EP3479039A1 - Method and apparatus for operating an air separation plant - Google Patents
Method and apparatus for operating an air separation plantInfo
- Publication number
- EP3479039A1 EP3479039A1 EP17737705.8A EP17737705A EP3479039A1 EP 3479039 A1 EP3479039 A1 EP 3479039A1 EP 17737705 A EP17737705 A EP 17737705A EP 3479039 A1 EP3479039 A1 EP 3479039A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- air
- pipeline
- product
- cold box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000000926 separation method Methods 0.000 title claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 101
- 239000007789 gas Substances 0.000 claims abstract description 96
- 239000007788 liquid Substances 0.000 claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 claims abstract description 58
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 52
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000001301 oxygen Substances 0.000 claims abstract description 46
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 46
- 238000012544 monitoring process Methods 0.000 claims abstract description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 65
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 238000000746 purification Methods 0.000 claims description 8
- 239000001569 carbon dioxide Substances 0.000 claims description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 238000012806 monitoring device Methods 0.000 claims description 3
- 239000000047 product Substances 0.000 description 97
- 239000012530 fluid Substances 0.000 description 7
- 238000007906 compression Methods 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000012263 liquid product Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000012464 large buffer Substances 0.000 description 1
- YMXREWKKROWOSO-VOTSOKGWSA-N methyl (e)-3-(2-hydroxyphenyl)prop-2-enoate Chemical compound COC(=O)\C=C\C1=CC=CC=C1O YMXREWKKROWOSO-VOTSOKGWSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04836—Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/60—Details about pipelines, i.e. network, for feed or product distribution
Definitions
- the present invention generally relates to a method and apparatus for efficiently operating an air separation plant that feeds at least one of its products to a pipeline.
- Air separation plants separate atmospheric air into its primary constituents: nitrogen and oxygen, and occasionally argon, xenon and krypton. These gases are sometimes referred to as air gases.
- a typical cryogenic air separation process can include the following steps: (1) filtering the air in order to remove large particulates that might damage the main air compressor; (2) compressing the pre-filtered air in the main air compressor and using interstage cooling to condense some of the water out of the compressed air; (3) passing the compressed air stream through a front-end-purification unit to remove residual water and carbon dioxide; (4) cooling the purified air in a heat exchanger by indirect heat exchange against process streams from the cryogenic distillation column; (5) expanding at least a portion of the cold air to provide refrigeration for the system; (6) introducing the cold air into the distillation column for rectification therein; (7) collecting nitrogen from the top of the column (typically as a gas) and collecting oxygen from the bottom of the column as a liquid.
- the air separation unit can be used to supply one of its air gases to a nearby pipeline (e.g., an oxygen or nitrogen pipeline) in order to supply one or more customers that are not located immediately near the ASU.
- a process configuration utilizing an internal compression (pumping) cycle which in the case of an oxygen pipeline, means that the liquid oxygen produced from the lower pressure column is pumped from low pressure to a higher pressure than that of the pipeline and vaporized within the heat exchanger, most commonly against a high pressure air stream coming from a booster air compressor (“BAC”) or from the main air compressor (“MAC”).
- BAC booster air compressor
- MAC main air compressor
- a booster air compressor is a secondary air compressor that is located downstream of the purification unit that is used to boost a portion of the main air feed for purposes of efficiently vaporizing the product liquid oxygen stream.
- the ASU feeding oxygen to the oxygen pipeline is designed to produce oxygen at a constant pressure. This is because ASUs operate most efficiently at steady state conditions.
- pipelines do not operate at constant pressures. For example, it is not uncommon for an oxygen pipeline to operate between 400 and 600 psig (i.e., about a 200 psig pressure variance) during a single day. This can occur due to variable customer demand and/or variable supply to the pipeline.
- the present invention is directed to a method and apparatus that satisfies at least one of these needs.
- the invention can include a method for adjusting the production pressure(s) of the air gases (e.g., nitrogen and oxygen) to follow the pressure of the pipeline, thereby increasing liquid production when the pipeline pressure decreases.
- the air gases e.g., nitrogen and oxygen
- this inefficiency can be minimized by designing the equipments used in the ASU (e.g., main heat exchanger, liquid oxygen (“LOX”) pump, BAC, MAC, etc ..) to have sufficient flexibility for being able to deliver gaseous oxygen (“GOX”) at different pressure levels based on the pipeline pressure.
- the method and apparatus can include a process control strategy to automatically and continuously adjust the GOX product pressure coming out of the main heat exchanger to follow the pipeline pressure.
- the discharge pressure of the BAC can be kept relatively constant, thereby allowing for additional liquid production.
- the discharge pressure of the MAC can be kept relatively constant in a similar fashion.
- this inefficiency is eliminated by designing the equipments including main exchanger, LOX Pump, MAC, and BAC, etc. with sufficient flexibility of being able to deliver GOX at different pressure levels according to the pipeline pressure and by implementing a process control strategy to automatically and continuously adjust the GOX product pressure to follow the pipeline pressure.
- the automatic pipeline GOX feed valve can be set at 100% open and GOX flow can be controlled by a flow indicator controller ("FIC") manipulating the LOX pump speed. The lower the GOX pipeline at the delivering point, the lower the GOX pressure from the cold box.
- FIC flow indicator controller
- One efficiency gain that can be realized by lowering the GOX product pressure coming from the cold box is to increase the production of liquid product, either liquid oxygen (“LOX”) and/or liquid nitrogen (“LIN”) without changing the set point of the operating conditions of the MAC or the BAC. Additional liquid production is realized by an overall increase in available refrigeration. For example, by running the LOX pump at a reduced pressure, the LOX pump will produce less excess heat (due to energy losses associated with vibration, friction, etc .). Additionally, a lowered pressure for the LOX results in less heat of compression. Thirdly, the lower pressure LOX going through the heat exchanger results in a smaller heat loss within the heat exchanger, which results in a gain of additional cold recovery.
- LOX liquid oxygen
- LIN liquid nitrogen
- a 1500 st/d 0 2 ASU producing GOX at 600 psig can produce about 4150 scfh additional liquid nitrogen when the oxygen product from the liquid oxygen pump is reduced to 450 psig.
- the overall stability of an ASU process will not be compromised by this pressure variation due to the fact that ASU process usually has faster dynamics than the pipeline and the pipeline often intrinsically contains a large buffer and pressure variation can only occur slowly.
- GAN high pressure gaseous nitrogen
- the control strategy can easily be implemented using any alternative control scheme that can allow GOX and/or GAN pressure to automatically follow the pipeline.
- the ASU product pressure can be adjusted to follow the pipeline by controlling the pressure differential across the product control valve to the pipeline.
- the user instead of directly measuring the pressure of the gaseous product coming from the cold box, the user can measure the pressure drop across the product control valve, and use the control means to derive a desired set point for the pressure drop across the control valve by adjusting the pressure of the gas coming out of the cold box (e.g., if GOX is the product stream, the liquid oxygen pump could be adjusted until the pressure drop across the product control valve is at or below a desired threshold).
- the pressure differential across the product control valve is less than 5 psi, more preferably less than 3 psi, more preferably less than 1 psi.
- the ASU product pressure is within 5 psi of the pipeline pressure, thereby allowing the product control valve to remain fully open, resulting in a minimal pressure loss across the product control valve.
- the pressure differential across the product control valve is less than 2%, preferably 1%, more preferably 0.5% of the pipeline pressure. Ideally, the pressure drop across the product control valve approaches zero.
- a method for the production of air gases with variable liquid production by the cryogenic separation of air can include the steps of: a) compressing air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P 0 ; b) purifying the compressed humid air stream of water and carbon dioxide within a front end purification system to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream; c) compressing a first portion of the dry air stream in a booster compressor to form a boosted air stream, the boosted air stream having a first boosted pressure P BI ; d) introducing a second portion of the dry air stream and the boosted air stream to a cold box under conditions effective to separate air to form an air gas product, wherein the air gas product is selected from the group consisting of oxygen, nitrogen, and combinations thereof; e) withdrawing the air gas product from the cold box, the air gas product having a first product pressure
- the cold box comprises a main heat exchanger, a system of columns having a double column composed of a lower pressure column and a higher pressure column, a condenser disposed at a bottom portion of the lower pressure column, and a liquid air gas pump selected from the group consisting of a liquid oxygen pump, a liquid nitrogen pump, and combinations thereof;
- the liquid oxygen pump pressurizes liquid oxygen from the lower pressure column to the first product pressure P P1 ;
- the liquid nitrogen pump pressurizes liquid nitrogen from the higher pressure column to the first product pressure P P1 ;
- the liquid production from the cold box is a liquid selected from the group consisting of liquid nitrogen, liquid oxygen, and combinations thereof;
- a process controller in communication with a plurality of flow indicators, pressure indicators, and control valves, is configured to perform steps g) through i);
- a method for the production of air gases with variable liquid production by the cryogenic separation of air can include a first mode of operation and a second mode of operation, wherein during the first mode of operation and the second mode of operation, the method can include the steps of: sending a purified and compressed air stream to a cold box under conditions effective for cryogenically separating the air stream to form a gaseous air gas product using a system of columns, wherein the purified and compressed air stream is at a feed pressure P F when entering the cold box, wherein the air gas product is selected from the group consisting of oxygen, nitrogen, and combinations thereof; withdrawing the gaseous air gas product at a product pressure P P O; delivering the gaseous air gas product at a delivery pressure P D O to an air gas pipeline, wherein the air gas pipeline has a pipeline pressure P PL ; monitoring the pipeline pressure P PL ; wherein during the second mode of operation, the method further can include the steps of: reducing the difference between the pipeline pressure P PL and the
- the step of reducing difference between the pipeline pressure P PL and the delivery pressure P D O further comprises adjusting the product pressure P P O;
- the step of adjusting liquid production from the cold box further comprises the step of maintaining the feed pressure P F substantially constant;
- the air gas product is oxygen
- the cold box comprises a main heat exchanger, a system of columns having a double column composed of a lower pressure column and a higher pressure column, a condenser disposed at a bottom portion of the lower pressure column, and a liquid oxygen pump
- the cold box further comprises a gaseous oxygen (GOX) feed valve, wherein the GOX feed valve is in fluid communication with an outlet of the liquid oxygen pump and an inlet of the air gas pipeline;
- GOX gaseous oxygen
- the step of reducing the difference between the pipeline pressure P PL and the delivery pressure P D o comprises an absence of adjusting the GOX feed valve
- the step of reducing the difference between the pipeline pressure P PL and the delivery pressure P D O includes maintaining the GOX feed valve fully open;
- the method may also include the step of providing a main air compressor upstream the cold box, wherein the step of reducing difference between the pipeline pressure P PL and the delivery pressure P D o further comprises the step of adjusting the operation of the liquid oxygen pump while maintaining the operation of the main air compressor substantially constant, such that the product pressure P P o is adjusted while keeping the feed pressure P F substantially constant;
- the method may also include the step of providing a booster compressor downstream a main air compressor and upstream the cold box, wherein the step of reducing difference between the pipeline pressure P PL and the delivery pressure P D O further comprises the step of adjusting the operation of the liquid oxygen pump while maintaining the operation of the booster compressor substantially constant, such that the product pressure Ppo is adjusted while keeping the feed pressure P F substantially constant;
- the liquid production from the cold box is a liquid selected from the group consisting of liquid nitrogen, liquid oxygen, and combinations thereof; and/or • a process controller, in communication with a plurality of flow indicators, pressure indicators, and control valves, is configured to perform the steps in the second mode of operation.
- the apparatus for the production of air gases with variable liquid production by the cryogenic separation of air can include a) a main air compressor configured to compress air to a pressure suitable for the cryogenic rectification of air to produce a compressed humid air stream, the compressed humid air stream having a first pressure P 0 ; b) a front end purification system configured to purify the compressed humid air stream of water and carbon dioxide to produce a dry air stream having reduced amounts of water and carbon dioxide as compared to the compressed humid air stream; c) a booster compressor in fluid communication with the front end purification system, wherein the booster compressor is configured to compress a first portion of the dry air stream to form a boosted air stream, the boosted air stream having a first boosted pressure P BI ; d) a cold box comprising a main heat exchanger, a system of columns having a double column composed of a lower pressure column and a higher pressure column, a condenser disposed at a bottom portion of the lower pressure column, and a
- the first product pressure Ppi is adjusted such that the difference between the first product pressure PPI and the first delivery pressure PDI is below a given threshold
- the threshold is less than 5 psi
- the threshold is less than 3 psi
- the liquid production from the cold box is a liquid selected from the group consisting of liquid nitrogen, liquid oxygen, and combinations thereof;
- means for adjusting liquid production from the cold box comprises a process controller, in communication with a plurality of flow indicators, pressure indicators, and control valves;
- the air gas product is oxygen and the pipeline is an oxygen pipeline; • the liquid oxygen pump pressurizes liquid oxygen from the lower pressure column to the first product pressure Ppi;
- the air gas product is nitrogen and the pipeline is a nitrogen pipeline.
- the apparatus for the production of air gases with variable liquid production by the cryogenic separation of air can include: (1) a cold box configured to receive a purified and compressed air stream under conditions effective for cryogenically separating the air stream to form an air gas product using a system of columns, wherein the purified and compressed air stream is at a feed pressure PF when entering the cold box, wherein the air gas product is selected from the group consisting of oxygen, nitrogen, and combinations thereof, wherein the cold box is configured to produce the air gas product at a product pressure PPO; (2) means for transferring the air gas product from the cold box to an air gas pipeline; (3) a pressure monitoring device configured to monitor the pipeline pressure PPL; and (4) a controller configured to adjust the product pressure PPO of the air gas product coming out of the cold box based upon the pipeline pressure PPL, wherein the controller is also configured to adjust liquid production from the cold box based on the product pressure PPO of the air gas product coming out of the cold box.
- the air gas product is oxygen
- the cold box comprises a main heat exchanger, a system of columns having a double column composed of a lower pressure column and a higher pressure column, a condenser disposed at a bottom portion of the lower pressure column, and a liquid air gas pump selected from the group consisting of a liquid oxygen pump, a liquid nitrogen pump, and combinations thereof.
- the controller is configured to communicate with the liquid oxygen pump and adjust a discharge pressure of the liquid oxygen pump.
- the controller is in communication with the pressure monitoring device.
- the apparatus may also include means for withdrawing liquid oxygen from the cold box.
- the apparatus may also include means for withdrawing liquid nitrogen from the cold box.
- the apparatus may also include a gaseous oxygen (“GOX”) feed valve, wherein the GOX feed valve is in fluid communication with an outlet of the liquid oxygen pump and an inlet of the air gas pipeline, wherein the controller is configured to maintain the GOX feed valve in a fully open position regardless of the pipeline pressure P PL .
- GOX gaseous oxygen
- the apparatus may also include a main air compressor disposed upstream the cold box, wherein the controller is further configured to adjust the operation of the liquid oxygen pump while maintaining the operation of the main air compressor substantially constant, such that the product pressure Ppo is adjusted while keeping the feed pressure P F substantially constant.
- the apparatus may also include a booster compressor downstream a main air compressor and upstream the cold box, wherein the controller is further configured to adjust the operation of the liquid oxygen pump while maintaining the operation of the booster compressor substantially constant, such that the product pressure P P O is adjusted while keeping the feed pressure P F substantially constant.
- Figure 1 provides an embodiment of the present invention.
- Figure 2 provides another embodiment of the present invention.
- Figure 3 provides a graphical representation of simulation data showing increases in liquid production as a function of gaseous oxygen product pressure.
- Air 2 is introduced into main air compressor 10 and compressed, preferably to a pressure of at least 55 psig to 75 psig (or around 5 psig higher than the pressure of the MP column).
- the resulting compressed humid air stream 12 is then purified of water and C0 2 in front end purification system 20, thereby producing dry air stream 22.
- all of dry air stream 22 passes via line 26 into cold box 40.
- the air is cooled and cryogenically treated in order to separate the air into air gas product 42.
- Air gas product 42 is then removed from cold box 40 and passed through product control valve 50 before entering air gas pipeline 60.
- the pressure and flow rate of air gas product 42 can be measured by second pressure indicator PI2 and flow indicator FIl, respectively.
- the pressure of air gas pipeline 60 can be measured by pressure indicator PI3.
- First liquid air gas product 44 and/or second liquid air gas product 48 can also be removed from cold box 40 in certain modes of operation.
- the flow rate of first liquid air gas product 44 can be measured by flow indicator FI2, and the flow rate of second liquid air gas product 48 can be measured by flow indicator FI3.
- control valves 46, 47 can be used to control the flow rates of fluids 44, 48.
- the various pressure and flow indicators/sensors are configured to communicate (e.g., wirelessly or wired communication) with process controller 55, such that the various flow rates and pressures can be monitored by process controller 55, which is configured to adjust various settings throughout the process based on the measured flows and pressures.
- an embodiment of the present invention may also include booster air compressor 30.
- This embodiment is represented by dashed lines, since it is an optional embodiment.
- a portion of dry air stream 22 is sent to booster air compressor 30 via line 24 and further compressed to form boosted air stream 32 before being introduced to cold box 40.
- FIG. 1 shows booster air compressor 30 as a single compressor, those of ordinary skill in the art will recognize that booster air compressor 30 can be more than one physical compressor. Additionally, booster air compressor 30 can also be a multistage compressor.
- Fig. 2 provides a more detailed view of cold box 40 for the optional embodiment that includes booster air compressor 30.
- cold box 40 also includes heat exchanger 80, turbine 90, valve 100, double column 110, higher pressure column 120, auxiliary heat exchanger 130, lower pressure column 140, condenser/reboiler 150, and liquid oxygen pump 160.
- Turbine 90 can be attached to booster 70 via a common shaft.
- air 2 is introduced into main air compressor 10 and compressed, preferably to a pressure of at least 55 psig to 75 psig (or around 5 psig higher than the pressure of the MP column).
- the resulting compressed humid air stream 12 is then purified of water and C0 2 in front end purification system 20, thereby producing dry air stream 22.
- a first portion of dry air stream 24 is sent to booster air compressor 30, with the remaining portion of dry air stream 26 entering cold box 40, wherein it is fully cooled in heat exchanger 80 before being introduced to higher pressure column 120 for separation therein.
- boosted air stream 32 is preferably fully cooled in heat exchanger 80 and then expanded across valve 100, before being introduced into a bottom portion of higher pressure column 120.
- Partially boosted air stream 37 is preferably removed from an inner stage of booster air compressor 30 before being further compressed in booster 70 and then cooled in after cooler 75 to form second boosted stream 72.
- Second boosted stream 72 undergoes partial cooling in heat exchanger 80, wherein it is withdrawn from an intermediate section of heat exchanger 80 and then expanded in turbine 90 thereby forming expanded air stream 92, which can then be combined with second portion of dry air stream 26 before introduction to higher pressure column 120.
- Higher pressure column 120 is configured to allow for rectification of air within, thereby producing an oxygen-rich liquid at the bottom and a nitrogen-rich gaseous stream at the top.
- Oxygen-rich liquid 122 is withdrawn from the bottom of higher pressure column 120 before exchanging heat with low pressure waste nitrogen 114 and low pressure nitrogen product 112 in auxiliary heat exchanger 130, and then expanded across a valve and introduced into lower pressure column 140.
- higher pressure column 120 and lower pressure column 140 are part of double column 110, and the two columns are thermally coupled via condenser/reboiler 150, which condenses rising nitrogen rich gas from higher pressure column 120 and vaporizes liquid oxygen that has collected at the bottom of lower pressure column 140.
- two nitrogen-rich liquid streams 126, 128 are withdrawn from higher pressure column 120, exchange heat with low pressure nitrogen product 112 and low pressure waste nitrogen 114, subsequently expanded across their respective valves, and then introduced into lower pressure column 140.
- Medium pressure nitrogen product 129 can also be withdrawn from higher pressure column 120 and then warmed in heat exchanger 80.
- Liquid oxygen collects at the bottom of lower pressure column 140 and is withdrawn and pressurized to an appropriate pressure by liquid oxygen pump 160 to form liquid oxygen 162. Liquid oxygen 162 is then vaporized within heat exchanger 80 to form air gas product 42. The pressure and flow rate of air gas product 42 can be measured via second pressure sensor PI2 and FI1, respectively. As in FIG. 1, air gas product 42 flows across product control valve 50 and into air gas pipeline 60. Liquid oxygen product 44 from liquid oxygen pump 160 is delivered to the storage (not shown). Liquid nitrogen product 48 from top of lower pressure column 140 is delivered to the storage (not shown). Those of ordinary skill in the art will recognize that both product LOX and LIN can be produced as high pressure at the discharge of the pump or low- pressure from the columns either in the HP or LP column for LIN or from the bottom of the LP column for LOX.
- the pressure of air gas pipeline 60 tends to drift over time.
- this problem was solved by adjusting the openness of product control valve 50 to create the appropriate pressure drop.
- embodiments of the present invention can adjust the pressure set points within the cold box, for example, the discharge pressure of liquid oxygen pump 160. By reducing this pressure an appropriate amount, product control valve 50 can be left fully open, thereby resulting in minimal expansion losses across product control valve 50.
- the appropriate amount yields a difference between PI2 and PI3 to be less than 5 psi, preferably less than 3 psi.
- Tables I-III below show comparative data for various streams with Table I being a base case at 610 psig GOX production, Table II being an embodiment in which LIN production was maximized with GOX production being at 400 psig, and Table III being an embodiment in which LOX production was maximized with GOX production also being at 400 psig. While these examples only show LIN and LOX production being maximized, respectively, those of ordinary skill in the art will recognize that embodiments of the invention are not so limited. Rather, embodiments of the invention can also include instances in which both LOX and LIN production could be both increased at the same time. Those of ordinary skill in the art will recognize that in these embodiments, the increase for each LIN or LOX will not be as much individually as is shown in Table II or Table III. Table I: 610psigGOX
- Table II 400 psig GOX - LIN Production Table I I I : 400 psig GOX - GOX
- the embodiment may include withdrawing higher pressure nitrogen product 129 as a liquid from higher pressure column 120, and pressurizing it to an appropriate pressure using a liquid nitrogen pump (not shown) before warming in heat exchanger 80.
- the resultant warmed nitrogen gas product would then be introduced to a nitrogen pipeline in similar manner as described with respect to the gaseous oxygen product.
- a liquid nitrogen stream can be removed from the lower pressure column instead of the higher pressure column.
- FIG. 3 presents a graphical representation of liquid production as a function of pressure of the air gas product (e.g., stream 42). As shown in the example, going from a pressure of about 650 psig to 400 psig can yield an almost two fold increase in LIN production (went from about 80 to about 150 kscfh). Similarly, liquid oxygen production was increased from around 40 to about 105 kscfh. While the graphical representation was developed with the assumption that only one of the liquid products was being adjusted at a time, the invention is not intended to be so limited. In fact, it is perfectly acceptable to increase both liquid products at the same time.
- process controller 55 can be configured to access spot pricing data (or the user can input data into the controller), such that process controller 55 can be configured to optimize/adjust the amount of increased LIN and/or LOX based upon the current spot pricing data.
- process controller 55 can also be configured to keep track of local inventories of LIN and/or LOX, and make adjustments to the production of LIN and/or LOX based on this additional data.
- nitrogen-rich and “oxygen-rich” will be understood by those skilled in the art to be in reference to the composition of air. As such, nitrogen-rich encompasses a fluid having a nitrogen content greater than that of air. Similarly, oxygen-rich encompasses a fluid having an oxygen content greater than that of air.
- Providing in a claim is defined to mean furnishing, supplying, making available, or preparing something. The step may be performed by any actor in the absence of express language in the claim to the contrary.
- Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
- Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Claims
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662356962P | 2016-06-30 | 2016-06-30 | |
US15/382,917 US10260802B2 (en) | 2016-06-30 | 2016-12-19 | Apparatus for operating an air separation plant |
US15/382,910 US10260801B2 (en) | 2016-06-30 | 2016-12-19 | Method for operating an air separation plant |
PCT/US2017/039983 WO2018005787A1 (en) | 2016-06-30 | 2017-06-29 | Method and apparatus for operating an air separation plant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3479039A1 true EP3479039A1 (en) | 2019-05-08 |
Family
ID=65948758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17737705.8A Pending EP3479039A1 (en) | 2016-06-30 | 2017-06-29 | Method and apparatus for operating an air separation plant |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3479039A1 (en) |
-
2017
- 2017-06-29 EP EP17737705.8A patent/EP3479039A1/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9534836B2 (en) | Air separation plant and process operating by cryogenic distillation | |
RU2722074C2 (en) | Method of producing liquid and gaseous oxygen-enriched air separation product in an air separation plant and an air separation plant | |
US9360250B2 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
EP3374713B1 (en) | Method and system for providing supplemental refrigeration to an air separation plant | |
CN113242952B (en) | Apparatus and method for separating air by cryogenic distillation | |
US10260802B2 (en) | Apparatus for operating an air separation plant | |
US9103587B2 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
US10281207B2 (en) | Method for the production of air gases by the cryogenic separation of air with variable liquid production and power usage | |
US11029086B2 (en) | Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit | |
US10260801B2 (en) | Method for operating an air separation plant | |
US10281206B2 (en) | Apparatus for the production of air gases by the cryogenic separation of air with variable liquid production and power usage | |
EP3479039A1 (en) | Method and apparatus for operating an air separation plant | |
CN109642771B (en) | Method and apparatus for operating an air separation plant | |
US10302356B2 (en) | Method for the production of air gases by the cryogenic separation of air | |
US10267561B2 (en) | Apparatus for the production of air gases by the cryogenic separation of air | |
CN109564060B (en) | Method for producing air gas by cryogenic separation of air | |
WO2024157641A1 (en) | Air separation method and air separation device | |
US10101084B2 (en) | Apparatus for the production of low pressure gaseous oxygen | |
CN116538763A (en) | Air separation device and air separation method | |
KR20240059619A (en) | Low-temperature separation method of air and air separation plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190130 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231122 |