EP3475011B1 - Circuit de refroidissement d'une aube de turbomachine - Google Patents

Circuit de refroidissement d'une aube de turbomachine Download PDF

Info

Publication number
EP3475011B1
EP3475011B1 EP17735190.5A EP17735190A EP3475011B1 EP 3475011 B1 EP3475011 B1 EP 3475011B1 EP 17735190 A EP17735190 A EP 17735190A EP 3475011 B1 EP3475011 B1 EP 3475011B1
Authority
EP
European Patent Office
Prior art keywords
face
core
symmetry
blade
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17735190.5A
Other languages
German (de)
English (en)
Other versions
EP3475011A1 (fr
Inventor
Coralie Cinthia GUERARD
Vincent Marc HERB
Jun Ni
Joseph Toussaint TAMI LIZUZU
Matthieu Jean Luc VOLLEBREGT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3475011A1 publication Critical patent/EP3475011A1/fr
Application granted granted Critical
Publication of EP3475011B1 publication Critical patent/EP3475011B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical

Definitions

  • the present invention relates to the manufacture of a turbomachine blade by investment casting, and more particularly of a blade comprising an internal cooling cavity.
  • the moving blades of a turbomachine turbine each comprise an internal cooling circuit which enables them to withstand the thermal stresses to which the blades are subjected, when the turbomachine is in operation .
  • the internal cooling circuit is crossed by a flow of cooling air.
  • a cooling circuit comprises for example at least one intake opening located near the root of the blade, at least one internal cavity and at least one exhaust opening located near the tip of the blade, the flow of air successively passing through the inlet opening, the cavity and then the exhaust opening.
  • the cavity traditionally comprises disturbers which are for example in the form of bridges or concave shapes.
  • the disruptors must make it possible to evenly distribute the air flow over the entire blade without however slowing it down.
  • a blade is for example produced by lost-wax casting.
  • a wax model is cast via a mold in which is placed a core (also called a foundry core) previously made.
  • the wax model is then covered, alternately, with slip and a refractory powder so as to make a shell.
  • the wax is removed from the shell and the shell is cooked at high temperature.
  • the molten metal is then poured into the shell, the metal thus more precisely occupying the void between the core and the internal face of the shell. After solidification of the metal, the dawn is obtained by stripping the shell and the core.
  • the core is for example made of ceramic material with a porous structure.
  • the core is generally obtained by press injection molding.
  • the core is of complex shape and in particular comprises thin recesses capable of forming the bridges after the casting of the molten metal.
  • the complexity of the core requires the use of a mold (also called a core box) comprising a plurality of sub-parts that move relative to each other, this architecture thus making it possible to avoid any undercut, and in other words to be able to unmold the core properly.
  • a mold also called a core box
  • the filling is obtained by regluing of material, this filling being conducive to the appearance of defects, and more generally to the scrapping of large quantities of cores.
  • the shape of the core is simpler, thus facilitating the obtaining of the latter.
  • the prior art also includes documents US-A1-2013/280092 , EP-A2-0258754 , EP-A2-1775420 and EP-A1-1598523 .
  • the object of the present invention is to provide a blade comprising an appropriate cooling circuit, while optimizing its manufacturing process.
  • the core structure is simple and thus minimizes the number of discarded cores. Such a core also makes it possible to avoid filling by sticking together.
  • the second object of the invention is a mold intended for the manufacture of a core as described previously, the mold comprising a first cavity and a second cavity which are movable with respect to each other and delimiting an injection cavity of the nucleus, the first imprint comprising a first concave curved internal surface suitable for forming the first face of the core, the second cavity comprising a second convex curved internal surface suitable for forming the second face of the core, the first and second surfaces comprising a plurality of protuberances suitable for forming the depressions of the core, each protuberance comprising a spherical part, wherein each of the protrusions is defined at least partially by an axis of symmetry, the axes of symmetry of the spherical portions of the first surface are parallel to said first direction of said core, said first direction corresponding to a first direction of stripping.
  • the structure of the mold is simple, namely a first cavity and a second cavity, so it is easy to position one relative to the other. Such a structure makes it possible to considerably minimize the number of discarded cores.
  • This cooling circuit is also compatible with different blade geometries, and in particular blades having locally, in a transverse plane, a strong curvature.
  • a third object of the invention is a process for manufacturing a turbomachine blade by investment casting, this process comprising a step of manufacturing a core as described above via a mold as described above, the process comprising preferably a demolding step in which the first imprint is moved along a first direction of unmolding and/or the second imprint is moved along a second direction of unmolding.
  • the blade manufacturing process is simplified, and in particular obtaining the core, to the benefit of productivity.
  • a fourth object of the invention is a blade obtained according to the manufacturing method as described above, the blade comprising a cooling cavity delimited by a first concave curved internal wall and a second convex curved internal wall, the first and second walls comprising each a plurality of bumps, each bump comprising a spherical section.
  • the cooling cavity makes it possible to evenly distribute the flow of cooling air over the first and second walls without however slowing it down, and in other words, in general, to effectively cool the blade.
  • a blade 1 of a turbomachine turbine is represented, for example of a high pressure turbine or of a low pressure turbine.
  • the blade 1 comprises a running part with an aerodynamic profile which extends longitudinally along an axis X between a root 2 of blade 1 and a tip 3 of blade 1.
  • longitudinal or “longitudinal” means any direction parallel to the axis X
  • transversely or “transverse” means any direction perpendicular to the axis X.
  • the root 2 of blade 1 is intended to be mounted on a rotor (not shown) of the turbine.
  • the top 3 of the blade 1 comprises sealing wipers 4 arranged facing an abradable coating mounted on the casing (not shown) of the turbine.
  • the current part with an aerodynamic profile of the blade 1 comprises a leading edge 5 arranged upstream in the direction of gas flow in the turbine, a trailing edge 6 opposite the leading edge 5, a side face 7 intrados and an extrados side face 8, these faces 7, 8 intrados and extrados connecting the leading edge 5 and the trailing edge 6 .
  • the blade 1 in a transverse plane, is profiled along an average line M connecting the leading edge 5 and the trailing edge 6 .
  • the intrados and extrados faces 7, 8 are curved, and respectively concave and convex.
  • Dawn 1 locally has a strong curvature.
  • the blade 1 further comprises an internal cooling circuit 9 which enables it to withstand the thermal stresses to which it is subjected, this circuit 9 comprising at least one cooling cavity 10 extending longitudinally between the root 2 of the blade 1 and the tip 3 of blade 1, at least one intake opening 11 and at least one exhaust opening 12.
  • the internal cooling circuit 9 is traversed by a flow of cooling air.
  • the inlet opening 11 is located in the root 2 of blade 1 and opens onto the underside of the root 2 of blade 1 in the form, for example, of a plurality of channels.
  • the exhaust opening 12 is located at the level of the tip 3 of the blade 1 and opens onto the upper face of the blade 1 in the form, for example, of a plurality of channels.
  • the flow of cooling air successively passes through the inlet opening 11, the cavity 10 and then the exhaust opening 12.
  • the cooling cavity 10 is centered on the mean line M of the blade 1 and is delimited by a first side wall 13 oriented on the extrados side of the blade 1 and by a second side wall 14 oriented on the intrados side of the dawn 1. More specifically, the first and second walls 13, 14 are curved, and respectively concave and convex. The first and second walls 13, 14 include bumps 15a, 15b intended to direct the flow of air in the cavity 10, and more precisely to distribute it evenly over the first and second walls 13, 14 without however slowing it down.
  • the bumps 15a of the first wall 13 are offset, longitudinally and transversely, with respect to the bumps 15b of the second wall 14.
  • Each bump 15a, 15b comprises a spherical section 16 and is defined at least partially along an axis B of symmetry passing through the axis B1 of symmetry of the spherical section 16.
  • the axes B1 of symmetry of the spherical sections 16 of the first wall 13 are parallel.
  • the axes B1 of symmetry of the spherical sections 16 of the second wall 14 are parallel.
  • Certain bump 15a, 15b further comprises a conical section 17, more or less extended according to the bumps 15a, 15b, whose axis B2 of symmetry passes through the axis B of symmetry of the bump 15a, 15b and therefore through the axis B1 of symmetry of the spherical section 16.
  • the bumps 15a are positioned substantially staggered with respect to the bumps 15b in the running part, in a longitudinal projection plane perpendicular to the axis B.
  • the blade 1 is made by a lost wax casting process, thus the cavity 10 for cooling the blade 1 is obtained by means of a core 18 illustrated in particular on the picture 3 , the latter being itself obtained via a mold 19 (also called a core box) illustrated in figure 7 .
  • the cavity 10 of the blade 1 is thus the reproduction of the core 18, and in other words the cavity 10 has dimensional and geometric characteristics identical to those of the core 18.
  • the cavity 10 of the cooling circuit 9 has the same dimensional and geometric characteristics as the core 18.
  • the core 18 thus comprises a first side face 20, a second side face 21, a first connection 22 defining a radius of connection of the edge of attack and a second connector 23 defining a radius of connection of the trailing edge, the first and second faces 20, 21 connecting the first connector 22 and the second connector 23.
  • the first and second faces 20, 21 of the core 18 include recesses 24a , 24b able to form the bumps 15a, 15b of the cavity 10.
  • the first and second faces 20, 21 of the core 18 are respectively able to form the first wall 13 and the second wall 14 of the cavity 10.
  • the first and second faces 20, 21 are curved, and respectively convex and concave.
  • Each depression 24a, 24b comprises a spherical portion 25 and is defined at least partially along an axis E of symmetry passing through the axis E1 of symmetry of the spherical portion 25.
  • the axes E1 of symmetry of the spherical portions 25 of the first face 20 are parallel to a first direction D1.
  • the axes E1 of symmetry of the spherical portions 25 of the second face 21 are parallel to a second direction D2.
  • certain depressions 24a, 24b further comprise a conical portion 26 , more or less extended according to the depressions 24a, 24b, whose axis E2 of symmetry passes through the axis E of symmetry of the depression 24a, 24b and therefore through the axis E1 of symmetry of the spherical portion 25 .
  • the first direction D1 is defined, in a transverse plane, by the bisector 27 of the angle formed by the intersection of a first tangent 28, to the first face 20 at the first junction point J1 between the first face 20 and the first connection 22, and a second tangent 29 to the first face 20 at the second junction point J2 between the first face 20 and the second connection 23, the first and second tangents 28, 29 being defined in the transverse plane.
  • the second direction D2 is defined, in a transverse plane, by the bisector 30 of the angle formed by the intersection of a first tangent 31 to the second face 21 at the third point J3 of junction between the second face 21 and the first connector 22, and from a second tangent 32 to the second face 21 at the fourth point J4 of junction between the second face 21 and the second connector 23, the first and second tangents 31, 32 being defined in the transverse plane.
  • the recesses 24a, 24b include fillets (not shown).
  • the thickness of the core 18 is constant, the first and second directions D1, D2 thus being parallel.
  • the thickness of the core 18 is for example between 0.2mm and 1mm.
  • the maximum depth of recesses 24a, 24b is for example equal to half the thickness of core 18.
  • the figure 6 illustrates, in a plane perpendicular to the first direction D1 (or to the second direction D2), the layout of the depressions 24a of the first face 20 with respect to the depressions 24b of the second face 21.
  • the recesses 24a of the first face 20 are advantageously offset, longitudinally and transversely, with respect to the recesses 24b of the second face 21.
  • the recesses 24a are positioned substantially staggered with respect to the recesses 24b.
  • the radius of the spherical portions is for example between 0.2 mm and 0.5 mm.
  • the recesses 24a must not be in contact and/or open into the recesses 24b, a minimum thickness of material being to be respected between the recesses 24a and 24b. Thus, any connection between the bumps 15a and 15b of the blade is avoided.
  • the core 18 may include depressions 24a, 24b on all of the first and second faces 20, 21 or locally on the faces 20, 21.
  • the core 18 comprises only depressions 24a, 24b on the faces 20, 21 at the level of the second connector 23 (for example one or more rows of depressions 24a, 24b).
  • the cooling cavity 10 comprises only bumps 15a, 15b on the walls 13, 14 at the level of the trailing edge 6.
  • the core 18 is obtained via the mold 19 shown in the open position on the figure 7 , the mold 19 comprises a first cavity 33 and a second cavity 34 movable relative to each other and delimiting a cavity 35 for injection of the core 18.
  • the first cavity 33 comprises a first internal surface 36, curved, concave able to form the first face 20 of the core 18.
  • the second cavity 34 comprises a second internal, curved, convex surface 37 capable of forming the second face 21 of the core 18, the first and second surfaces 36, 37 comprising a plurality of protrusions 38 capable of forming the depressions 24a, 24b of the core 18.
  • each protrusion 38 comprises a spherical part 39 and is defined at least partially along an axis P of symmetry passing through the axis P1 of symmetry of the spherical part 39.
  • the axes P1 of symmetry of the spherical parts 39 of the first surface 36 are parallel to a first demolding direction A1 corresponding to the first direction D1 of the core 18.
  • the axes P1 of symmetry of the spherical parts 39 of the second surface 37 are parallel to a second demolding direction A2 corresponding to the second direction D2 of the core 18.
  • first and second directions D1, D2 of the core 18 correspond to the first and second directions A1, A2 of unmolding of the mold 19 makes it possible to simplify the structure of the mold 19 and to facilitate the extraction of the core 18 from the mold 19.
  • certain protrusions 38 further comprise a conical part 40, more or less extended according to the protrusions 38, whose axis P2 of symmetry passes through the axis P of symmetry of the protrusion 38 and therefore by the axis P1 of symmetry of the spherical part 39.
  • the use of a conical shape facilitates the extraction of the core 18 from the mold 19.
  • the half-angle at the top of the conical part 40 of the protrusion 38 is for example 15°.
  • the first cavity 33 is movable in the first direction A1 of release and the second cavity 34 is fixed.
  • the second cavity 34 is movable in the second direction A2 of unmolding and the first cavity 33 is fixed.
  • the first cavity 33 is movable in the first direction A1 of release from the mold and the second cavity 34 is movable in the second direction A2 of release from the mold.
  • the core 18 is for example made of ceramic material with a porous structure, this material being obtained from a mixture comprising a refractory filler and an organic fraction forming a binder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    DOMAINE TECHNIQUE
  • La présente invention a trait à la fabrication d'une aube de turbomachine par moulage à cire perdue, et plus particulièrement d'une aube comprenant une cavité interne de refroidissement.
  • ETAT DE L'ART
  • Les aubes mobiles d'une turbine de turbomachine, telle qu'une turbine basse pression ou une turbine haute pression, comprennent chacune un circuit interne de refroidissement qui leur permet de supporter les contraintes thermiques auxquelles les aubes sont soumises, lorsque la turbomachine est en fonctionnement. Le circuit interne de refroidissement est traversé par un flux d'air de refroidissement.
  • Un circuit de refroidissement comprend par exemple au moins une ouverture d'admission située à proximité du pied de l'aube, au moins une cavité interne et au moins une ouverture d'échappement située à proximité du sommet de l'aube, le flux d'air traversant successivement l'ouverture d'admission, la cavité puis l'ouverture d'échappement.
  • Afin de maximiser les échanges thermiques entre le flux d'air et l'aube, et autrement dit le refroidissement de l'aube, la cavité comprend traditionnellement des perturbateurs se présentant par exemple sous la forme de pontets ou de formes concaves. Les perturbateurs doivent permettre de répartir de manière homogène le flux d'air sur l'ensemble de l'aube sans toutefois ralentir ce dernier. On s'intéresse plus particulièrement aux aubes de petite taille qui ont par voie de conséquence des cavités réduites. On a constaté que les caractéristiques géométriques et dimensionnelles des perturbateurs choisies pour les aubes de grande taille ne sont pas applicables aux aubes de petite taille.
  • Une aube est par exemple réalisée par moulage à cire perdue. Selon cette technique de fabrication, un modèle en cire est moulé via un moule dans lequel est placé un noyau (également appelé noyau de fonderie) préalablement réalisé. Le modèle en cire est ensuite recouvert, de façon alternée, par de la barbotine et une poudre réfractaire de manière à confectionner une carapace. Ultérieurement, la cire est évacuée de la carapace et la carapace est cuite à haute température. Le métal en fusion est ensuite coulé dans la carapace, le métal occupant ainsi plus précisément le vide entre le noyau et la face interne de la carapace. Après solidification du métal, l'aube est obtenue en décochant la carapace et le noyau.
  • Le noyau est par exemple en matière céramique à structure poreuse. Le noyau est généralement obtenu en moulage par injection à la presse.
  • Dans le cas où la cavité de l'aube comprend des pontets, le noyau est de forme complexe et comprend notamment des évidements de faible épaisseur aptes à former les pontets après la coulée du métal en fusion.
  • La complexité du noyau nécessite d'utiliser un moule (également appelé boîte à noyau) comportant une pluralité de sous-pièces mobiles les unes par rapport aux autres, cette architecture permettant ainsi d'éviter toute contre-dépouille, et autrement dit de pouvoir démouler convenablement le noyau.
  • Toutefois, un tel moule n'est pas compatible avec toutes les géométries d'aubes, ce qui est le cas par exemple pour une aube présentant localement, dans un plan transversal, une forte courbure.
  • D'autre part, du fait de la difficulté à positionner ces différentes sous-pièces les unes par rapport aux autres, on a constaté que les caractéristiques géométriques et dimensionnelles des pontets souhaitées ne sont pas réalisables, et autrement dit cette impossibilité de réalisation ne permet pas d'obtenir la performance de refroidissement de l'aube souhaitée.
  • En outre, lors de l'injection du noyau, le remplissage est obtenu par recollement de matière, ce remplissage étant propice à l'apparition de défauts, et plus globalement à une mise au rebut de quantités importantes de noyaux.
  • Une alternative pourrait être de réaliser les évidements lors d'une étape ultérieure d'usinage, au détriment de la productivité (temps d'usinage du noyau long).
  • Dans le cas où les parois internes de la cavité comprennent des formes concaves, la forme du noyau est plus simple, facilitant ainsi l'obtention de ce dernier.
  • Toutefois, le refroidissement de l'aube n'apporte pas satisfaction. En effet, la présence de formes concaves engendre des tourbillons dans la cavité, ces derniers ayant des répercussions néfastes sur l'écoulement du flux d'air. D'autre part, les formes concaves ne permettent pas de répartir de manière homogène le flux d'air sur l'ensemble de l'aube, et autrement dit le flux d'air ne permet pas de refroidir suffisamment l'aube.
  • L'art antérieur comprend également les documents US-A1-2013/280092 , EP-A2-0258754 , EP-A2-1775420 et EP-A1-1598523 .
  • L'objectif de la présente invention est de proposer une aube comprenant un circuit de refroidissement approprié, tout en optimisant son procédé de fabrication.
  • EXPOSE DE L'INVENTION
  • L'invention propose à cet effet un noyau destiné à la fabrication d'une aube de turbomachine par moulage à cire perdue, ce noyau comprenant une première face externe incurvée convexe et une deuxième face externe incurvée concave, caractérisé en ce que les première et deuxième faces comprennent une pluralité d'enfoncements, chaque enfoncement comportant une portion sphérique,
    • dans lequel chacun desdits enfoncements est défini au moins partiellement par un axe de symétrie, les axes de symétrie des portions sphériques de la première face étant parallèles à une première direction,
    • dans lequel ladite première direction est définie, dans un plan transversal, par la bissectrice de l'angle formé par l'intersection d'une première tangente, à la première face au premier point de jonction entre la première face et un premier raccord entre les première et deuxième faces, et d'une deuxième tangente à la première face au deuxième point de jonction entre la première face et un deuxième raccord entre les première et deuxième faces, les première et deuxième tangentes étant définies dans le plan transversal, les premier et deuxième points de jonction étant opposés l'un de l'autre.
  • La structure du noyau est simple et permet ainsi de minimiser le nombre de noyaux mis au rebut. Un tel noyau permet en outre d'éviter un remplissage par recollement.
  • Le noyau selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • les enfoncements de la première face sont décalés par rapport aux enfoncements de la deuxième face ;
    • le plan transversal est sensiblement perpendiculaire à un axe d'allongement du noyau ou peut ne pas l'être ;
    • les axes de symétrie des portions sphériques de la deuxième face sont parallèles à une deuxième direction ;
    • la deuxième direction est définie, dans un plan transversal, par la bissectrice de l'angle formé par l'intersection d'une première tangente à la deuxième face au troisième point de jonction entre la deuxième face et le premier raccord, et d'une deuxième tangente à la deuxième face au quatrième point de jonction entre la deuxième face et le deuxième raccord, les première et deuxième tangentes étant définies dans le plan transversal, les troisième et quatrième points de jonction étant opposés l'un de l'autre.
  • L'invention a pour deuxième objet un moule destiné à la fabrication d'un noyau tel que décrit précédemment, le moule comprenant une première empreinte et une deuxième empreinte mobiles l'une par rapport à l'autre et délimitant une cavité d'injection du noyau, la première empreinte comprenant une première surface interne incurvée concave apte à former la première face du noyau, la deuxième empreinte comprenant une deuxième surface interne incurvée convexe apte à former la deuxième face du noyau, les première et deuxième surfaces comprenant une pluralité de protubérances apte à former les enfoncements du noyau, chaque protubérance comprenant une partie sphérique,
    dans lequel chacune des protubérances est définie au moins partiellement par un axe de symétrie, les axes de symétrie des parties sphériques de la première surface sont parallèles à ladite première direction dudit noyau, ladite première direction correspondant à une première direction de démoulage.
  • La structure du moule est simple à savoir une première empreinte et une deuxième empreinte, ainsi il est aisé de positionner l'une par rapport à l'autre. Une telle structure permet de minimiser considérablement le nombre de noyaux mis au rebut. Ce circuit de refroidissement est en outre compatible avec différentes géométries d'aubes, et notamment les aubes présentant localement, dans un plan transversal, une forte courbure.
  • Le moule selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • les axes de symétrie des parties sphériques des protubérances de la deuxième surface sont parallèles à ladite direction dudit noyau, ladite deuxième direction correspondant à une deuxième direction de démoulage ;
    • la première empreinte est mobile selon la première direction de démoulage et/ou la deuxième empreinte est mobile selon la deuxième direction de démoulage ;
    • chacune des bosses est défini par un axe de symétrie, les axes de symétrie des tronçons sphériques des bosses de la première paroi sont parallèles.
  • L'invention a pour troisième objet un procédé de fabrication d'une aube de turbomachine par moulage à cire perdue, ce procédé comprenant une étape de fabrication d'un noyau tel que décrit précédemment via un moule tel que décrit précédemment, le procédé comprenant de préférence une étape de démoulage dans laquelle la première empreinte est déplacée suivant une première direction de démoulage et/ou la deuxième empreinte est déplacée suivant une deuxième direction de démoulage.
  • Le procédé de fabrication de l'aube est simplifié, et notamment l'obtention du noyau, au bénéfice de la productivité.
  • L'invention a pour quatrième objet une aube obtenue selon le procédé de fabrication tel que précédemment décrit, l'aube comprenant une cavité de refroidissement délimitée par une première paroi interne incurvée concave et une deuxième paroi interne incurvée convexe, les première et deuxième parois comprenant chacune une pluralité de bosses, chaque bosse comprenant un tronçon sphérique.
  • La cavité de refroidissement permet de répartir de manière homogène le flux d'air de refroidissement sur les première et deuxième parois sans toutefois le ralentir, et autrement dit, de manière générale, de refroidir efficacement l'aube.
  • L'aube selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • les bosses de la première paroi sont décalées par rapport aux bosses de la deuxième paroi ;
    • les axes de symétrie des tronçons sphériques des bosses de la première paroi sont parallèles ;
    • les axes de symétrie des tronçons sphériques des bosses de la deuxième paroi sont parallèles.
    DESCRIPTION DES FIGURES
  • L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue de face, schématique, d'une aube ;
    • la figure 2 est une vue en section de l'aube illustrée sur la figure 1, selon le plan II-II de la figure 1 ;
    • la figure 3 est une vue en coupe transversale d'un noyau employé pour la fabrication de l'aube, au niveau d'une partie courante ;
    • la figure 4 est une vue en coupe transversale simplifiée du noyau, illustrant la détermination de la direction des enfoncements d'une première face du noyau, au niveau d'une partie courante ;
    • la figure 5 est une vue en coupe transversale simplifiée du noyau, illustrant la détermination de la direction des enfoncements d'une deuxième face du noyau, au niveau d'une partie courante ;
    • la figure 6 est une vue de détail du noyau illustrant l'implantation des enfoncements ;
    • la figure 7 est une vue en section d'un moule apte à réaliser le noyau.
    DESCRIPTION DETAILLEE
  • Sur la figure 1 est représentée une aube 1 d'une turbine de turbomachine, par exemple d'une turbine haute pression ou d'une turbine basse pression.
  • L'aube 1 comprend une partie courante à profil aérodynamique qui s'étend longitudinalement suivant un axe X entre un pied 2 d'aube 1 et un sommet 3 d'aube 1.
  • Dans la suite de la description, on entend par « longitudinalement » ou « longitudinal » toute direction parallèle à l'axe X, et par « transversalement » ou « transversal » toute direction perpendiculaire à l'axe X.
  • Plus précisément, le pied 2 d'aube 1 est destiné à être monté sur un rotor (non représenté) de la turbine. Le sommet 3 de l'aube 1 comporte des léchettes 4 d'étanchéité disposées en regard d'un revêtement abradable monté sur le carter (non représenté) de la turbine.
  • La partie courante à profil aérodynamique de l'aube 1 comporte un bord 5 d'attaque disposé en amont suivant le sens d'écoulement des gaz dans la turbine, un bord 6 de fuite opposé au bord 5 d'attaque, une face 7 latérale intrados et une face 8 latérale extrados, ces faces 7, 8 intrados et extrados reliant le bord 5 d'attaque et le bord 6 de fuite.
  • Plus précisément, selon le mode de réalisation illustré sur la figure 2, dans un plan transversal, l'aube 1 est profilée suivant une ligne M moyenne reliant le bord 5 d'attaque et le bord 6 de fuite. Les faces 7, 8 intrados et extrados sont incurvées, et respectivement concave et convexe. L'aube 1 présente localement une forte courbure.
  • L'aube 1 comprend en outre un circuit 9 de refroidissement interne qui lui permet de résister aux contraintes thermiques auxquelles elle est soumise, ce circuit 9 comportant au moins une cavité 10 de refroidissement s'étendant longitudinalement entre le pied 2 d'aube 1 et le sommet 3 d'aube 1, au moins une ouverture 11 d'admission et au moins une ouverture 12 d'échappement. Le circuit 9 interne de refroidissement est traversé par un flux d'air de refroidissement.
  • Selon le mode de réalisation représenté sur les figures et plus précisément sur la figure 1, l'ouverture 11 d'admission est située dans le pied 2 d'aube 1 et débouche sur la face inférieure du pied 2 d'aube 1 sous la forme par exemple d'une pluralité de canaux. L'ouverture 12 d'échappement est située au niveau du sommet 3 d'aube 1 et débouche sur la face supérieure de l'aube 1 sous la forme par exemple d'une pluralité de canaux.
  • Tel qu'illustré par les flèches sur la figure 1, le flux d'air de refroidissement traverse successivement l'ouverture 11 d'admission, la cavité 10 puis l'ouverture 12 d'échappement.
  • Tel qu'illustré sur la figure 2, la cavité 10 de refroidissement est centrée sur la ligne M moyenne de l'aube 1 et est délimitée par une première paroi 13 latérale orientée du côté extrados de l'aube 1 et par une deuxième paroi 14 latérale orientée du côté intrados de l'aube 1. Plus précisément, les première et deuxième parois 13, 14 sont incurvées, et respectivement concave et convexe. Les première et deuxième parois 13, 14 comprennent des bosses 15a, 15b destinées à orienter le flux d'air dans la cavité 10, et plus précisément à le répartir de manière homogène sur les première et deuxième parois 13, 14 sans toutefois le ralentir.
  • Avantageusement, tel qu'illustré sur la figure 1, les bosses 15a de la première paroi 13 sont décalées, longitudinalement et transversalement, par rapport aux bosses 15b de la deuxième paroi 14.
  • Chaque bosse 15a, 15b comprend un tronçon 16 sphérique et est définie au moins partiellement suivant un axe B de symétrie passant par l'axe B1 de symétrie du tronçon 16 sphérique. Les axes B1 de symétrie des tronçons 16 sphériques de la première paroi 13 sont parallèles. De la même manière, les axes B1 de symétrie des tronçons 16 sphériques de la deuxième paroi 14 sont parallèles.
  • Certaine bosse 15a, 15b comprenne en outre un tronçon 17 conique, plus ou moins étendu selon les bosses 15a, 15b, dont l'axe B2 de symétrie passe par l'axe B de symétrie de la bosse 15a, 15b et donc par l'axe B1 de symétrie du tronçon 16 sphérique.
  • Tel qu'illustré sur la figure 1, les bosses 15a sont sensiblement positionnées en quinconce par rapport aux bosses 15b dans la partie courante, dans un plan de projection longitudinal perpendiculaire à l'axe B. L'aube 1 est réalisée par un procédé de moulage à cire perdue, ainsi la cavité 10 de refroidissement de l'aube 1 est obtenue par l'intermédiaire d'un noyau 18 illustré notamment sur la figure 3, ce dernier étant lui-même obtenu via un moule 19 (également appelé boîte à noyau) illustré en figure 7. La cavité 10 de l'aube 1 est ainsi la reproduction du noyau 18, et autrement dit la cavité 10 possède des caractéristiques dimensionnelles et géométriques identiques à celles du noyau 18.
  • Plus précisément, le procédé de fabrication de l'aube 1 comprend les étapes suivantes :
    • une étape de moulage du noyau 18 (illustré en figure 3) via le moule 19 (illustré en figure 7) ;
    • une étape de moulage d'un modèle en cire via un moule dans lequel est placé le noyau 18 ;
    • une étape de confection d'une carapace en recouvrant le modèle en cire, de façon alternée, par de la barbotine et une poudre réfractaire ;
    • une étape de chauffe dans laquelle, simultanément, la cire est évacuée de la carapace et la carapace est cuite, par exemple par étuvage ;
    • une étape de coulée du métal en fusion dans la carapace, le métal occupant ainsi plus précisément le vide entre le noyau 18 et la face interne de la carapace ;
    • une étape de décochage de la carapace et du noyau 18.
  • La cavité 10 du circuit 9 de refroidissement présente les mêmes caractéristiques dimensionnelles et géométriques que le noyau 18. Le noyau 18 comprend ainsi une première face 20 latérale, une deuxième face 21 latérale, un premier raccord 22 définissant un rayon de raccordement du bord d'attaque et un deuxième raccord 23 définissant un rayon de raccordement du bord de fuite, les première et deuxième faces 20, 21 reliant le premier raccord 22 et le deuxième raccord 23. Les première et deuxième faces 20, 21 du noyau 18 comprennent des enfoncements 24a, 24b aptes à former les bosses 15a, 15b de la cavité 10. Les première et deuxième faces 20, 21 du noyau 18 sont respectivement aptes à former la première paroi 13 et la deuxième paroi 14 de la cavité 10.
  • Plus précisément, tel qu'illustré sur la figure 3, les première et deuxième faces 20, 21 sont incurvées, et respectivement convexe et concave.
  • Chaque enfoncement 24a, 24b comprend une portion 25 sphérique et est défini au moins partiellement suivant un axe E de symétrie passant par l'axe E1 de symétrie de la portion 25 sphérique. Les axes E1 de symétrie des portions 25 sphériques de la première face 20 sont parallèles à une première direction D1. De la même manière, les axes E1 de symétrie des portions 25 sphériques de la deuxième face 21 sont parallèles à une deuxième direction D2.
  • Suivant les première et deuxième directions D1, D2 choisies ainsi que les caractéristiques dimensionnelles des enfoncements 24a, 24b (rayon de la portion 26 conique, profondeur de l'enfoncement 24a, 24b), certains enfoncements 24a, 24b comprennent en outre une portion 26 conique, plus ou moins étendue selon les enfoncements 24a, 24b, dont l'axe E2 de symétrie passe par l'axe E de symétrie de l'enfoncement 24a, 24b et donc par l'axe E1 de symétrie de la portion 25 sphérique.
  • Avantageusement, tel qu'illustré sur la figure 4, la première direction D1 est définie, dans un plan transversal, par la bissectrice 27 de l'angle formé par l'intersection d'une première tangente 28, à la première face 20 au premier point J1 de jonction entre la première face 20 et le premier raccord 22, et d'une deuxième tangente 29 à la première face 20 au deuxième point J2 de jonction entre la première face 20 et le deuxième raccord 23 , les première et deuxième tangentes 28, 29 étant définies dans le plan transversal.
  • Avantageusement, tel qu'illustré sur la figure 5, de la même manière que la première direction D1, la deuxième direction D2 est définie, dans un plan transversal, par la bissectrice 30 de l'angle formé par l'intersection d'une première tangente 31 à la deuxième face 21 au troisième point J3 de jonction entre la deuxième face 21 et le premier raccord 22, et d'une deuxième tangente 32 à la deuxième face 21 au quatrième point J4 de jonction entre la deuxième face 21 et le deuxième raccord 23, les première et deuxième tangentes 31, 32 étant définies dans le plan transversal.
  • Avantageusement, pour éviter les arêtes vives, les enfoncements 24a, 24b comprennent des congés de raccordement (non représentés).
  • Selon le mode de réalisation illustré sur les figures, l'épaisseur du noyau 18 est constante, les première et deuxième directions D1, D2 étant ainsi parallèles. L'épaisseur du noyau 18 est par exemple comprise entre 0.2 mm et 1 mm. La profondeur maximale des enfoncements 24a, 24b est par exemple égale à la moitié de l'épaisseur du noyau 18.
  • La figure 6 illustre, dans un plan perpendiculaire à la première direction D1 (ou à la deuxième direction D2), l'implantation des enfoncements 24a de la première face 20 par rapport aux enfoncements 24b de la deuxième face 21. Tel que mentionné pour la cavité 10 de l'aube 1, avantageusement, les enfoncements 24a de la première face 20 sont décalés, longitudinalement et transversalement, par rapport aux enfoncements 24b de la deuxième face 21. Les enfoncements 24a sont positionnés sensiblement en quinconce par rapport aux enfoncements 24b. Le rayon des portions 25 sphériques est par exemple compris entre 0.2 mm et 0.5 mm.
  • De manière générale, les enfoncements 24a ne doivent pas être en contact et/ou déboucher dans les enfoncements 24b, une épaisseur de matière minimum étant à respecter entre les enfoncements 24a et 24b. Ainsi, on évite toute liaison entre les bosses 15a et 15b de l'aube.
  • L'exemple illustré n'est en rien limitatif. En effet, le noyau 18 peut comprendre des enfoncements 24a, 24b sur l'ensemble des première et deuxième faces 20, 21 ou localement sur les faces 20, 21.
  • Selon un mode de réalisation non représenté, le noyau 18 comprend uniquement des enfoncements 24a, 24b sur les faces 20, 21 au niveau du deuxième raccord 23 (par exemple une ou plusieurs rangées d'enfoncements 24a, 24b). Dans un tel mode de réalisation, la cavité de refroidissement 10 comprend uniquement des bosses 15a, 15b sur les parois 13, 14 au niveau du bord de fuite 6.
  • Le noyau 18 est obtenu via le moule 19 représenté en position ouverte sur la figure 7, le moule 19 comprend une première empreinte 33 et une deuxième empreinte 34 mobiles l'une par rapport à l'autre et délimitant une cavité 35 d'injection du noyau 18. La première empreinte 33 comprend une première surface 36 interne, incurvée, concave apte à former la première face 20 du noyau 18. La deuxième empreinte 34 comprend une deuxième surface 37 interne, incurvée, convexe apte à former la deuxième face 21 du noyau 18, les première et deuxième surfaces 36, 37 comprenant une pluralité de protubérances 38 aptes à former les enfoncements 24a, 24b du noyau 18.
  • De la même manière que pour le noyau 18, chaque protubérance 38 comprend une partie 39 sphérique et est définie au moins partiellement suivant un axe P de symétrie passant par l'axe P1 de symétrie de la partie 39 sphérique. Les axes P1 de symétrie des parties 39 sphériques de la première surface 36 sont parallèles à une première direction A1 de démoulage correspondant à la première direction D1 du noyau 18. De la même manière, les axes P1 de symétrie des parties 39 sphériques de la deuxième surface 37 sont parallèles à une deuxième direction A2 de démoulage correspondant à la deuxième direction D2 du noyau 18.
  • Le fait que les première et deuxième directions D1, D2 du noyau 18 correspondent aux première et deuxième directions A1, A2 de démoulage du moule 19 permet de simplifier la structure du moule 19 et de faciliter l'extraction du noyau 18 hors du moule 19.
  • De la même manière que pour le noyau 18, certaines protubérances 38 comprennent en outre une partie 40 conique, plus ou moins étendue selon les protubérances 38, dont l'axe P2 de symétrie passe par l'axe P de symétrie de la protubérance 38 et donc par l'axe P1 de symétrie de la partie 39 sphérique.
  • L'emploi de forme conique permet de faciliter l'extraction du noyau 18 hors du moule 19. Le demi-angle au sommet de la partie 40 conique de la protubérance 38 est par exemple de 15°.
  • Selon le mode de réalisation illustré sur les figures et notamment la figure 7, la première empreinte 33 est mobile selon la première direction A1 de démoulage et la deuxième empreinte 34 est fixe.
  • Selon une première variante de réalisation, la deuxième empreinte 34 est mobile selon la deuxième direction A2 de démoulage et la première empreinte 33 est fixe.
  • Selon une deuxième variante de réalisation, la première empreinte 33 est mobile selon la première direction A1 de démoulage et la deuxième empreinte 34 est mobile selon la deuxième direction A2 de démoulage.
  • Le noyau 18 est par exemple en matière céramique à structure poreuse, cette matière étant obtenu à partir d'un mélange comprenant une charge réfractaire et une fraction organique formant un liant.
  • Plus précisément, le procédé de fabrication du noyau 18 via le moule 19 comprend les étapes suivantes :
    • une étape de moulage du noyau 18 (illustré en figure 3) via le moule 19 (illustré en figure 7) ;
    • une étape de démoulage dans laquelle la première empreinte 33 est déplacée suivant une première direction A1 de démoulage et/ou la deuxième empreinte 34 est déplacée suivant une deuxième direction A2 de démoulage.
    • une étape de déliantage dans laquelle le liant est éliminé, par exemple par la sublimation ou la dégradation thermique ;
    • une étape de traitement thermique ;
    • une étape d'ébavurage.

Claims (8)

  1. Noyau (18) destiné à la fabrication d'une aube (1) de turbomachine par moulage à cire perdue, ce noyau (18) comprenant une première face (20) externe incurvée convexe et une deuxième face (21) externe incurvée concave, caractérisé en ce que les première et deuxième faces (20, 21) comprennent une pluralité d'enfoncements (24a, 24b), chaque enfoncement (24a, 24b) comportant une portion (25) sphérique,
    dans lequel chacun desdits enfoncements (24a, 24b) est défini au moins partiellement par un axe (E) de symétrie, les axes (E1) de symétrie des portions (25) sphériques de la première face (20) étant parallèles à une première direction (D1),
    dans lequel ladite première direction (D1) est définie, dans un plan transversal, par la bissectrice (27) de l'angle formé par l'intersection d'une première tangente (28), à la première face (20) au premier point (J1) de jonction entre la première face (20) et un premier raccord (22) entre les première et deuxième faces (20, 21), et d'une deuxième tangente (29) à la première face (20) au deuxième point (J2) de jonction entre la première face (20) et un deuxième raccord (23) entre les première et deuxième faces (20, 21), les première et deuxième tangentes (28, 29) étant définies dans le plan transversal, les premier et deuxième points (J1, J2) de jonction étant opposés l'un de l'autre.
  2. Noyau (18) selon la revendication 1, caractérisé en ce que les enfoncements (24a) de la première face (20) sont décalés par rapport aux enfoncements (24b) de la deuxième face (21).
  3. Noyau (18) selon l'une des revendications précédentes, caractérisé en ce que les axes (E1) de symétrie des portions (25) sphériques de la deuxième face (21) sont parallèles à une deuxième direction (D2).
  4. Noyau (18) selon la revendication 3, caractérisé en ce que la deuxième direction (D2) est définie, dans un plan transversal, par la bissectrice (30) de l'angle formé par l'intersection d'une première tangente (31) à la deuxième face (21) au troisième point (J3) de jonction entre la deuxième face (21) et le premier raccord (22), et d'une deuxième tangente (32) à la deuxième face (21) au quatrième point (J4) de jonction entre la deuxième face (21) et le deuxième raccord (23), les première et deuxième tangentes (31, 32) étant définies dans le plan transversal, les troisième et quatrième points (J3, J4) de jonction étant opposés l'un de l'autre.
  5. Moule (19) destiné à la fabrication d'un noyau (18) selon l'une des revendications précédentes, le moule (19) comprenant une première empreinte (33) et une deuxième empreinte (34) mobiles l'une par rapport à l'autre et délimitant une cavité (35) d'injection du noyau (18), la première empreinte (33) comprenant une première surface (36) interne incurvée concave apte à former la première face (20) du noyau (18), la deuxième empreinte (34) comprenant une deuxième surface (37) interne incurvée convexe apte à former la deuxième face (21) du noyau (18), les première et deuxième surfaces (36, 37) comprenant une pluralité de protubérances (38) apte à former les enfoncements (24a, 24b) du noyau (18), chaque protubérance (38) comprenant une partie (39) sphérique,
    dans lequel chacune des protubérances (38) est définie au moins partiellement par un axe (P) de symétrie, les axes (P1) de symétrie des parties (39) sphériques de la première surface (36) étant destinés à définir ladite première direction (D1) dudit noyau (18) qui est parallèle auxdits axes (P1) de symétrie des parties (39) sphériques de la première surface (36), ladite première direction (D1) correspondant à une première direction (A1) de démoulage.
  6. Moule (19) selon la revendication 5 lorsqu'elle dépend de la revendication 3 ou 4, caractérisé en ce que les axes (P1) de symétrie des parties (39) sphériques des protubérances (38) de la deuxième surface (37) sont parallèles à ladite direction (D2) dudit noyau (18), ladite deuxième direction (D2) correspondant à une deuxième direction (A2) de démoulage.
  7. Procédé de fabrication d'une aube (1) de turbomachine par moulage à cire perdue, ce procédé comprenant une étape de fabrication d'un noyau (18) selon l'une des revendications 1 à 4 via un moule (19) selon l'une des revendications 5 à 6, le procédé comprenant de préférence une étape de démoulage dans laquelle la première empreinte (33) est déplacée suivant une première direction (A1) de démoulage et/ou la deuxième empreinte (34) est déplacée suivant une deuxième direction (A2) de démoulage.
  8. Aube (1) obtenue selon le procédé de fabrication selon la revendication 7, l'aube (1) comprenant une cavité (10) de refroidissement délimitée par une première paroi (13) interne incurvée concave et une deuxième paroi (14) interne incurvée convexe, les première et deuxième parois (13, 14) comprenant chacune une pluralité de bosses (15a, 15b), chaque bosse (15a, 15b) comprenant un tronçon (16) sphérique.
EP17735190.5A 2016-06-28 2017-06-07 Circuit de refroidissement d'une aube de turbomachine Active EP3475011B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656042A FR3052990B1 (fr) 2016-06-28 2016-06-28 Circuit de refroidissement d'une aube de turbomachine
PCT/FR2017/051438 WO2018002466A1 (fr) 2016-06-28 2017-06-07 Circuit de refroidissement d'une aube de turbomachine

Publications (2)

Publication Number Publication Date
EP3475011A1 EP3475011A1 (fr) 2019-05-01
EP3475011B1 true EP3475011B1 (fr) 2022-03-30

Family

ID=57583140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17735190.5A Active EP3475011B1 (fr) 2016-06-28 2017-06-07 Circuit de refroidissement d'une aube de turbomachine

Country Status (4)

Country Link
US (1) US10682687B2 (fr)
EP (1) EP3475011B1 (fr)
FR (1) FR3052990B1 (fr)
WO (1) WO2018002466A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3629910A1 (de) * 1986-09-03 1988-03-17 Mtu Muenchen Gmbh Metallisches hohlbauteil mit einem metallischen einsatz, insbesondere turbinenschaufel mit kuehleinsatz
US7758314B2 (en) * 2003-03-12 2010-07-20 Florida Turbine Technologies, Inc. Tungsten shell for a spar and shell turbine vane
FR2870560B1 (fr) * 2004-05-18 2006-08-25 Snecma Moteurs Sa Circuit de refroidissement a cavite a rapport de forme eleve pour aube de turbine a gaz
US20070201980A1 (en) * 2005-10-11 2007-08-30 Honeywell International, Inc. Method to augment heat transfer using chamfered cylindrical depressions in cast internal cooling passages
US9243502B2 (en) * 2012-04-24 2016-01-26 United Technologies Corporation Airfoil cooling enhancement and method of making the same

Also Published As

Publication number Publication date
WO2018002466A1 (fr) 2018-01-04
FR3052990A1 (fr) 2017-12-29
US20190240725A1 (en) 2019-08-08
FR3052990B1 (fr) 2020-07-03
EP3475011A1 (fr) 2019-05-01
US10682687B2 (en) 2020-06-16

Similar Documents

Publication Publication Date Title
EP1288438B1 (fr) Circuits de refroidissement pour aube de turbine à gaz
EP2088286B1 (fr) Aube, roue à aube et turbomachine associées
CA2954024C (fr) Procede de fabrication d'une aube bi-composant pour moteur a turbine a gaz et aube obtenue par un tel procede
FR2986982A1 (fr) Ensemble de noyau de fonderie pour la fabrication d'une aube de turbomachine, procede de fabrication d'une aube et aube associes
FR2896710A1 (fr) Procede de fabrication de piece de turbomachine comportant des orifices d'evacuation d'air de refroidissement
WO2017149229A1 (fr) Noyau pour le moulage d'une aube de turbomachine
JP6355839B2 (ja) ガスタービンエンジンで使用可能な構成部品を形成するためのセラミック鋳型を有するダイカストシステム
CA3014022C (fr) Procede de formation de trous de depoussierage pour aube de turbine et noyau ceramique associe
JP2000199402A (ja) 先端を切断した面取り部を持つタ―ビン動翼
CA2971289C (fr) Procede de fabrication d'une aube de turbomachine comportant un sommet pourvu d'une baignoire de type complexe
EP3475011B1 (fr) Circuit de refroidissement d'une aube de turbomachine
FR2959947A1 (fr) Outillage d'injection d'une piece
FR2987292A1 (fr) Noyau de fonderie, secteur de stator de turbine a gaz et procede de fabrication d'un tel secteur utilisant un tel noyau.
FR2988022A1 (fr) Procede de fabrication d'un secteur de stator a aubes creuses pour turbine a gaz.
FR3085713A1 (fr) Aube d'une turbine de turbomachine
EP4363697A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement et procede de fabrication a cire perdue d'une telle aube
EP3712378A1 (fr) Aube de turbomachine, comportant des deflecteurs dans une cavite interne de refroidissement
FR2977510B1 (fr) Noyau de fonderie, procede de fabrication d'une aube de turbine utilisant un tel noyau.
FR3107848A1 (fr) Moule pour la fabrication d’un noyau céramique de fonderie
EP3942157B1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement et procede de fabrication a cire perdue d'une telle aube
FR3073000A1 (fr) Aube mobile d'une turbomachine
FR3124408A1 (fr) Noyau en ceramique utilise pour la fabrication d’aubes par fonderie a la cire perdue
WO2019224486A1 (fr) Aubage brut de fonderie a geometrie de bord de fuite modifiee
FR3126894A1 (fr) Dispositif et procede de fabrication d’un noyau en ceramique pour aube
FR3129431A1 (fr) Aube de rotor pour une turbomachine d’aeronef

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 9/24 20060101ALI20211014BHEP

Ipc: B22C 9/04 20060101ALI20211014BHEP

Ipc: F01D 5/18 20060101ALI20211014BHEP

Ipc: B22C 9/10 20060101AFI20211014BHEP

INTG Intention to grant announced

Effective date: 20211104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017055193

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1478704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220330

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1478704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220730

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017055193

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

26N No opposition filed

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220607

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220607

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330