV3), Poll, Polm, Revl, Polb, Polg, Pold p50, Pole Pol2, REV7, Poln, Pola P180, Pola p70, Pola Sppl, Pola Spp2, Pold p68, Pold pl2, Pole Dpb2, Pole Dpb3, Pole Dpb4
(n) Nucleotide Cleansing
MTH1, DUT, p53R2
(o) Chromatin Structure Maintenance
H2AX, Sir2, SIRT1 (Sirtuin)
(p) Telomere Structure Maintenance
Tin2, Sir2, hTert, TRF1, TRF2, Tankyrase, Potl, Rapl, Pifl
Preferred examples of genes associated with each of the aforementioned functions
(a) to (p) include the genes described in Examples below. More specifically, examples of such genes are as follows: APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDBl, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBHl, FEN1, Geminin, Husl, KNTC2 (NDC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, McmlO, MGMT, MLH3, Mms4, MPG, MSH2, Mus81,
NBSl, NEIL2, NEIL3, NTHl, Orel, Orc3, PARPl, PCNA, Pifl, PMSl, PMS2, PNK, Pola pl80, Pola p70, Pola Sppl(Prim2a), Polb, Pold pl25, Pole Dpb3, Pole Dpb4, Pole Pol2, Poli, Poll, Polm, Psfl, Psf2, Psf3, Radl, Radl8, Rad23A, Rad23B, Rad51, Rad51D, Rad54, Rad6A, RPA34, RPA70, Sccl, Scc3, Sir2, SIRT1 (Sirtuin), TDG, TDP1, TIMELESS, Tin2, Topoisom erase I, Topoisomerase Ilia, Topoisomerase Illb, Ubcl3, UNG, XAB2, XPC, XPF, XPG, Xrcc2, and XRCC4.
Since the gene names described in the present specification are names which are widely and generally known, those skilled in the art are able to suitably acquire data on the nucleotide sequences of said genes from a public reference database or gene database (e.g., GenBank) based on the gene name.
B. Methods
In some embodiments, the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a eukaryotic or non- eukaryotic cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell an improved and modified non- naturally occurring CRISPR-Cas system previously described in WO2015/195621 (herein incorporated by reference in its entirety). Such improvements comprise a non-naturally occurring nuclease system (e.g., CRISPR-Cas9) comprising one or more vectors comprising: a) a promoter (e.g., orthogolous HI promoter or 7sk) operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease (e.g., modified Cas9 protein), wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule to alter expression of the one or more gene products. In some embodiments, the system is packaged into a single adeno-associated virus (AAV) particle. In some embodiments, the system inactivates one or more gene products. In some embodiments, the system excises at least one gene mutation. In some embodiments, the HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32. In some embodiments, the orthologous HI promoter is derived from mouse or rat. In some embodiments, the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84- 119. In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119. In some embodiments, the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome- targeted nuclease. In some embodiments, the promoter is the human, mouse, or rat 7sk promoter. In some embodiments, the 7sk is selected from the group consisting of 7skl (variant 1 of 7sk which uses the endogenous GSTA4 5'UTR), 7sk2 (variant 2 of 7sk which uses just a kozak sequence in the 5'UTR), and 7sk3 (variant of 7sk which uses the beta globin 5'UTR). In some embodiments, the human 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 3. In some embodiments, the mouse 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6. In some embodiments, the human 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 4. In some embodiments, the mouse 7sk2 comprises a nucleotide sequence having at least 80%>, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7. In some embodiments, the human 7sk3 comprises a nucleotide sequence having at least 80%>, 85%>, 90%, 95%, 98%>, 99%), or 100%) identity to SEQ ID NO: 5. In some embodiments, the mouse 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 8. In some embodiments, the orthologous HI promoter or 7sk promoter has at least one modification. In some embodiments, the at least one modification of the promoter comprises an element that allows conditional regulation. In some embodiments, the element is a tet-responsive promoter. In some embodiments, the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter. In some embodiments, the TetR comprises an amino acid sequence having at least 80%>, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14. In some embodiments, the TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 11. In some embodiments, the HI -TetO comprises a nucleotide sequence having at least 80%>, 85%>, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 13. In some embodiments, the at least one modification of the promoter comprises a site that allows auto-regulation. In some embodiments, the auto-regulation site comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34. In some embodiments, the nuclease system further comprising at least one terminator sequence. In some
embodiments, the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences. In some embodiments, the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence. In some embodiments, the terminator sequences is a SPA 49 base pair equence. In some embodiments, the nuclease system further comprises 5' untranslated region (5'UTR) sequences. In some embodiments, the nuclease system further comprises a Kozak sequence. In some embodiments, the Kozak sequence comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 1 or 2. In some embodiments, the nuclease system further comprises a RNA sequence that mediates cap-independent initiation of translation. In some embodiments, the RNA sequence is selected from the group consisting of 6.947 or 6.967. In some embodiments, the Cas9 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 61. In some embodiments, the Cas9 comprises at least one modification. In some embodiments, the at least one modification in the Cas9 comprises an alteration in the cleaving sequence. In some embodiments, the nuclease is seleted from the group consisting of Casl, CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl 2), CaslO, Casl 3a, Csyl , Csy2, Csy3, Csel, Cse2, Cscl, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4,
Csm5, Csm6, Cmri, Cmr3, Cmr4, CrnrS, Cmr6, Csbl , Csb2, Csb3, Csxl 7, Csxl4, CsxlO, Csxl 6, CsaX, Csx3, Csxl , CsxI S, Csfl , Csf2, Csf3, Csf4, Cpfl, C2cl, C2c2, and C2c3. In some embodiments, the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A. In some embodiments, the T2A comprises an amino acid sequence, having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 36. In some embodiments, the P2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 35. In some
embodiments, the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35. In some embodiments, the E2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 37. In some embodiments, the F2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 38. In some
embodiments, the at least one modification in the Cas9 comprises a codon optimized for expression in the cell. In some embodiments, the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion). In some embodiments, the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 (NDC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, NBS1, NEIL2, NEIL3, NTH1, Orel, Orc3, PARPl, PCNA, Pifl, PMS1, PMS2, PNK, Pola pl80, Pola p70, Pola Sppl (Prim2a), Polb, Pold pl25, Pole Dpb3, Pole Dpb4, Pole Pol2, Poli, Poll, Polm, Psfl, Psf2, Psf3, Radl, Radl8, Rad23A, Rad23B, Rad51, Rad51D, Rad54, Rad6A, RPA34, RPA70, Sccl, Scc3, Sir2, SIRTl (Sirtuin), TDG, TDPl, TIMELESS, Tin2, Topoisomerase I, Topoisomerase Ilia, Topoisomerase Illb, Ubcl3, UNG, XAB2, XPC, XPF, XPG, Xrcc2, and XRCC4. In some embodiments, the cell cycle-dependent protein is Geminin. In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)). In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amimo acid sequence set forth in SEQ ID NO: 19. In some embodiments, the cell cycle-dependent protein is Cdtl . In some embodiments, the cell cycle-dependent protein is human Cdtl . In some embodiments, the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)). In some embodiments, the hCdtl(30-120) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence set forth in SEQ ID NO: 18. In some embodiments, the Cas9 fusion comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27. In some embodiments, the Cas9 is operably fused in frame to a ubiquitin protein (Ub-Cas9). In some
embodiments, the Ub-Cas9 at least one N-terminal modification. In some embodiments, the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58. In some embodiments, the ubiquitin protein comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 60. In some embodiments, the nuclease system further comprises a SaCas9 nickase. In some embodiments, the nuclease system further comprises a donor template sequence. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67. In some embodiments, the donor template sequence corrects at least one gene mutation. In some embodiments, the at least one gene mutation is rdlO or rdl2. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66. In some embodiments, the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA. In some
embodiments, the target sequence comprises the nucleotide sequence AN19NGG,
GN19NGG, CN19NGG, or TN19NGG. In some embodiments, the cell is a eukaryotic or or non-eukaryotic cell. In some embodiments, the eukaryotic cell is a mammalian or human cell. In some embodiments, the eukaryotic cell is a retinal photoreceptor cell. In some embodiments, the one or more gene products are rhodopsin. In some embodiments, the expression of the one or more gene products is decreased. In some embodiments, the system inactivates one or more gene products. In some embodiments, the nuclease system excises at least one gene mutation. In some embodiments, the expression of the one or more gene products is decreased. In some embodiments, the cell is a retinal ganglion cell. In some embodiments, the eukaryotic cell is a cancerous cell. In some embodiments, cell proliferation is inhibited or reduced in the cancerous cell. In some embodiments, the apoptosis is enhanced or increased in the cancerous cell.
In some embodiments, the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of the DNA molecule; and b) a regulatory element operable in the cell operably linked to a nucleotide sequence encoding a Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule to alter expression of the one or more gene products.
In some embodiments, the presently disclosed subject matter also provides a method of altering expression of one or more gene products in a eukaryotic cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring CRISPR-Cas system comprising one or more vectors comprising: a) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of the DNA molecule; and b) a regulatory element operable in the eukaryotic cell operably linked to a nucleotide sequence encoding a Type-II Cas9 protein, wherein components (a) and (b) are located on the same or different vectors of the system, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered. In one aspect, the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence GN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence CN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence TN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG. In another aspect, the Cas9 protein is codon optimized for expression in the cell. In yet another aspect, the Cas9 protein is codon optimized for expression in the eukaryotic cell. In a further aspect, the eukaryotic cell is a mammalian or human cell. In another aspect, the expression of the one or more gene products is decreased.
The presently disclosed subject matter also provides a method of altering expression of one or more gene products in a eukaryotic cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring CRISPR-Cas system comprising a vector comprising a bidirectional HI promoter, wherein the bidirectional HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of the DNA molecule; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a Type-II Cas9 protein, whereby the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule, and whereby expression of the one or more gene products is altered. In one aspect, the target sequence can be a target sequence that starts with any nucleotide, for example, N20NGG. In some embodiments, the target sequence comprises the nucleotide sequence AN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence GN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence CN19NGG. In some embodiments, the target sequence comprises the nucleotide sequence TN19NGG. In another aspect, the target sequence comprises the nucleotide sequence AN19NGG or GN19NGG. In another aspect, the Cas9 protein is codon optimized for expression in the cell. In yet another aspect, the Cas9 protein is codon optimized for expression in the eukaryotic cell. In a further aspect, the eukaryotic cell is a mammalian or human cell. In another aspect, the expression of the one or more gene products is decreased.
In some aspects, the presently disclosed subject matter provides methods comprising delivering one or more polynucleotides, such as or one or more vectors as described herein, one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell. In some aspects, the presently disclosed subject matter further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells. In some embodiments, a CRISPR enzyme in combination with (and optionally complexed with) a guide sequence is delivered to a cell. Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding components of a CRISPR system to cells in culture, or in a host organism. Non-viral vector delivery systems include DNA plasmids, RNA (e.g. a transcript of a vector described herein), naked nucleic acid, and nucleic acid complexed with, a delivery vehicle, such as a liposome. Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell For a review of gene therapy procedures, see Anderson ( 1992) Science 256:808-813; Nabel and Feigner (1993) TIBTECH 11 :2\ 1-217; Mitani and Caskey (1993) TIBTECH 11 : 162-166; Dillon (1993) TIBTECH 1 1 : 167-175; Miller (1992) Nature 357:455-460; Van Brunt (1998) Biotechnology 6(10): 1149-1154; Vigne (1995) Restorative Neurology and Neuroscience 8:35-36; Kremer and Perricaudet ( 1995) British Medical Bulletin 51 (1):31-44; Haddada et al. (1995) Current Topics in Microbiology and Immunology. Doerfler and Bohrn (eds), and Yu et al. (1994) Gene Therapy 1 : 13 -26.
Methods of non-viral delivery of nucleic acids include lipofection, nucleofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, poly cation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Lipofection is described in e.g., U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355) and lipofection reagents are sold commercially (e.g., Transfectam™ and Lipofectin™). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Feigner, WO 91/17424; WO 91/16024. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration).
The preparation of lipid:nucleic acid complexes, including targeted liposomes such as imm nolipid complexes, is well known to one of skill in the art (e.g., Crystal (1995) Science 270:404-410; Blaese et al. (1995) Cancer Gene Ther. 2:291 297: Behr et al. (1994) Bioconjugate Chem. 5:382-389; Remy et al. (1994) Bioconjugate Chem. 5:647-654; Gao et al. (1995) Gene Therapy 2:710-722; Ahmad et al. (1992) Cancer Res. 52:4817-4820; U.S. Pat. Nos. 4, 186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).
The use of RNA or DNA viral based systems for the delivery of nucleic acids take advantage of highly evolved processes for targeting a virus to specific ceils in the body and trafficking the viral payload to the nucleus. Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro, and the modified cells may optionally be administered to patients (ex vivo). Conventional viral based systems could include retroviral, lentivims, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivims, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis- acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target ceil to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency vims (HIV), and combinations thereof (e.g., Buchscher et ai. (1992) J. Virol 66:2731-2739, Johann et al. (1992) J. Virol 66: 1635-1640; Sommnerfelt et al. (1990) J, Virol 176:58-59; Wilson et ai. (1989) J. Virol 63 :2374-2378; Miller et al. (1991) J. Virol 65:2220-2224; PCT/U 894/05700). In applications where transient expression is preferred, adenoviral based systems may be used. Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system . Adeno-associated virus ("AAV") vectors may also be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (e.g., West et al. (1987) Virology 160:38-47; U.S. Pat. No. 4,797,368; WO 93/24641; Kotin (1994) Human Gene Therapy 5:793-801; Muzyczka (1994) J, ( 7/7/ Invest. 94: 1351. Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No. 5, 173,414; Tratschin et al. (1985) MoL Cell. Biol 5:3251 -3260; Tratschin et al . (1984) o/. Cell Biol. 4:2072-2081; Hermonat and
Muzyczka (1984) Proc. Natl. Acad. Sci. U.S.A . 81 :6466-6470; and Samulski et al. ( 1989) J. Virol. 63 :03822-3828.
Packaging cells are typically used to form virus particles that are capable of infecting a host ceil. Such cells include 293 cells, which package adenovims, and ψ2 cells or PA317 cells, which package retrovirus. Viral vectors used in gene therapy are usually generated by producing a cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the polynucleotide(s) to be expressed. The missing viral functions are typically supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences. The cell line may also be infected with adenovirus as a helper. The helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV. Additional methods for the delivery of nucleic acids to cells are known to those skilled in the art. See, for example,
US20030087817, incorporated herein by reference.
In some embodiments, a host cell is transiently or non-transiently transfected with one or more vectors described herein. In some embodiments, a cell is transfected as it naturally occurs in a subject. In some embodiments, a cell that is transfected is taken from a subject. In some embodiments, the cell is derived from cells taken from a subject, such as a cell line. A wide variety of cell lines for tissue culture are known in the art. Examples of cell lines include, but are not limited to, C8161, CCRF-CEM, MOLT, mIMCD-3, NHDF, HeLa-83, Huhl, Huh4, Huh7, HIJVEC, HASMC, HEKn, HEKa, MiaPaCell, Panel, PC-3, TF1, CTLL-2, C1R, Rat6, CVI, RPTE, AIO, T24, J82, A375, ARH-77, Calul, SW480, SW620, SKOV3, SK-UT, CaCo2, P388D1, SEM-K2, WEHI-231 , HB56, TIBS 5, Jurkat, J45.Q1, LRMB, Bcl-1, BC-3, IC21, DLD2, Raw264.7, NRK, NRK-52E, MRC5, MEF, Hep G2, HeLa B, HeLa T4, COS, COS-1 , COS-6, COS-M6A, BS-C-1 monkey kidney epithelial, BALB/3T3 mouse embryo fibroblast, 3T3 Swiss, 3T3-L1, 132-d5 human fetal fibroblasts; 10.1 mouse fibroblasts, 293 -T, 3T3, 721 , 9L, A2780, A2780ADR, A2780cis, A172, A20, A253, A431, A-549, ALC, B16, B35, BCP-1 cells, BEAS-2B, bEnd.3, BHK- 21, BR 293, BxPC3, C3H-10T1/2, C6/36, Cal-27, CHO, CHO-7, CHO-IR, CHO-K1 , CHO- K2, CHO-T, CHO Dhfr -7-, COR-L23, COR-L23/CPR, COR-L23/5010, COR-L23/R23, COS-7, COV-434, CML Tl, CMT, CT26, D17, DH82, DUI45, DuCaP, EL4, EM2, EM3, EMT6/AR1, EMT6/AR10.0, FM3, H1299, H69, HB54, HB55, HCA2, HEK-293, HeLa, Hepalclc7, HL-60, HMEC, HT-29, Jurkat, JY cells, K562 cells, Ku812, KCL22, KG1,
KYO , LNCap, Ma-Mel 1 -48, MC-38, MCF-7, MCF-IOA, MDA-MB-231 , MDA-MB-468, MDA-MB-435, MDCK II, MDCK II, MOR/0.2R, MONO-MAC 6, MTD-1A, MyEnd, NCI-H69/CPR, NCLH69/LX 0, NCI-H69/LX20, NCI-H69/LX4, NIH-3T3, NALM-1 , NW- 1 5, OPCN/OPCT cell lines, Peer, PNT-IA/PNT 2, RenCa, RTN-5F, RMA/RMAS, Saos-2 ceils, Sf-9, SkBr3, T2, T-47D, T84, THP1 cell line, U373, U87, U937, VCaP, Vero cells, VVM39, WT-49, X63, YAC-1 , YAR, and transgenic varieties thereof. Cell lines are available from a variety of sources known to those with skill in the art (see, e.g., the American Type Culture Collection (ATCC) (Manassus, Va.)). In some embodiments, a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences. In some embodiments, a ceil transiently transfected with the components of a CRISPR system as described herein (such as by transient transfection of one or more vectors, or transfection with RNA), and modified through the activity of a CRISPR complex, is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence. In some embodiments, cells transiently or non-transiently transfected with one or more vectors described herein, or cell lines derived from such cells are used in assessing one or more test compounds.
In some embodiments, one or more vectors described herein are used to produce a non-human transgenic animal. In some embodiments, the transgenic animal is a mammal, such as a mouse, rat, or rabbit. In certain embodiments, the organism or subject is a plant. Methods for producing transgenic animals are known in the art, and generally begin with a method of ceil transfection, such as described herein.
In one aspect, the presently disclosed subject matter provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro. In some embodiments, the method comprises sampling a cell or population of cells from a human or non-human animal, and modifying the cell or cells. Culturing may occur at any stage ex vivo. The cell or cells may even be re-introduced into the non-human animal .
In one aspect, the presently disclosed subject matter provides for methods of modifying a target polynucleotide in a eukaryotic cell. In some embodiments, the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of the target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme compiexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
In one aspect, the presently disclosed subject matter provides a method of modifying expression of a polynucleotide in a eukaryotic cell. In some embodiments, the method comprises allowing a CRISPR complex to bind to the polynucleotide such that the binding results in increased or decreased expression of the polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme compiexed with a guide sequence hybridized to a target sequence within the polynucleotide. In one aspect, the presently disclosed subject matter provides methods for using one or more elements of a CRISPR system. The CRJSPR complex of the presently disclosed subject matter provides an effective means for modifying a target polynucleotide. The CRISPR complex of the presently disclosed subject matter has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types. As such the CRISPR complex of the presently disclosed subject matter has a broad spectrum of applications in, e.g., gene therapy, drug screening, disease diagnosis, and prognosis. An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
The target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell. For example, the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell. The target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA). Without wishing to be bound by theory, it is believed that the target sequence should be associated with a PAM
(protospacer adjacent motif); that is, a short sequence recognized by the CRISPR complex. The precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence). Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme.
Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or
polynucleotide. Examples of target polynucleotides include a disease associated gene or polynucleotide. A "disease-associated" gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or ceils of a non disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. A disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease. The transcribed or translated products may be known or unknown, and mav be at a normal or abnormal level.
Embodiments of the presently disclosed subject matter also relate to methods and compositions related to knocking out genes, amplifying genes and repairing particular mutations associated with DNA repeat instability and neurological disorders (Robert D. Wells, Tetsuo Ashizawa, Genetic Instabilities and Neurological Diseases, Second Edition, Academic Press, Oct. 13, 2011 -Medical). Specific aspects of tandem repeat sequences have been found to be responsible for more than twenty human diseases (Mclvor et al. (2010) RNA Biol 7(5):551-8). The CRISPR-Cas system may be harnessed to correct these defects of genomic instability.
In yet another aspect of the presently disclosed subject matter, the CRISPR-Cas system may be used to correct ocular defects that arise from several genetic mutations further described in Traboulsi, ed. (2012) Genetic Diseases of the Eye, Second Edition, Oxford University Press.
Several further aspects of the presently disclosed subject matter relate to correcting defects associated with a wide range of genetic diseases. For example, genetic brain diseases may include but are not limited to Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Aicardi Syndrome, Alpers' Disease. Alzheimer's Disease, Barth Syndrome, Batten Disease, CADASIL, Cerebellar Degeneration, Fabry's Disease, Gerstmann- Straussler-Scheinker Disease, Huntington's Disease and other Triplet Repeat Disorders,
Leigh's Disease, Lesch-Nyhan Syndrome, Menkes Disease, Mitochondrial Myopathies and NINDS Colpocephaly.
In some embodiments, the condition may be neoplasia. In some embodiments, the condition may be Age-related Macular Degeneration. In some embodiments, the condition may be a Schizophrenic Disorder. In some embodiments, the condition may be a
Trinucleotide Repeat Disorder. In some embodiments, the condition may be Fragile X Syndrome. In some embodiments, the condition may be a Secretase Related Disorder. In some embodiments, the condition may be a Prion—elated disorder. In some embodiments, the condition may be ALS. In some embodiments, the condition may be a drug addiction. In some embodiments, the condition may be Autism. In some embodiments, the condition may be Alzheimer's Disease. In some embodiments, the condition may be inflammation. In some
embodiments, the condition may be Parkinson's Disease. Examples of proteins associated with Parkinson's disease include but are not limited to a-synuclein, DJ-1, LRRK2, PINK1, Parkin, UCHL1, Synphilin-1, and MRR ! .
Examples of addiction-related proteins may include ABAT for example.
Examples of inflammation-related proteins may include the monocyte
chemoattractant protein- 1 (MCP1) encoded by the Ccr2 gene, the C— C chemokine receptor type 5 (CCR5) encoded by the Ccr5 gene, the IgG receptor KB (FCGR2b, also termed CD32) encoded by the Fcgr2b gene, or the Fc epsilon Rig (FCERlg) protein encoded by the Fcerlg gene, for example.
Examples of cardiovascular disease associated proteins may include IE IB
(interieukin 1, beta), XDH (xanthine dehydrogenase), TP53 (tumor protein p53), PTGIS (prostaglandin 12 (prostacyclin) synthase), MB (myoglobin), IL4 (interieukin 4), ANGPT1 (angiopoietin 1 ), ABCG8 (ATP -binding cassette, sub-family G (WHITE), member 8), or CTSK (cathepsin K), for example.
Examples of Alzheimer's disease associated proteins may include the very low density lipoprotein receptor protein (VLDLR.) encoded by the VLDLR gene, the ubiquitin- like modifier activating enzyme 1 (UBA1) encoded by the UBA1 gene, or the NEDD8- activating enzyme El catalytic subunit protein (UBEIC) encoded by the IJBA3 gene, for example.
Examples of proteins associated Autism Spectrum Disorder may include the benzodiazapine receptor (peripheral ) associated protein 1 (BZRAP1) encoded by the BZRA 1 gene, the AF4/FMR2 family member 2 protein (AFF2) encoded by the AFF2 gene (also termed MFR2), the fragile X mental retardation autosomal homolog 1 protein (FXRl) encoded by the FXRl gene, or the fragile X mental retardation autosomal homolog 2 protein (FXR2) encoded by the FXR2 gene, for example.
Examples of proteins associated Macular Degeneration may include the ATP- binding cassette, sub-family A (ABC1 ) member 4 protein (ABCA4) encoded by the ABCR gene, the apolipoprotein E protein (APOE) encoded by the APOE gene, or the chemokine (C—€ motif) Ligand 2 protein (CCL2) encoded by the CCL2 gene, for example.
Examples of proteins associated Schizophrenia may include NRG1, ErbB4, CPLX1, TPH1, TPH2, RXN1, GSK3A, BD F, DISC 1, GSK3B, and combinations thereof.
Examples of proteins involved in tumor suppression may include ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3 related), EGFR (epidermal growth factor receptor), ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2), ERBB3 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 3), ERBB4 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 4), Notch 1 , Notch2, Notch 3, or Notch 4, for example.
Examples of proteins associated with a secretase disorder may include PSENEN
(presenilin enhancer 2 homolog (C. elegans)), CTSB (cathepsin B), PSEN1 (presenilin 1), APP (amyloid beta (A4) precursor protein), APHIB (anterior pharynx defective 1 homolog B (C elegans}}, PSEN2 (presenilin 2 (Alzheimer disease 4)), or BACE1 (beta-site APP- cleaving enzyme 1), for example.
Examples of proteins associated with Amyotrophic Lateral Sclerosis may include
SOD1 (superoxide dismutase 1), ALS2 (amyotrophic lateral sclerosis 2), FUS (fused in sarcoma), TARDBP (TAR DNA binding protein), VAGFA (vascular endothelial growth factor A), VAGFB (vascular endothelial growth factor B), and VAGFC (vascular endothelial growth factor C), and any combination thereof.
Examples of proteins associated with prion diseases may include SODI (superoxide dismutase 1), ALS2 (amyotrophic lateral sclerosis 2), FUS (fused in sarcoma), TARDBP (TAR DNA binding protein), VAGFA (vascular endothelial growth factor A), VAGFB (vascular endothelial growth factor B), and VAGFC (vascular endothelial growth factor C), and any combination thereof.
Examples of proteins related to neurodegenerative conditions in prion disorders may include A2M (Alpha~2 -Microglobulin), AATF (Apoptosis antagonizing transcription factor), ACPP (Acid phosphatase prostate), ACTA2 (Actin alpha 2 smooth muscle aorta), ADAM22 (ADAM metaliopeptidase domain), ADORA3 (Adenosine A3 receptor), or ADRA1D (Alpha-I D adrenergic receptor for Alpha-ID adrenoreceptor), for example.
Examples of proteins associated with immunodeficiency may include A2M [alpha-
2~macroglobulin], AANAT [arylalkylamine N-acetyltransf erase]; ABCA1 [ATP -binding cassette, sub-family A (ABCl ), member 1]; ABCA2 [ATP -binding cassette, sub-family A (ABC ), member 2]; or ABC A3 [ATP-binding cassette, sub-family A. (ABCl), member 3], for example.
Examples of proteins associated with Trinucleotide Repeat Disorders include AR
(androgen receptor), FMR1 (fragile X mental retardation 1 ), HTT (huntingtin), or DMPK (dystrophia myotonica-protein kinase), FXN (frataxin), ATXN2 (ataxin 2). for example. Examples of proteins associated with Neurotransmission Disorders include SST (somatostatin), NO SI (nitric oxide synthase 1 (neuronal)), ADRA2A (adrenergic, aipha- 2A-, receptor), ADRA2C (adrenergic, alpha~2C-, receptor), TACR1 (tachykinin receptor 1), or HTR2c (5-hydroxytryptamine (serotonin) receptor 2C), for example.
Examples of neurodevelopmental-associated sequences include A2BP1 (ataxin 2- binding protein 1 ), AADAT (ami noadi ate aminotransferase), AANAT (arylalkylamine N- acetyitransferase), ABAT (4-aminobutyrate aminotransferase), ABCA1 (ATP -binding cassette, sub-family A (ABCl ), member 1), or ABCA13 (ATP-binding cassette, sub-family A (ABCl), member 13), for example.
Further examples of preferred conditions treatable with the present system include may be selected from: Aicardi-Goutieres Syndrome; Alexander Disease; Allan-Herndon- Dudley Syndrome, POLG-Related Disorders; Aipha-Mannosidosis (Type II and III);
Al strom Syndrome; Angelman; Syndrome; Ataxia-Telangiectasia; Neuronal Ceroid- Lipofuscinoses; Beta-Thalassemia; Bilateral Optic Atrophy and (Infantile) Optic Atrophy Type 1 ; Retinoblastoma (bilateral), Canavan Disease; Cerebrooculofacsoskeletal Syndrome
I (COFSl); Cerebrotendinous Xanthomatosis; Cornelia de Lange Syndrome; MAPT- Related Disorders; Genetic Prion Diseases; Dravet Syndrome, Early-Onset Familial Alzheimer Disease; Friedreich Ataxia [FRDA]; Fryns Syndrome; Fucosidosis; Fukuyama Congenital Muscular Dystrophy; Gaiactosialidosis; Gaucher Disease; Organic Acidemias; Hemophagocytic Lymphohistiocytosis; Hutchinson-Gilford Progeria Syndrome;
Mucolipidosis II; Infantile Free Sialic Acid Storage Disease; PLA2G6-Associated
Neurodegeneration; Jervell and Lange-Nielsen Syndrome; Junctional Epidermolysis Bullosa; Huntington Disease; Krabbe Disease (Infantile); Mitochondrial DN A- Associated Leigh Syndrome and NARP; Lesch-Nyhan Syndrome; LIS I -Associated Lissencephaly; Lowe Syndrome; Maple Syrup Urine Disease; MECP2 Duplication Syndrome; ATP7A- Related Copper Transport Disorders, LAMA2-Related Muscular Dystrophy; Arylsulfatase A Deficiency; Mucopolysaccharidosis Types I, II or III; Peroxisome Biogenesis Disorders, Zellweger Syndrome Spectrum; Neurodegeneration with Brain Iron Accumulation
Disorders; Acid Sphingomyelinase Deficiency; Niemann-Pick Disease Type C; Glycine Encephalopathy; ARX-Related Disorders; Urea Cycle Disorders; COL1A 1/2-Related Osteogenesis Imperfecta; Mitochondrial DN A Deletion Syndromes; PLP1 -Related
Disorders; Perry Syndrome; Phelan-McDermid Syndrome; Glycogen Storage Disease Type
II (Pompe Disease) (Infantile); ΜΑΡΪ-Related Disorders; MECP2-Related Disorders; Rhizomelic Chondrodysplasia Punctata Type 1; Roberts Syndrome; Sandhoff Disease; Schindler Disease— Type 1; Adenosine Deaminase Deficiency; Smith-Lemli-Opitz
Syndrome, Spinal Muscular Atrophy, Infantile-Onset Spinocerebellar Ataxia;
Hexosaminidase A Deficiency; Thanatophoric Dysplasia Type 1; Collagen Type VI- Related Disorders; Usher Syndrome Type I; Congenital Muscular Dystrophy; Wolf-
Hirschhora Syndrome; Lysosomal Acid Lipase Deficiency; and Xeroderma Pigmentosum.
II. METHODS FOR TREATING NEURODEGENERATIVE DISEASES
The presently disclosed subject matter also provides methods for treating a disease selected from the group consisting of retinal dystrophy, corneal dystrophy, microsatellite expansion diseases, cancer, and neurodegenerative diseases in a subject in need thereof, the method comprising: (a) providing a non-naturally occurring nuclease system (e.g., CRISPR associated (Cas) 9 (CRISPR-Cas9, non-Cas9 CRISPR systems, CRISPR-Cpf-1 system, and the like) comprising one or more vectors comprising: a) a promoter (e.g., orthogolous HI promoter or 7sk) operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease (e.g., modified Cas9 protein), wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule to alter expression of the one or more gene products; and (b) administering to the subject an effective amount of the system. In some embodiments, the system is packaged into a single adeno-associated virus (AAV) particle. In some embodiments, the system inactivates one or more gene products. In some embodiments, the system excises at least one gene mutation. In some embodiments, the HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32. In some
embodiments, the orthologous HI promoter is derived from mouse or rat. In some embodiments, the orthologous HI promoter comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NOs: 84-119. In some embodiments, the orthologous HI promoter comprises a nucleotide sequences set forth in the group consisting of SEQ ID NOs: 84-119. In some embodiments, the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease. In some embodiments, the promoter is the human, mouse, or rat 7sk promoter. In some embodiments, the 7sk is selected from the group consisting of 7skl (variant 1 of 7sk which uses the endogenous GSTA4 5'UTR), 7sk2 (variant 2 of 7sk which uses just a kozak sequence in the 5'UTR), and 7sk3 (variant of 7sk which uses the beta globin 5'UTR). In some embodiments, the human 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 3. In some embodiments, the mouse 7skl comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6. In some embodiments, the human 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 4. In some embodiments, the mouse 7sk2 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7. In some embodiments, the human 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 5. In some embodiments, the mouse 7sk3 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 8. In some embodiments, the orthologous HI promoter or 7sk promoter has at least one modification. In some embodiments, the at least one modification of the promoter comprises an element that allows conditional regulation. In some embodiments, the element is a tet-responsive promoter. In some embodiments, the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter. In some embodiments, the TetR comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14. In some embodiments, the TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 11. In some embodiments, the Hl-TetO comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 13. In some embodiments, the at least one modification of the promoter comprises a site that allows auto-regulation. In some embodiments, the auto-regulation site comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34. In some embodiments, the nuclease system further comprising at least one terminator sequence. In some embodiments, the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences. In some embodiments, the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence. In some embodiments, the terminator sequences is a SPA 49 base pair equence. In some embodiments, the nuclease system further comprises 5' untranslated region (5'UTR) sequences. In some embodiments, the nuclease system further comprises a Kozak sequence. In some embodiments, the Kozak sequence comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 1 or 2. In some embodiments, the nuclease system further comprises a RNA sequence that mediates cap-independent initiation of translation. In some embodiments, the RNA sequence is selected from the group consisting of 6.947 or 6.967. In some embodiments, the Cas9 comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 61. In some embodiments, the Cas9 comprises at least one modification. In some embodiments, the at least one modification in the Cas9 comprises an alteration in the cleaving sequence. In some embodiments, the nuclease is seleted from the group consisting of Casl , CaslB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csxl2), CaslO, Casl 3a, Csy l , Csy2, Csy3, Csel, Cse2, Csc , Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmrl, Cmr3, Cmr4, Cmr5, Cmr6, Csbl, Csb2, Csb3, Csxl7, Csxl4, CsxlO, Csxl 6, CsaX, Csx3, Csxl , Csxl S, Csfl , Csf2, Csf3, Csf4, Cpfl, C2cl, C2c2, and C2c3. In some embodiments, the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A. In some embodiments, the T2A comprises an amino acid sequence, having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 36. In some embodiments, the P2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 35. In some
embodiments, the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35. In some embodiments, the E2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 37. In some embodiments, the F2A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100%) identity to the nucleotide sequence set forth in SEQ ID NO: 38. In some embodiments, the at least one modification in the Cas9 comprises a codon optimized for expression in the cell. In some embodiments, the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion). In some embodiments, the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl, Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 ( DC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, Mem 10, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, BS1, NEIL2, EIL3, NTH1, Orel, Orc3, PARPl, PCNA, Pifl, PMS1, PMS2, P K, Pola pl80, Pola p70, Pola Sppl (Prim2a), Polb, Pold pl25, Pole Dpb3, Pole Dpb4, Pole Pol2, Poli, Poll, Polm, Psfl, Psf2, Psf3, Radl, Radl8, Rad23A, Rad23B, Rad51, Rad51D, Rad54, Rad6A, RPA34, RPA70, Sccl, Scc3, Sir2, SIRTl (Sirtuin), TDG, TDPl, TIMELESS, Tin2, Topoisomerase I, Topoisomerase Ilia, Topoisomerase Illb, Ubcl3, UNG, XAB2, XPC, XPF, XPG, Xrcc2, and XRCC4. In some embodiments, the cell cycle-dependent protein is Geminin. In some embodiments, the cell cycle-dependent protein is human Geminin. In some embodiments, the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)). In some embodiments, the hGem(l-l 10) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amimo acid sequence set forth in SEQ ID NO: 19. In some embodiments, the cell cycle-dependent protein is Cdtl . In some embodiments, the cell cycle-dependent protein is human Cdtl . In some embodiments, the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)). In some embodiments, the hCdtl(30-120) comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence set forth in SEQ ID NO: 18. In some embodiments, the Cas9 fusion comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27. In some embodiments, the Cas9 is operably fused in frame to a ubiquitin protein (Ub-Cas9). In some
embodiments, the Ub-Cas9 at least one N-terminal modification. In some embodiments, the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58. In some embodiments, the ubiquitin protein comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 60. In some embodiments, the nuclease system further comprises a SaCas9 nickase. In some embodiments, the nuclease system further comprises a donor template sequence. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67. In some embodiments, the donor template sequence corrects at least one gene mutation. In some embodiments, the at least one gene mutation is rdlO or rdl2. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64. In some embodiments, the at least one vector comprises a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66. In some embodiments, the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA. In some
embodiments, the target sequence comprises the nucleotide sequence AN19NGG,
GN19NGG, CN19NGG, or TN19NGG. In some embodiments, the cell is a eukaryotic or or non-eukaryotic cell. In some embodiments, the eukaryotic cell is a mammalian or human cell. In some embodiments, the eukaryotic cell is a retinal photoreceptor cell. In some embodiments, the one or more gene products are rhodopsin. In some embodiments, the expression of the one or more gene products is decreased. In some embodiments, the system inactivates one or more gene products. In some embodiments, the nuclease system excises at least one gene mutation. In some embodiments, the expression of the one or more gene products is decreased. In some embodiments, the cell is a retinal ganglion cell. In some embodiments, the eukaryotic cell is a cancerous cell. In some embodiments, cell proliferation is inhibited or reduced in the cancerous cell. In some embodiments, the apoptosis is enhanced or increased in the cancerous cell. In some embodiments, the disease is corneal dystrophy. In some embodiments, the disease is a retinal dystrophy. In some embodiments, the retinal dystrophy is selected from the group consisting of Leber's congenital amaurosis (LCA), retinitis pigmentosa (RP), and glaucoma. In some
embodiments, the corneal dystrophy is selected from the group consisting of Epithelial Basement Membrane Dystrophy, Epithelial Recurrent Erosion Dystrophies, Subepithelial Mucinous Corneal Dystrophy, Meesmann Corneal Dystrophy, Lisch Epithelial Corneal Dystrophy, Gelatinous Drop-like Corneal Dystrophy, Reis-Bucklers Corneal Dystrophy, Thiel-Behnke Corneal Dystrophy, Lattice Corneal Dystrophy, Type 1 (Classic), Lattice Corneal Dystrophy, Type 2, Lattice Corneal Dystrophy, Type III, Lattice Corneal Dystrophy, Type IIIA, Lattice Corneal Dystrophy, Type I/IIIA, Lattice Corneal Dystrophy, Type IV, Polymorphic (Corneal) Amyloidosis, Granular Corneal Dystrophy, Type 1, Granular Corneal Dystrophy, Type 2, Macular Corneal Dystrophy, Schnyder Corneal Dystrophy, Congenital Stromal Corneal Dystrophy, Fleck Corneal Dystrophy, Posterior Amorphous Corneal Dystrophy, Central Cloudy Dystrophy of Francois, Pre-Descemet
Corneal Dystrophy, Fuchs Endothelial Corneal Dystrophy, Posterior Polymorphous Corneal Dystrophy, Congenital Hereditary Endothelial Dystrophy, and X-linked Endothelial Corneal Dystrophy. In some embodiments, the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly, Cleidocranial dysplasia, Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD
(Huntington's disease), Holoprosencephaly, Mental retardation with growth hormone deficiency, Mental retardation, epilepsy, West syndrome, Partington syndrome,
Oculopharyngeal muscular dystrophy, SBMA (Spinal and bulbar muscular atrophy), SCA1 (Spinocerebellar ataxia Type 1), SCA12 (Spinocerebellar ataxia Type 12), SCA17
(Spinocerebellar ataxia Type 17), SCA2 (Spinocerebellar ataxia Type 2), SCA3
(Spinocerebellar ataxia Type 3 or Machado- Joseph disease), SCA6 (Spinocerebellar ataxia Type 6), SCA7 (Spinocerebellar ataxia Type 7), SCA8 (Spinocerebellar ataxia Type 8), and Synpolydactyly. In some embodiments, administering to the subject occurs by implantation, injection, or virally. In some embodiments, administering to the subject occurs by subretinal injection. In some embodiments, administering to the subject occurs topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously, intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, peritumorally, inhalationly, systematically, perfusionly, lavagely, directly via injection, or orally via administration and formulation. In some embodiments, administering to the subject occurs topically to the surface of the eye. In some embodiments, administering to the subject occurs on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids. In some embodiments, the subject is treated with at least one additional anti-cancer agent. In some embodiments, the anti-cancer agent is selected from the group consisting of paclitaxel, cisplatin, topotecan, gemcitabine, bleomycin, etoposide, carboplatin, docetaxel, doxorubicin, topotecan, cyclophosphamide, trabectedin, olaparib, tamoxifen, letrozole, and bevacizumab. In some embodiments, the subject is treated with at least one additional anticancer therapy. In some embodiments, the anti-cancer therapy is radiation therapy, chemotherapy, or surgery. In some embodiments, the cancer is a solid tumor. In some embodiments, the cancer is selected from the group consisting of brain cancer,
gastrointestinal cancer, oral cancer, breast cancer, ovarian cancer, prostate cancer, pancreatic cancer, lung cancer, liver cancer, throat cancer, stomach cancer, and kidney cancer. In some embodiments, the cancer is brain cancer. In some embodiments, the systematic administration is selected from the group consisting of oral, intravenous, intradermal, intraperitoneal, subcutaneous, and intramuscular administration. In some embodiments, the subject is a mammal. In some embodiments, the mammal is human.
In some embodiments, the presently disclosed subject matter provides a method for treating an ocular neurodegenerative disease in a subject in need thereof, the method comprising: (a) providing a non-naturally occurring CRISPR-Cas system comprising one or more vectors comprising: i) an HI promoter operably linked to at least one nucleotide sequence encoding a CRISPR-Cas system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule in a cell of the subject, and wherein the DNA molecule encodes one or more gene products expressed in the cell; and ii) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a Cas9 protein, wherein components (i) and (ii) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the Cas9 protein cleaves the DNA molecule to alter expression of the one or more gene products; and (b) administering to the subject an effective amount of the system.
By "neurodegenerative disease, disorder, or condition" is meant a disease, disorder, or condition (including a neuropathy) associated with degeneration or dysfunction of neurons or other neural cells, such as retinal photoreceptor cells. A neurodegenerative disease, disorder, or condition can be any disease, disorder, or condition in which decreased function or dysfunction of neurons, or loss or neurons or other neural cells, can occur.
Such diseases, disorders, or conditions include, but are not limited to, glaucoma, and neurodegenerative diseases, disorders, or conditions of the nervous systems, such as or associated with amyotrophic lateral sclerosis (ALS), trigeminal neuralgia, glossopharyngeal neuralgia, Bell's Palsy, myasthenia gravis, muscular dystrophy, progressive muscular atrophy, primary lateral sclerosis (PLS), pseudobulbar palsy, progressive bulbar palsy, spinal muscular atrophy, inherited muscular atrophy, invertebrate disk syndromes, cervical spondylosis, plexus disorders, thoracic outlet destruction syndromes, peripheral
neuropathies, prophyria, Alzheimer's disease, Huntington's disease, Parkinson's disease, Parkinson' s-plus diseases, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, frontotemporal dementia, demyelinating diseases, Guillain-Barre syndrome, multiple sclerosis, Charcot-Marie-Tooth disease, prion diseases, Creutzfeldt- Jakob disease, Gerstmann-Straussler-Scheinker syndrome (GSS), fatal familial insomnia (FFI), bovine spongiform encephalopathy (BSE), Pick's disease, epilepsy, and AIDS demential complex.
Other neurodegenerative diseases, disorders, or conditions of the nervous systems, such as or associated with alcoholism, Alexander's disease, Alper's disease, ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjogren-Batten disease), Canavan disease, Cockayne syndrome, diabetic neuropathy, frontotemporal lobar degeneration, HIV-associated dementia, Kennedy's disease, Krabbe's disease,
neuroborreliosis, Machado- Joseph disease (Spinocerebellar ataxia type 3), wet or dry macular degeneration, Niemann Pick disease, Pelizaeus-Merzbacher Disease, photoreceptor degenerative diseases, such as retinitis pigmentosa and associated diseases, Refsum's disease, Sandhoff s disease, Schilder's disease, subacute combined degeneration of spinal cord secondary to pernicious anemia, Spielmeyer-Vogt- Sjogren-Batten disease (also known as Batten disease), spinocerebellar ataxia (multiple types with varying
characteristics), Steele-Richardson-Olszewski disease, and tabes dorsalis.
Examples of ocular-related neurodegeneration include, but are not limited to, glaucoma, lattice dystrophy, retinitis pigmentosa, age-related macular degeneration (AMD), photoreceptor degeneration associated with wet or dry AMD, other retinal degeneration such as retinitis pigmentosa (RP), optic nerve drusen, optic neuropathy, and optic neuritis, such as optic neuritis resulting from multiple sclerosis. In some embodiments, the ocular neurodegenerative disease is selected from the group consisting of glaucoma, retinal degeneration, and age-related macular degeneration. In some embodiments, the ocular neurodegenerative disease is retinitis pigmentosa (RP).
Non-limiting examples of different types of glaucoma that can be prevented or treated according to the presently disclosed subject matter include primary glaucoma (also known as primary open-angle glaucoma, chronic open-angle glaucoma, chronic simple glaucoma, and glaucoma simplex), low-tension glaucoma, primary angle- closure glaucoma (also known as primary closed-angle glaucoma, narrow-angle glaucoma, pupil-block glaucoma, and acute congestive glaucoma), acute angle-closure glaucoma, chronic angle- closure glaucoma, intermittent angle-closure glaucoma, chronic open-angle closure glaucoma, pigmentary glaucoma, exfoliation glaucoma (also known as pseudoexfoliative glaucoma or glaucoma capsulare), developmental glaucoma (e.g., primary congenital glaucoma and infantile glaucoma), secondary glaucoma (e.g., inflammatory glaucoma (e.g., uveitis and Fuchs heterochromic iridocyclitis)), phacogenic glaucoma (e.g., angle-closure glaucoma with mature cataract, phacoanaphylactic glaucoma secondary to rupture of lens capsule, phacolytic glaucoma due to phacotoxic meshwork blockage, and subluxation of lens), glaucoma secondary to intraocular hemorrhage (e.g., hyphema and hemolytic glaucoma, also known as erythroclastic glaucoma), traumatic glaucoma (e.g., angle recession glaucoma, traumatic recession on anterior chamber angle, postsurgical glaucoma, aphakic pupillary block, and ciliary block glaucoma), neovascular glaucoma, drug-induced glaucoma (e.g., corticosteroid induced glaucoma and alpha- chymotrypsin glaucoma), toxic glaucoma, and glaucoma associated with intraocular tumors, retinal detachments, severe chemical burns of the eye, and iris atrophy. In certain embodiments, the neurodegenerative disease, disorder, or condition is a disease, disorder, or condition that is not associated with excessive angiogenesis, for example, a glaucoma that is not neovascular glaucoma.
As used herein, the term "disorder" in general refers to any condition that would benefit from treatment with a compound against one of the identified targets, or pathways, including any disease, disorder, or condition that can be treated by an effective amount of a compound against one of the identified targets, or pathways, or a pharmaceutically acceptable salt thereof.
As used herein, the term "treating" can include reversing, alleviating, inhibiting the progression of, preventing or reducing the likelihood of the disease, disorder, or condition to which such term applies, or one or more symptoms or manifestations of such disease, disorder or condition (e.g., a disease or disorder that causes dysfunction and/or death of retinal photoreceptor cells). In some embodiments, the treatment reduces the dysfunction and/or death of retinal photoreceptor cells. For example, the treatment can reduce the dysfunction and/or death of retinal photoreceptor cells by at least 5%, 10%, 15%, 20%, 25%, 30%, 33%, 35%, 40%, 45%, 50%, 55%, 60%, 66%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more as compared to the dysfunction and/or death of retinal photoreceptor cells in a subject before undergoing treatment or in a subject who does not undergo treatment. In some embodiments, the treatment completely inhibits dysfunction and/or death of retinal photoreceptor cells in the subject. As used herein, a "retinal photoreceptor cell" is a specialized type of neuron found in the retina that is capable of phototransduction. In some embodiments, at least one gene product is rhodopsin.
In some embodiments, the system is packaged into a single adeno-associated virus (AAV) particle before administering to the subject. In some embodiments, administering to the subject occurs by subretinal injection. The treatment, administration, or therapy can be consecutive or intermittent. Consecutive treatment, administration, or therapy refers to treatment on at least a daily basis without interruption in treatment by one or more days. Intermittent treatment or administration, or treatment or administration in an intermittent fashion, refers to treatment that is not consecutive, but rather cyclic in nature. Treatment according to the presently disclosed methods can result in complete relief or cure from a disease, disorder, or condition, or partial amelioration of one or more symptoms of the disease, disease, or condition, and can be temporary or permanent. The term "treatment" also is intended to encompass prophylaxis, therapy and cure.
The term "effective amount" or "therapeutically effective amount" refers to the amount of an agent that is sufficient to effect beneficial or desired results. The
therapeutically effective amount may vary depending upon one or more of: the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art. The term also applies to a dose that will provide an image for detection by any one of the imaging methods described herein. The specific dose may vary depending on one or more of: the particular agent chosen, the dosing regimen to be followed, whether it is administered in combination with other compounds, timing of administration, the tissue to be imaged, and the physical delivery system in which it is carried.
The terms "subject" and "patient" are used interchangeably herein. The subject treated by the presently disclosed methods in their many embodiments is desirably a human subject, although it is to be understood that the methods described herein are effective with respect to all vertebrate species, which are intended to be included in the term "subject." Accordingly, a "subject" can include a human subject for medical purposes, such as for the treatment of an existing condition or disease or the prophylactic treatment for preventing the onset of a condition or disease, or an animal subject for medical, veterinary purposes, or developmental purposes. Suitable animal subjects include mammals including, but not limited to, primates, e.g., humans, monkeys, apes, and the like; bovines, e.g., cattle, oxen, and the like; ovines, e.g., sheep and the like; caprines, e.g., goats and the like; porcines, e.g., pigs, hogs, and the like; equines, e.g., horses, donkeys, zebras, and the like; felines, including wild and domestic cats; canines, including dogs; lagomorphs, including rabbits, hares, and the like; and rodents, including mice, rats, and the like. An animal may be a transgenic animal. In some embodiments, the subject is a human including, but not limited to, fetal, neonatal, infant, juvenile, and adult subjects. Further, a "subject" can include a patient afflicted with or suspected of being afflicted with a condition or disease.
IV. GENERAL DEFINITIONS
Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this presently described subject matter belongs.
Following long-standing patent law convention, the terms "a," "an," and "the" refer to "one or more" when used in this application, including the claims. Thus, for example, reference to "a subject" includes a plurality of subjects, unless the context clearly is to the contrary (e.g., a plurality of subjects), and so forth.
Throughout this specification and the claims, the terms "comprise," "comprises," and "comprising" are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term "include" and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, parameters, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term "about" even though the term "about" may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term "about," when referring to a value can be meant to encompass variations of, in some embodiments, ± 100% in some embodiments ± 50%, in some embodiments ± 20%, in some embodiments ± 10%, in some embodiments ± 5%, in some embodiments ±1%, in some embodiments ± 0.5%, and in some embodiments ± 0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
Further, the term "about" when used in connection with one or more numbers or numerical ranges, should be understood to refer to all such numbers, including all numbers in a range and modifies that range by extending the boundaries above and below the numerical values set forth. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
EXEMPLIFICATIONS
The following Examples have been included to provide guidance to one of ordinary skill in the art for practicing representative embodiments of the presently disclosed subject matter. In light of the present disclosure and the general level of skill in the art, those of skill can appreciate that the following Examples are intended to be exemplary only and that numerous changes, modifications, and alterations can be employed without departing from the scope of the presently disclosed subject matter. The synthetic descriptions and specific examples that follow are only intended for the purposes of illustration, and are not to be construed as limiting in any manner to make compounds of the disclosure by other methods.
EXAMPLE 1
Background
The development of CPJSPR-Cas9 technology has revolutionized the field of gene- editing and offers a profoundly new approach to treating genetic diseases. The CRISPR- Cas9 system is composed of a guide RNA (gRNA) that targets the Cas9 nuclease in a sequence-specific fashion. Cleavage by the CRISPR system requires complementary base pairing of the gRNA to a DNA sequence and the requisite protospaceradjacent motif (PAM), a short nucleotide motif found 3' to the target site (Dalkara, D. et al. Science translational medicine 5, 189ral76 (2013); Berns, KI et al. Fundamental Virology (ed B.N. Fields , and Knipe, D.M. ) 545-562 (Raven Press, 1986).). Currently, the least restrictive and most commonly used Cas9 protein is from S. pyogenes, which recognizes the sequence NGG, and thus, the CRISPR targeting sequence is N20NGG. While numerous studies have shown that disease mutations can be efficiently targeted in vitro, the development of CRISPR-Cas9-based therapeutics for in vivo use is been hampered by safety concerns and delivery constraints.
While CRISPR targeting of disease mutations has been shown to be effective in numerous in vitro settings, and as well in vivo through mouse and other animal studies, all current approaches are still far from clinical use due in large part to delivery constraints. AAV vectors are the most frequently and successfully used
viral vectors in ocular gene therapy injection (Swiech, L. et al. Nature biotechnology 33, 102-106 (2015); Jinek, M. et al. Science 337, 816-821 (2012); Cong, L. et al. Science 339, 819-823 (2013); Mali, P. et al. Science 339, 823-826 (2013)). Several features make AAV the most attractive choice: the virus is nonpathogenic, it infects both dividing and non- dividing cells, expression can persist for long periods of time, and it is particularly noteworthy for its history of safety, efficacy and a general lack of toxicity in clinical trials. Additionally, specific AAV serotypes are effective in targeting photoreceptor cells after subretinal injection. While AAV vectors provide a safe means of delivering therapeutic CRISPR components, there is one major technical obstacle that limits their utility - their size. Wild type AAV genomes are ~4.7kb in length and recombinant viruses can package up to ~5.2kb (Mancuso, K. et al. Nature 461, 784-787 (2009); Beltran, WA et al.
Proceedings of the National Academy of Sciences of the United States of America 109,
2132-2137 (2012)). This packaging capacity defines the upper limit of the DNA that can be used for a single viral vector.
The DNA required to express Cas9 and the gRNA, by conventional methods, exceeds 5.2kb: Pol II promoter (~0.5kb), SpCas9 (~4.1kb), Pol II terminator (~0.2kb), U6 promoter (~0.3kb), and the gRNA (~0.1kb). One approach to AAV delivery challenge is a two-vector approach: one AAV vector to deliver the Cas9, and another AAV vector for the gRNA (Petrs-Silva, H. et al. Molecular therapy : the journal of the American Society of Gene Therapy 19, 293-301 (2011)). However, the double AAV approach utilizes the small mouse Mecp2 promoter, a gene that has been found to be expressed in retinal cells - with the critical exception of rods (Song, C. et al. Epigenetics & chromatin 7, 17 (2014); Jain, D. et al. Pediatric neurology 43, 35-40 (2010)) - suggesting that, aside from the potential toxicity due to increased viral delivery load, the co-delivery approach would likely fail to target the vast majority of LCA mutations a priori. While this is a potentially viable approach for other gene therapy-mediated genomic editing, provided herein is a single vector approach for retinal gene editing that should increase efficiency, target
photoreceptors specifically, and reduce potential toxicity from viral load delivery.
It was recently reported that use of the HI promoter, rather than the more traditionally used U6 promoter, to direct gRNA transcription allows an approximate doubling of the available CRISPR gene targeting space (Ranganathan, V et al. Nature communications 5, 4516 (2014)). Notably, it was also detected a lower propensity for off- target cutting suggesting that the HI promoter would be more favorable for therapeutic approaches. During these studies, it was noticed the presence of a protein coding gene (PARP-2) in close genomic proximity to the endogenous H1RNA gene (Baer, M. et al. Nucleic acids research 18, 97-103 (1990); Myslinski, E. et al. Nucleic acids research 29, 2502-2509 (2001); Ame JC et al. J Biol Chem. 276(14): 11092-9 (2001)). The sequence between the start of the H1RNA (a pol III RNA transcript) and the PARP-2 gene (a pol II transcript) is 230bp (FIG. 2), indicating that this relatively small sequence can function as a compact bidirectional promoter. It was hypothesized that these fortuitous properties of the HI promoter might overcome the size hurdles of packaging both CRISPR components into a single AAV.
A. Enhancing HI bidirectional pol II expression using 5'UTR modifications.
To develop HI as a bidirectional pol II/III promoter, and because the poll III activity is already well characterized, an eGFP reporter construct was created to better optimize its pol II activity (FIG. 1 A). Human (HEK293) and mouse cells (NIH3T3) demonstrated a weak, but clearly detectable GFP fluorescence, indicating that the HI promoter could direct pol II expression. Using this GFP reporter system, experiments were performed to increase pol II expression while maintaining compactness by evaluating the three variable components in the system: (a) the promoter sequence, (b) the 5'UTR, and (c) the terminator sequence.
To evaluate different terminator sequences, seven different sequences were tested. It was found that the SV40 (240 bp and 120bp) terminators and a 49 bp synthetic poly(A) sequence (SPA) were both functional for GFP expression, expression, although the SPA sequence did not work as well.
It was explored whether optimizing translation efficiency through modification of the 5'UTR would improve reporter expression. It was found that insertion of a 50 bp sequence taken from the beta-globin 5'UTR sequence was able to significantly improve reporter expression, and consistent with this notion, the simple insertion of 9 bases encoding a strong Kozak sequence (5'-GCCGCCACC-3' SEQ ID NO: 1) was sufficient to approximate these levels.
Also, using sequences identified as RNA sequences that mediate cap-independent initiation of translation (Wellensiek et al. Nature Methods 10, 747-750 (2013)) were also effective (6.947, and 6.967).
Focusing on the Kozak sequence, it was found that both a strong 9-base consensus (5'-GCCGCCACC-3' SEQ ID NO: 1) or a smaller 6-base consensus (5'-GCCACC-3' SEQ ID NO: 2) could enhanced GFP expression (FIG. 1). The 9-base sequence was slightly better consistently across different HI bidirectional sequences.
B. Modulating bidirectional expression through use of different orthologous sequences.
Testing HI promoter sequences from different organisms indicated that both mouse (176 bp) and rat (207 bp) sequences were able to drive stronger GFP expression than the human HI promoter (~7 and ~6-fold higher, respectively). This result is contrary to that reported in other studies, for example Hung et al. (2006) Biochemical and Biophysical Research Communication 339: 1035-1042, which reported that the human sequence was expressed at higher levels.
Genomic alignments were performed from the orthologous region of 36 eutherian mammals using the HI promoter sequence. These provide additional sequences (SEQ ID NOs: 84-119) that can be used to fine-tune bidirectional expression.
C. Novel compact bidirectional promoter sequences with both pol II and pol III activity
After identifying that the HI bidirectional promoter sequence could effectively direct the expression of both pol II and pol III genes, the genome for other potentially compact bidirectional sequences were searched.
A custom perl script was developed to compare the 5' transcriptional start sites of pol III genes with that of pol II genes. The results were filtered for those that are orientated in opposite directions (divergent transcription). The input files could be annotated genome files or transcriptional data (pol II or pol III ChIP sites). Some ChIP sites that were identified from the human genome include, but not limited to:
ALOXE3-tRNA(lys):
TCTTTCCGCTCCAGGACCGCCCTGGGCCTGCAGGATCCTGGGCGGGAGC CCAGGTGTCCGGGATCTGGGCCACTAGGGACTGGGGAGGAACCTCTCAGAGAA GCCCATAGCCCGCAGCGGCCCCGCGCGGCCGGTTCCGGCGCCGCACTGTTCCA GCCTCTACTATGGTACAGTCCCTGCGTCGCAGCCTCGGCGGGGGCTCTAAGAAC GGGAGGCAGAAAAAGCTCAATCAGCAGCAGGCGAGCTTCACCCGCTGCTTCCA AATCTGTGCC AAAAT ATTCT ATGCTGC AC AGATAAAATCCTCTGTCGGTTCTAC AAGCCTGGCTTTTCCTATAGAGAACCCTCTTATAAGCAAAAAGTAAAGCTCTCG TGAAGA;
C8orf41-SNORD13 :
TCCTGACTGCAGCACCAGAAGGCTGGTCTCTCCCACAGAACGAGGATGG AGGCGGGGAGGGATCCGTTGAAGAGGGAAGGAGCGATC ACCCAAAGAGAACT AAAATCAAATAAAATAAAACAGAGAGATGTCTTGGAGGAGGGGGCGAGTCTG ACCGGGATAAGAATAAAGAGAAAGGGTGAACCCGGGAGGCGGAGTTTGCAGT GAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGTGAGACTCCGT CTCAGTAAAAAAAAAAAAAAAAAAAAGAATAAAGAGGAAAGGACGCAAGAA AGGGAAAGGGGACTCTCAGGGAGTAAAAGAGTCTTACACTTTTAACAGTGACG TTAAAAGACTACTGTTGCCTTTCTGAAGACTAAAAAGAAAAAAAACTTAAAAA TTTAAAGAAATAAACTTCTGAGCCATGTCACCAACTTAACCACCCCCAGGTACC TGCAACGGCTCGCGCCCGCCGGTGTCTAACAGGATCCGGACCTAGCTCATATTG CTGCCGCAAAACGCAAGGCTAGCTTCCGCCAGTACTGCCGCAACACCTTCTTAT TTCACGACGTATGGTCGTAAAGCAATAAAGATCCAGGCTCGGGAAAATGACGG AGAGGTGGAACTATAGAGAATAAATTTGCATATATAATAATCCGCTCGCTAATT GTGTTTCTGTTTTCCTTTGCTAAGGTAGAAACAAAAGAATAATCACAGAATCTC AGTGGGACTTTGAAAATATCCAGGATTTTATACGTGAAGAATGGATGTATCGCA TTACGGTAGTCACCCTATGTGTAAATTAGTGGCACATACTTGGCACTCCTTAAT GTCAACTATAAGATG;
CGB 1 :
GTCTCTCTCTTAGCGGGATATCTTCCGCAAGCACTGGGAATGTGGACATG GAAAGTAAATTGAGTCTCCGTGGGGGAGTGAGACAGGGAGTGAGGGGTGTTGG ACGCGGCACGGGAACCTGGCCAGAGTCAGCGGACCCAATTGGCTGCTCTCTCT CAGATGCAGTTCCCCTTCCTCCCTCCAGGGGGCGCCACGGAACGCAGGGCCCTC ACTGGCCCTGGGGACTGGGTGACGTCAGGGATGAGCCTCTTGTGATTGGCTCCA TCACCCTGCGTAAGATCAAAGGGAAGAAAGGATGGGCCCGACAA;
CGB2:
GTCTCTCTCTTAGCGGGATATCTTCCGCAAGCACTGGGGATGTGGACATG GAAAGTAAATTGAGTCTCCGTGGGGGAGTGAGACAGGGAGTGAGGGGTGTTGG ACGCGGCACGGGAACCCGGCCGGAGTCAGCGGACCCAATTGGCTGCTCTCTCT CAGATACAGTTCCCCTTCCTCCCTCCAGGGGGCGCCACGGAACGCAGGGCCCTC ACTGGCCCTGGGGACTGGGTGACGTC AGGGGTGAGCCTCTCCTGATTGGCTCC A TCACCCTGCGTAAGGTCAAAAGGAAGAAAGGAGATCCCCGACAC;
DPP9-tRN A(gly) :
TAACCGCTCAGCTGACCTCAGGAGGGCAGGGGTGCCTTCTAAAGGGTCC AGAGAGCCTCCATTCCAGCTGCAGGCGTGGGACACAGACCGGGACGTGGGGCG GCGGCCGGACTGGGCAGGTCGTCCCGGGTCC AGCGGCGCCTC ACGGTCGCGGC TCCATGCCCGGGACTGCGACCCCGGAAGTGGCGGGAGCGGGGGACGACAGCCG CGGCGGACACAGGGGACCCGCCGGCTCAGGCACCTTTGACCCGGAAGTTGAGC GACCCAGGCGGCGGCCTGGGATTGGACACCACCAGGCACGTACCAAGGCGTCC GCGGCGCTTGGGGGGGAGCCCGCGGCGCGGCGGCCTAAGGTGCGTAACGCCCC ATGAACGACATCTTCCGGTGGGTTAGGGAGAGACACCCCCCTGTGACTTGGTAT CACTCAGTCAAACCCATGATCCCCCACTATTAAGGATATCCGGAGAGGATGCTA CCTATCAGG;
MED16-RNU6-9:
GAGGGCAGTCACCAGCTCCTGGCCCGTGCGCCAAGCTCAGCGGGCGTCC GCGGTGCGATCTTCCCTAGCGCCTCGGGTCTGGCGCCGCCATCTTCCTCGGTAA CAACCAGTCGCCTGAGGCGTGGGGCCGCCTCCCAAAGACTTCTGGGAGGGCGG TGCGGCTCAGGCTCTGCCCCGCCTCCGGGGCTATTTGCATACGACCAT
To validate this, the 7sk bidirectional promoter, or the region between the GSTA4 gene (pol II gene) and the RN7SK gene (pol III gene) were tested using our GFP reporter assay. The pol III activity of this promoter is well-documented.
Several variants of the 5' UTR were simultaneously tested; endogenously, the annotated 5 'UTR for the human GSTA4 gene is split by an intron, which were fused when cloning into our reporter system (7skl). A shortened form of the 5'UTR or the betaglobin 5'UTR was also tested (7sk3). All of the constructs used incorporated the strong 9-base Kozak consensus sequence (5'-GCCGCCACC-3' SEQ ID NO: 1) (7sk2).
The reporter assay indicated this region was able to direct pol II expression, confirming the ability to act as a bidirectional promoter region. Although this region is slightly larger than the HI bidirectional promoter region, it was found to be more active.
The ability of orthologous sequences to direct expression was tested. The mouse sequence was also active, and slightly stronger than the human sequence.
These results confirmed the presence of bidirectional promoters with both pol II and pol III activity, and the ability to search genomic sequences for this regions.
D. An expression screen for bidirectional promoters with both RNA pol II and
RNA pol III activity.
Bioinformatics:
Bidirectional promoter sequences could be used as starting points for the identification of different variants of pol II/pol III activity. A custom perl script was developed to compare the 5' transcriptional start sites of pol III genes with that of pol II genes. The results were filtered for those that are orientated in opposite directions
(divergent transcription). The input files could be annotated genome files or transcriptional data (pol II or pol III ChIP sites). Using this information, bidirectional promoters were identified with both RNA pol II and RNA pol III activity. These sequences could be used to generated derivative sequences
Targeted transcription factor binding sites:
Promoter sequences could be used to identify transcription binding sites, or multiple promoter sequences could be aligned to identify transcription factor binding sites which could in turn be used to design a bidirectional promoter. Identification of transcription binding factor sites could be determined by consensus, or by using a differential distance matrix or multidimensional scaling (De Bleser P et al. Genome Biol. 2007;8(5):R83.). Random sequence library:
Alternatively, a synthetic library of random sequences could be used as a starting point to screen for sequences with bidirectional activity. By randomizing, shuffling, or mutating the bidirectional sequence, one can search for DNA sequences that have different pol II or pol III promoter activity.
Screens could be set up using qPCR or fluorescence to read-out pol II and pol III activity. A simple fluorescence screen would use a reporter (GFP, mCherry, etc.) as described, and an RNA aptamer, such as Broccoli that becomes fluorescent in the presence of a small molecule like DFHB1-1T. The screen could use protein readouts such as drug resistance (e.g. antibiotics), antigenic pepdies, or cell-surface markers, etc.
Alternative reporters could be function complexes that are comprised of both protein and RNA. For example, the MS2 coat protein binding stem loop could be incorporated into the RNA and the pol II transcription could encode the MS2 coat protein which would in turn bind the RNA sequence. If two binding sites are incorporated into the RNA, then fluorescence complementarity (split protein complementarity) could be used as a readout.
Screens can also be performed by separating and assessing the pol II activity and then the pol III activity. Finally, these sequences could then be combined in a fashion that allows for divergent transcription by both RNA pol II or RNA pol III.
Methods
Plasmid construction: The GFP reporter plasmids were constructed by Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (heat- inactivated) (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX
(Invitrogen).
N2A cell line (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
Cells were transfected (Lipofectamine 3000) with each construct. GFP expression was analyzed using flow cytometry.
Human 7skl (GSTA4 5'UTR with Kozak):
GGTGGCGGCGATAGCTTTTCAGGCTTTCTGGAGTCCACTCGGAGGCCTGGAGCC GCACAAAGCGCCAGGTCAGCGGTCCCGGCTGGGTGAGACCAGCAGGCGGCTCT AGCGCGCGGGAGCTGGGCGAGGCTCCGGGACGACCTCACCAATGGAGACTGCA GTATTTAGCATGCCCCACCCATCTGCAAGGCATTCTGGATAGTGTCAAAACAGC CGGAAATCAAGTCCGTTTATCTCAAACTTTAGCATTTTGGGAATAAATGATATT TGCTATGCTGGTTAAATTAGATTTTAGTTAAATTTCCTGCTGAAGCTCTAGTACG ATAAGCAACTTGACCTAAGTGTAAAGTTGAGACTTCCTTCAGGTTTATATAGCT TGTGCGCCGCTT GGGTACCTC (SEQ ID NO: 3)
Human 7sk2 (short 5' UTR):
GGTGGCGGCAGTATTTAGCATGCCCCACCCATCTGCAAGGCATTCTGGATAGTG TCAAAACAGCCGGAAATCAAGTCCGTTTATCTCAAACTTTAGCATTTTGGGAAT AAATGATATTTGCTATGCTGGTTAAATTAGATTTTAGTTAAATTTCCTGCTGAAG CTCTAGTACGATAAGCAACTTGACCTAAGTGTAAAGTTGAGACTTCCTTCAGGT TTATATAGCT TGTGCGCCGCTTGGGTACCTC (SEQ ID NO: 4)
Human 7sk3 (beta-globin 5' UTR):
GGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAGTA TTTAGCATGCCCCACCCATCTGCAAGGCATTCTGGATAGTGTCAAAACAGCCGG AAATCAAGTCCGTTTATCTCAAACTTTAGCATTTTGGGAATAAATGATATTTGC TATGCTGGTTAAATTAGATTTTAGTTAAATTTCCTGCTGAAGCTCTAGTACGATA AGC AACTTGACCTAAGTGTAAAGTTGAGACTTCCTTCAGGTTTATATAGCTTGT GCGCCGCTTGG GTACCTC (SEQ ID NO: 5)
Mouse 7skl (GSTA4 5'UTR with Kozak):
GGTGGCGGCCTCGTATGGGACCGCACCGGACACGGGCGCCTGGGCCAGGAGCA GAGCCGGGCCGTAGAATAGACATGGCCGTCGGGGGCGGGGCTTCGGAAGGTTT AACCAATCCAAACTGTTGTATTTTGCATAGCCCCAAAGCATTTTGGTTAACAGT AAAAACATCCTAAATTTAAGTATTTTAATTTAAACTTAGAACGAAGCGAGTATA AAAAGGATTATTTAACCCTAAAACGGATTCAGGATTTGTTATAATATCAAGTAC AGTCGGCTACATAAGGTCACCACATGTGTAAAGTTACAAAATTCTATGGCCTTA TATACCTACCAAGA GCCTGCTTACTCTC (SEQ ID NO: 6)
Mouse 7sk2 (short 5' UTR):
GGTGGCGGCAGACATGGCCGTCGGGGGCGGGGCTTCGGAAGGTTTAACCAATC CAAACTGTTGTATTTTGCATAGCCCCAAAGCATTTTGGTTAACAGTAAAAACAT CCTAAATTTAAGTATTTTAATTTAAACTTAGAACGAAGCGAGTATAAAAAGGAT TATTTAACCCTAAAACGGATTCAGGATTTGTTATAATATCAAGTACAGTCGGCT ACATAAGGTCACCACATGTGTAAAGTTACAAAATTCTATGGCCTTATATACCTA CCAAGAGCCTGCTT ACTCTC (SEQ ID NO: 7)
Mouse 7sk3 (beta-globin 5' UTR):
GGTGTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGAAGCAAATGTAGAC ATGGCCGTCGGGGGCGGGGCTTCGGAAGGTTTAACCAATCCAAACTGTTGTATT TTGCATAGCCCCAAAGCATTTTGGTTAACAGTAAAAACATCCTAAATTTAAGTA TTTTAATTTAAACTTAGAACGAAGCGAGTATAAAAAGGATTATTTAACCCTAAA ACGGATTCAGGATTTGTTATAATATCAAGTACAGTCGGCTACATAAGGTCACCA CATGTGTAAAGTTACAAAATTCTATGGCCTTATATACCTACCAAGAGCCTGCTT ACTCTC (SEQ ID NO: 8)
1. Dryja, TP et al. The New England Journal of Medicine 323, 1302-1307 (1990).
2. Dryja, TP et al. Nature 343, 364-366 (1990).
3. Doudna, JA et al. Science 346, 1258096 (2014).
4. Hsu, PD et al. Cell 157, 1262-1278 (2014).
5. Liang, Y. et al. The Journal of Biological Chemistry 279, 48189-48196 (2004).
6. Dalkara, D. & Sahel, J. A. Comptes Rendus Biologies 337, 185-192 (2014).
7. Day, TP. et al. Advances in Experimental Medicine and Biology 801,
687-693 (2014).
8. Willett, K. & Bennett, Frontiers in immunology 4, 261, (2013).
9. Dinculescu, A. et al. Human Gene Therapy 16, 649-663 (2005).
10. Kotterman, MA et al. Gene Therapy 22, 116-126 (2015).
11. Mowat, FM et al. Gene Therapy 21, 96-105 (2014).
12. Dalkara, D. et al. Science Translational Medicine 5, 189ral76 (2013).
13. Berns, KI et al. Fundamental Virology (ed B.N. Fields , and Knipe, D M. ) 545-562 (Raven Press, 1986).
14. Swiech, L. et al. Nature Biotechnology 33, 102-106 (2015).
15. Jinek, M. et al. Science 337, 816-821 (2012).
16. Cong, L. et al. Science 339, 819-823 (2013).
17. Mali, P. et al. Science 339, 823-826 (2013).
18. Mancuso, K. et al. Nature 461, 784-787 (2009).
19. Beltran, WA et al. Proceedings of the National Academy of Sciences of the United States of America 109, 2132-2137 (2012).
20. Petrs-Silva, H. et al. Molecular therapy : The Journal of the American Society of Gene Therapy 19, 293 -301 (2011 ).
21. Song, C. et al. Epigenetics & Chromatin 7, 17 (2014).
22. Jain, D. et al. Pediatric Neurology 43 , 35 -40 (2010) .
23. Ranganathan, V et al. Nature Communications 5, 4516 (2014). 24. Baer, M. et al. Nucleic Acids Research 18, 97-103 (1990).
25. Myslinski, E. et al. Nucleic Acids Research 29, 2502-2509 (2001).
26. Ame JC et al. JBiol Chem. 276(14): 11092-9 (2001).
EXAMPLE 2
Conditional pol II/pol III bidirectional promoter expression for regulating ribonucleoprotein enzymatic activity or RNA-directed nucleases
Previous work has demonstrated that the pol III activity of the HI promoter can engineered into a tet-responsive promoter and can be regulated by tetracycline. In the presence of the Tet repressor (TetR), the Tet operator (TetO) sequences engineered into the HI promoter are bound by TetR and repress pol III expression.
This system has not been previously combined with the bidirectional component of the HI promoter, a system that could allow for regulation of pol II and pol III transcripts.
Ribonucleoprotein enzymes or RNA-directed nucleases, could be regulated by tetracycline using an engineered bidirectional promoter system.
Here, it was shown that the pol II activity of HI was not drastically altered by the presence of TetO operator sites. This provides a mechanism for the inducible activity of ribonucleoprotein enzymes or RNA-directed nucleases, such as Cas9/gRNA. Additionally, placement of the TetO sites could be placed as to specifically repress either the pol II or pol
III transcripts, or both.
Such a system would have tremendous clinical advantages for regulating CRISPR activity delivered by AAV viruses and could be used to other compact bidirectional promoters.
1. Matthess et al. Oncogene. 2005 Apr 21;24(18):2973-80.
Methods
Plasmid construction: The GFP reporter plasmids were constructed by Gibson
Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (heat- inactivated) (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX
(Invitrogen). N2A cell line (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
Cells were transfected (Lipofectamine 3000) with each construct. GFP expression was analyzed using flow cytometry.
mm079 target sequence: GAAGAAGGTTCGAGATCTCA (SEQ ID NO: 9)
mm079 genomic target site: GAAGAAGGTTCGAGATCTCAAGG (SEQ ID NO: 10) TetO site: TCCCTATCAGTGATAGAGA (SEQ ID NO: 11)
HI wt:
GGAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTG AGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA AATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTAT GAGACCACTTTTTCCC (SEQ ID NO: 12)
HI TetO:
GGAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTG AGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA AATCACCATAAACGTGAAATCCCTATCAGTGATAGAGACTTATAAGTTCCCTAT CAGTGATAGAGATCCC (SEQ ID NO: 13)
TetR sequence:
MSRLDKSKVINSALELLNEVGIEGLTTRKLAQKLGVEQPTLYWHVKNKRALLDAL AIEMLDRHHTHFCPLEGESWQDFLRNNAKSFRCALLSHRDGAKVHLGTRPTEKQY ETLENQLAFLCQQGFSLENALYALSAVGHFTLGCVLEDQEHQVAKEERETPTTDS MPPLLRQAIELFDHQGAEPAFLFGLELIICGLEKQLKCESGSAYSGSREF (SEQ ID NO: 14)
EXAMPLE 3
A. Regulation of Genome-Engineering Nucleases through Post-Transcriptional Cell-cycle regulation
The advent of new RNA-directed nucleases has revolutionized genome-editing technology and transformed biological research. These technologies, while providing an unprecedented means to modify genomes with precision, are constrained by cellular processes that modulate how DNA breaks are repaired. For genome-engineering applications, in particular, the ability to modulate a cells response to DNA breaks has enormous consequences, (see Gutschner et. al. (2016) Cell Reports).
Cellular response to DNA breaks occurs primarily through one of two competing pathways: nonhomologous end-joining (NHEJ), or Homology Directed Repair (HDR).
NHEJ is generally considered to be an error-prone pathway which results sequence changes around the break point. In general, NHEJ is the more efficient or dominant pathway for DNA repair. On the other hand, HDR pathways are far less error-prone, but require stretches of homology to template and repair.
Both pathways have properties that are favorable for different outcomes. For example, if one wishes to "knock-out" a gene, NHEJ is the preferable pathway, as DNA breaks in that gene will largely result in sequence changes. In the laboratory, many genetic screens are dependent on eliminating gene function, and for therapeutic approaches, complete disruption of a gene with a dominant or gain-of-function mutation would be highly desirable. However, if one wishes to introduce a specific sequence change ("knock-in"), one would try to favor repair though a HDR pathway thus allowing for precise cut and paste outcomes. For many scientific applications and most clinical applications this pathway is favorable, as it can allow for precise mutation repair.
It is also known that cellular response to DNA breaks is modulated by the cell-cycle (FIG. 9 A); the phase of the cell-cycle largely dictates the choice of DNA pathway (FIG. 9B). NHEJ predominates through Gl of the cell-cycle, while HDR predominates during S and G2 phases. Thus, the ability to modulate the timing of DNA breaks with respect to the cell-cycle, can be a powerful method to bias the cell towards a specific repair pathway.
Many proteins are regulated in cell-cycle-dependent fashion, largely through transcriptional regulation and post-transcriptional mechanisms, notably ubiquitin-mediated proteolysis. Generally, regulation through transcriptional mechanisms are slower, while proteolytic mechanisms are rapid. For genome-editing applications, proteolytic
mechanisms likely offer a more favorable method of regulation.
Two well-characterized proteins with opposing, and thus oscillating, expression in the cell are Geminin (Gem) and Cdtl . Cdtl accumulates in the Gl phase of the cell-cycle, while Gem accumulates during S/G2/M phases. The specific regions of these proteins that are required for cell-cycle regulation have been mapped: amino acids 30-120 for hCdtl, and amino acids 1-110 for hGem (Sakaue-Sawano A et al. Cell 132, 487-498 (2008)). Furthermore, proteins fused to these domains can be made to exhibit cell-cycle-dependent regulation, even if the respective mRNA is constantly being transcribed throughout the cell- cycle. In essence, cellular proteins only recognize the domain during specific phases of the cell-cycle, which results in ubiquitination and then rapid degradation of the fusion protein.
Here, it was shown that genome-editing technologies, such as RNA-directed nucleases, can be fused to either hGem of hCdtl domains, resulting in cell-cycle dependent regulation of these proteins (FIG. 9C). Consequently, this regulation results in drastically different DNA repair outcomes. Using the CRISPR-Cas9 system, it was shown that either NHEJ and HDR pathways were enhanced or suppressed using Cas9 fused to either hGem or hCdtl . The system is so robust that it can increase the level of HDR to levels greater than NHEJ, which is highly significant considering that HDR is far less efficient in the cell.
Furthermore, the method described is tremendously powerful in its elegance and simplicity. Other attempts to regulate the outcome of genome-editing technologies, have utilized cumbersome methods of arresting cells in certain phases of the cell-cycle followed by technically challenging and inefficient methods of direct protein/RNA delivery. Instead, the method described here relies on simple delivery of a plasmid, mRNA, or protein encoding a fusion to the respective regulatory sequences.
Methods
Plasmid construction: To generate the cell-cycle regulated nucleases proteins, the human codon optimized Cas9 gene from a Cas9:T2A:GFP vector (Addgene 44719) was modified to replace the T2A with a better cleaving P2A sequence. Next the GFP fluorescent reporter was replace with the sequence encoding the mKate2 fluorescent protein. Next, the vector was linearized and gBlocks encoding a flexible 15 amino acid sequence linker fused to either the hGem(l-l 10) or hCdtl(30-120) domains were inserted in frame to generate Cas9: linker: hGem and Cas9:linker:hCdtl (referred to as Cas9-Gem or Cas9-Cdt, respectively). All cloning steps were preformed using Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% C02 / 20% O2 in Dulbecco's modified Eagle's
Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen). A gRNA targeting Rhodopsin (hs086172175:
AGTACTGTGGGTACTCGAAGGGG (SEQ ID NO: 68)) (see Jaskula-Ranga, V., & Zack, D. J. (2016). grID: A CRISPR-Cas9 guide RNA. Database and Resource for Genome- Editing. hioRxiv, 097352) was generated by overlapping oligos that were annealed and amplified by PCR using two-step amplification Phusion Flash DNA polymerase (Thermo Fisher Scientific, Rockford, IL), and subsequently purified using Zymo DNA clean and concentrator columns. The purified PCR products were then resuspended in H20 and quantitated using a NanoDrop 1000 (Thermo Fisher Scientific). The gRNA-expressing constructs were generated using the Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. Nature Methods 6:343-345 (2009)) with slight modifications. The total reaction volume was reduced from 20μ1 to 2μ1.
HEK293 cells were co-transfected with Cas9 (unmodified, or cell-cycle regulated versions) and the gRNA construct targeting rhodopsin. 48hrs post transfection, genomic DNA was harvested and the sequence surrounding the target cut sites were amplified according to the primers listed below. The PCR products were then purified and quantitated before performing the T7 Endo I assay. Briefly, 200ng of PCR product was denatured and then slowly re-annealed to allow for the formation of heteroduplexes, T7 Endonuclease I was added to the PCR products and incubated at 37C for 25 minutes to cleave heteroduplexes, the reaction was quenched in loading dye, and finally, the reaction was run on a 6% TBE PAGE gel to resolve the products. The gel was stained with SYBR- Gold, visualized, and quantitated using ImageJ. NUEJ frequencies were calculated using the binomial-derived equation:
1 - j ^iL x ioo
iii 4 4 :·
; where the values of "a" and "b" are equal to the integrated area of the cleaved fragments after background subtraction and "c" is equal to the integrated area of the uncleaved PCR product after background subtraction. To calculate HDR frequencies, the same PCR product as above, prior to heteroduplex formation, was mixed with EcoRI for lhr, then quenched in loading dye, and finally, the reaction was run on a 6% TBE PAGE gel to resolve the products.
HDR frequencies were calculated using the equation: ; where the values of "a" and "b" are equal to the integrated area of the cleaved fragments after background subtraction and "c" is equal to the integrated area of the un-cleaved PCR product after background subtraction.
HDR oligo (EcoRI):
CAGAAGGCCCTAACTTCTACGTGCCCTTCTCCAATGCGACGGGTGTGGTACGCA GCCCCTGAATTCACCCACAGTACTACCTGGCTGAGCCATGGCAGTTCTCCATGC TGGCCGCCTACATGTTTC (SEQ ID NO: 15)
T7EI primers:
Rho HDR F; TGGAGCCCTGAGTGGCTGAG (SEQ ID NO: 16)
Rho HDR R; CC ACCT AGGACC ATGAAGAGGTC AG (SEQ ID NO : 17)
Protein Sequences:
hCdtl(30-120)
P SP ARP ALR AP A SAT S GSRKRARPP AAPGRDQ AR P ARRRLRL S VDE V S SP S TPE AP DIPACPSPGQKIKKSTPAAGQPPHLTSAQDQDTI (SEQ ID NO: 18)
hGem (1-110)
MNP SMKQKQEEIKENIKNS S VPRRTLKMIQP S ASGSL VGRENEL S AGL SKRKHRND HLTSTTS SPGVIVPES SENKNLGGVTQESFDLMIKENPS SQ YWKEVAEKRRKAL
(SEQ ID NO: 19)
Cas9:linker:hCdtl
MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFL IEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIA QLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVR QQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRED LLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA RGNSRFAWMTRKSEETITPWNFEE
VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMR KP AFL S GEQKK AI VDLLFKTNRK VT VKQLKED YFKKIECFD S VEI SGVEDRFN A SLG TYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMK QLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFK EDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ EKLYLYYLQ NGRDMYVDQELDINRLSDYDVDHIWQSFLKDDSID KVLTRSDK RGKSDNVPS EEVVKKMKNYWRQLLNAKLITQRKFD LTKAERGGLSELDKAGFIKRQLVETRQI TKH V AQILD SRMNTK YDE DKLIRE VKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEF VYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITF ERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG ELALPSKY V FL YL ASHYEKLKGSPED EQKQLF VEQHKHYLDEIIEQISEF SKRVIL AD A LDK VLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDAT LIHQ SITGL YETRIDL S QLGGD SRADPKKKRK VRGGGGS GGGGS GGGGSP SP ARP A LRAPASATSGSRKRARPPAAPGRDQARPPARRRLRLSVDEVSSPSTPEAPDIPACPSP GQKIKK S TP A AGQPPHL TSAQDQDTI (SEQ ID NO: 20)
Cas9:linker:hGem
MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFL IEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIA QLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIG DQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVR QQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRED LLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA RGNSRFAWMTRKSEETITPWNFEE VVDKGASAQSFffiRMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMR KP AFL S GEQKK AI VDLLFKTNRK VT VKQLKED YFKKIECFD S VEI SGVEDRFN A SLG TYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMK QLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFK EDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVI EMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP VENTQLQNEKL YL YYLQ NGRDMYVDQELDINRI.SDYDVDHIWQSFLKDDSIDNKVLTRSDKNRGKSDNVPS EEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQI TKH V AQILD SRMNTK YDENDKLIRE VK VITLK SKL VSDFRKDF QF YK VREINNYHHAHD A YLN A V VGT ALIKK YPKLE SEF VYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIA RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITF ERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG ELALPSKY VNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEIIEQISEFSKRVILADA LDK VLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDAT LIHQ SITGL YETRIDL SQLGGD SRADPKKKRK VRGGGGSGGGGSGGGGSMNP SMK QKQEEIKENIKNS S VPRRTLKMIQP S ASGSL VGRE EL S AGLSKRKHR DHLT STT S SPGVIVPESSE K LGGVTQESFDLMIKE PSSQYWKEVAEKRRKAL (SEQ ID NO: 21)
Cdtl:linker:Cas9
MPSPARPALRAPASATSGSRKRARPPAAPGRDQARPPARRRLRLSVDEVSSPSTPEA PDIPACPSPGQKIKKSTPAAGQPPHLTSAQDQDTIGGGGSGGGGSGGGGSDKKYSIG LDIGTNS VGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRL KRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGN IVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPD NSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKK NGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLF LAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKY KEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFT VYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIEC FDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMI EERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDG FANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKV VDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEH PVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDN KVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGL SELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSD FRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVR KMIAKSEQEIGKATAKYFFYSNF NFFKTEITLANGEIRKRPLIETNGETGEIVWDKG RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYG GFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKE VKKDLIIKLPKYSLFELENGRKRMLASAGELQKG ELALPSKYVNFLYLASHYEKL KGSPED EQKQLF VEQHKHYLDEIIEQISEF SKRVIL AD A LDKVL S AY KHRDKPI REQAENIIHLFTLT LGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRI DL SQLGGD SRADPKKKRKVR (SEQ ID NO: 22)
Gem:linker:Cas9
MNP SMKQKQEEIKENIKNS S VPRRTLKMIQP S ASGSL VGRENEL S AGL SKRKHRND HLTSTTSSPGVIVPESSENKNLGGVTQESFDLMIKENPSSQYWKEVAEKRRKALGG GGSGGGGSGGGGSDKKYSIGLDIGTNS VGWAVITDEYKVPSKKFKVLGNTDRHSIK KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLAL AHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR L SK SRRLENLI AQLPGEKKNGLF GNLI AL SLGLTPNFK SNFDL AED AKLQL SKD T YD DDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLS ASMIKRYDEHH QDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKI LTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFD KNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFK TNRKVTVKQLKED YFKKIECFD SVEISGVEDRFNASLGT YHDLLKIIKDKDFLDNEE NEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLI NGIRDKQ SGKTILDFLK SDGF ANRNFMQLIHDD SLTFKEDIQK AQ VSGQGD SLHEHI ANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRE RMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHIVPQ SFLKDD SIDNKVLTRSDKNRGKSDNVP SEE VVKKMKNYW RQLLNAKLITQRKFDNLTK AERGGL SELDK AGFIKRQLVETRQITKH VAQILD SRM NTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVG T ALIKK YPKLE SEF V YGD YK V YD VRKMI AK SEQEIGK AT AK YFF Y SNIMNFFKTEIT LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGEL QKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRK RYT S TKE VLD ATLIHQ SITGL YETRIDL S QLGGD SRADPKKKRK VR (SEQ ID NO: 23)
Cas9:Cdtl:
ATGGACAAGAAGTACTCCATTGGGCTCGATATCGGCACAAACAGCGTCGGCTG GGCCGTCATTACGGACGAGTACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGG GCAATACCGATCGCCACAGCATAAAGAAGAACCTCATTGGCGCCCTCCTGTTCG ACTCCGGGGAGACGGCCGAAGCCACGCGGCTCAAAAGAACAGCACGGCGCAG ATATACCCGCAGAAAGAATCGGATCTGCTACCTGCAGGAGATCTTTAGTAATG AGATGGCTAAGGTGGATGACTCTTTCTTCCATAGGCTGGAGGAGTCCTTTTTGG TGGAGGAGGAT AAAAAGC ACGAGCGCC ACCC AATCTTTGGC AAT ATCGTGGAC GAGGTGGCGTACCATGAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCT TGTAGACAGTACTGATAAGGCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCA TATGATCAAATTTCGGGGACACTTCCTCATCGAGGGGGACCTGAACCCAGACA ACAGCGATGTCGACAAACTCTTTATCCAACTGGTTCAGACTTACAATCAGCTTT TCGAAGAGAACCCGATCAACGCATCCGGAGTTGACGCC AAAGCAATCCTGAGC GCTAGGCTGTCCAAATCCCGGCGGCTCGAAAACCTCATCGCACAGCTCCCTGGG GAGAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCACTCGGGCTGACC CCCAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCCAAGCTTCAACTGAGC AAAGACACCTACGATGATGATCTCGACAATCTGCTGGCCCAGATCGGCGACCA GTACGCAGACCTTTTTTTGGCGGCAAAGAACCTGTCAGACGCCATTCTGC
TGAGTGATATTCTGCGAGTGAACACGGAGATCACCAAAGCTCCGCTGAGCGCT AGTATGATCAAGCGCTATGATGAGCACCACCAAGACTTGACTTTGCTGAAGGC CCTTGTCAGACAGCAACTGCCTGAGAAGTACAAGGAAATTTTCTTCGATCAGTC TAAAAATGGCTACGCCGGATACATTGACGGCGGAGCAAGCCAGGAGGAATTTT ACAAATTTATTAAGCCCATCTTGGAAAAAATGGACGGCACCGAGGAGCTGCTG GTAAAGCTTAACAGAGAAGATCTGTTGCGCAAACAGCGCACTTTCGACAATGG AAGCATCCCCCACCAGATTCACCTGGGCGAACTGCACGCTATCCTCAGGCGGC AAGAGGATTTCTACCCCTTTTTGAAAGATAACAGGGAAAAGATTGAGAAAATC CTCACATTTCGGATACCCTACTATGTAGGCCCCCTCGCCCGGGGAAATTCCAGA TTCGCGTGGATGACTCGCAAATCAGAAGAGACCATCACTCCCTGGAACTTCGA GGAAGTCGTGGATAAGGGGGCCTCTGCCCAGTCCTTCATCGAAAGGATGACTA ACTTTGATAAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCTCTGCTGT ACGAGTACTTCACAGTTTATAACGAGCTCACCAAGGTCAAATACGTCACAGAA GGGATGAGAAAGCCAGCATTCCTGTCTGGAGAGCAGAAGAAAGCTATCGTGGA CCTCCTCTTCAAGACGAACCGGAAAGTTACCGTGAAACAGCTCAAAGAAGACT ATTTCAAAAAGATTGAATGTTTCGACTCTGTTGAAATCAGCGGAGTGGAGGATC GCTTCAACGCATCCCTGGGAACGTATCACGATCTCCTGAAAATCATTAAA GACAAGGACTTCCTGGACAATGAGGAGAACGAGGACATTCTTGAGGACATTGT CCTCACCCTTACGTTGTTTGAAGATAGGGAGATGATTGAAGAACGCTTGAAAAC TTACGCTCATCTCTTCGACGACAAAGTCATGAAACAGCTCAAGAGGCGCCGAT ATACAGGATGGGGGCGGCTGTCAAGAAAACTGATCAATGGGATCCGAGACAAG CAGAGTGGAAAGACAATCCTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGG AACTTC ATGC AGTTGATCC ATGATGACTCTCTC ACCTTTAAGGAGGAC ATCC AG AAAGCACAAGTTTCTGGCCAGGGGGACAGTCTTCACGAGCACATCGCTAATCTT GCAGGTAGCCCAGCTATCAAAAAGGGAATACTGCAGACCGTTAAGGTCGTGGA TGAACTCGTCAAAGTAATGGGA
AGGCATAAGCCCGAGAATATCGTTATCGAGATGGCCCGAGAGAACCAAACTAC CC AGAAGGGAC AGAAGAAC AGT AGGGAAAGGATGAAGAGGATTGAAGAGGGT ATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTGAAAACACCCA GCTTCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAGGGACATGT ACGTGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGATCAT ATCGTGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACA AGATCCGATAAAAATAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGT CAAGAAAATGAAAAATTATTGGCGGCAGCTGCTGAACGCCAAACTGATCACAC AACGGAAGTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTG GATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAA GCACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAAATG ACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTCAG ATTTCAGAAAGGACTTTCAGTTTTATAAGGTGAGAGAGATCAACAATTACCACC ATGCGCATGATGCCTACCTGAATGCAGTGGTAGGCACTGCACTTATCAAAAAAT ATCCCAAGCTTGAATCTGAATTTGTTTACGGAGACTATAAAGTGTACGATGTTA GGAAAATGATCGCAAAGTCTGAGCAGGAAATAGGCAAGGCCACCGCTAAGTAC TTCTTTTACAGCAATATTATGAATTTTTTCAAGACCGAGATTACACTGGCCAAT GGAGAGATTCGGAAGCGACCACTTATCGAAACAAACGGAGAAACAGGAGAAA TCGTGTGGGACAAGGGTAGGGATTTCGCGACAGTCCGGAAGGTCCTGTCCATG CCGCAGGTGAACATCGTTAAAAAGACCGAAGTACAGACCGGAGGCTTCTCCAA GGAAAGTATCCTCCCGAAAAGGAACAGCGACAAGCTGATCGCACGCAAAAAA GATTGGGACCCCAAGAAATACGGCGGATTCGATTCTCCTACAGTCGCTTACAGT GTACTGGTTGTGGCCAAAGTGGAGAAAGGGAAGTCTAAAAAACTCAAAAGCGT CAAGGAACTGCTGGGCATCACAATCATGGAGCGATCAAGCTTCGAAAAAAACC CCATCGACTTTCTCGAGG
CGAAAGGATATAAAGAGGTCAAAAAAGACCTCATCATTAAGCTTCCCAAGTAC TCTCTCTTTGAGCTTGAAAACGGCCGGAAACGAATGCTCGCTAGTGCGGGCGA GCTGCAGAAAGGTAACGAGCTGGCACTGCCCTCTAAATACGTTAATTTCTTGTA TCTGGCCAGCCACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAATGAGCAGA AGC AGCTGTTCGTGGAAC AAC AC AAAC ACTACCTTGATGAGATC ATCGAGC AA ATAAGCGAATTCTCCAAAAGAGTGATCCTCGCCGACGCTAACCTCGATAAGGT GCTTTCTGCTTACAATAAGCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAA ACATTATCCACTTGTTTACTCTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGT ACTTCGACACCACCATAGACAGAA AGCGGTAC ACCTCTACAAAGGAGGTCCTGGACGCC ACACTGATTCATCAGTCA ATTACGGGGCTCTATGAAACAAGAATCGACCTCTCTCAGCTCGGTGGAGACAG CAGGGCTGACCCCAAGAAGAAGAGGAAGGTGAGGGGAGGCGGAGGATCTGGC GGAGGCGGAAGTGGCGGAGGGGGCAGCCCATCTCCTGCCAGACCTGCTCTGAG AGCCCCTGCCTCTGCCACAAGCGGCAGCAGAAAGAGAGCCAGACCTCCTGCCG CCCCTGGCAGAGATCAGGCTAGACCTCCAGCTCGGCGGAGACTGAGACTGAGC GTGGACGAGGTGTCCAGCCCTAGCACACCTGAGGCCCCTGATATCCCCGCCTGT CCTAGCCCTGGCCAGAAGATCAAGAAGTCCACCCCTGCCGCCGGACAGCCTCC TCATCTGACATCTGCCCAGGACCAGGACACCATC (SEQ ID NO: 24)
Cas9:Gem:
ATGGACAAGAAGTACTCCATTGGGCTCGATATCGGCACAAACAGCGTCGGCTG GGCCGTCATTACGGACGAGTACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGG GCAATACCGATCGCCACAGCATAAAGAAGAACCTCATTGGCGCCCTCCTGTTCG ACTCCGGGGAGACGGCCGAAGCCACGCGGCTCAAAAGAACAGCACGGCGCAG ATATACCCGCAGAAAGAATCGGATCTGCTACCTGCAGGAGATCTTTAGTAATG AGATGGCTAAGGTGGATGACTCTTTCTTCCATAGGCTGGAGGAGTCCTTTTTGG TGGAGGAGGATAAAAAGCACGAGCGCCACCCAATCTTTGGCAATATCGTGGAC GAGGTGGCGTACCATGAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCT TGTAGACAGTACTGATAAGGCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCA TATGATCAAATTTCGGGGACACTTCCTCATCGAGGGGGACCTGAACCCAGACA ACAGCGATGTCGACAAACTCTTTATCCAACTGGTTCAGACTTACAATCAGCTTT TCGAAGAGAACCCGATCAACGCATCCGGAGTTGACGCCAAAGCAATCCTGAGC GCTAGGCTGTCCAAATCCCGGCGGCTCGAAAACCTCATCGCACAGCTCCCTGGG GAGAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCACTCGGGCTGACC CCCAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCCAAGCTTCAACTGAGC AAAGACACCTACGATGATGATCTCGACAATCTGCTGGCCCAGATCGGCGACCA GTACGCAGACCTTTTTTTGGCGGCAAAGAACCTGTCAGACGCCATTCTGC TGAGTGATATTCTGCGAGTGAACACGGAGATCACCAAAGCTCCGCTGAGCGCT AGT ATGATC AAGCGCT ATGATGAGC ACC ACC AAGACTTGACTTTGCTGAAGGC CCTTGTCAGACAGCAACTGCCTGAGAAGTACAAGGAAATTTTCTTCGATCAGTC TAAAAATGGCTACGCCGGATACATTGACGGCGGAGCAAGCCAGGAGGAATTTT ACAAATTTATTAAGCCCATCTTGGAAAAAATGGACGGCACCGAGGAGCTGCTG GTAAAGCTTAACAGAGAAGATCTGTTGCGCAAACAGCGCACTTTCGACAATGG AAGC ATCCCCCACCAGATTCACCTGGGCGAACTGC ACGCTATCCTC AGGCGGC AAGAGGATTTCTACCCCTTTTTGAAAGATAACAGGGAAAAGATTGAGAAAATC CTCACATTTCGGATACCCTACTATG
TAGGCCCCCTCGCCCGGGGAAATTCCAGATTCGCGTGGATGACTCGCAAATCA GAAGAGACCATCACTCCCTGGAACTTCGAGGAAGTCGTGGATAAGGGGGCCTC TGCCCAGTCCTTCATCGAAAGGATGACTAACTTTGATAAAAATCTGCCTAACGA AAAGGTGCTTCCTAAACACTCTCTGCTGTACGAGTACTTCACAGTTTATAACGA GCTCACCAAGGTCAAATACGTCACAGAAGGGATGAGAAAGCCAGCATTCCTGT CTGGAGAGCAGAAGAAAGCTATCGTGGACCTCCTCTTCAAGACGAACCGGAAA GTTACCGTGAAACAGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTTTCGA CTCTGTTGAAATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGT ATCACGATCTCCTGAAAATCATTAAA
GACAAGGACTTCCTGGACAATGAGGAGAACGAGGACATTCTTGAGGACATTGT CCTCACCCTTACGTTGTTTGAAGATAGGGAGATGATTGAAGAACGCTTGAAAAC TTACGCTCATCTCTTCGACGACAAAGTCATGAAACAGCTCAAGAGGCGCCGAT AT AC AGGATGGGGGCGGCTGTC AAGAAAACTGATC AATGGGATCCGAGAC AAG CAGAGTGGAAAGACAATCCTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGG AACTTCATGCAGTTGATCCATGATGACTCTCTCACCTTTAAGGAGGACATCCAG AAAGCACAAGTTTCTGGCCAGGGGGACAGTCTTCACGAGCACATCGCTAATCTT GCAGGTAGCCCAGCTATCAAAAAGGGAATACTGCAGACCGTTAAGGTCGTGGA TGAACTCGTCAAAGTAATGGGA
AGGCATAAGCCCGAGAATATCGTTATCGAGATGGCCCGAGAGAACCAAACTAC CCAGAAGGGACAGAAGAACAGTAGGGAAAGGATGAAGAGGATTGAAGAGGGT ATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTGAAAACACCCA GCTTCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAGGGACATGT ACGTGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGATCAT ATCGTGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACA AGATCCGATAAAAATAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGT C AAGAAAATGAAAAATTATTGGCGGC AGCTGCTGAACGCC AAACTGATC AC AC AACGGAAGTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTG GATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAA GCACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAAATG ACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTCAG ATTTCAGAAAGGACTTTCAGTTTTATAAGGTGAGAGAGATC AACAATTACCACC ATGCGCATGATGCCTACCTGAATGCAGTGGTAGGCACTGCACTTATCAAAAAAT ATCCCAAGCTTGAATCTGAATTTGTTTACGGAGACTATAAAGTGTACGATGTTA GGAAAATGATCGCAAAGTCTGAGCAGGAAATAGGCAAGGCCACCGCTAAGTAC TTCTTTTACAGCAATATTATGAATTTTTTCAAGACCGAGATTACACTGGCCAAT GGAGAGATTCGGAAGCGACCACTTATCGAAACAAACGGAGAAACAGGAGAAA TCGTGTGGGACAAGGGTAGGGATTTCGCGACAGTCCGGAAGGTCCTGTCCATG CCGCAGGTGAACATCGTTAAAAAGACCGAAGTACAGACCGGAGGCTTCTCCAA GGAAAGTATCCTCCCGAAAAGGAACAGCGACAAGCTGATCGCACGCAAAAAA GATTGGGACCCCAAGAAATACGGCGGATTCGATTCTCCTACAGTCGCTTACAGT GTACTGGTTGTGGCCAAAGTGGAGAAAGGGAAGTCTAAAAAACTCAAAAGCGT CAAGGAACTGCTGGGCATCACAATCATGGAGCGATCAAGCTTCGAAAAAAACC CCATCGACTTTCTCGAGG
CGAAAGGATATAAAGAGGTCAAAAAAGACCTCATCATTAAGCTTCCCAAGTAC TCTCTCTTTGAGCTTGAAAACGGCCGGAAACGAATGCTCGCTAGTGCGGGCGA GCTGCAGAAAGGTAACGAGCTGGCACTGCCCTCTAAATACGTTAATTTCTTGTA TCTGGCCAGCCACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAATGAGCAGA AGCAGCTGTTCGTGGAACAACACAAACACTACCTTGATGAGATCATCGAGCAA ATAAGCGAATTCTCCAAAAGAGTGATCCTCGCCGACGCTAACCTCGATAAGGT GCTTTCTGCTTACAATAAGCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAA
ACATTATCCACTTGTTTACTCTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGT
ACTTCGACACCACCATAGACAGAA
AGCGGTACACCTCTACAAAGGAGGTCCTGGACGCCACACTGATTCATCAGTCA ATTACGGGGCTCTATGAAACAAGAATCGACCTCTCTCAGCTCGGTGGAGACAG CAGGGCTGACCCCAAGAAGAAGAGGAAGGTGAGGGGAGGCGGAGGATCTGGC GGAGGCGGAAGTGGCGGAGGGGGCAGCATGAACCCTAGCATGAAGCAGAAGC AGGAAGAGATCAAAGAGAACATCAAGAACAGCAGCGTGCCCAGACGGACCCT GAAGATGATCCAGCCTAGCGCCAGCGGCAGCCTCGTGGGCAGAGAGAATGAAC TGTCTGCCGGCCTGAGC AAGCGGAAGC AC AGAAACGACC ACCTGACC AGC ACC ACCAGCAGCCCTGGCGTGATCGTGCCTGAGAGCAGCGAGAACAAGAACCTGGG CGGCGTGACCCAGGAATCCTTCGACCTGATGATCAAAGAAAACCCCAGCAGCC AGTATTGGAAAGAGGTGGCCGAGAAGCGGCGGAAGGCCCTG (SEQ ID NO: 25) Cdtl:linker:Cas9
ATGCCATCTCCTGCCAGACCTGCTCTGAGAGCCCCTGCCTCTGCC ACAAGCGGC AGCAGAAAGAGAGCCAGACCTCCTGCCGCCCCTGGCAGAGATCAGGCTAGACC TCCAGCTCGGCGGAGACTGAGACTGAGCGTGGACGAGGTGTCCAGCCCTAGCA CACCTGAGGCCCCTGATATCCCCGCCTGTCCTAGCCCTGGCCAGAAGATCAAGA AGTCCACCCCTGCCGCCGGACAGCCTCCTCATCTGACATCTGCCCAGGACCAGG ACACCATCGGAGGCGGAGGATCTGGCGGAGGCGGAAGTGGCGGAGGGGGCAG CGACAAGAAGTACTCCATTGGGCTCGATATCGGCACAAACAGCGTCGGCTGGG CCGTCATTACGGACGAGTACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGGGC AATACCGATCGCCACAGCATAAA
GAAGAACCTCATTGGCGCCCTCCTGTTCGACTCCGGGGAGACGGCCGAAGCCA CGCGGCTCAAAAGAACAGCACGGCGCAGATATACCCGCAGAAAGAATCGGATC TGCTACCTGCAGGAGATCTTTAGTAATGAGATGGCTAAGGTGGATGACTCTTTC TTCCATAGGCTGGAGGAGTCCTTTTTGGTGGAGGAGGATAAAAAGCACGAGCG CCACCCAATCTTTGGCAATATCGTGGACGAGGTGGCGTACCATGAAAAGTACC CAACCATATATCATCTGAGGAAGAAGCTTGTAGACAGTACTGATAAGGCTGAC TTGCGGTTGATCTATCTCGCGCTGGCGCATATGATCAAATTTCGGGGACACTTC CTCATCGAGGGGGACCTGAACCCAGACAACAGCGATGTCGACAAACTCTTTAT CCAACTGGTTCAGACTTACAATCAGCTTTTCGAAGAGAACCCGATCAACGCATC CGGAGTTGACGCCAAAGCAATCCTGAGCGCTAGGCTGTCCAAATCCCGGCGGC TCGAAAACCTCATCGCACAGCTCCCTGGGGAGAAGAAGAACGGCCTGTTTGGT AATCTTATCGCCCTGTCACTCGGGCTGACCCCCAACTTTAAATCTAACTTCGAC CTGGCCGAAGATGCCAAGCTTCAACTGAGCAAAGACACCTACGATGATGATCT CGACAATCTGCTGGCCCAGATCGGCGACCAGTACGCAGACCTTTTTTTGGCGGC AAAGAACCTGTCAGACGCCATTCTGCTGAGTGATATTCTGCGAGTGAACACGG AGATCACCAAAGCTCCGCTGAGCGCTAGTATGATCAAGCGCTATGATGAGCAC CACCAAGACTTGACTTTGCTGAAGGCCCTTGTCAGACAGCAACTGCCTGAGAA GTACAAGGAAATTTTCTTCGATCAGTCTAAAAATGGCTACGCCGGATACATTGA CGGCGGAGCAAGCCAGGAGGAATTTTACAAATTTATTAAGCCCATCTTGGAAA AAATGGACGGC ACCGAGGAGCTGCTGGT AAAGCTT AAC AGAGAAGATCTGTTG CGCAAACAGCGCACTTTCGACAATGGAAGCATCCCCCACCAGATTCACCTGGG CGAACTGCACGCTATCCTCAGGCGGCAAGAGGATTTCTACCCCTTTTTGAAAGA TAACAGGGAAAAGATTGAGAAAATCCTCACATTTCGGATACCCTACTATGTAG GCCCCCTCGCCCGGGGAAATTCCAGATTCGCGTGGATGACTCGCAAATCAGAA GAGACCATCACTCCCTGGAACTTCGAGGAAGTCGTGGATAAGGGGGCCTCTGC CCAGTCCTTCATCGAAAGGATGACTAACTTTGATAAAAATCTGCCTAACGAAAA GGTGCTTCCTAAACACTCTCTGCTGTACGAGTACTTCACAGTTTATAACGAGCT CACCAAGGTCAAATACGTCACAGAAGGGATGAGAAAGCCAGCATTCCTGTCTG GAGAGCAGAAGAAAGCTATCGTGGACCTCCTCTTCAAGACGAACCGGAAAGTT ACCGTGAAACAGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTTTCGACTCT GTTGAAATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGTATCA CGATCTCCTGAAAATCATTAAAGACAAGGACTTCCTGGACAATGAGGAGAACG AGGACATTCTTGAGGACATTGTCCTCACCCTTACGTTGTTTGAAGATAGGGAGA TGATTGAAGAACGCTTGAAAACTTACGCTCATCTCTTCGACGACAAAGTCATGA AACAGCTCAAGAGGCGCCGATATACAGGATGGGGGCGGCTGTCAAGAAAACTG ATCAATGGGATCCGAGACAAGCAGAGTGGAAAGACAATCCTGGATTTTCTTAA GTCCGATGGATTTGCCAACCGGAACTTCATGCAGTTGATCCATGATGACTCTCT CACCTTTAAGGAGGACATCCAGAAAGCACAAGTTTCTGGCCAGGGGGACAGTC TTCACGAGCACATCGCTAATCTTGCAGGTAGCCCAGCTATCAAAAAGGGAATA CTGC AGACCGTT AAGGTCGTGGATGAACTCGTC AAAGT AATGGGAAGGC AT AA GCCCGAGAATATCGTTATCGAGATGGCCCGAGAGAACCAAACTACCCAGAAGG GACAGAAGAACAGTAGGGAAAGGATGAAGAGGATTGAAGAGGGTATAAAAGA ACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTGAAAACACCCAGCTTCAGA ATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAGGGACATGTACGTGGAT CAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGATCATATCGTGCCC CAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACAAGATCCGAT AAAAATAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGTCAAGAAAAT GAAAAATTATTGGCGGCAGCTGCTGAACGCCAAACTGATCACACAACGGAAGT TCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTGGATAAAGCC GGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAAGCACGTGGC CCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAAATGACAAACTGA TTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTCAGATTTCAGAA AGGACTTTC AGTTTTAT AAGGTGAGAGAGATC AAC AATT ACC ACC ATGCGC ATG ATGCCTACCTGAATGCAGTGGTAGGCACTGCACTTATCAAAAAATATCCCAAGC TTGAATCTGAATTTGTTTACGGAGACTATAAAGTGTACGATGTTAGGAAAATGA TCGCAAAGTCTGAGCAGGAAATAGGCAAGGCCACCGCTAAGTACTTCTTTTAC AGCAATATTATGAATTTTTTCAAGACCGAGATTACACTGGCCAATGGAGAGATT CGGAAGCGACCACTTATCGAAACAAACGGAGAAAC AGGAGAAATCGTGTGGG ACAAGGGTAG
GGATTTCGCGACAGTCCGGAAGGTCCTGTCCATGCCGCAGGTGAACATCGTTAA AAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAAAGTATCCTCCCGAAAA GGAACAGCGACAAGCTGATCGCACGCAAAAAAGATTGGGACCCCAAGAAATA CGGCGGATTCGATTCTCCTACAGTCGCTTACAGTGTACTGGTTGTGGCCAAAGT GGAGAAAGGGAAGTCTAAAAAACTCAAAAGCGTCAAGGAACTGCTGGGCATC ACAATCATGGAGCGATCAAGCTTCGAAAAAAACCCCATCGACTTTCTCGAGGC GAAAGGATATAAAGAGGTCAAAAAAGACCTCATCATTAAGCTTCCCAAGTACT CTCTCTTTGAGCTTGAAAACGGCCGGAAACGAATGCTCGCTAGTGCGGGCGAG CTGCAGAAAGGTAACGAGCTGGCACTGCCCTCTAAATACGTTAATTTCTTGTAT CTGGCCAGCCACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAATGAGCAGAA GCAGCTGTTCGTGGAACAACACAAACACTACCTTGATGAGATCATCGAGCAAA TAAGCGAATTCTCCAAAAGAGTGATCCTCGCCGACGCTAACCTCGATAAGGTG CTTTCTGCTTACAATAAGCACAGGGATAAGCCCATCAGGGAGCAGGCAGAAAA CATTATCCACTTGTTTACTCTGACCAACTTGGGCGCGCCTGCAGCCTTCAAGTA CTTCGACACCACCATAGACAGAAAGCGGTACACCTCTACAAAGGAGGTCCTGG ACGCCACACTGATTCATCAGTCAATTACGGGGCTCTATGAAACAAGAATCGAC CTCTCTCAGCTCGGTGGAGACAGCAGGGCTGACCCCAAGAAGAAGAGGAAGGT GAGG (SEQ ID NO: 26)
Gem:linker:Cas9
ATGAACCCTAGCATGAAGCAGAAGCAGGAAGAGATCAAAGAGAACATCAAGA ACAGCAGCGTGCCCAGACGGACCCTGAAGATGATCCAGCCTAGCGCCAGCGGC AGCCTCGTGGGCAGAGAGAATGAACTGTCTGCCGGCCTGAGCAAGCGGAAGCA CAGAAACGACCACCTGACCAGCACCACCAGCAGCCCTGGCGTGATCGTGCCTG AGAGCAGCGAGAACAAGAACCTGGGCGGCGTGACCCAGGAATCCTTCGACCTG ATGATCAAAGAAAACCCCAGCAGCCAGTATTGGAAAGAGGTGGCCGAGAAGC GGCGGAAGGCCCTGGGAGGCGGAGGATCTGGCGGAGGCGGAAGTGGCGGAGG GGGCAGCGACAAGAAGTACTCCATTGGGCTCGATATCGGCACAAACAGCGTCG GCTGGGCCGTCATTACGGACGAG
TACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGGGCAATACCGATCGCCACAG CATAAAGAAGAACCTCATTGGCGCCCTCCTGTTCGACTCCGGGGAGACGGCCG AAGCC ACGCGGCTCAAAAGAAC AGCACGGCGCAGATATACCCGCAGAAAGAA TCGGATCTGCTACCTGCAGGAGATCTTTAGTAATGAGATGGCTAAGGTGGATGA CTCTTTCTTCCATAGGCTGGAGGAGTCCTTTTTGGTGGAGGAGGATAAAAAGCA CGAGCGCCACCCAATCTTTGGCAATATCGTGGACGAGGTGGCGTACCATGAAA AGTACCCAACCATATATCATCTGAGGAAGAAGCTTGTAGACAGTACTGATAAG GCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCATATGATCAAATTTCGGGGA CACTTCCTCATCGAGGGGGACCTGAACCCAGACAACAGCGATGTCGACAAACT CTTTATCCAACTGGTTCAGACTTACAATCAGCTTTTCGAAGAGAACCCGATCAA CGCATCCGGAGTTGACGCCAAAGCAATCCTGAGCGCTAGGCTGTCCAAATCCC GGCGGCTCGAAAACCTCATCGCACAGCTCCCTGGGGAGAAGAAGAACGGCCTG TTTGGTAATCTTATCGCCCTGTCACTCGGGCTGACCCCCAACTTTAAATCTAACT TCGACCTGGCCGAAGATGCCAAGCTTCAACTGAGCAAAGACACCTACGATGAT GATCTCGACAATCTGCTGGCCCAGATCGGCGACCAGTACGCAGACCTTTTTTTG GCGGCAAAGAACCTGTCAGACGCCATTCTGCTGAGTGATATTCTGCGAGTGAA CACGGAGATCACCAAAGCTCCGCTGAGCGCTAGTATGATCAAGCGCTATGATG AGCACCACCAAGACTTGACTTTGCTGAAGGCCCTTGTCAGACAGCAACTGCCTG AGAAGTACAAGGAAATTTTCTTCGATCAGTCTAAAAATGGCTACGCCGGATAC ATTGACGGCGGAGCAAGCCAGGAGGAATTTTACAAATTTATTAAGCCCATCTTG GAAAAAATGGACGGCACCGAGGAGCTGCTGGTAAAGCTTAACAGAGAAGATCT
- I l l - GTTGCGCAAACAGCGCACTTTCGACAATGGAAGCATCCCCCACCAGATTCACCT GGGCGAACTGCACGCTATCCTCAGGCGGCAAGAGGATTTCTACCCCTTTTTGAA AGATAACAGGGAAAAGATTGAGAAAATCCTCACATTTCGGATACCCTACTATG TAGGCCCCCTCGCCCGGGGAAATTCCAGATTCGCGTGGATGACTCGCAAATCA GAAGAGACCATCACTCCCTGGAACTTCGAGGAAGTCGTGGATAAGGGGGCCTC TGCCCAGTCCTTCATCGAAAGGATGACTAACTTTGATAAAAATCTGCCTAACGA AAAGGTGCTTCCTAAACACTCTCTGCTGTACGAGTACTTCACAGTTTATAACGA GCTCACCAAGGTCAAATACGTCACAGAAGGGATGAGAAAGCCAGCATTCCTGT CTGGAGAGCAGAAGAAAGCTATCGTGGACCTCCTCTTCAAGACGAACCGGAAA GTTACCGTGAAAC AGCTC AAAGAAGACT ATTTC AAAAAGATTGAATGTTTCGA CTCTGTTGAAATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGT ATCACGATCTCCTGAAAATCATTAAAGACAAGGACTTCCTGGACAATGAGGAG AACGAGGACATTCTTGAGGACATTGTCCTCACCCTTACGTTGTTTGAAGATAGG GAGATGATTGAAGAACGCTTGAAAACTTACGCTCATCTCTTCGACGACAAAGTC ATGAAAC AGCTC AAGAGGCGCCGATATACAGGATGGGGGCGGCTGTCAAGAA AACTGATCAATGGGATCCGAGACAAGCAGAGTGGAAAGACAATCCTGGATTTT CTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGTTGATCCATGATGAC TCTCTCACCTTTAAGGAGGACATCCAGAAAGCACAAGTTTCTGGCCAGGGGGA CAGTCTTCACGAGCACATCGCTAATCTTGCAGGTAGCCCAGCTATCAAAAAGG GAATACTGCAGACCGTTAAGGTCGTGGATGAACTCGTCAAAGTAATGGGAAGG CATAAGCCCGAGAATATCGTTATCGAGATGGCCCGAGAGAACCAAACTACCCA GAAGGGACAGAAGAACAGTAGGGAAAGGATGAAGAGGATTGAAGAGGGTATA AAAGAACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTGAAAACACCCAGCT TCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAGGGACATGTACG TGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGACGTGGATCATATCG TGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAAAGTGTTGACAAGAT CCGATAAAAATAGAGGGAAGAGTGATAACGTCCCCTCAGAAGAAGTTGTCAAG AAAATGAAAAATTATTGGCGGCAGCTGCTGAACGCCAAACTGATCACACAACG GAAGTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTCTGAGTTGGATA AAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAAGCAC GTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAAATGACAA ACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTCAGATTT CAGAAAGGACTTTCAGTTTTATAAGGTGAGAGAGATCAACAATTACCACCATG CGCATGATGCCTACCTGAATGCAGTGGTAGGCACTGCACTTATCAAAAAATATC CCAAGCTTGAATCTGAATTTGTTTACGGAGACTATAAAGTGTACGATGTTAGGA AAATGATCGCAAAGTCTGAGCAGGAAATAGGCAAGGCCACCGCTAAGTACTTC TTTTACAGCAATATTATGAATTTTTTCAAGACCGAGATTACACTGGCCAATGGA GAGATTCGGA
AGCGACCACTTATCGAAACAAACGGAGAAACAGGAGAAATCGTGTGGGACAA GGGTAGGGATTTCGCGACAGTCCGGAAGGTCCTGTCCATGCCGCAGGTGAACA TCGTTAAAAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAAAGTATCCTC CCGAAAAGGAACAGCGACAAGCTGATCGCACGCAAAAAAGATTGGGACCCCA AGAAAT ACGGCGGATTCGATTCTCCT AC AGTCGCTT AC AGTGT ACTGGTTGTGG CCAAAGTGGAGAAAGGGAAGTCTAAAAAACTCAAAAGCGTCAAGGAACTGCT GGGCATCACAATCATGGAGCGATCAAGCTTCGAAAAAAACCCCATCGACTTTC TCGAGGCGAAAGGATATAAAGAGGTCAAAAAAGACCTCATCATTAAGCTTCCC AAGTACTCTCTCTTTGAGCTTGAAAACGGCCGGAAACGAATGCTCGCTAGTGCG GGCGAGCTGCAGAAAGGTAACGAGCTGGC ACTGCCCTCTAAATACGTTAATTT CTTGTATCTGGCCAGCCACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAATG AGCAGAAGCAGCTGTTCGTGGAACAACACAAACACTACCTTGATGAGATCATC GAGCAAATAAGCGAATTCTCCAAAAGAGTGATCCTCGCCGACGCTAACCTCGA TAAGGTGCTTTCTGCTTACAATAAGCACAGGGATAAGCCCATCAGGGAGCAGG CAGAAAACATTATCCACTTGTTTACTCTGACCAACTTGGGCGCGCCTGCAGCCT TCAAGTACTTCGACACCACCATAGACAGAAAGCGGTACACCTCTACAAAGGAG GTCCTGGACGCCACACTGATTCATCAGTCAATTACGGGGCTCTATGAAACAAGA ATCGACCTCTCTCAGCTCGGTGGAGACAGCAGGGCTGACCCCAAGAAGAAGAG GAAGGTGAGG (SEQ ID NO: 27)
EXAMPLE 4
Auto-regulation of RNA-guided nucleases by engineering partial target sites
Reducing RNA-directed nuclease activity can be beneficial towards reducing the potential for off-target effects. In a clinical setting, this would be highly significant with viral delivery methods, such as AAV, which are characterized by prolonged or life-time expression.
Here, a self-regulating system is described for the expression of Cas9, an RNA- guided nuclease, that relies upon the use of imperfect target sites encoded within the Cas9/gRNA expression system itself. Cas9 binding (without cleavage) has been shown by numerous studies to be effective at regulating gene expression. Most studies use the nuclease-dead version of Cas9 to prevent cleavage activity, however a system which allows for both cleavage and self-regulation would be highly desirable.
By using engineered sequences that correspond to partial target sites, the cutting and binding activities of Cas9 can be separated; partial sequence complementarity allows Cas9 to bind without DNA cleavage. Using this binding propensity, Cas9 can be directed back to regulating its own expression. For SpCas9, sites that are generally below 17nt of complementarity do not result in cleavage, and even single mismatches can result in no cleavage with high-fidelity or high-specificity Cas9 mutants.
Importantly, all of this regulation occurs with minimal sequence changes, and without additional binding factors, fusions, or other proteins, keeping the expression cassette size small enough to be delivered by AAV.
Methods
Plasmid construction: The GFP reporter plasmids were constructed by Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications.
Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (heat- inactivated) (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX
(Invitrogen).
N2A cell line (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
Cells were transfected (Lipofectamine 3000) with each construct. GFP expression was analyzed using flow cytometry.
mm079 target sequence: GAAGAAGGTTCGAGATCTCA (SEQ ID NO: 28)
mm079 genomic target site: GAAGAAGGTTCGAGATCTCAAGG (SEQ ID NO: 29) Autol site: GTTCGAGATCTCAGGGAAT (SEQ ID NO: 30)
Auto2 site: GTTCGAGATCTCAGGGTTT (SEQ ID NO: 31)
HI wt:
GGAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTG AGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA AATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTAT GAGACCA CTTTTTCCC (SEQ ID NO: 32)
HI Autol:
GGAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTG AGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA AATCACCATAAACGTGAAAGTTCGAGATCTCAGGGAATCTTATAAGTTCTGTAT GAGACC ACTTTTTCCC (SEQ ID NO: 33)
HI Auto2:
GGAATTCGAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTG TCACTAGGCGGGAACACCCAGCGCGCGTGCGCCCTGGCAGGAAGATGGCTGTG AGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGTGTTCTGGGA AATCACC ATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTGTTCGAG ATCTCAG GGTTTTCCC (SEQ ID NO: 34)
EXAMPLE 5
Methionine (Met) followed by a glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), alanine (Ala), valine (Val), or cysteine (Cys) are processed by
Methionineaminopeptidases, which cleave off the N-terminal met (FIG. 1 A). The identity of the position 2 amino-acid then either stabilizes or destabilizes the entire protein. Thus, by changing the identity of the second amino acid, one can alter some proteins half-life through Met-aminopeptidases.
While differing from organism to organism, and variable between proteins, the N- end rule serves as an estimation of a proteins half-life within a cell (FIG. 17B). Protein levels are modulated through the ubiquitin (Ub) proteolytic system. Ubiquitin is a highly conserved protein of 76 amino acids that is typically associated with protein degradation; Ub molecules are conjugated to target proteins marking those proteins for destruction by the proteasome.
Linear poly-ubiquitin is recognized in the cell by deubiquitin enzymes which cleave the individual Ub peptides. This process can be co-opted to generate specific N-terminal residues by fusing Ub to the N-terminus of any protein (FIG. 18). Once inside the cell, deubiquitin enzymes recognize and cleave the Ub moiety, releasing the fused protein. This process can be used to generate precise N-terminal amino-acid residues on a given protein, the identity of which determines the proteins half-life.
Genetically, controlling the expression of either the RNA-guided nuclease or the guide RNA can modulate the entire holoenzyme complex; for the CRISPR-Cas9 system, this can be done either by regulating the levels of Cas9 or the gRNA. Furthermore, simple changes in the N-terminal amino acids, either through Met-aminopeptidases,
deubiquintation, or alternative methods, can accomplish this regulation (FIG. 19A).
Reducing Cas9 half-life can be beneficial towards reducing the potential for off- target effects. In a clinical setting, this would be highly significant with viral delivery methods, such as AAV, which are characterized by prolonged or life-time expression. Conversely, with inefficient methods of delivery, increased protein half-life could be desirable or necessary to elicit an effect. In various diverse settings, the ability to tune the levels of the nuclease would be highly desirable. Additionally, this approach to regulation is simple and can be used in conjunction with other forms of regulation, such as degrons, inducible degrons, or split variants of RNA-guided nucleases.
Here, it was shown that levels of Cas9, an RNA-guided nuclease, can be modulated by the identity of the N-terminal amino acid, by as much as 8-10-fold, a significant range of expression for a nuclease (FIG. 19A). Also shown is how commonly used 2A peptides can be leveraged to modulate protein levels in the cell (FIG. 20).
Methods
Plasmid construction: To generate the ubiquitin fused Cas9 proteins, ubiquitin was fused to the N-terminus of Cas9 using Gibson Assembly (New England Biolabs,
Ipswich, MA) (Gibson et al. (2009) Nature Methods 6:343-345) with slight modifications. Briefly, primers encoding all 20 amino acids were used to amplify a gBlock encoding ubiquitin, which was then cloned in-frame with Cas9. All constructs were sequenced verified.
Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
Cells were transfected with each construct at either 2000ng, 500ng, or 125ng. 48hrs later cells were harvested for protein and then analyzed on a Simple Simon machine for Cas9 expression or GAPDH for control. The ratios were used to normalize values and to determine protein stability.
1. Tasaki T et al. (2012) Aram Rev Biochem. 81 :261-89.
2. Varshavsky A et al. (2011) Protein Sci. 20(8): 1298-345.
3. Bachmair A et al. (1986) Science. 234(4773): 179-86.
Table 1: Approximate half-life of proteins in mammalian cells based on the N- terminal residue
Table 2: List of commonly used 2A sequences
P2A: GSGAT F SLLKQ AGDVEE PGP (SEQ ID NO: 35)
T2A: GSGEGRGSLLTCGDVEENPGP (SEQ ID NO: 36)
E2A: GSGQCTNYALLKLAGDVESNPGP (SEQ ID NO: 37)
F2A: GSGVKQTLNFDLLKLAGDVESNPGP (SEQ ID NO: 38)
Protein Sequences
Ub:Val::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGVDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAFiLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA RNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQF YKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML AS AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 39)
Ub:Met::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGMDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF TV YNELTK VKY VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHIVPQ SFLKDD SIDNKVLTRSDK RGKSDNVP SEE VVKKMKNYW RQLLNAKLITQRKFD LTK AERGGL SELDK AGFIKRQLVETRQITKH VAQILD SRM NTKYDE DKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVG T ALIKK YPKLE SEF V YGD YK V YD VRKMI AK SEQEIGK AT AK YFF Y SNIMNFFKTEIT LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGEL QKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEIIEQISEFS KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRK RYT S TKE VLD ATLIHQ SITGL YETRIDL S QLGGD SRADPKKKRK V (SEQ ID NO: 40) Ub:Gly::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGGDKKYSIGLDIGTNS VGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERFIPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPrNASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYFIDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIF1DDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRFD PENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEFiPVENTQLQNEKLYLYYLQNGRDMYVDQEL DF RL SD YD VDHIWQ SFLKDD SIDNKVLTRSDKNRGKSDNVP SEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGT ALIKK YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEF SKRVIL AD A LDKVL S AYNKF1RDKPIREQ AENIIFILFTLT LGAP AAFK YF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV(SEQ ID NO: 41)
Ub:Pro::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGPDKKYSIGLDIGTNS VGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNF N FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEF SKRVIL AD ANLDKVL SAYNKFIRDKPIREQ AENIIFILFTLTNLGAP AAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 42)
Ub:Ile::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGIDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT APJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 43)
Ub:Thr::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGTDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKK LIGALLFDSGETAEATRLKRTARRRYTRRK RICYLQEIFS EMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDL PDNSDVDKLFIQLVQTYNQLFEE PINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFG LIALSLGLTP FKS FDLAEDAKLQ LSKDTYDDDLD LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKL REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA R FMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SID K VLTRSDK RGKSDNVP SEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 44)
Ub:Leu::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGLDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKL REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAFiLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA RNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 45)
Ub:Ala::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGADKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDF YPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF TV YNELTK VKY VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA RNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHIWQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 46)
Ub:His::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGHDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHIVPQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNF N FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 47)
Ub:Trp: :Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD
YNIQKESTLHLVLRLRGGWDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGN
TDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPrNASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DI RL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 48)
Ub:Try::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGYDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDF YPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNF N FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 49) Ub:Ser::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGSDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKK LIGALLFDSGETAEATRLKRTARRRYTRRK RICYLQEIFS EMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDL PDNSDVDKLFIQLVQTYNQLFEE PINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFG LIALSLGLTP FKS FDLAEDAKLQ LSKDTYDDDLD LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKL REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDF YPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA R FMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SID K VLTRSDK RGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 50)
Ub:Asn::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGNDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDL PDNSDVDKLFIQLVQTYNQLFEE PINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFG LIALSLGLTP FKS FDLAEDAKLQ LSKDTYDDDLD LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKL REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA R FMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SID K VLTRSDK RGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQF YKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 51)
Ub:Lys::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGKDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAFiLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA RNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQF YKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML AS AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 52)
Ub:Cys::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGCDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF TV YNELTK VKY VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML AS AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLF WQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 53)
Ub:Asp::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGDDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKL YLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 54)
Ub:Phe::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGFDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILS ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITL ANGEIRKRPLIETNGETGEIVWDKGRDF ATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 55)
Ub:Glu::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGEDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILS ARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQ LSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD NREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SIDNK VLTRSDKNRGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEII EQISEF SKRVIL AD ANLDKVL S AYNKFIRDKPIREQ AENIIFILFTLTNLGAP AAFK YF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 56)
Ub:Arg::Cas9 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGRDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKK LIGALLFDSGETAEATRLKRTARRRYTRRK RICYLQEIFS EMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDL PDNSDVDKLFIQLVQTYNQLFEE PINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFG LIALSLGLTP FKS FDLAEDAKLQ LSKDTYDDDLD LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKL REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRF AWMTRKSEETITPW FEEVVDKGAS AQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA R FMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SID K VLTRSDK RGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 57)
Ub:Gln::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGGQDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNT DRHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVD DSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA KAILSARLSKSRRLENLIAQLPGEKKNGLFG LIALSLGLTP FKS FDLAEDAKLQ LSKDTYDDDLD LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMI KRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKP ILEKMDGTEELLVKL REDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKD REKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW FEEVVDKGASAQSFI ERMT FDK LP EK VLPKH SLL YE YF T V YNELTK VK Y VTEGMRKP AFL S GEQKK A IVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEE EDILEDIVLTLTLFEDREMIEEREKTYAFiLFDDKVMKQLKRRRYTGWG RLSRKLINGIRDKQSGKTILDFLKSDGFA RNFMQLIHDDSLTFKEDIQKAQVSGQG DSLHEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQEL DINRL SD YD VDHI WQ SFLKDD SID K VLTRSDK RGKSDNVP SEEVVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEF VYGDYKVYDVRKMIAKSEQEIGKATAKYFF YSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEFSKRVILADA LDKVLSAYNKHRDKPIREQAENIIHLFTLT LGAPAAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 58)
Ub(G76V)::Cas9
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD YNIQKESTLHLVLRLRGVDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTD RHSIKKNLIGALLFD SGET AEATRLKRT ARJ RYTRRKNRIC YLQEIF SNEMAKVDD S FFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL IYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKA ILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSK DTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRY DEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEK MDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNRE KIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM TNFDK LP EK VLPKHSLL YE YF T VYNELTK VK Y VTEGMRKP AFL S GEQKK AI VD LLFKT RKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFL D EEl^DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLS RKLINGIRDKQSGKTILDFLKSDGFA RNFMQLIHDDSLTFKEDIQKAQVSGQGDSL HEHIA LAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQK NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDIN RL SD YD VDHIVPQ SFLKDD SIDNKVLTRSDK RGKSDNVP SEE VVKK MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQ ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL NAVVGTALIKKYPKLESEF VYGDYKVYDVRKMIAKSEQEIGKATAKYFF YSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKK LKSVKELLGITIMERSSFEK PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRML ASAGELQKG ELALPSKYVNFLYLASHYEKLKGSPED EQKQLFVEQHKHYLDEII EQISEF SKRVIL AD A LDKVL S AYNKF1RDKPIREQ AENIIFILFTLT LGAP AAFKYF DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKV (SEQ ID NO: 59)
DNA Sequences
Ub:
ACCACCTCTCAGACGCAGGACCAGGTGCAGGGTCGACTCCTTCTGGATGTTGTA GTCAGAAAGAGTGCGGCCATCTTCCAGCTGCTTGCCTGCAAAGATGAGCCTCTG CTGGTCGGGAGGGATGCCTTCTTTATCCTGGATCTTGGCCTTCACATTTTCGATG GTGTCACTGGGCTCCACTTCCAGGGTGATGGTCTTGCCGGTCAGGGTCTTCACG AAGATCTGCAT (SEQ ID NO: 60)
Cas9:
GACAAGAAGTACTCCATTGGGCTCGATATCGGCACAAACAGCGTCGGCTGGGC CGTCATTACGGACGAGTACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGGGCA ATACCGATCGCCACAGCATAAAGAAGAACCTCATTGGCGCCCTCCTGTTCGACT CCGGGGAGACGGCCGAAGCCACGCGGCTCAAAAGAACAGCACGGCGCAGATA T ACCCGC AGAAAGAATCGGATCTGCTACCTGC AGGAGATCTTTAGT AATGAGA TGGCTAAGGTGGATGACTCTTTCTTCCATAGGCTGGAGGAGTCCTTTTTGGTGG AGGAGGATAAAAAGCACGAGCGCCACCCAATCTTTGGCAATATCGTGGACGAG GTGGCGTACCATGAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCTTGT AGACAGTACTGATAAGGCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCATAT GATCAAATTTCGGGGACACTTCCTCATCGAGGGGGACCTGAACCCAGACAACA GCGATGTCGACAAACTCTTTATCCAACTGGTTCAGACTTACAATCAGCTTTTCG AAGAGAACCCGATCAACGCATCCGGAGTTGACGCCAAAGCAATCCTGAGCGCT AGGCTGTCCAAATCCCGGCGGCTCGAAAACCTCATCGCACAGCTCCCTGGGGA GAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCACTCGGGCTGACCCC CAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCCAAGCTTCAACTGAGCAA AGACACCTACGATGATGATCTCGACAATCTGCTGGCCCAGATCGGCGACCAGT ACGCAGACCTTTTTTTGGCGGCAAAGAACCTGTCAGACGCCATTCTGCTGAGTG AT ATTCTGCGAGTGAAC ACGGAGATC ACC AAAGCTCCGCTGAGCGCTAGT ATG ATCAAGCGCTATGATGAGCACCACCAAGACTTGACTTTGCTGAAGGCCCTTGTC AGACAGCAACTGCCTGAGAAGTACAAGGAAATTTTCTTCGATCAGTCTAAAAA TGGCTACGCCGGATACATTGACGGCGGAGCAAGCCAGGAGGAATTTTACAAAT TTATTAAGCCCATCTTGGAAAAAATGGACGGCACCGAGGAGCTGCTGGTAAAG CTTAACAGAGAAGATCTGTTGCGCAAAC AGCGC ACTTTCGACAATGGAAGCAT CCCCCACCAGATTCACCTGGGCGAACTGCACGCTATCCTCAGGCGGCAAGAGG ATTTCTACCCCTTTTTGAAAGATAACAGGGAAAAGATTGAGAAAATCCTCACAT TTCGGATACCCTACTATGTAGGCCCCCTCGCCCGGGGAAATTCCAGATTCGCGT GGATGACTCGCAAATCAGAAGAGACCATCACTCCCTGGAACTTCGAGGAAGTC GTGGATAAGGGGGCCTCTGCCCAGTCCTTCATCGAAAGGATGACTAACTTTGAT AAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCTCTGCTGTACGAGTAC TTCACAGTTTATAACGAGCTCACCAAGGTCAAATACGTCACAGAAGGGATGAG AAAGCCAGCATTCCTGTCTGGAGAGCAGAAGAAAGCTATCGTGGACCTCCTCTT CAAGACGAACCGGAAAGTTACCGTGAAACAGCTCAAAGAAGACTATTTCAAAA AGATTGAATGTTTCGACTCTGTTGAAATCAGCGGAGTGGAGGATCGCTTCAACG CATCCCTGGGAACGTATCACGATCTCCTGAAAATCATTAAAGACAAGGACTTCC TGGACAATGAGGAGAACGAGGACATTCTTGAGGACATTGTCCTCACCCTTACGT TGTTTGAAGATAGGGAGATGATTGAAGAACGCTTGAAAACTTACGCTCATCTCT TCGACGACAAAGTCATGAAACAGCTCAAGAGGCGCCGATATACAGGATGGGGG CGGCTGTC AAGAAAACTGATC AATGGGATCCGAGAC AAGC AGAGTGGAAAGA CAATCCTGGATTTTCTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGT TGATCCATGATGACTCTCTCACCTTTAAGGAGGACATCCAGAAAGCACAAGTTT CTGGCCAGGGGGACAGTCTTCACGAGCACATCGCTAATCTTGCAGGTAGCCCA GCTATCAAAAAGGGAATACTGCAGACCGTTAAGGTCGTGGATGAACTCGTCAA AGTAATGGGAAGGCATAAGCCCGAGAATATCGTTATCGAGATGGCCCGAGAGA ACCAAACTACCCAGAAGGGACAGAAGAACAGTAGGGAAAGGATGAAGAGGAT TGAAGAGGGTATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTG AAAACACCCAGCTTCAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGC AGGGACATGTACGTGGATCAGGAACTGGACATCAATCGGCTCTCCGACTACGA CGTGGATCATATCGTGCCCCAGTCTTTTCTCAAAGATGATTCTATTGATAATAA AGTGTTGACAAGATCCGATAAAAATAGAGGGAAGAGTGATAACGTCCCCTCAG AAGAAGTTGTCAAGAAAATGAAAAATTATTGGCGGCAGCTGCTGAACGCCAAA CTGATC AC AC AACGGAAGTTCGAT AATCTGACTAAGGCTGAACGAGGTGGCCT GTCTGAGTTGGATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCC AGATCACCAAGCACGTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTAC GATGAAAATGACAAACTGATTCGAGAGGTGAAAGTTATTACTCTGAAGTCTAA GCTGGTCTCAGATTTCAGAAAGGACTTTCAGTTTTATAAGGTGAGAGAGATCAA CAATTACCACCATGCGCATGATGCCTACCTGAATGC AGTGGTAGGC ACTGCACT TATCAAAAAATATCCCAAGCTTGAATCTGAATTTGTTTACGGAGACTATAAAGT GTACGATGTTAGGAAAATGATCGCAAAGTCTGAGCAGGAAATAGGCAAGGCCA CCGCTAAGTACTTCTTTTACAGCAATATTATGAATTTTTTCAAGACCGAGATTAC ACTGGCCAATGGAGAGATTCGGAAGCGACCACTTATCGAAACAAACGGAGAAA CAGGAGAAATCGTGTGGGACAAGGGTAGGGATTTCGCGACAGTCCGGAAGGTC CTGTCCATGCCGCAGGTGAACATCGTTAAAAAGACCGAAGTACAGACCGGAGG CTTCTCCAAGGAAAGTATCCTCCCGAAAAGGAACAGCGACAAGCTGATCGCAC GCAAAAAAGATTGGGACCCCAAGAAATACGGCGGATTCGATTCTCCTACAGTC GCTTACAGTGTACTGGTTGTGGCCAAAGTGGAGAAAGGGAAGTCTAAAAAACT CAAAAGCGTCAAGGAACTGCTGGGCATCACAATCATGGAGCGATCAAGCTTCG AAAAAAACCCCATCGACTTTCTCGAGGCGAAAGGATATAAAGAGGTCAAAAAA GACCTCATCATTAAGCTTCCCAAGTACTCTCTCTTTGAGCTTGAAAACGGCCGG AAACGAATGCTCGCTAGTGCGGGCGAGCTGCAGAAAGGTAACGAGCTGGCACT GCCCTCTAAATACGTTAATTTCTTGTATCTGGCCAGCCACTATGAAAAGCTCAA AGGGTCTCCCGAAGAT AATGAGC AGAAGC AGCTGTTCGTGGAAC AAC AC AAAC ACTACCTTGATGAGATCATCGAGCAAATAAGCGAATTCTCCAAAAGAGTGATC CTCGCCGACGCTAACCTCGATAAGGTGCTTTCTGCTTACAATAAGCACAGGGAT AAGCCCATCAGGGAGCAGGCAGAAAACATTATCCACTTGTTTACTCTGACCAA CTTGGGCGCGCCTGCAGCCTTCAAGTACTTCGACACCACCATAGACAGAAAGC GGTACACCTCTACAAAGGAGGTCCTGGACGCCACACTGATTCATCAGTCAATTA CGGGGCTCTATGAAACAAGAATCGACCTCTCTCAGCTCGGTGGAGACAGCAGG GCTGACCCCAAGAAGAAGAGGAAGGTG (SEQ ID NO: 61)
EXAMPLE 6
Use of a bidirectional promoter to deliver an RNA-directed nuclease, guide RNA, and HDR templates through a single AAV virus
The delivery of RNA-directed nuclease, guide RNA, and HDR templates through a single AAV virus A revolutionary genome-editing technology known as CRISPR is transforming biological research and ushering in a new era for genetic medicine. Each cell in our body contains 3 billion base-pairs of DNA and even single changes - or mutations - can cause a wide variety of inherited or acquired diseases. Through a process akin to genome surgery, CRISPR technology allows researchers to
target disease-associated mutations with unprecedented precision, treating diseases at their root cause.
Research labs across the world have shown that CRISPR can efficiently target disease mutations; however, until now the development of CRISPR-based therapeutics for human use has been hampered by delivery constraints. The preferred delivery choice for tissue-specific in vivo gene therapy is recombinant adeno-associated viruses (AAV). AAV has a notable history of safety, efficacy, and a lack of toxicity that is further illustrated by the increasing number of FDA approved trials using this approach - there have been 150 trials using AAV worldwide. These compact viruses can deliver materials with high efficiency and specificity to a wide variety of cell types, and while safe, their small size presents a significant obstacle for the packaging of CRISPR components.
Dominant diseases occur when people inherit one bad gene which then poisons the normal copy. While untreatable by gene-therapy technology, these mutations can be suppressed using CRISPR which disrupts the mutation and allows the other normal gene to work. We previously disclosed a method for the packaging of both CRISPR components into a single AAV virus using the compact HI bidirectional promoter.
Recessive mutations, on the other hand, are the result of inheriting two bad copies of a gene. These diseases require delivering CRISPR as well as a long stretch of DNA surrounding the mutation (a template) so that the cell can edit out the mutations by copying in the correct sequence. While the vast majority of diseases fall into this category, no means exists to deliver CRISPR components and the template DNA via a single AAV virus exist due to the size limitations of AAV.
Historically, AAV served as a method to deliver templates for site-specific DNA change. Compared to other known methods, AAV templates are the most recombinogenic, although the rates were still low and on the order of less than 1 in 104 prior to gene-editing methods. We know that DNA breaks are highly recombinogenic, and that co-delivery of CRISPR-Cas9 with an AAV template has the ability to recombine at a high frequency. We also know that ssDNA templates
as small as 40-60nt are very effective HDr templates, as is dsDNA templates 200nt and bigger. Unfortunately, there are no means to deliver the CRISPR components and the HDR template in one AAV virus.
However, because the HI bidirectional promoter system is so compact, we can deliver both the cutting (Cas9 and gRNA) and pasting (HDR template) elements through a single AAV virus. The therapeutic potential for this class of diseases is far larger both in terms of the numbers of diseases and people that can be treated.
Here, it was shown the AAV vector design for correcting mutations in vivo, using the HI promoter to express an RNA-guided nuclease (Cas9), a guide RNA, and a donor template sequence. Two examples for mutation correction are illustrated for examples 1) using the SaCas9 nickase with two gRNAs and a template correction for the rdl2 mutation (FIG. 25B) and 2) the SpCas9 correction of the rdlO mutation (FIG. 27).
Methods
Human embryonic kidney (HEK) cell line 293 T (Life Technologies, Grand Island, NY) was maintained at 37°C with 5% CO2 / 20% O2 in Dulbecco's modified Eagle's Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Life Technologies, Grand Island, NY) and 2mM GlutaMAX (Invitrogen).
Construct design. See FIG. 28. A construct was designed to using the mouse HI promoter to express both SpCas9 and a gRNA. Two restrictions sites were incorporated before the flanking Notl sites to allow for Gibson cloning of an HDR template: Kpnl for left HDR, and Hpal for right HDR. For insertion after Kpnl digestion, the following sequence 5'-
GAGAGTGCACCATAGCGGCCGCGNNNGTACCCACACAAAAAACCAACACACA
G-3' (SEQ ID NO: 69), where N's represent the template region is used, or after Hpal digestion, the following sequence 5'- GGCACCGAGTCGGTGCTTTTTTGTTNNNNNNAACGCGGCCGCCTAGAGTCGAC- 3' (SEQ ID NO: 70), where N's represent the template region is used.
gRNAs (see Jaskula-Ranga, V., & Zack, D. J. (2016). grID: A CRISPR-Cas9 guide R A Database and Resource for Genome-Editing. bioRxiv, 097352) were generated by overlapping oligos that were annealed and amplified by PCR using two-step amplification Phusion Flash DNA polymerase (Thermo Fisher Scientific, Rockford, IL), and
subsequently purified using Zymo DNA clean and concentrator columns. The purified PCR products were then resuspended in H20 and quantitated using a NanoDrop 1000 (Thermo Fisher Scientific). The gRNA-expressing constructs were generated using the Gibson Assembly (New England Biolabs, Ipswich, MA) (Gibson et al. (2009) Nature
Methods 6:343-345) with slight modifications. The total reaction volume was reduced from 20μ1 to 2μ1. Clones were verified by Sanger sequencing.
HEK293 cells were co-transfected with Cas9 (unmodified, or cell-cycle regulated versions) and the gRNA construct targeting rhodopsin. 48hrs post transfection, genomic DNA was harvested and the sequence surrounding the target cut sites were amplified according to the primers listed in the Appendix. The PCR products were then purified and quantitated before performing the T7 Endo I assay. Briefly, 200ng of PCR product was denatured and then slowly re-annealed to allow for the formation of heteroduplexes, T7 Endonuclease I was added to the PCR products and incubated at 37C for 25 minutes to cleave heteroduplexes, the reaction was quenched in loading dye, and finally, the reaction was run on a 6% TBE PAGE gel to resolve the products. The gel was stained with SYBR- Gold, visualized, and quantitated using ImageJ. NHEJ frequencies were calculated using the binomial-derived equation:
; where the values of "a" and "b" are equal to the integrated area of the cleaved fragments after background subtraction and "c" is equal to the integrated area of the un-cleaved PCR product after background subtraction.
Sequences
mSPA HDR SpCas9 entry plasmid
CCTGCTGTCTCCACCGAGCTGAGAGAGGTCGATTCTTGTTTCATAGAGCCCCGT AATTGACTGATGAATCAGTGTGGCGTCCAGGACCTCCTTTGTAGAGGTGTACCG CTTTCTGTCTATGGTGGTGTCGAAGTACTTGAAGGCTGCAGGCGCGCCCAAGTT GGTCAGAGTAAACAAGTGGATAATGTTTTCTGCCTGCTCCCTGATGGGCTTATC CCTGTGCTTATTGTAAGCAGAAAGCACCTTATCGAGGTTAGCGTCGGCGAGGAT CACTCTTTTGGAGAATTCGCTTATTTGCTCGATGATCTCATCAAGGTAGTGTTTG TGTTGTTCCACGAACAGCTGCTTCTGCTCATTATCTTCGGGAGACCCTTTGAGCT TTTCATAGTGGCTGGCCAGATACAAGAAATTAACGTATTTAGAGGGCAGTGCC AGCTCGTTACCTTTCTGCAGCTCGCCCGCACTAGCGAGCATTCGTTTCCGGCCG TTTTCAAGCTCAAAGAGAGAGTACTTGGGAAGCTTAATGATGAGGTCTTTTTTG ACCTCTTTATATCCTTTCGCCTCGAGAAAGTCGATGGGGTTTTTTTCGAAGCTTG ATCGCTCCATGATTGTGATGCCCAGCAGTTCCTTGACGCTTTTGAGTTTTTTAGA CTTCCCTTTCTCCACTTTGGCCACAACCAGTACACTGTAAGCGACTGTAGGAGA ATCGAATCCGCCGT ATTTCTTGGGGTCCC AATCTTTTTTGCGTGCGATC AGCTTG TCGCTGTTCCTTTTCGGGAGGATACTTTCCTTGGAGAAGCCTCCGGTCTGTACTT CGGTCTTTTTAACGATGTTCACCTGCGGCATGGACAGGACCTTCCGGACTGTCG CGAAATCCCTACCCTTGTCCCACACGATTTCTCCTGTTTCTCCGTTTGTTTCGAT AAGTGGTCGCTTCCGAATCTCTCCATTGGCCAGTGTAATCTCGGTCTTGAAAAA ATTC ATAATATTGCTGTAAAAGAAGTACTTAGCGGTGGCCTTGCCTATTTCCTG CTCAGACTTTGCGATCATTTTCCTAACATCGTACACTTTATAGTCTCCGTAAACA AATTCAGATTCAAGCTTGGGATATTTTTTGATAAGTGCAGTGCCTACCACTGCA TTCAGGTAGGCATCATGCGCATGGTGGTAATTGTTGATCTCTCTCACCTTATAA AACTGAAAGTCCTTTCTGAAATCTGAGACCAGCTTAGACTTCAGAGTAATAACT TTCACCTCTCGAATCAGTTTGTCATTTTCATCGTACTTGGTGTTCATGCGTGAAT CGAGAATTTGGGCCACGTGCTTGGTGATCTGGCGTGTCTCAACAAGCTGCCTTT TGATGAAGCCGGCTTTATCCAACTCAGACAGGCCACCTCGTTCAGCCTTAGTCA GATTATCGAACTTCCGTTGTGTGATCAGTTTGGCGTTCAGCAGCTGCCGCCAAT AATTTTTCATTTTCTTGACAACTTCTTCTGAGGGGACGTTATCACTCTTCCCTCT ATTTTTATCGGATCTTGTCAACACTTTATTATCAATAGAATCATCTTTGAGAAAA GACTGGGGCACGATATGATCCACGTCGTAGTCGGAGAGCCGATTGATGTCCAG TTCCTGATCCACGTACATGTCCCTGCCGTTCTGCAGGTAGTACAGGTAGAGCTT CTCATTCTGAAGCTGGGTGTTTTCAACTGGGTGTTCCTTAAGGATTTGGGACCC CAGTTCTTTTATACCCTCTTCAATCCTCTTCATCCTTTCCCTACTGTTCTTCTGTC CCTTCTGGGTAGTTTGGTTCTCTCGGGCCATCTCGATAACGATATTCTCGGGCTT ATGCCTTCCCATTACTTTGACGAGTTCATCCACGACCTTAACGGTCTGCAGTATT CCCTTTTTGATAGCTGGGCTACCTGCAAGATTAGCGATGTGCTCGTGAAGACTG TCCCCCTGGCCAGAAACTTGTGCTTTCTGGATGTCCTCCTTAAAGGTGAGAGAG TCATCATGGATCAACTGCATGAAGTTCCGGTTGGCAAATCCATCGGACTTAAGA AAATCCAGGATTGTCTTTCCACTCTGCTTGTCTCGGATCCCATTGATCAGTTTTC TTGACAGCCGCCCCCATCCTGTATATCGGCGCCTCTTGAGCTGTTTCATGACTTT GTCGTCGAAGAGATGAGCGTAAGTTTTCAAGCGTTCTTCAATCATCTCCCTATC TTCAAACAACGTAAGGGTGAGGACAATGTCCTCAAGAATGTCCTCGTTCTCCTC ATTGTCCAGGAAGTCCTTGTCTTTAATGATTTTCAGGAGATCGTGATACGTTCCC AGGGATGCGTTGAAGCGATCCTCCACTCCGCTGATTTCAACAGAGTCGAAACAT TCAATCTTTTTGAAATAGTCTTCTTTGAGCTGTTTCACGGTAACTTTCCGGTTCG TCTTGAAGAGGAGGTCCACGATAGCTTTCTTCTGCTCTCCAGACAGGAATGCTG GCTTTCTC ATCCCTTCTGTGACGT ATTTGACCTTGGTGAGCTCGTT ATAAACTGT GAAGTACTCGTACAGCAGAGAGTGTTTAGGAAGCACCTTTTCGTTAGGCAGATT TTTATCAAAGTTAGTCATCCTTTCGATGAAGGACTGGGCAGAGGCCCCCTTATC CACGACTTCCTCGAAGTTCCAGGGAGTGATGGTCTCTTCTGATTTGCGAGTCAT CCACGCGAATCTGGAATTTCCCCGGGCGAGGGGGCCTACATAGTAGGGTATCC GAAATGTGAGGATTTTCTCAATCTTTTCCCTGTTATCTTTCAAAAAGGGGTAGA AATCCTCTTGCCGCCTGAGGATAGCGTGCAGTTCGCCCAGGTGAATCTGGTGGG GGATGCTTCCATTGTCGAAAGTGCGCTGTTTGCGCAACAGATCTTCTCTGTTAA GCTTTACCAGCAGCTCCTCGGTGCCGTCCATTTTTTCCAAGATGGGCTTAATAA ATTTGTAAAATTCCTCCTGGCTTGCTCCGCCGTCAATGTATCCGGCGTAGCCATT TTTAGACTGATCGAAGAAAATTTCCTTGTACTTCTCAGGCAGTTGCTGTCTGAC AAGGGCCTTCAGCAAAGTCAAGTCTTGGTGGTGCTCATCATAGCGCTTGATCAT ACTAGCGCTCAGCGGAGCTTTGGTGATCTCCGTGTTCACTCGCAGAATATCACT CAGCAGAATGGCGTCTGACAGGTTCTTTGCCGCCAAAAAAAGGTCTGCGTACT GGTCGCCGATCTGGGCCAGCAGATTGTCGAGATCATCATCGTAGGTGTCTTTGC TCAGTTGAAGCTTGGCATCTTCGGCCAGGTCGAAGTTAGATTTAAAGTTGGGGG TCAGCCCGAGTGACAGGGCGATAAGATTACCAAACAGGCCGTTCTTCTTCTCCC CAGGGAGCTGTGCGATGAGGTTTTCGAGCCGCCGGGATTTGGACAGCCTAGCG CTCAGGATTGCTTTGGCGTCAACTCCGGATGCGTTGATCGGGTTCTCTTCGAAA AGCTGATTGTAAGTCTGAACCAGTTGGATAAAGAGTTTGTCGACATCGCTGTTG TCTGGGTTCAGGTCCCCCTCGATGAGGAAGTGTCCCCGAAATTTGATCATATGC GCCAGCGCGAGATAGATCAACCGCAAGTCAGCCTTATCAGTACTGTCTACAAG CTTCTTCCTCAGATGATATATGGTTGGGT ACTTTTCATGGTACGCCACCTCGTCCACGATATTGCCAAAGATTGGGTGGCGCT CGTGCTTTTTATCCTCCTCCACCAAAAAGGACTCCTCCAGCCTATGGAAGAAAG AGTCATCCACCTTAGCCATCTCATTACTAAAGATCTCCTGCAGGTAGCAGATCC GATTCTTTCTGCGGGTATATCTGCGCCGTGCTGTTCTTTTGAGCCGCGTGGCTTC GGCCGTCTCCCCGGAGTCGAACAGGAGGGCGCCAATGAGGTTCTTCTTTATGCT GTGGCGATCGGTATTGCCCAGAACTTTGAATTTTTTGCTCGGCACCTTGTACTCG TCCGTAATGACGGCCCAGCCGACGCTGTTTGTGCCGATATCGAGCCCAATGGAG TACTTCTTGTCCATGGTGGCGGCTCTTGAAGGACGACGTCATCATCCCTTGCCC GGATGCGCGGGCTTCTTGTCTAGCACAGGAGCCTGGGGTAGAGCGCATGCAAA TT ACGCGCTGTGCTTTGTGGGAAATC ACCCTAAACGAAAAATTTATTCCTCTTTC GAGCCTTATAGTGGCGGCCGGTCTACATCCTAGGTTTTAGAGCTAGAAATAGCA AGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGT GCTTTTTTGTTAACGCGGCCGCCTAGAGTCGACCTGCAGGCATGCAAGCTTGGC GTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCA CAC AACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGT GAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAA CCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTT TGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGT TCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA CAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAA GGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGA CAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTC CTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAG CGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTT CGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCC TTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCA CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGC TACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATT TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC TTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAA GCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTT CTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTC ATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGT TTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGC TTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCC CCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAG CAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTA TCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCG CCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCA CGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGA GTTAC ATGATCCCCC ATGTTGTGC AAAAAAGCGGTTAGCTCCTTCGGTCCTCCG ATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCA CTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTG AGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTT GCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTG CTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTC AAGGATCTTACCGCTG TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCT TTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTC ATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGA GCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGC ACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACA TTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGT GATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTG TCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTG TTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGA GAGTGCACCATAGCGGCCGCGGTACCCACACAAAAAACCAACACACAGATGTA ATGAAAATAAAGATATTTTATT
TCACACCTTCCTCTTCTTCTTGGGGTCAGC (SEQ ID NO: 62)
mSPA HDR rdl0(250)right
CTGCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAA TTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAA AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACT GCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCA ACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGC
TCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAG CGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGAT AACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTA AAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATC ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAAC
CCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGC TCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGG GAAGCGTGGCGCTTTCTC AT AGCTC ACGCTGT AGGTATCTC AGTTCGGTGT AGG TCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCT GCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTAT CGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGC GGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAAC AGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGG TAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCT TTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGG TCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAA GTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAAT GCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGT TGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGG CCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATC AGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTT TATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTT CGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGC
TACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGG TTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGT TAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATC ACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAG ATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCA
TTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGG GATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACG TTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGAT
GTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTT
TCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGC
AAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTT TTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATT TGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAA AAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAA ATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAA ACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATG CCGGGAGC AGAC AAGCCCGTC AGGGCGCGTC AGCGGGTGTTGGCGGGTGTCGG GGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAG CGGCCGCGGTACCCACACAAAAAACCAACACACAGATGTAATGAAAATAAAG ATATTTTATTTCACACCTTCCTCTTCTTCTTGGGGTCAGCCCTGCTGTCTCCACC GAGCTGAGAGAGGTCGATTCTTGTTTCATAGAGCCCCGTAATTGACTGATGAAT CAGTGTGGCGTCC AGGACCTCCTTTGTAGAGGTGTACCGCTTTCTGTCTATGGT GGTGTCGAAGTACTTGAAGGCTGCAGGCGCGCCCAAGTTGGTCAGAGTAAACA AGTGGATAATGTTTTCTGCCTGCTCCCTGATGGGCTTATCCCTGTGCTTATTGTA AGCAGAAAGCACCTTATCGAGGTTAGCGTCGGCGAGGATCACTCTTTTGGAGA ATTCGCTTATTTGCTCGATGATCTCATCAAGGTAGTGTTTGTGTTGTTCCACGAA CAGCTGCTTCTGCTCATTATCTTCGGGAGACCCTTTGAGCTTTTCATAGTGGCTG GCCAGATACAAGAAATTAACGTATTTAGAGGGCAGTGCCAGCTCGTTACCTTTC TGCAGCTCGCCCGCACTAGCGAGCATTCGTTTCCGGCCGTTTTCAAGCTCAAAG AGAGAGTACTTGGGAAGCTTAATGATGAGGTCTTTTTTGACCTCTTTATATCCTT TCGCCTCGAGAAAGTCGATGGGGTTTTTTTCGAAGCTTGATCGCTCCATGATTG TGATGCCCAGCAGTTCCTTGACGCTTTTGAGTTTTTTAGACTTCCCTTTCTCCAC TTTGGCCACAACCAGTACACTGTAAGCGACTGTAGGAGAATCGAATCCGCCGT ATTTCTTGGGGTCCCAATCTTTTT
TGCGTGCGATCAGCTTGTCGCTGTTCCTTTTCGGGAGGATACTTTCCTTGGAGA AGCCTCCGGTCTGTACTTCGGTCTTTTTAACGATGTTCACCTGCGGCATGGACA GGACCTTCCGGACTGTCGCGAAATCCCTACCCTTGTCCCACACGATTTCTCCTGT TTCTCCGTTTGTTTCGATAAGTGGTCGCTTCCGAATCTCTCCATTGGCCAGTGTA ATCTCGGTCTTGAAAAAATTCATAATATTGCTGTAA AAGAAGTACTTAGCGGTGGCCTTGCCTATTTCCTGCTCAGACTTTGCGATCATTT TCCTAACATCGTACACTTTATAGTCTCCGTAAACAAATTCAGATTCAAGCTTGG GATATTTTTTGATAAGTGCAGTGCCTACCACTGCATTCAGGTAGGCATCATGCG CATGGTGGTAATTGTTGATCTCTCTCACCTTATAAAACTGAAAGTCCTTTCTGAA ATCTGAGACCAGCTTAGACTTCAGAGTAATAACTTTCACCTCTCGAATCAGTTT GTCATTTTCATCGTACTTGGTGTTCATGCGTGAATCGAGAATTTGGGCCACGTG CTTGGTGATCTGGCGTGTCTCAACAAGCTGCCTTTTGATGAAGCCGGCTTTATC CAACTCAGACAGGCCACCTCGTTCAGCCTTAGTCAGATTATCGAACTTCCGTTG TGTGATCAGTTTGGCGTTCAGCAGCTGCCGCCAATAATTTTTCATTTTCTTGACA ACTTCTTCTGAGGGGACGTT ATC ACTCTTCCCTCT ATTTTT ATCGGATCTTGTC A ACACTTTATTATCAATAGAATCATCTTTGAGAAAAGACTGGGGCACGATATGAT CCACGTCGTAGTCGGAGAGCCGATTGATGTCCAGTTCCTGATCCACGTACATGT CCCTGCCGTTCTGCAGGTAGTACAGGTAGAGCTTCTCATTCTGAAGCTGGGTGT TTTCAACTGGGTGTTCCTTAAGGATTTGGGACCCCAGTTCTTTTATACCCTCTTC AATCCTCTTC ATCCTTTCCCTACTGTTCTTCTGTCCCTTCTGGGTAGTTTGGTTCT CTCGGGCCATCTCGATAACGATATTCTCGGGCTTATGCCTTCCCATTACTTTGAC GAGTTCATCCACGACCTTAACGGTCTGCAGTATTCCCTTTTTGATAGCTGGGCT ACCTGCAAGATTAGCGATGTGCTCGTGAAGACTGTCCCCCTGGCCAGAAACTTG TGCTTTCTGGATGTCCTCCTTAAAGGTGAGAGAGTCATCATGGATCAACTGCAT GAAGTTCCGGTTGGCAAATCCATCGGACTTAAGAAAATCCAGGATTGTCTTTCC ACTCTGCTTGTCTCGGATCCCATTGATCAGTTTTCTTGACAGCCGCCCCCATCCT GTATATCGGCGCCTCTTGAGCTGTTTCATGACTTTGTCGTCGAAGAGATGAGCG TAAGTTTTCAAGCGTTCTTCAATCATCTCCCTATCTTCAAACAACGTAAGGGTG AGGACAATGTCCTCAAGAATGTCCTCGTTCTCCTCATTGTCCAGGAAGTCCTTG TCTTTAATGATTTTCAGGAGATCGTGATACGTTCCCAGGGATGCGTTGAAGCGA TCCTCCACTCCGCTGATTTCAACAGAGTCGAAACATTCAATCTTTTTGAAATAG TCTTCTTTGAGCTGTTTCACGGTAACTTTCCGGTTCGTCTTGAAGAGGAGGTCCA CGATAGCTTTCTTCTGCTCTCCAGACAGGAATGCTGGCTTTCTCATCCCTTCTGT GACGTATTTGACCTTGGTGAGCTCGTTATAAACTGTGAAGTACTCGTACAGCAG AGAGTGTTTAGGAAGCACCTTTTCGTTAGGCAGATTTTTATCAAAGTTAGTCAT CCTTTCGATGAAGGACTGGGCAGAGGCCCCCTTATCCACGACTTCCTCGAAGTT CCAGGGAGTGATGGTCTCTTCTGATTTGCGAGTCATCCACGCGAATCTGGAATT TCCCCGGGCGAGGGGGCCTACATAGTAGGGTATCCGAAATGTGAGGATTTTCTC AATCTTTTCCCTGTTATCTTTCAAAAAGGGGTAGAAATCCTCTTGCCGCCTGAG GATAGCGTGCAGTTCGCCCAGGTGAATCTGGTGGGGGATGCTTCCATTGTCGAA AGTGCGCTGTTTGCGCAACAGATCTTCTCTGTTAAGCTTTACCAGCAGCTCCTC GGTGCCGTCCATTTTTTCCAAGATGGGCTTAATAAATTTGTAAAATTCCTCCTGG CTTGCTCCGCCGTCAATGTATCCGGCGTAGCCATTTTTAGACTGATCGAAGAAA ATTTCCTTGTACTTCTCAGGCAGTTGCTGTCTGACAAGGGCCTTCAGCAAAGTC AAGTCTTGGTGGTGCTCATCATAGCGCTTGATCATACTAGCGCTCAGCGGAGCT TTGGTGATCTCCGTGTTCACTCGCAGAATATCACTCAGCAGAATGGCGTCTGAC AGGTTCTTTGCCGCCAAAAAAAGGTCTGCGTACTGGTCGCCGATCTGGGCCAGC AGATTGTCGAGATC ATC ATCGTAGGTGTCTTTGCTC AGTTGAAGCTTGGC ATCT TCGGCCAGGTCGAAGTTAGATTTAAAGTTGGGGGTCAGCCCGAGTGACAGGGC GATAAGATTACCAAACAGGCCGTTCTTCTTCTCCCCAGGGAGCTGTGCGATGAG GTTTTCGAGCCGCCGGGATTTGGACAGCCTAGCGCTCAGGATTGCTTTGGCGTC AACTCCGGATGCGTTGATCGGGTTCTCTTCGAAAAGCTGATTGTAAGTCTGAAC CAGTTGGATAAAGAGTTTGTCGACATCGCTGTTGTCTGGGTTCAGGTCCCCCTC GATGAGGAAGTGTCCCCGAAATTTGATCATATGCGCCAGCGCGAGATAGATCA ACCGCAAGTCAGCCTTATCAGTACTGTCTACAAGCTTCTTCCTCAGATGATATA TGGTTGGGTACTTTTCATGGTACGCCACCTCGTCCACGATATTGCCAAAGATTG GGTGGCGCTCGTGCTTTTTATCCTCCTCCACCAAAAAGGACTCCTCCAGCCTAT GGAAGAAAGAGTCATCCACCTTAGCCATCTCATTACTAAAGATCTCCTGCAGGT AGCAGATCCGATTCTTTCTGCGGGTATATCTGCGCCGTGCTGTTCTTTTGAGCCG CGTGGCTTCGGCCGTCTCCCCGGAGTCGAACAGGAGGGCGCCAATGAGGTTCTT CTTTATGCTGTGGCGATCGGTATTGCCCAGAACTTTGAATTTTTTGCTCGGCACC TTGTACTCGTCCGTAATGACGGCCCAGCCGACGCTGTTTGTGCCGATATCGAGC CCAATGGAGTACTTCTTGTCCATGGTGGCGGCTCTTGAAGGACGACGTCATCAT CCCTTGCCCGGATGCGCGGGCTTCTTGTCTAGCACAGGAGCCTGGGGTAGAGCG CATGC
AAATTACGCGCTGTGCTTTGTGGGAAATCACCCTAAACGAAAAATTTATTCCTC TTTCGAGCCTTATAGTGGCGGCCGGTCTACATCCTAGGTTTTAGAGCTAGAAAT AGC AAGTTAAAAT AAGGCTAGTCCGTTATC AACTTGAAAAAGTGGC ACCGAGT CGGTGCTTTTTTGTTGATATGGTGCTGTGTAGGCTCATATGTGGATCTCAGAACC CACATGTACTCTGCTCCCCAGGTCTTGGTGCGCTTTCTATTCTCTGTCAGCAAAG CCTATCGAAGAATCACCTACCACAACTGGCGCCACGGCTTCAATGTAGCCCAG ACCATGTTTACCCTACTCATGGTACGTATGTAAATTGGATGGGCTAGATGAATC AGAGGGCTGGGGCAAGGACCACAGCTAACTATCTTCTGGCCCAAGGAACGCGG CCGCCTAGAGTCGAC (SEQ ID NO: 63)
mSPA HDR rdl0(250)left
ATGTAATGAAAATAAAGATATTTTATTTCACACCTTCCTCTTCTTCTTGGGGTCA GCCCTGCTGTCTCCACCGAGCTGAGAGAGGTCGATTCTTGTTTCATAGAGCCCC GTAATTGACTGATGAATCAGTGTGGCGTCCAGGACCTCCTTTGTAGAGGTGTAC CGCTTTCTGTCTATGGTGGTGTCGAAGTACTTGAAGGCTGCAGGCGCGCCCAAG TTGGTCAGAGTAAACAAGTGGATAATGTTTTCTGCCTGCTCCCTGATGGGCTTA TCCCTGTGCTTATTGTAAGC AGAAAGC ACCTT ATCGAGGTTAGCGTCGGCGAGG ATCACTCTTTTGGAGAATTCGCTTATTTGCTCGATGATCTCATCAAGGTAGTGTT TGTGTTGTTCCACGAACAGCTGCTTCTGCTCATTATCTTCGGGAGACCCTTTGAG CTTTTCATAGTGGCTGGCCAGATACAAGAAATTAACGTATTTAGAGGGCAGTGC CAGCTCGTTACCTTTCTGCAGCTCGCCCGCACTAGCGAGCATTCGTTTCCGGCC GTTTTC AAGCTC AAAGAGAGAGT ACTTGGGAAGCTTAATGATGAGGTCTTTTTT GACCTCTTTATATCCTTTCGCCTCGAGAAAGTCGATGGGGTTTTTTTCGAAGCTT GATCGCTCCATGATTGTGATGCCCAGCAGTTCCTTGACGCTTTTGAGTTTTTTAG ACTTCCCTTTCTCCACTTTGGCCACAACCAGTACACTGTAAGCGACTGTAGGAG AATCGAATCCGCCGTATTTCTTGGGGTCCCAATCTTTTTTGCGTGCGATCAGCTT GTCGCTGTTCCTTTTCGGGAGGATACTTTCCTTGGAGAAGCCTCCGGTCTGTACT TCGGTCTTTTTAACGATGTTCACCTGCGGCATGGACAGGACCTTCCGGACTGTC GCGAAATCCCTACCCTTGTCCCACACGATTTCTCCTGTTTCTCCGTTTGTTTCGA TAAGTGGTCGCTTCCGAATCTCTCCATTGGCCAGTGTAATCTCGGTCTTGAAAA AATTCATAATATTGCTGTAAAAGAAGTACTTAGCGGTGGCCTTGCCTATTTCCT GCTCAGACTTTGCGATCATTTTCCTAACATCGTACACTTTATAGTCTCCGTAAAC AAATTCAGATTCAAGCTTGGGATATTTTTTGATAAGTGCAGTGCCTACCACTGC ATTCAGGTAGGCATCATGCGCATGGTGGTAATTGTTGATCTCTCTCACCTTATA AAACTGAAAGTCCTTTCTGAAATCTGAGACCAGCTTAGACTTCAGAGTAATAAC TTTCACCTCTCGAATCAGTTTGTCATTTTCATCGTACTTGGTGTTCATGCGTGAA TCGAGAATTTGGGCCACGTGCTTGGTGATCTGGCGTGTCTCAACAAGCTGCCTT TTGATGAAGCCGGCTTTATCCAACTCAGACAGGCCACCTCGTTCAGCCTTAGTC AGATTATCGAACTTCCGTTGTGTGATCAGTTTGGCGTTCAGCAGCTGCCGCCAA TAATTTTTCATTTTCTTGACAACTTCTTCTGAGGGGACGTTATCACTCTTCCCTCT ATTTTTATCGGATCTTGTCAACACTTTATTATCAATAGAATCATCTTTGAGAAAA GACTGGGGCACGATATGATCCACGTCGTAGTCGGAGAGCCGATTGATGTCCAG TTCCTGATCCACGTACATGTCCCTGCCGTTCTGCAGGTAGTACAGGTAGAGCTT CTCATTCTGAAGCTGGGTGTTTTCAACTGGGTGTTCCTTAAGGATTTGGGACCC CAGTTCTTTTATACCCTCTTCAATCCTCTTCATCCTTTCCCTACTGTTCTTCTGTC CCTTCTGGGTAGTTTGGTTCTCTCGGGCCATCTCGATAACGATATTCTCGGGCTT ATGCCTTCCCATTACTTTGACGAGTTCATCCACGACCTTAACGGTCTGCAGTATT CCCTTTTTGATAGCTGGGCTACCTGCAAGATTAGCGATGTGCTCGTGAAGACTG TCCCCCTGGCCAGAAACTTGTGCTTTCTGGATGTCCTCCTTAAAGGTGAGAGAG TC ATC ATGGATC AACTGC ATGAAGTTCCGGTTGGC AAATCC ATCGGACTT AAGA AAATCCAGGATTGTCTTTCCACTCTGCTTGTCTCGGATCCCATTGATCAGTTTTC TTGACAGCCGCCCCCATCCTGTATATCGGCGCCTCTTGAGCTGTTTCATGACTTT GTCGTCGAAGAGATGAGCGTAAGTTTTCAAGCGTTCTTCAATCATCTCCCTATC TTCAAACAACGTAAGGGTGAGGACAATGTCCTCAAGAATGTCCTCGTTCTCCTC ATTGTCC AGGAAGTCCTTGTCTTTAATGATTTTCAGGAGATCGTGATACGTTCCC AGGGATGCGTTGAAGCGATCCTCCACTCCGCTGATTTCAACAGAGTCGAAACAT TCAATCTTTTTGAAATAGTCTTCTTTGAGCTGTTTCACGGTAACTTTCCGGTTCG TCTTGAAGAGGAGGTCCACGATAGCTTTCTTCTGCTCTCCAGACAGGAATGCTG GCTTTCTCATCCCTTCTGTGACGTATTTGACCTTGGTGAGCTCGTTATAAACTGT GAAGTACTCGTACAGCAGAGAGTGTTTAGGAAGCACCTTTTCGTTAGGCAGATT TTTATCAAAGTTAGTCATCCTTTCGATGAAGGACTGGGCAGAGGCCCCCTTATC CACGACTTCCTCGAAGTTCCAGGGAGTGATGGTCTCTTCTGATTTGCGAGTCAT CCACGCGAATCTGGAATTTCCCCGGGCGAGGGGGCCTACATAGTAGGGTATCC GAAATGTGAGGATTTTCTCAATCTTTTCCCTGTTATCTTTCAAAAAGGGGTAGA AATCCTCTTGCCGCCTGAGGATAGCGTGCAGTTCGCCCAGGTGAATCTGGTGGG GGATGCTTCCATTGTCGAAAGTGCGCTGTTTGCGCAACAGATCTTCTCTGTTAA GCTTTACCAGCAGCTCCTCGGTGCCGTCCATTTTTTCCAAGATGGGCTTAATAA ATTTGTAAAATTCCTCCTGGCTTGCTCCGCCGTCAATGTATCCGGCGTAGCCATT TTTAGACTGATCGAAGAAAATTTCCTTGTACTTCTCAGGCAGTTGCTGTCTGAC AAGGGCCTTCAGCAAAGTCAAGTCTTGGTGGTGCTCATCATAGCGCTTGATCAT ACTAGCGCTCAGCGGAGCTTTGGTGATCTCCGTGTTCACTCGCAGAATATCACT CAGCAGAATGGCGTCTGACAGGTTCTTTGCCGCCAAAAAAAGGTCTGCGTACT GGTCGCCGATCTGGGCCAGCAGATTGTCGAGATCATCATCGTAGGTGTCTTTGC TCAGTTGAAGCTTGGCATCTTCGGCCAGGTCGAAGTTAGATTTAAAGTTGGGGG TCAGCCCGAGTGACAGGGCGATAAGATTACCAAACAGGCCGTTCTTCTTCTCCC CAGGGAGCTGTGCGATGAGGTTTTCGAGCCGCCGGGATTTGGACAGCCTAGCG CTCAGGATTGCTTTGGCGTCAACTCCGGATGCGTTGATCGGGTTCTCTTCGAAA AGCTGATTGTAAGTCTGAACCAGTTGGATAAAGAGTTTGTCGACATCGCTGTTG TCTGGGTTCAGGTCCCCCTCGATGAGGAAGTGTCCCCGAAATTTGATCATATGC GCCAGCGCGAGATAGATCAACCGCAAGTCAGCCTTATCAGTACTGTCTACAAG CTTCTTCCTCAGATGATATATGGTTGGGTACTTTTCATGGTACGCCACCTCGTCC ACGATATTGCCAAAGATTGGGTGGCGCTCGTGCTTTTTATCCTCCTCCACCAAA AAGGACTCCTCC AGCCT ATGGAAGAAAGAGTC ATCC ACCTT AGCC ATCTC ATT A CTAAAGATCTCCTGCAGGTAGCAGATCCGATTCTTTCTGCGGGTATATCTGCGC CGTGCTGTTCTTTTGAGCCGCGTGGCTTCGGCCGTCTCCCCGGAGTCGAACAGG AGGGCGCCAATGAGGTTCTTCTTTATGCTGTGGCGATCGGTATTGCCCAGAACT TTGAATTTTTTGCTCGGCACCTTGTACTCGTCCGTAATGACGGCCCAGCCGACG CTGTTTGTGCCGATATCGAGCCCAATGGAGTACTTCTTGTCCATGGTGGCGGCT CTTGAAGGACGACGTCATCATCCCTTGCCCGGATGCGCGGGC TTCTTGTCTAGCACAGGAGCCTGGGGTAGAGCGCATGCAAATTACGCGCTGTGC TTTGTGGGAAATCACCCTAAACGAAAAATTTATTCCTCTTTCGAGCCTTATAGT GGCGGCCGGTCTACATCCTAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA GGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTA ACGCGGCCGCCTAGAGTCGACCTGCAGGCATGCAAGC
TTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAA TTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAA TGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCG GGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG CGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCT
CACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTC AAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC ATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC TGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCT CAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAA
GATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCT GCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCT CATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTG GGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAAC TATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTT GAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCG CTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCA AACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGC GCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACG CTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAA AGGATCTTC ACCT AGATCCTTTT AAATT AAAAATGAAGTTTT AAATC AATCT AA AGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA CCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCG T
GTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGA TACCGCGAGACCCACGCTCACCGGCTCC AGATTTATCAGCAATAAACCAGCC A GCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA GTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTT GCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGG TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCC CATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAG TAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCT TACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAA GTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAAT ACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAA AACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTT CGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAG CGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATA AGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGA AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAG AAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGA CGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCAC GAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACAT GCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGAC AAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAAC TATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAGCGGCCGCGGTAC GATATGGTGCTGTGTAGGCTCATATGTGGATCTCAGAACCCACATGTACTCTGC TCCCCAGGTCTTGGTGCGCTTTCTATTCTCTGTCAGCAAAGCCTATCGAAGAAT CACCTACCACAACTGGCGCCACGGCTTCAATGTAGCCCAGACCATGTTTACCCT ACTCATGGTACGTATGTAAATTGGATGGGCTAGATGAATCAGAGGGCTGGGGC AAGGACCACAGCTAACTATCTTCTGGCCCAAGGGTACCCACACAAAAAACCAA C AC AC AG (SEQ ID NO: 64)
mSPA HDR rdl2(250)right
CTGC AGGC ATGC AAGCTTGGCGT AATC ATGGTC AT AGCTGTTTCCTGTGTGAAA TTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAA AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACT GCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCA ACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCAC TGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAA GGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGC GTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAG TCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTG GAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTC CGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTAT CTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCC GTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCG GTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACG GCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCT TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGC GGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAA GAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCA CGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTT TTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGG TCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTA TTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGG GAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTC ACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCA GAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGG AAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTG CTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCG GTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCG GTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTA TCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAA GATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTA TGCGGCGACCGAGTTGCTCTTGCCCGGCGTC AAT ACGGGATAAT ACCGCGCC AC ATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAA CTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAA ACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTT GAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTG TCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGG TTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTA TCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGC GTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTC ACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTC AGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGA TTGTACTGAGAGTGCACCATAGCGGCCGCGGTACCCACACAAAAAACCAACAC ACAGATGTAATGAAAATAAAGATATTTTATTTCACACCTTCCTCTTCTTCTTGGG GTCAGCCCTGCTGTCTCCACCGAGCTGAGAGAGGTCGATTCTTGTTTCATAGAG CCCCGTAATTGACTGATGAATCAGTGTGGCGTCCAGGACCTCCTTTGTAGAGGT GTACCGCTTTCTGTCTATGGTGGTGTCGAAGTACTTGAAGGCTGCAGGCGCGCC CAAGTTGGTCAGAGTAAACAAGTGGATAATGTTTTCTGCCTGCTCCCTGATGGG CTTATCCCTGTGCTTATTGTAAGCAGAAAGCACCTTATCGAGGTTAGCGTCGGC GAGGATCACTCTTTTGGAGAATTCGCTTATTTGCTCGATGATCTCATCAAGGTA GTGTTTGTGTTGTTCCACGAACAGCTGCTTCTGCTCATTATCTTCGGGAGACCCT TTGAGCTTTTCATAGTGGCTGGCCAGATACAAGAAATTAACGTATTTAGAGGGC AGTGCCAGCTCGTTACCTTTCTGCAGCTCGCCCGCACTAGCGAGCATTCGTTTC CGGCCGTTTTCAAGCTCAAAGAGAGAGTACTTGGGAAGCTTAATGATGAGGTC TTTTTTGACCTCTTTATATCCTTTCGCCTCGAGAAAGTCGATGGGGTTTTTTTCG AAGCTTGATCGCTCCATGATTGTGATGCCCAGCAGTTCCTTGACGCTTTTGAGTT TTTTAGACTTCCCTTTCTCCACTTTGGCCACAACCAGTACACTGTAAGCGACTGT AGGAGAATCGAATCCGCCGTATTTCTTGGGGTCCCAATCTTTTTTGCGTGCGAT CAGCTTGTCGCTGTTCCTTTTCGGGAGGATACTTTCCTTGGAGAAGCCTCCGGTC TGTACTTCGGTCTTTTTAACGATGTTCACCTGCGGCATGGACAGGACCTTCCGG ACTGTCGCGAAATCCCTACCCTTGTCCCACACGATTTCTCCTGTTTCTCCGTTTG TTTCGATAAGTGGTCGCTTCCGAATCTCTCCATTGGCCAGTGTAATCTCGGTCTT GAAAAAATTCATAATATTGCTGTAAAAGAAGTACTTAGCGGTGGCCTTGCCTAT TTCCTGCTC AGACTTTGCGATC ATTTTCCT AAC ATCGT AC ACTTTATAGTCTCCG TAAACAAATTCAGATTCAAGCTTGGGATATTTTTTGATAAGTGCAGTGCCTACC ACTGCATTCAGGTAGGCATCATGCGCATGGTGGTAATTGTTGATCTCTCTCACC TTATAAAACTGAAAGTCCTTTCTGAAATCTGAGACCAGCTTAGACTTCAGAGTA ATAACTTTCACCTCTCGAATCAGTTTGTCATTTTCATCGTACTTGGTGTTCATGC GTGAATCGAGAATTTGGGCC ACGTGCTTGGTGATCTGGCGTGTCTCAAC AAGCT GCCTTTTGATGAAGCCGGCTTTATCCAACTCAGACAGGCCACCTCGTTCAGCCT TAGTCAGATTATCGAACTTCCGTTGTGTGATCAGTTTGGCGTTCAGCAGCTGCC GCCAATAATTTTTCATTTTCTTGACAACTTCTTCTGAGGGGACGTTATCACTCTT CCCTCTATTTTTATCGGATCTTGTCAACACTTTATTATCAATAGAATCATCTTTG AGAAAAGACTGGGGCACGATATGATCCACGTCGTAGTCGGAGAGCCGATTGAT GTCCAGTTCCTGATCCACGTACATGTCCCTGCCGTTCTGCAGGTAGTACAGGTA GAGCTTCTCATTCTGAAGCTGGGTGTTTTCAACTGGGTGTTCCTTAAGGATTTGG GACCCCAGTTCTTTTATACCCTCTTCAATCCTCTTCATCCTTTCCCTACTGTTCTT CTGTCCCTTCTGGGTAGTTTGGTTCTCTCGGGCCATCTCGATAACGATATTCTCG GGCTTATGCCTTCCCATTACTTTGACGAGTTCATCCACGACCTTAACGGTCTGCA GTATTCCCTTTTTGATAGCTGGGCTACCTGCAAGATTAGCGATGTGCTCGTGAA GACTGTCCCCCTGGCCAGAAACTTGTGCTTTCTGGATGTCCTCCTTAAAGGTGA GAGAGTCATCATGGATCAACTGCATGAAGTTCCGGTTGGCAAATCCATCGGACT TAAGAAAATCCAGGATTGTCTTTCCACTCTGCTTGTCTCGGATCCCATTGATCA GTTTTCTTGACAGCCGCCCCCATCCTGTATATCGGCGCCTCTTGAGCTGTTTCAT GACTTTGTCGTCGAAGAGATGAGCGTAAGTTTTCAAGCGTTCTTCAATCATCTC CCTATCTTCAAACAACGTAAGGGTGAGGACAATGTCCTCAAGAATGTCCTCGTT CTCCTCATTGTCCAGGAAGTCCTTGTCTTTAATGATTTTCAGGAGATCGTGATAC GTTCCCAGGGATGCGTTGAAGCGATCCTCCACTCCGCTGATTTCAACAGAGTCG AAACATTCAATCTTTTTGAAATAGTCTTCTTTGAGCTGTTTCACGGTAACTTTCC GGTTCGTCTTGAAGAGGAGGTCCACGATAGCTTTCTTCTGCTCTCCAGACAGGA ATGCTGGCTTTCTCATCCCTTCTGTGACGTATTTGACCTTGGTGAGCTCGTTATA AACTGTGAAGTACTCGTACAGCAGAGAGTGTTTAGGAAGCACCTTTTCGTTAGG CAGATTTTTATCAAAGTTAGTCATCCTTTCGATGAAGGACTGGGCAGAGGCCCC CTTATCCACGACTTCCTCGAAGTTCCAGGGAGTGATGGTCTCTTCTGATTTGCG AGTCATCCACGCGAATCTGGAATTTCCCCGGGCGAGGGGGCCTACATAGTAGG GTATCCGAAATGTGAGGATTTTCTCAATCTTTTCCCTGTTATCTTTCAAAAAGGG GT AGAAATCCTCTTGCCGCCTGAGGAT AGCGTGC AGTTCGCCC AGGTGAATCTG GTGGGGGATGCTTCCATTGTCGAAAGTGCGCTGTTTGCGCAACAGATCTTCTCT GTTAAGCTTTACCAGCAGCTCCTCGGTGCCGTCCATTTTTTCCAAGATGGGCTTA ATAAATTTGTAAAATTCCTCCTGGCTTGCTCCGCCGTCAATGTATCCGGCGTAG CCATTTTTAGACTGATCGAAGAAAATTTCCTTGTACTTCTCAGGCAGTTGCTGTC TGACAAGGGCCTTC AGCAAAGTCAAGTCTTGGTGGTGCTC ATC ATAGCGCTTGA TCATACTAGCGCTCAGCGGAGCTTTGGTGATCTCCGTGTTCACTCGCAGAATAT CACTCAGCAGAATGGCGTCTGACAGGTTCTTTGCCGCCAAAAAAAGGTCTGCGT ACTGGTCGCCGATCTGGGCCAGCAGATTGTCGAGATCATCATCGTAGGTGTCTT TGCTCAGTTGAAGCTTGGCATCTTCGGCCAGGTCGAAGTTAGATTTAAAGTTGG GGGTCAGCCCGAGTGACAGGGCGATAAGATTACCAAACAGGCCGTTCTTCTTCT CCCCAGGGAGCTGTGCGATGAGGTTTTCGAGC
CGCCGGGATTTGGACAGCCTAGCGCTCAGGATTGCTTTGGCGTCAACTCCGGAT GCGTTGATCGGGTTCTCTTCGAAAAGCTGATTGTAAGTCTGAACCAGTTGGATA AAGAGTTTGTCGACATCGCTGTTGTCTGGGTTCAGGTCCCCCTCGATGAGGAAG TGTCCCCGAAATTTGATCATATGCGCCAGCGCGAGATAGATCAACCGCAAGTC AGCCTTATCAGTACTGTCTACAAGCTTCTTCCTCAG
ATGATATATGGTTGGGTACTTTTCATGGTACGCCACCTCGTCCACGATATTGCC AAAGATTGGGTGGCGCTCGTGCTTTTTATCCTCCTCCACCAAAAAGGACTCCTC CAGCCTATGGAAGAAAGAGTCATCCACCTTAGCCATCTCATTACTAAAGATCTC CTGCAGGTAGCAGATCCGATTCTTTCTGCGGGTATATCTGCGCCGTGCTGTTCTT TTGAGCCGCGTGGCTTCGGCCGTCTCCCCGGAGTCGAACAGGAGGGCGCCAAT GAGGTTCTTCTTTATGCTGTGGCGATCGGTATTGCCCAGAACTTTGAATTTTTTG CTCGGCACCTTGTACTCGTCCGTAATGACGGCCCAGCCGACGCTGTTTGTGCCG ATATCGAGCCCAATGGAGTACTTCTTGTCCATGGTGGCGGCTCTTGAAGGACGA CGTCATCATCCCTTGCCCGGATGCGCGGGCTTCTTGTCTAGCACAGGAGCCTGG GGTAGAGCGCATGCAAATTACGCGCTGTGCTTTGTGGGAAATCACCCTAAACG AAAAATTTATTCCTCTTTCGAGCCTTATAGTGGCGGCCGGTCTACATCCTAGGTT TTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAA AAGTGGCACCGAGTCGGTGCTTTTTTGTTGTTCTGTCTATAGGTAAGCTGACAA ATAACAAATAGGCACATAGAAAATCTAGTAAGTAGTACCACCTGATATCTCAC TTTGCTGCAGGCAGGATTCCCCTCTGGCTCACTGGCAGTCTCCTCCGGTGTGGG CCAGGGCTCTTTGAAGTTGGATCTGAGCCTTTCTATCACCTGTTTGATGGACAA GCCCTTTTGC AC AAGTTTGACTTC AAGGAGGGCC ATGTC AC ATACC AC AGAAGG TAAGTCCATGAACGCGGCCGCCTAGAGTCGAC (SEQ ID NO: 65)
mSPA HDR rdl2(250)left
ATGTAATGAAAATAAAGATATTTTATTTCACACCTTCCTCTTCTTCTTGGGGTCA GCCCTGCTGTCTCCACCGAGCTGAGAGAGGTCGATTCTTGTTTCATAGAGCCCC GTAATTGACTGATGAATCAGTGTGGCGTCCAGGACCTCCTTTGTAGAGGTGTAC CGCTTTCTGTCTATGGTGGTGTCGAAGTACTTGAAGGCTGCAGGCGCGCCCAAG TTGGTCAGAGTAAACAAGTGGATAATGTTTTCTGCCTGCTCCCTGATGGGCTTA TCCCTGTGCTTATTGTAAGCAGAAAGCACCTTATCGAGGTTAGCGTCGGCGAGG ATCACTCTTTTGGAGAATTCGCTTATTTGCTCGATGATCTCATCAAGGTAGTGTT TGTGTTGTTCCACGAACAGCTGCTTCTGCTCATTATCTTCGGGAGACCCTTTGAG CTTTTCATAGTGGCTGGCCAGATACAAGAAATTAACGTATTTAGAGGGCAGTGC CAGCTCGTTACCTTTCTGCAGCTCGCCCGCACTAGCGAGCATTCGTTTCCGGCC GTTTTCAAGCTCAAAGAGAGAGTACTTGGGAAGCTTAATGATGAGGTCTTTTTT GACCTCTTTATATCCTTTCGCCTCGAGAAAGTCGATGGGGTTTTTTTCGAAGCTT GATCGCTCCATGATTGTGATGCCCAGCAGTTCCTTGACGCTTTTGAGTTTTTTAG ACTTCCCTTTCTCCACTTTGGCCACAACCAGTACACTGTAAGCGACTGTAGGAG AATCGAATCCGCCGTATTTCTTGGGGTCCCAATCTTTTTTGCGTGCGATCAGCTT GTCGCTGTTCCTTTTCGGGAGGATACTTTCCTTGGAGAAGCCTCCGGTCTGTACT TCGGTCTTTTTAACGATGTTCACCTGCGGCATGGACAGGACCTTCCGGACTGTC GCGAAATCCCTACCCTTGTCCCACACGATTTCTCCTGTTTCTCCGTTTGTTTCGA TAAGTGGTCGCTTCCGAATCTCTCCATTGGCCAGTGTAATCTCGGTCTTGAAAA AATTCATAATATTGCTGTAAAAGAAGTACTTAGCGGTGGCCTTGCCTATTTCCT GCTCAGACTTTGCGATCATTTTCCTAACATCGTACACTTTATAGTCTCCGTAAAC AAATTCAGATTCAAGCTTGGGATATTTTTTGATAAGTGCAGTGCCTACCACTGC ATTCAGGTAGGCATCATGCGCATGGTGGTAATTGTTGATCTCTCTCACCTTATA AAACTGAAAGTCCTTTCTGAAATCTGAGACCAGCTTAGACTTCAGAGTAATAAC TTTCACCTCTCGAATCAGTTTGTCATTTTCATCGTACTTGGTGTTCATGCGTGAA TCGAGAATTTGGGCCACGTGCTTGGTGATCTGGCGTGTCTCAACAAGCTGCCTT TTGATGAAGCCGGCTTTATCCAACTCAGACAGGCCACCTCGTTCAGCCTTAGTC AGATTATCGAACTTCCGTTGTGTGATCAGTTTGGCGTTCAGCAGCTGCCGCCAA TAATTTTTCATTTTCTTGACAACTTCTTCTGAGGGGACGTTATCACTCTTCCCTCT ATTTTTATCGGATCTTGTCAACACTTTATTATCAATAGAATCATCTTTGAGAAAA GACTGGGGC ACGAT ATGATCC ACGTCGTAGTCGGAGAGCCGATTGATGTCC AG TTCCTGATCCACGTACATGTCCCTGCCGTTCTGCAGGTAGTACAGGTAGAGCTT CTCATTCTGAAGCTGGGTGTTTTCAACTGGGTGTTCCTTAAGGATTTGGGACCC CAGTTCTTTTATACCCTCTTCAATCCTCTTCATCCTTTCCCTACTGTTCTTCTGTC CCTTCTGGGTAGTTTGGTTCTCTCGGGCCATCTCGATAACGATATTCTCGGGCTT ATGCCTTCCC ATTACTTTGACGAGTTCATCCACGACCTTAACGGTCTGCAGTATT CCCTTTTTGATAGCTGGGCTACCTGCAAGATTAGCGATGTGCTCGTGAAGACTG TCCCCCTGGCCAGAAACTTGTGCTTTCTGGATGTCCTCCTTAAAGGTGAGAGAG TCATCATGGATCAACTGCATGAAGTTCCGGTTGGCAAATCCATCGGACTTAAGA AAATCCAGGATTGTCTTTCCACTCTGCTTGTCTCGGATCCCATTGATCAGTTTTC TTGACAGCCGCCCCCATCCTGTATATCGGCGCCTCTTGAGCTGTTTCATGACTTT GTCGTCGAAGAGATGAGCGTAAGTTTTCAAGCGTTCTTCAATCATCTCCCTATC TTCAAACAACGTAAGGGTGAGGACAATGTCCTCAAGAATGTCCTCGTTCTCCTC ATTGTCCAGGAAGTCCTTGTCTTTAATGATTTTCAGGAGATCGTGATACGTTCCC AGGGATGCGTTGAAGCGATCCTCCACTCCGCTGATTTCAACAGAGTCGAAACAT TCAATCTTTTTGAAATAGTCTTCTTTGAGCTGTTTCACGGTAACTTTCCGGTTCG TCTTGAAGAGGAGGTCCACGATAGCTTTCTTCTGCTCTCCAGACAGGAATGCTG GCTTTCTCATCCCTTCTGTGACGTATTTGACCTTGGTGAGCTCGTTATAAACTGT GAAGTACTCGTACAGCAGAGAGTGTTTAGGAAGCACCTTTTCGTTAGGCAGATT TTTATCAAAGTTAGTCATCCTTTCGATGAAGGACTGGGCAGAGGCCCCCTTATC CACGACTTCCTCGAAGTTCCAGGGAGTGATGGTCTCTTCTGATTTGCGAGTCAT CCACGCGAATCTGGAATTTCCCCGGGCGAGGGGGCCTACATAGTAGGGTATCC GAAATGTGAGGATTTTCTCAATCTTTTCCCTGTTATCTTTCAAAAAGGGGTAGA AATCCTCTTGCCGCCTGAGGATAGCGTGCAGTTCGCCCAGGTGAATCTGGTGGG GGATGCTTCCATTGTCGAAAGTGCGCTGTTTGCGCAACAGATCTTCTCTGTTAA GCTTTACCAGCAGCTCCTCGGTGCCGTCCATTTTTTCCAAGATGGGCTTAATAA ATTTGTAAAATTCCTCCTGGCTTGCTCCGCCGTCAATGTATCCGGCGTAGCCATT TTTAGACTGATCGAAGAAAATTTCCTTGTACTTCTCAGGCAGTTGCTGTCTGAC AAGGGCCTTCAGCAAAGTCAAGTCTTGGTGGTGCTCATCATAGCGCTTGATCAT ACTAGCGCTCAGCGGAGCTTTGGTGATCTCCGTGTTCACTCGCAGAATATCACT CAGCAGAATGGCGTCTGACAGGTTCTTTGCCGCCAAAAAAAGGTCTGCGTACT GGTCGCCGATCTGGGCCAGCAGATTGTCGAGATCATCATCGTAGGTGTCTTTGC TCAGTTGAAGCTTGGCATCTTCGGCCAGGTCGAAGTTAGATTTAAAGTTGGGGG TC AGCCCGAGTGAC AGGGCGATAAGATT ACC AAAC AGGCCGTTCTTCTTCTCCC CAGGGAGCTGTGCGATGAGGTTTTCGAGCCGCCGGGATTTGGACAGCCTAGCG CTCAGGATTGCTTTGGCGTCAACTCCGGATGCGTTGATCGGGTTCTCTTCGAAA AGCTGATTGTAAGTCTGAACCAGTTGGATAAAGAGTTTGTCGACATCGCTGTTG TCTGGGTTCAGGTCCCCCTCGATGAGGAAGTGTCCCCGAAATTTGATCATATGC GCC AGCGCGAGATAGATC AACCGCAAGTCAGCCTTATC AGTACTGTCTACAAG CTTCTTCCTCAGATGATATATGGTTGGGTACTTTTCATGGTACGCCACCTCGTCC ACGATATTGCCAAAGATTGGGTGGCGCTCGTGCTTTTTATCCTCCTCCACCAAA AAGGACTCCTCCAGCCTATGGAAGAAAGAGTCATCCACCTTAGCCATCTCATTA CTAAAGATCTCCTGCAGGTAGCAGATCCGATTCTTTCTGCGGGTATATCTGCGC CGTGCTGTTCTTTTGAGCCGCGTGGCTTCGGCCGTCTCCCCGGAGTCGAACAGG AGGGCGCCAATGAGGTTCTTCTTTATGCTGTGGCGATCGGTATTGCCCAGAACT TTGAATTTTTTGCTCGGCACCTTGTACTCGTCCGTAATGACGGCCCAGCCGACG CTGTTTGTGCCGATATCGAGCCCAATGGAGTACTTCTTGTCCATGGTGGCGGCT CTTGAAGGACGACGTCATCATCCCTTGCCCGGATGCGCGGGC TTCTTGTCTAGCACAGGAGCCTGGGGTAGAGCGCATGCAAATTACGCGCTGTGC TTTGTGGGAAATCACCCTAAACGAAAAATTTATTCCTCTTTCGAGCCTTATAGT GGCGGCCGGTCTACATCCTAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA GGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTA ACGCGGCCGCCTAGAGTCGACCTGCAGGCATGCAAGC TTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAA TTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAA TGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCG GGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG CGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCT
CACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTC AAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC ATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC TGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCT CAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAA
GATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCT GCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCT C AT AGCTC ACGCTGT AGGTATCTC AGTTCGGTGT AGGTCGTTCGCTCC AAGCTG GGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAAC TATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTT GAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCG CTCTGCTGAAGCC AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCA AACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGC GCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACG CTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAA AGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAA AGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA CCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCG T
GTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGA TACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA GCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA GTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTT GCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGG TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCC CATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAG TAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCT TACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAA GTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAAT ACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAA AACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTT CGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAG CGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATA AGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGA AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAG AAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGA CGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCAC GAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACAT GCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGAC AAGCCCGTC AGGGCGCGTC AGCGGGTGTTGGCGGGTGTCGGGGCTGGCTT AAC TATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAGCGGCCGCGGTTC TGTCTATAGGTAAGCTGACAAATAACAAATAGGCACATAGAAAATCTAGTAAG TAGTACCACCTGATATCTCACTTTGCT
GCAGGCAGGATTCCCCTCTGGCTCACTGGCAGTCTCCTCCGGTGTGGGCCAGGG CTCTTTGAAGTTGGATCTGAGCCTTTCTATCACCTGTTTGATGGACAAGCCCTTT TGCACAAGTTTGACTTCAAGGAGGGCCATGTCACATACCACAGAAGGTAAGTC CATGGTACCCACACAAAAAACCAACACACAG (SEQ ID NO: 66)
mSPA HDR SaCas9 entry plasmid
GCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCAC AATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCT AATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGT CGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGA GGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCT CGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGG TTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCC AGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGG CTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCG AAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGT GCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCT TCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTG TAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGAC TTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGT AGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAA GAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAG TTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTG TTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTG ATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT TTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAA TGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTAC CAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCA TAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCAT CTGGCCCC AGTGCTGC AATGAT ACCGCGAGACCC ACGCTC ACCGGCTCC AGATT TATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCA ACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGT AGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTG GTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCA AGGCGAGTTACATGATCCCCCATGTTGTGC AAAAAAGCGGTTAGCTCCTTCGGT CCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATG GCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGA CTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTT GCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAA AAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTAC CGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAG CATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATG CCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTC CTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACA TATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCC GAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATA AAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCG GATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTG TCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACC ATAGCGGCCGCGGTACCCACACAAAAAACCAACACACAGATGTAATGAAAATA AAGATATTTTATTAGGCTGATCAGCGAGCTCTAGGAATTCTTAGGATCCCTTTTT CTTTTTTGCCTGGCCGGCCTTTTTCGTGGCCGCCGGCCTTTTGCCCTTTTTGATG ATCTGAGGGTGCTTCTTAGATTTCACTTCATACAGGTTGCCCAGAATGTCTGTG CTGTACTTCTTAATGCTCTGGGTCTTGGAGGCGATTGTCTTAATGATCCTGGGG GGCCTCTTGTCGTTCATGTTTTCCAGGTACTCGCGGTAGGTGATGTCGATCATGT TCACTTCGATCCGGTTCAGCAGGTCGTTGTTCACGCCGATCACTCTATACAGCT CGCCGTTGATCTTGATCAGATCGTTGTTGTAGAAGGAGGCGATAAACTCGGCCT GGTTGCTGATCTTCTTCAGCTTCTTAGCTTCCTCATAGCACTTGCTATTCACTTC GTAGTAGTTTTCTTTTTTGATCACATCCAGATTCTTCACGGTCACGAACTTGTAC ACGCCATTGTCCAGGTACACGTCGAATCTGTAGGGCTTCAGGGACAGCTTCACG ACCTTGTTTCTGCTGTTGGGGTAGTCGTCGGTGATGTCCAGATGGGCGTTCAGT TTGTTGCCGT AATACTT AATCTTCTTGATC ACGGGGCCGTTGTCCTTTTTGGAGT ACTTGGTCAGGTAGTTCCCGGTTTCCTCGTAGTACTTGTACAGGGGATTCTTCTC GTCGCCGTACTGTTCCATAATCAGCTTCAGTTTCTGGTAGGTCTGGGGGTCGTG GTGGTACATCAGCAGCTTTTCGGGGCTCTTGTTGATCAGCTTTTTCAGCTTGTCA TTGTCCTTGTCGTACAGGCCGTTCAGATTGTTCACGATCAGGGTGTTGCCCTTGT CGTCCTTCCGGGTGGAGTAC AGGGTGTCGTTAATC AGCTCTCTATTAGGCTTCTT GTCCACCCGGTGGCTGTACTTGTAGTCCTTGAAGTCCTTAATGTGCTTGATCTGG TGGGGGGTGATGAAGATCTCTTTGTACTCCTGCTCGGTTTCGATCTCGGGCATG CTCTCGGCCTGCTTTTCCTCGAACATCTGGTTTTCCATCACTTTTTTGGCCTTGTC CAGTTTCTTCCACTCTTTGAAGATGAAATCGGCGTTGGCAATGATCAGGGCGTC CTCGGCGTGGTGCTTGTACCCCTTGTTCCGCTCTTTCTTAAACTTCCACTTCCGC CGCAGAAAGCTGGTGAAGCCGCCATTGATGGACTTCACTTTCACGTCCAGGTTG TTCACTCTGAAGTAGCTCCGCAGCAGGTTCATCAGGCCTCTGGTGGCGTATCTG GTATCCACCAGGTTCCGGTTGATGAAGTCTTTCTGCACGGAGAACCTGTTGATG TCCCGTTCTTCCAGCAGATACTCTTTCTTGGTCTTGCTGATTCTGCCCTTGCCCTT GGCCAGATTCAGGATGTGCTTCTTGAAGGTTTCGTAGCTGATCTTGCTGTCGCT GCTGCTCAGGTACTGGAATGGGGTCCGGTTGCCCTTCTTGCTGTTTTCTTCCTGC TTCACGAGCACCTTGTTGTTGAAGCTGTTGTCGAAGGACACGCTTCTGGGGATG ATGTGGTCCACCTCATAGTTGAAGGGGTTGTTCAGCAGATCTTCCAGAGGGATG GCTTCCAGGCTGTACAGGCACTTGCCTTCCTGCATGTCGTGCAGCTTGATCTTCT CGATCAGGTACTTGGCGTTCTCTTTGCCGGTGGTCCGGATGATTTCCTCGATCCG CTCGTTGGTCTGCCGGTTCCGCTTCTGCATCTCGTTGATCATTTTCTGGGCGTCC TTGGAGTTCTTCTCGCGGGCCAGCTCGATAATGATGTCGTTGGGCAGGCCGTAC TTCTTGATGATGGCGTTGATCACTTTGATGCTCTGGATGAAGCTTCTCTTCACGA CGGGGCTCAGGATGAAGTCGTCCACCAGGGTGGTGGGGATCTCTTTCTGCTGGG ACAGGTCCACCTTCTTGGGCACCAGCTTCAGCCGGTTGAAGATAGCGATCTGGT TGTCGTTGGTGTGCCACAGCTCGTCCAGGATCAGGTTGATGGCCTTCAGGCTCA GGTTGTGGGTGCCGGTATAGCCCTTCAGATTAGAGATCTGCTCGATCTCTTCCT GGGTCAGCTCGGAGTTCAGATTGGTCAGTTCTTCCTGGATGTCCTCGCTGCTCT GGTAGATGGTCAGGATCTTGGCAATCTGATCCAGCAGCTCGGCGTTCTCAATAA TCTCTTTCCGGGCGGTAATGTCCTTGATGTCGTGGTACACCTTCAGGTTGGTGA ACTCGGGCTTGCCGGTGCTGGTCACTCTGTAGCCCTTAATATCCTCTTCGTTCAC GAGGATTTCTTTGGCGATCTGCTTCAGGGTGGGCTTCTTCTTCTGCTTGAACACG TTCTCGATGATCTGGAACTTCTCGT AAT ATTCC AGCTTCTCGTTCTCGTCCCTGG TGATCACGAGATTGTTCAGGTCGTTCAGGGCGTTGTACAGGTCGGCGTTGTAGG CGTACTTCACGCTCCGCAGTTCCTCGGGGAAGTAGGTGCAGTGGCCCATCAGCA TCTCGTACCATTCTTTGATGTCCTTCCAGCCGAAGGGGCTGCCCTCGCCAGGTC CCTCATAGTAGGTCCGCCGGGTTTCCAGCAGGTCGATGTAGGTGTCGATGAAGC TCTGGTCCAGCTGGTGGTAGGCCTTCTGC ACCTTCAGCAGCTGTTTGGCTTCTTT CACGTAGTCGCTGGTCTTGAATCTGTTGATGCTGCCCCGCACTTCGCCGTCTTTC TTCAGCCGTTCCAGCTGCAGTTCGGCCACGTATTTCTCTTCCAGGGCCTTGCTGT TCCGGCTGATCTGCTCTTTGGTGGACAGCTCGTTGCCGGTGTCCTCTTCCACCTC GTTCACGTTGT GCACGCCTCTTCTCTTGGCCAGGTGCAGCAGGGCGGCAGAGAACTCTTCCTCGC TCAGCTTCTGGCTCAGGCCCTTCACTCTGGCCTCGTAGGGGTTGATGCCGCTCA GCTCGCTGTGGTCGGTCAGCAGGTTGTAGTCGAACAGCAGCTTCTTCACTCTCT GGATTCTATGCCGCCTCCGCCGCTTCAGCCTTCTGGCGCCTCTCTTGCTCCGCCT GCCCTCGTTGTTTTCCACGTTGGCCTCTTTGAACAGCCGCACGCCGGCATCGAT CACGTCCCGTGTCTCGTAGTCGATGATGCCGTAGCCCACGCTGGTGATGCCGAT GTCCAGGCCCAGGATGTAGTTCCGCTTGGCTGCTGGGACTCCGTGGATACCGAC CTTCCGCTTCTTCTTTGGGGCCATGTGGCGGCTCTTGAAGGACGACGTCATCAT CCCTTGCCCGGATGCGCGGGCTTCTTGTCTAGCACAGGAGCCTGGGGTAGAGCG CATGCAAATTACGCGCTGTGCTTTGTGGGAAATCACCCTAAACGAAAAATTTAT TCCTCTTTCGAGCCTTATAGTGGCGGCCGGTCTACATCCTAGGTTTTAGTACTCT GGAAACAGAATCTACTAAAACAAGGCAAAATGCCGTGTTTATCTCGTCAACTT GTTGGCGAGATTTTTTGTTAACGCGGCCGCCTAGAGTCGACCTGCAGGCATGCA
A (SEQ ID NO: 67) REFERENCES
All publications, patent applications, patents, and other references mentioned in the specification are indicative of the level of those skilled in the art to which the presently disclosed subject matter pertains. All publications, patent applications, patents, and other references are herein incorporated by reference to the same extent as if each individual publication, patent application, patent, and other reference was specifically and individually indicated to be incorporated by reference. It will be understood that, although a number of patent applications, patents, and other references are referred to herein, such reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art.
Although the foregoing subject matter has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be understood by those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.

Claims

THAT WHICH IS CLAIMED:
1. A non-naturally occurring nuclease system comprising one or more vectors comprising:
a) a promoter operably linked to at least one nucleotide sequence encoding a nuclease system guide RNA (gRNA), wherein the gRNA hybridizes with a target sequence of a DNA molecule or RNA molecule in a cell, and wherein the DNA molecule or RNA encodes one or more gene products expressed in the cell; and b) a regulatory element operable in a cell operably linked to a nucleotide sequence encoding a genome-targeted nuclease,
wherein components (a) and (b) are located on the same or different vectors of the system, wherein the gRNA targets and hybridizes with the target sequence and the nuclease cleaves the DNA molecule or RNA to alter expression of the one or more gene products.
2. The system of claim 1, wherein the system is CRISPR.
3. The system of claim 1, wherein the system is packaged into a single adeno- associated virus (AAV) particle.
4. The system of claim 3, wherein the adeno-associated packaging virus is selected from adenovirus serotype 2, adenovirus serotype 5, or adenovirus serotype 35.
5. The system of claim 7, wherein the adeno-associated packaging virus is adenovirus serotype 5.
6. The system of claim 1, wherein the system inactivates one or more gene products.
7. The system of claim 1, wherein the nuclease system excises at least one gene mutation.
8. The system of claim 1, wherein the promoter is selected from the group consisting of HI promoter, 7sk, human RPPH1-PARP2, SRP-RPS29, 7skl-GSTA4, SNAR-G-l-CGBl, SNAR- CGB2, RMRP-CCDC 107, tRNA(Lys)-ALOXE3, RNU6- 9-MED16: tRNA (Gly)-DPP9, RNU6-2-THEM259, SNORD13-C8orf41, mouse RPPH1-PARP2, and rat RPPH1-PARP2.
9. The system of claim 8, wherein the promoter is a HI promoter.
10. The system of claim 9, wherein the HI promoter comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 12 or 32.
11. The system of claim 10, wherein the HI promoter comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 12.
12. The system of claim 10, wherein the HI promoter comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 32.
13. The system of any one of claims 9-12, wherein the promoter is orthologous to the HI promoter.
14. The system of claim 13, wherein the orthologous HI promoter is derived from mouse or rat.
15. The system of any one of claims 9-14, wherein the HI promoter is
bidirectional.
16. The system of any one of claims 9-15, wherein the HI promoter comprises: a) control elements that provide for transcription in one direction of at least one nucleotide sequence encoding a gRNA; and
b) control elements that provide for transcription in the opposite direction of a nucleotide sequence encoding a genome-targeted nuclease.
17. The system of claim 8, wherein the promoter is a 7sk promoter.
18. The system of claim 17, wherein the 7sk promoter is derived from human, rat, or mouse.
19. The system of any one of claims 17-18, wherein the 7sk promoter is selected from the group consisting of 7skl, 7sk2, and 7sk3.
20. The system of claim 19, wherein the 7sk promoter is 7skl .
21. The system of claim 20, wherein the 7skl is derived from human.
22. The system of any one of claims 17-21, wherein the human 7skl comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 3.
23. The system of claim 22, wherein the human 7skl comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 3.
24. The system of claim 19, wherein the 7skl is derived from mouse.
25. The system of claim 24, wherein the mouse 7skl comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 6.
26. The system of any one of claims 24-25, wherein the mouse 7skl comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 6.
27. The system of claim 19, wherein the 7sk promoter is 7sk2.
28. The system of claim 27, wherein the 7sk2 is derived from human.
29. The system of claim 28, wherein the human 7sk2 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 4.
30. The system of claim 29, wherein the human 7sk2 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 4.
31. The system of claim 27, wherein the 7sk2 is derived from mouse.
32. The system of claim 31, wherein the mouse 7sk2 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 7.
33. The system of claim 32, wherein the mouse 7sk2 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 7.
34. The system of claim 19, wherein the 7sk promoter is 7sk3.
35. The system of claim 34, wherein the 7sk3 is derived from human.
36. The system of claim 35, wherein the human 7sk3 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 5.
37. The system of claim 36, wherein the human 7sk3 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 5.
38. The system of claim 34, wherein the 7sk3 is derived from mouse.
39. The system of claim 38, wherein the mouse 7sk3 comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 8.
40. The system of claim 39, wherein the mouse 7sk3 comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 8.
41. The system of any one of claims 8-40, wherein the promoter has at least one modification.
42. The system of claim 41, wherein the at least one modification of the promoter comprises an element that allows conditional regulation.
43. The system of claim 42, wherein the element is a tet-responsive promoter.
44. The system of claim 43, wherein the tet-response promoter comprises a Tet repressor (TetR) and Tet operator (TetO) engineered into the HI promoter.
45. The system of claim 44, wherein the TetR comprises an amino acid sequence having at least 80% identity to SEQ ID NO: 14.
46. The system of claim 45, wherein the TetR comprises an amino acid sequence having the amino acid sequence set forth in SEQ ID NO: 14.
47. The system of claim 45, wherein the TetO comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 11.
48. The system of claim 47, wherein the TetO comprises a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 11.
49. The system of claim 44, wherein the HI -TetO comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 13.
50. The system of claim 49, wherein the HI -TetO comprises a nucleotide sequence having the nucletoide sequence set forth in SEQ ID NO: 13.
51. The system of claim 41, wherein the at least one modification of the promoter comprises a site that allows auto-regulation.
52. The system of claim 51, wherein the auto-regulation site comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 33 or 34.
53. The system of claim 52, wherein the auto-regulation site comprises the nucleotide sequence set forth in SEQ ID NO: 33.
54. The system of claim 52, wherein the auto-regulation site comprises the nucleotide sequence set forth in SEQ ID NO: 34.
55. The system of claim 1, further comprising at least one terminator sequence.
56. The system of claim 55, wherein the at least one terminator sequence is selected from the group consisting of SV40 or synthetic poly A (SPA) sequences.
57. The system of claim 56, wherein the terminator sequences is a SV40 120 (SEQ ID NO: 123) or 240 (SEQ ID NO: 122) base pair sequence.
58. The system of claim 56, wherein the terminator sequences is a SPA 49 base pair equence.
59. The system of claim 1, further comprising 5' untranslated region (5'UTR) sequences.
60. The system of claim 1, further comprising a Kozak sequence.
61. The system of claim 60, wherein the Kozak sequence comprises a nucleotide sequence having at least 80% identity to SEQ ID NO: 1 or 2.
62. The system of claim 61, wherein the Kozak sequence comprises the nucleotide sequence set forth in SEQ ID NO: 1.
63. The system of claim 61, wherein the Kozak sequence comprises the nucleotide sequence set forth in SEQ ID NO: 2.
64. The system of claim 1, further comprising a RNA sequence that mediates cap- independent initiation of translation.
65. The system of claim 64, wherein the RNA sequence is selected from the group consisting of 6.947 or 6.967.
66. The system of claim 1, wherein the genome-targeted nuclease is Cas9 protein.
67. The system of claim 66, wherein the Cas9 comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 61.
68. The system of claim 67, wherein the Cas9 comprises the nucleotide sequence set forth in SEQ ID NO: 61.
69. The system of any one of claims 66-68, wherein the Cas9 comprises at least one modification.
70. The system of claim 69, wherein the at least one modification in the Cas9 comprises an alteration in the cleaving sequence.
71. The system of claim 70, wherein the alteration in the cleaving sequence selected from the group consisting of T2A, P2A, E2A, and F2A.
72. The system of claim 71, wherein the T2A comprises an amino acid sequence, having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 36.
73. The system of claim 72, wherein the T2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 36.
74. The system of claim 71, wherein the P2A comprises an amino acid sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 35.
75. The system of claim 74, wherein the P2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 35.
76. The system of claim 71, wherein the E2A comprises an amino acid sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 37.
77. The system of claim 76, wherein the E2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 37.
78. The system of claim 71, wherein the F2A comprises an amino acid sequence having at least 80%> identity to the nucleotide sequence set forth in SEQ ID NO: 38.
79. The system of claim 78, wherein the F2A comprises an amino acid sequence having the nucleotide sequence set forth in SEQ ID NO: 38.
80. The system of claim 69, wherein the at least one modification in the Cas9 comprises a codon optimized for expression in the cell.
81. The system of any one of claims 66-80, wherein the Cas9 further comprises a linker sequence operably fused in frame to a cell-cycle dependent protein (Cas9 fusion).
82. The system of claim 81, wherein the cell cycle-dependent protein is selected from the group consisting of APE2, ATR, BRCA1, Chkl, Cdc5, Cdc6, Cdc7, Cdc45, Cdtl, CSA, CSB, Ctfl8, DDB1, DDB2, DNA2, DUT, Elgl, EndoV, Espl,
Exonucleasel, FBH1, FEN1, Geminin, Husl, KNTC2 ( DC80), Ku80, Ligasel, Mad2, MBD4, Mcm3, Mcm4, Mcm5, Mcm6, Mcm7, Mcm8, McmlO, MGMT, MLH3, Mms4, MPG, MSH2, Mus81, BS1, NEIL2, EIL3, NTH1, Orel, Orc3, PARP1, PCNA, Pifl, PMS1, PMS2, PNK, Pola pi 80, Pola p70, Pola Sppl (Prim2a), Polb, Pold pl25, Pole Dpb3, Pole Dpb4, Pole Pol2, Poli, Poll, Polm, Psfl, Psf2, Psf3, Radl, Radl8, Rad23A, Rad23B, Rad51, Rad51D, Rad54, Rad6A, RPA34, RPA70, Sccl, Scc3, Sir2, SIRT1 (Sirtuin), TDG, TDP1, TIMELESS, Tin2, Topoisomerase I, Topoisomerase Ilia, Topoisomerase Illb, Ubcl3, UNG, XAB2, XPC, XPF, XPG, Xrcc2, and XRCC4.
83. The system of claim 82, wherein the cell cycle-dependent protein is Geminin.
84. The system of claim 83, wherein the cell cycle-dependent protein is human Geminin.
85. The system of claim 84, wherein the human Geminin comprises the amino acids from positions 1-110 (hGem(l-l 10)).
86. The system of claim 85, wherein the hGem(l-l 10) comprises an amino acid sequence having at least 80% identity to the amimo acid sequence set forth in SEQ ID NO: 19.
87. The system of claim 86, wherein the hGem(l-l 10) comprises the amino acid sequence set forth in SEQ ID NO: 19.
88. The system of claim 82, wherein the cell cycle-dependent protein is Cdtl .
90. The system of claim 88, wherein the cell cycle-dependent protein is human Cdtl .
91. The system of claim 90, wherein the human Cdtl comprises amino acids from positions 30-120 (hCdtl(30-120)).
92. The system of claim 91, wherein the hCdtl(30-120) comprises an amino acid sequence having at least 80% identity to the amino acid sequence set forth in SEQ ID NO: 18.
93. The system of claim 92, wherein the hCdtl(30-120) comprises the amino acid sequence set forth in SEQ ID NO: 18.
94. The sytem of any one of claims 81-93, wherein the Cas9 fusion comprises an amino acid sequence having at least 80% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
95. The sytem of claim 94, wherein the Cas9 fusion comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 20-27.
96. The system of any one of claims 66-95, wherein the Cas9 is operably fused in frame to a ubiquitin protein (Ub-Cas9).
97. The system of claim 96, wherein the Ub-Cas9 at least one N-terminal modification.
98. The system of claim 97, wherein the N-terminal modified Ub-Cas9 comprises an amino acid sequence having at least 80% identity to the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58
99. The system of claim 98, wherein the N-terminal modified Ub-Cas9 comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 39-58.
100. The system of claim 96, wherein the ubiquitin protein comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 60.
101. The system of claim 100, wherein the ubiquitin protein comprises the nucleotide sequence set forth in SEQ ID NO: 60.
102. The system of claim 1, further comprising a SaCas9 nickase.
103. The system of claim 102, further comprising a donor template sequence.
104. The system of any one of claims 102-103, wherein the at least one vector comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 62 or 67.
105. The system of claim 104, wherein the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 62.
106. The system of claim 104, wherein the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 67.
107. The system of any one of claims 103-106, wherein the donor template sequence corrects at least one gene mutation.
108. The system of claim 107, wherein the at least one gene mutation is rdlO or rdJ2.
109. The system of claim 108, wherein the at least one vector comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 63 or 64.
110. The system of claim 109, wherein the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 63.
111. The system of claim 109, wherein the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 64.
112. The system of claim 108, wherein the at least one vector comprises a nucleotide sequence having at least 80% identity to the nucleotide sequence set forth in SEQ ID NO: 65 or 66.
113. The system of claim 112, wherein the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 65.
114. The system of claim 112, wherein the at least one vector comprises the nucleotide sequence set forth in SEQ ID NO: 66.
115. The system of any one of claims 8-54, wherein the promoter is operably linked to at least one, two, three, four, five, six, seven, eight, nine, or ten gRNA.
116. The system of claim 1, wherein the target sequence comprises the nucleotide sequence AN19NGG, GN19NGG, CN19NGG, or TN19NGG.
117. The system of claim 1, wherein the cell is a eukaryotic or or non-eukaryotic cell.
118. The system of claim 117, wherein the eukaryotic cell is a mammalian or human cell.
119. The system of claim 5, wherein the eukaryotic cell is a retinal photoreceptor cell.
120. The system of claim 1, wherein the one or more gene products are rhodopsin.
121. The system of claim 1, wherein the expression of the one or more gene products is decreased.
122. A method of altering expression of one or more gene products in a cell, wherein the cell comprises a DNA molecule encoding the one or more gene products, the method comprising introducing into the cell a non-naturally occurring nuclease system of claim 1.
123. The method of claim 122, wherein the system inactivates one or more gene products.
124. The method of claim 122, wherein the nuclease system excises at least one gene mutation.
125. The method of claim 122, wherein the expression of the one or more gene products is decreased.
126. The method of claim 122, wherein the cell is a eukaryotic or non-eukaryotic cell.
127. The method of claim 126, wherein the eukaryotic cell is a mammalian or human cell.
128. The method of claim 122, wherein the cell is a retinal photoreceptor cell.
129. The method of claim 122, wherein the cell is a retinal ganglion cell.
130. The method of claim 127, wherein the eukaryotic cell is a cancerous cell.
131. The method of claim 130, wherein cell proliferation is inhibited or reduced in the cancerous cell.
132. The method of claim 130, wherein apoptosis is enhanced or increased in the cancerous cell.
133. A method for treating a disease selected from the group consisting of retinal dystrophy, corneal dystrophy, microsatellite expansion diseases, and cancer in a subject in need thereof, the method comprising:
(a) providing a non-naturally occurring nuclease system of claim 1;
and
(b) administering to the subject an effective amount of the system.
134. The method of claim 133, wherein the disease is corneal dystrophy.
135. The method of claim 133, wherein the disease is a retinal dystrophy.
136. The method of claim 133, wherein the retinal dystrophy is selected from the group consisting of Leber's congenital amaurosis (LCA), retinitis pigmentosa (RP), and glaucoma.
137. The method of claim 133, wherein the corneal dystrophy is selected from the group consisting of Epithelial Basement Membrane Dystrophy, Epithelial Recurrent Erosion Dystrophies, Subepithelial Mucinous Corneal Dystrophy, Meesmann Corneal Dystrophy, Lisch Epithelial Corneal Dystrophy, Gelatinous Drop-like Corneal Dystrophy, Reis-Bucklers Corneal Dystrophy, Thiel-Behnke Corneal Dystrophy, Lattice Corneal Dystrophy, Type 1 (Classic), Lattice Corneal Dystrophy, Type 2, Lattice Corneal Dystrophy, Type III, Lattice Corneal Dystrophy, Type IIIA, Lattice Corneal Dystrophy, Type I/IIIA, Lattice Corneal Dystrophy, Type IV, Polymorphic (Corneal) Amyloidosis, Granular Corneal Dystrophy, Type 1, Granular Corneal Dystrophy, Type 2, Macular Corneal Dystrophy, Schnyder Corneal Dystrophy, Congenital Stromal Corneal Dystrophy, Fleck Corneal Dystrophy, Posterior
Amorphous Corneal Dystrophy, Central Cloudy Dystrophy of Francois, Pre-Descemet Corneal Dystrophy, Fuchs Endothelial Corneal Dystrophy, Posterior Polymorphous Corneal Dystrophy, Congenital Hereditary Endothelial Dystrophy, and X-linked Endothelial Corneal Dystrophy.
138. The method of claim 133, wherein the microsatellite expansion diseases is selected from the group consisting of Blepharophimosis, ptosis and epicanthus inversus syndactyly, Cleidocranial dysplasia, Congenital central hypoventilation syndrome, Haddad syndrome DM (Myotonic dystrophy), FRAXA (Fragile X syndrome), FRAXE (Fragile XE mental retardation), FRDA (Friedreich's ataxia), Fuchs' Endothelial Corneal Dystrophy, FXTAS (Fragile X-associated tremor/ataxia syndrome), Hand-foot-genital syndrome, HD (Huntington's disease),
Holoprosencephaly, Mental retardation with growth hormone deficiency, Mental retardation, epilepsy, West syndrome, Partington syndrome, Oculopharyngeal muscular dystrophy, SBMA (Spinal and bulbar muscular atrophy), SCA1
(Spinocerebellar ataxia Type 1), SCA12 (Spinocerebellar ataxia Type 12), SCA17 (Spinocerebellar ataxia Type 17), SCA2 (Spinocerebellar ataxia Type 2), SCA3 (Spinocerebellar ataxia Type 3 or Machado- Joseph disease), SCA6 (Spinocerebellar ataxia Type 6), SCA7 (Spinocerebellar ataxia Type 7), SCA8 (Spinocerebellar ataxia Type 8), and Synpolydactyly.
139. The method of claim 133, wherein administering to the subject occurs by implantation, injection, or virally.
140. The method of claim 139, wherein administering to the subject occurs by subretinal injection.
141. The method of claim 133, wherein administering to the subject occurs topically, intravascularly, intradermally, transdermally, parenterally, intravenously, intramuscularly, intranasally, subcutaneously, regionally, percutaneously,
intratracheally, intraperitoneally, intraarterially, intravesically, intratumorally, peritumorally, inhalationly, systematically, perfusionly, lavagely, directly via injection, or orally via administration and formulation.
142. The method of claim 141, wherein administering to the subject occurs topically to the surface of the eye.
143. The method of claim 133, wherein administering to the subject occurs on or outside the cornea, sclera, to the intraocular, subconjunctival, sub-tenon, or retrobulbar space, or in or around the eyelids.
144. The method of claim 133, wherein the subject is treated with at least one additional anti-cancer agent.
145. The method of claim 134, wherein the anti-cancer agent is selected from the group consisting of paclitaxel, cisplatin, topotecan, gemcitabine, bleomycin, etoposide, carboplatin, docetaxel, doxorubicin, topotecan, cyclophosphamide, trabectedin, olaparib, tamoxifen, letrozole, and bevacizumab.
146. The method of any one of claims 144-145, wherein the subject is treated with at least one additional anti-cancer therapy.
147. The method of claim 146, wherein the anti-cancer therapy is radiation therapy, chemotherapy, or surgery.
148. The method of claim 133, wherein the cancer is a solid tumor.
149. The method of claim 133, wherein the cancer is selected from the group consisting of brain cancer, gastrointestinal cancer, oral cancer, breast cancer, ovarian cancer, prostate cancer, pancreatic cancer, lung cancer, liver cancer, throat cancer, stomach cancer, and kidney cancer.
150. The method of claim 149, wherein the cancer is brain cancer.
151. The method of claim 141, wherein the systematic administration is selected from the group consisting of oral, intravenous, intradermal, intraperitoneal, subcutaneous, and intramuscular administration.
152. The method of any one of claims 133-153, wherein the subject is a mammal.
153. The method of claim 154, wherein the mammal is human.
EP17824801.9A 2016-07-05 2017-07-05 Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter Pending EP3481956A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662358335P 2016-07-05 2016-07-05
PCT/US2017/040707 WO2018009534A1 (en) 2016-07-05 2017-07-05 Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter

Publications (2)

Publication Number Publication Date
EP3481956A1 true EP3481956A1 (en) 2019-05-15
EP3481956A4 EP3481956A4 (en) 2020-07-08

Family

ID=60912275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17824801.9A Pending EP3481956A4 (en) 2016-07-05 2017-07-05 Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter

Country Status (14)

Country Link
US (1) US11766488B2 (en)
EP (1) EP3481956A4 (en)
JP (2) JP2019520078A (en)
KR (1) KR20190039702A (en)
CN (1) CN109844116A (en)
AU (2) AU2017292667A1 (en)
BR (1) BR112019000055A2 (en)
CA (1) CA3029860A1 (en)
CL (1) CL2019000025A1 (en)
EA (1) EA201990213A1 (en)
IL (1) IL264020A (en)
MX (1) MX2019000251A (en)
SG (1) SG11201900038QA (en)
WO (1) WO2018009534A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373041A (en) * 2017-09-26 2020-07-03 伊利诺伊大学理事会 CRISPR/CAS systems and methods for genome editing and regulation of transcription
CN111727251A (en) 2017-11-21 2020-09-29 克里斯珀医疗股份公司 Materials and methods for treating autosomal dominant retinitis pigmentosa
CN108728441B (en) * 2018-04-18 2022-07-22 深圳市第二人民医院 Gene system for specifically recognizing P53 mutation
KR20210045360A (en) 2018-05-16 2021-04-26 신테고 코포레이션 Methods and systems for guide RNA design and use
US20210189404A1 (en) * 2018-05-25 2021-06-24 University Of Tsukuba Method for producing fusion protein, nucleic acid, cell, and animal
JPWO2020059708A1 (en) * 2018-09-17 2021-09-02 国立大学法人 東京医科歯科大学 How to regulate Cas protein activity
CN113166754A (en) 2018-10-16 2021-07-23 蓝色等位基因有限责任公司 Method for targeted insertion of DNA into genes
CA3118287A1 (en) * 2018-11-01 2020-05-07 Blueallele, Llc Methods for altering gene expression for genetic disorders
CN113272436A (en) * 2018-11-08 2021-08-17 国立大学法人东海国立大学机构 Gene therapy using genome editing with a single AAV vector
US20200407729A1 (en) * 2019-06-28 2020-12-31 Crispr Therapeutics Ag Materials and methods for controlling gene editing
CN114096667A (en) * 2019-07-08 2022-02-25 因思科瑞普特公司 Increasing nucleic acid-directed cell editing via LexA-Rad51 fusion proteins
CN110622921B (en) * 2019-09-29 2021-06-15 江苏大学 Construction method and application of mouse model with over-expression FoxG1 in Alzheimer disease lesion region
CN110607302A (en) * 2019-10-09 2019-12-24 广州医科大学附属第二医院 Method for detecting arachidonic acid lipoxygenase ALOXE3 gene promoter mutation and application thereof
CN111718933B (en) * 2020-06-28 2022-01-28 暨南大学 Preparation method and application of rrbp1 gene knockout hot claw frog model
WO2022212768A2 (en) * 2021-03-31 2022-10-06 Hunterian Medicine Llc Compact promoters for gene editing
WO2023120536A1 (en) * 2021-12-21 2023-06-29 国立大学法人東海国立大学機構 Gene therapy using genome editing with single aav vector

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217344A (en) 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4198626A (en) 1977-09-02 1980-04-15 Rauscher Frank J Intravenous alarm device
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4186183A (en) 1978-03-29 1980-01-29 The United States Of America As Represented By The Secretary Of The Army Liposome carriers in chemotherapy of leishmaniasis
US4261975A (en) 1979-09-19 1981-04-14 Merck & Co., Inc. Viral liposome particle
US4485054A (en) 1982-10-04 1984-11-27 Lipoderm Pharmaceuticals Limited Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV)
US4501728A (en) 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4946787A (en) 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US4774085A (en) 1985-07-09 1988-09-27 501 Board of Regents, Univ. of Texas Pharmaceutical administration systems containing a mixture of immunomodulators
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US4873316A (en) 1987-06-23 1989-10-10 Biogen, Inc. Isolation of exogenous recombinant proteins from the milk of transgenic mammals
US4931777A (en) 1988-11-16 1990-06-05 Chiang Cheng San Low level alarm for drop-feed injection liquid
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
AU7979491A (en) 1990-05-03 1991-11-27 Vical, Inc. Intracellular delivery of biologically active substances by means of self-assembling lipid complexes
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
US5112319A (en) 1991-05-14 1992-05-12 Eric Lai Infusion alarm system
US5587308A (en) 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
US6121555A (en) 1997-10-10 2000-09-19 Northgate Technologies Incorporated Fluid container sensor
US7750817B2 (en) 1999-12-10 2010-07-06 Beverage Metrics Holding Ltd System and method using a scale for monitoring the dispensing of a beverage
JP2001343294A (en) 2000-05-31 2001-12-14 Ishida Co Ltd Load cell and balance
GB0130955D0 (en) * 2001-12-24 2002-02-13 Cancer Res Ventures Expression system
US7180015B2 (en) 2004-09-24 2007-02-20 Hudson Douglas A Scale with clampable protrusion for weighing bicycles and other sports-related items
US10022457B2 (en) * 2005-08-05 2018-07-17 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
US20070106177A1 (en) 2005-10-11 2007-05-10 Yoshito Hama Apparatus for collecting and calculating quantity of patient fluid loss and method of using same
US20080293142A1 (en) * 2007-04-19 2008-11-27 The Board Of Regents For Oklahoma State University Multiple shRNA Expression Vectors and Methods of Construction
KR101196701B1 (en) 2009-07-16 2012-11-07 주식회사 실티 Water supplying apparatus for cattle shed with a warm keeping means
US8889394B2 (en) 2009-09-07 2014-11-18 Empire Technology Development Llc Multiple domain proteins
ES2779029T5 (en) 2011-05-27 2023-06-26 Nestle Sa Computer program systems, methods, and products for monitoring the behavior, health, and/or characteristics of a domestic pet
EP3539573B1 (en) * 2013-06-05 2024-02-14 Duke University Rna-guided gene editing and gene regulation
US20150251894A1 (en) 2014-03-06 2015-09-10 Julie Barbara Lake Transportable Device for Automatically Filling Water Buckets, Troughs and Containers
US9938521B2 (en) * 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
WO2015148670A1 (en) * 2014-03-25 2015-10-01 Editas Medicine Inc. Crispr/cas-related methods and compositions for treating hiv infection and aids
CN106852157B (en) 2014-06-16 2022-04-12 约翰斯·霍普金斯大学 Compositions and methods for expressing CRISPR guide RNA using H1 promoter
EP2982758A1 (en) 2014-08-04 2016-02-10 Centre Hospitalier Universitaire Vaudois (CHUV) Genome editing for the treatment of huntington's disease
US20160090603A1 (en) 2014-09-30 2016-03-31 Sandia Corporation Delivery platforms for the domestication of algae and plants
CA2963693A1 (en) * 2014-10-10 2016-04-14 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
AU2015339744B2 (en) 2014-10-31 2021-03-25 The Trustees Of The University Of Pennsylvania Altering gene expression in CART cells and uses thereof
EP3215617B1 (en) * 2014-11-07 2024-05-08 Editas Medicine, Inc. Systems for improving crispr/cas-mediated genome-editing
CN104531632A (en) * 2014-11-18 2015-04-22 李云英 Rapidly-degraded Cas9-ODC422-461 fusion protein and application thereof
EP3702456A1 (en) * 2014-12-24 2020-09-02 The Broad Institute, Inc. Crispr having or associated with destabilization domains
CN204440762U (en) 2015-02-09 2015-07-01 刘苹芳 Archimedes principle demonstrator
CN107949400A (en) 2015-06-24 2018-04-20 西格马-奥尔德里奇有限责任公司 Cell cycle dependant genome regulates and controls and modification
GB2541459B (en) 2015-08-21 2021-01-13 Carton Bernard A method and system for monitoring pregnancy toxaemia

Also Published As

Publication number Publication date
EP3481956A4 (en) 2020-07-08
JP2019520078A (en) 2019-07-18
CL2019000025A1 (en) 2019-06-21
EA201990213A1 (en) 2019-11-29
KR20190039702A (en) 2019-04-15
US20190314521A1 (en) 2019-10-17
AU2017292667A1 (en) 2019-02-21
CA3029860A1 (en) 2018-01-11
CN109844116A (en) 2019-06-04
AU2023266246A1 (en) 2023-12-07
US11766488B2 (en) 2023-09-26
BR112019000055A2 (en) 2019-04-02
MX2019000251A (en) 2019-10-09
JP2022153576A (en) 2022-10-12
SG11201900038QA (en) 2019-02-27
IL264020A (en) 2019-02-03
WO2018009534A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US11766488B2 (en) Compositions and methods comprising improvements of CRISPR guide RNAS using the H1 promoter
US11896679B2 (en) Compositions and methods for the expression of CRISPR guide RNAs using the H1 promoter
US20210277370A1 (en) Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
JP6793547B2 (en) Optimization Function Systems, methods and compositions for sequence manipulation with the CRISPR-Cas system
JP2019103510A (en) Engineering of systems, methods and optimized guide compositions for sequence manipulation
WO2016028682A1 (en) Genome editing using cas9 nickases
CN113195721A (en) Compositions and methods for treating alpha-1 antitrypsin deficiency
US20210309986A1 (en) Methods for exon skipping and gene knockout using base editors
WO2024097747A2 (en) Dna recombinase fusions

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 15/85 20060101ALI20200120BHEP

Ipc: A61K 38/46 20060101ALI20200120BHEP

Ipc: C12N 15/63 20060101ALI20200120BHEP

Ipc: A61P 35/00 20060101ALI20200120BHEP

Ipc: C12N 9/16 20060101ALI20200120BHEP

Ipc: A61K 48/00 20060101ALI20200120BHEP

Ipc: C12N 15/113 20100101AFI20200120BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20200605

RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 15/85 20060101ALI20200529BHEP

Ipc: C12N 9/16 20060101ALI20200529BHEP

Ipc: C12N 15/113 20100101AFI20200529BHEP

Ipc: C12N 15/63 20060101ALI20200529BHEP

Ipc: A61K 38/46 20060101ALI20200529BHEP

Ipc: A61K 48/00 20060101ALI20200529BHEP

Ipc: A61P 35/00 20060101ALI20200529BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZACK, DONALD

Inventor name: JASKULA-RANGA, VINOD

Inventor name: WELSBIE, DEREK, S.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230404

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525