EP3459307B1 - Ressourcenzuweisung und signalisierung zur planung in einem unlizenzierten spektrum - Google Patents

Ressourcenzuweisung und signalisierung zur planung in einem unlizenzierten spektrum Download PDF

Info

Publication number
EP3459307B1
EP3459307B1 EP17727957.7A EP17727957A EP3459307B1 EP 3459307 B1 EP3459307 B1 EP 3459307B1 EP 17727957 A EP17727957 A EP 17727957A EP 3459307 B1 EP3459307 B1 EP 3459307B1
Authority
EP
European Patent Office
Prior art keywords
resource blocks
interlace
defined set
resource
block indices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17727957.7A
Other languages
English (en)
French (fr)
Other versions
EP3459307A1 (de
Inventor
Havish Koorapaty
Cagatay Capar
Jung-Fu Cheng
Amitav Mukherjee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP3459307A1 publication Critical patent/EP3459307A1/de
Application granted granted Critical
Publication of EP3459307B1 publication Critical patent/EP3459307B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates, in general, to wireless communications and, more particularly, to resource allocation and signaling methods for scheduling in unlicensed spectrum.
  • LAA Long Term Evolution
  • GHz gigahertz
  • UEs User Equipment devices
  • PCell Primary Cell
  • CA Carrier Aggregation
  • SCell Secondary Cell
  • LTE-U LTE-Unlicensed
  • UL uplink
  • LAA The ongoing standalone LTE-Unlicensed (LTE-U) forum and 3GPP Rel-14 work item on uplink (UL) LAA intends to allow LTE UEs to transmit on the UL in the unlicensed 5 GHz or license-shared 3.5 GHz radio spectrum.
  • DL downlink
  • UL uplink
  • LBT Listen-Before-Talk
  • Wi-Fi, LAA, and standalone LTE-U may operate in multi-carrier mode with simultaneous transmission across multiple unlicensed channels in the 5 GHz band.
  • Wi-Fi follows a hierarchical multi-carrier LBT scheme across multiple carriers which are selected using specific channel bonding rules.
  • UL transmissions are explicitly scheduled by the enhanced or evolved Node B (eNB), which has full control over when UEs are allowed to transmit.
  • eNB enhanced or evolved Node B
  • UEs must perform some form of LBT before transmitting on the carrier.
  • the form of LBT may depend on the number of UEs that are scheduled, the number of subframes that are scheduled in succession, the length of the previous transmissions on the carrier, and other such factors. It is known that some parameters related to LBT can be signaled by the eNB to UEs so that they may perform LBT before transmission. However, the known signaling parameters do not fully encompass all the use cases and problems that will be encountered for UL transmissions in unlicensed spectrum.
  • Figure 1 illustrates an example LTE DL physical resource.
  • LTE uses Orthogonal Frequency Division Multiplexing (OFDM) in the DL and Discrete Fourier Transform (DFT)-spread OFDM (also referred to as single-carrier Frequency Division Multiple Access (FDMA)) in the UL.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT Discrete Fourier Transform
  • FDMA single-carrier Frequency Division Multiple Access
  • Figure 1 illustrates the basic LTE DL physical resource as a time-frequency grid, where each resource element corresponds to one OFDM subcarrier during one OFDM symbol interval.
  • the UL subframe has the same subcarrier spacing as the DL and the same number of Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols in the time domain as OFDM symbols in the DL.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • FIG. 2 illustrates an example LTE time-domain structure.
  • T subframe 1 ms.
  • one subframe consists of 14 OFDM symbols.
  • the duration of each symbol is approximately 71.4 microseconds ( ⁇ s).
  • RBs Resource Blocks
  • a RB corresponds to one slot (0.5 ms) in the time domain and 12 contiguous subcarriers in the frequency domain.
  • a pair of two adjacent RBs in time direction (1.0 ms) is known as a RB pair.
  • RBs are numbered in the frequency domain, starting with 0 from one end of the system bandwidth.
  • the DL transmissions are dynamically scheduled.
  • the eNB transmits control information about which UEs data is transmitted to and upon which RBs the data is transmitted, in the current DL subframe.
  • CFI Control Format Indicator
  • the DL subframe also contains common reference symbols, which are known to the receiver and used for coherent demodulation of, for example, the control information.
  • EPDCCH Physical Downlink Control Channel
  • the reference symbols shown in Figure 3 are the Cell specific Reference Symbols and are used to support multiple functions including fine time and frequency synchronization and channel estimation for certain transmission modes.
  • the PDCCH/EPDCCH is used to carry DL Control Information (DCI) such as scheduling decisions and power control commands. More specifically, the DCI includes:
  • One PDCCH/EPDCCH carries one DCI message containing one of the groups of information listed above.
  • Each scheduling message is transmitted on separate PDCCH/EPDCCH resources, and consequently there are typically multiple simultaneous PDCCH/EPDCCH transmissions within each subframe in each cell.
  • link adaptation can be used, where the code rate of the PDCCH/EPDCCH is selected by adapting the resource usage for the PDCCH/EPDCCH to match the radio channel conditions.
  • LTE standard supports bandwidths larger than 20 megahertz (MHz) since Rel-10.
  • LTE Rel-10 One important requirement on LTE Rel-10 was to assure backward compatibility with LTE Rel-8. This should also include spectrum compatibility. That would imply that an LTE Rel-10 carrier, wider than 20 MHz, should appear as a number of LTE carriers to an LTE Rel-8 terminal. Each such carrier can be referred to as a Component Carrier (CC).
  • CC Component Carrier
  • CA implies that an LTE Rel-10 or later terminal can receive multiple CCs, where the CCs have, or at least the possibility to have, the same structure as a Rel-8 carrier.
  • FIG. 4 illustrates an example CA.
  • a CA-capable UE is assigned a PCell which is always activated, and one or more SCells which may be activated or deactivated dynamically.
  • the number of aggregated CCs as well as the bandwidth of the individual CCs may be different for UL and DL.
  • a symmetric configuration refers to the case where the number of CCs in DL and UL is the same whereas an asymmetric configuration refers to the case that the number of CCs is different. It is important to note that the number of CCs configured in a cell may be different from the number of CCs seen by a UE.
  • a UE may for example support more DL CCs than UL CCs, even though the cell is configured with the same number of UL and DL CCs.
  • CA as described briefly above is used for LAA where the primary carrier or PCell operates in licensed spectrum and one or more secondary carriers or SCells operate in unlicensed spectrum.
  • a key feature of CA is the ability to perform cross-carrier scheduling.
  • the PDSCH is received on a CC other than the one on which PDCCH/EPDCCH is received.
  • the PUSCH would be transmitted on an associated CC other than the one on which the UL grant is received.
  • This mechanism allows a (E)PDCCH on one CC to schedule data transmissions on another CC by means of a 3-bit Carrier Indicator Field (CIF) inserted at the beginning of the (E)PDCCH messages.
  • CIF Carrier Indicator Field
  • a UE For data transmissions on a given CC, a UE expects to receive scheduling messages on the (E)PDCCH on just one CC - either the same CC, or a different CC via cross-carrier scheduling; this mapping from (E)PDCCH to PDSCH is also configured semi-statically.
  • WLAN Wireless Local Area Network
  • Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is used for medium access.
  • CCA Clear Channel Assessment
  • APs Access Points
  • the transmission is essentially deferred until the channel is deemed to be Idle.
  • APs Access Points
  • Figure 5 illustrates an example of LBT in Wi-Fi. More particularly, Figure 5 is a general illustration of the LBT mechanism on a single unlicensed channel.
  • a Wi-Fi station A transmits a data frame to a station B
  • station B shall transmit the ACK frame back to station A with a delay of 16 ⁇ s.
  • Such an ACK frame is transmitted by station B without performing a LBT operation.
  • a station shall defer for a duration of 34 ⁇ s (referred to as Distributed Inter-Frame Space (DIFS)) after the channel is observed to be occupied before assessing again whether the channel is occupied.
  • DIFS Distributed Inter-Frame Space
  • a station that wishes to transmit first performs a CCA by sensing the medium for a fixed duration Distributed Coordination Function (DCF) Inter-Frame Spacing (DIFS). If the medium is idle, then the station assumes that it may take ownership of the medium and begin a frame exchange sequence. If the medium is busy, the station waits for the medium to go idle, defers for DIFS, and waits for a further random backoff period.
  • DCF Distributed Coordination Function
  • DIFS Inter-Frame Spacing
  • Wi-Fi follows a hierarchical channel bonding scheme to determine its transmission bandwidth for a frame, which could be 20 MHz, 40 MHz, 80 MHz, or 160 MHz for example.
  • Wi-Fi channel widths In the 5 GHz band, wider Wi-Fi channel widths of 40 MHz, 80 MHz, 160 MHz, or 80+80 MHz are formed by combining 20 MHz sub-channels in a non-overlapping manner.
  • a predetermined primary channel performs the Contention Window (CW) -based random access procedure after a defer period if necessary, and then counts down the random number generated.
  • CW Contention Window
  • the secondary channels only perform a quick CCA check for a Point Coordination Function (PCF) Inter-Frame Spacing (PIFS) duration (generally 25 ⁇ s) before the potential start of transmission to determine if the additional secondary channels are available for transmission. Based on the results of the secondary CCA check, transmission is performed on the larger bandwidths; otherwise, transmission falls back to smaller bandwidths.
  • PCF Point Coordination Function
  • PIFS Inter-Frame Spacing
  • LTE the spectrum used by LTE is dedicated to LTE. This has the advantage that an LTE system does not need to care about coexistence with other non-3GPP radio access technologies in the same spectrum and spectrum efficiency can be maximized.
  • the spectrum allocated to LTE is limited, which cannot meet the ever increasing demand for larger throughput from applications/services. Therefore, 3GPP Rel-13 extends LTE to exploit unlicensed spectrum in addition to licensed spectrum.
  • standalone LTE-U is under development by the MuLTEfire Alliance, where LTE operates solely in unlicensed spectrum.
  • FIG. 6 illustrates an example of a CA-capable UE configured with one LAA SCell.
  • LAA to unlicensed spectrum
  • a UE is connected to a PCell in the licensed band and one or more SCells in the unlicensed band.
  • a SCell in unlicensed spectrum is denoted herein as an LAA SCell.
  • the LAA SCell may operate in DL-only mode or operate with both UL and DL traffic.
  • the LTE nodes may operate in standalone mode in license-exempt channels without assistance from a licensed cell.
  • Unlicensed spectrum can, by definition, be simultaneously used by multiple different technologies. Therefore, LAA and standalone LTE-U as described above need to consider coexistence with other systems such as IEEE 802.11 (Wi-Fi).
  • transmission on the SCell shall conform to LBT protocols in order to avoid collisions and causing severe interference to ongoing transmissions. This includes both performing LBT before commencing transmissions and limiting the maximum duration of a single transmission burst.
  • the maximum transmission burst duration is specified by country and region specific regulations, for example, 4 ms in Japan and 13 ms according to EN 301.893.
  • Figure 7 illustrates an example of LAA to unlicensed spectrum using LTE CA and LBT to ensure good coexistence with other unlicensed band technologies. More particularly, Figure 7 illustrates an example in the context of LAA with different examples for the duration of a transmission burst on the LAA SCell constrained by a maximum allowed transmission duration of 4 ms.
  • the eNB Before the eNB transmits data in the DL, it performs LBT to gain channel access. During the eNB's transmission duration, it also sends out control channels to schedule certain UEs to transmit in the UL at specific time later. After the eNB releases the channel, the scheduled UEs perform LBT to determine whether they can transmit in the channel at said specific time.
  • LTE CA Long Term Evolution
  • Rel-13 LAA and standalone LTE-U offer the ability to operate on multiple carriers in unlicensed spectrum simultaneously.
  • the extension of the CA framework beyond five carriers was completed in LTE Rel-13 which supports up to 32 carriers in both UL and DL.
  • the parameters that are signaled as part of such a multi-subframe scheduling grant include HARQ-ACKs and related parameters.
  • the grants include the legacy parameters, i.e., the New Data Indicator (NDI), Redundancy Version (RV) and the HARQ-ACK bits themselves which in the general case consist of one bit per transport block that is being acknowledged.
  • the use of a carrier in an unlicensed spectrum needs to meet two requirements as per the regulations, an occupied channel bandwidth requirement and a maximum Power Spectral Density (PSD) requirement.
  • PSD Power Spectral Density
  • both of these requirements are enforced for 5 GHz carriers according to ETSI 301 893 while only the maximum PSD requirements are enforced in the US regulation for 5 GHz.
  • the occupied bandwidth requirement which is expressed as the bandwidth containing 99% of the power of the signal, shall be between 80% and 100% of the declared nominal channel bandwidth. This requirement is tested over a time interval longer than one subframe (1 ms). The frequency allocations for one UE must thus vary between subframes in such a way that the requirement is fulfilled. It is still an open issue if this requirement needs to be fulfilled for a UE which only transmits in a single subframe, such as Physical Random Access Channel (PRACH) or with a single PUSCH.
  • PRACH Physical Random Access Channel
  • the maximum PSD requirements exist in many different regions. For most cases the requirement is stated with a resolution bandwidth of 1 MHz. For example, the ETSI 301 893 specs requires 10 decibel-milliwatt (dBm) /MHz for 5150-5350 MHz.
  • the implication of the PSD requirement on the physical layer design is that, without proper designs, a signal with a small transmission bandwidth will be limited in transmission power. This can negatively affect coverage of the operation. That is, the maximum PSD requirement is a binding condition that requires changes to UL transmissions in unlicensed spectrum.
  • interlaced transmission For operation in unlicensed spectrum, interlaced transmission has been identified as the best approach due to these PSD and bandwidth occupancy requirements set by regulations.
  • An interlace is a set of Physical RBs (PRBs) that are spread out across the entire bandwidth.
  • PRBs Physical RBs
  • An approach that is being defined for systems in unlicensed spectrum is to have a uniformly spaced interlace where there is a single spacing between consecutive PRBs in frequency that is used. In the case of a 20 MHz LTE system where there are a hundred PRBs with 12 subcarriers each, a single interlace has been defined as having 10 PRBs that are evenly spaced.
  • One constraint from an implementation point of view is that the number of PRBs transmitted by the UE should be a product of the factors 2, 3, or 5. The resource allocations in LTE meet this constraint.
  • UL resource allocations may provide solutions for signaling of uplink (UL) resource allocations, taking into account the possible multiplexing of coexisting signals that have a different frequency resource granularity.
  • Certain embodiments may enable the management of UL transmissions in unlicensed spectrum by providing the ability to vary the gaps between transmissions by different nodes. Signaling to enable this functionality is disclosed.
  • the various embodiments described herein may have one or more advantages. For example, certain embodiments may allow higher UL user and system performance to be obtained.
  • the present disclosure contemplates various embodiments that may enable the management of UL transmissions in unlicensed spectrum by providing the ability to vary the gaps between transmissions by different nodes. Signaling to enable this functionality is disclosed.
  • a method in a node comprises designing a resource allocation for a transmission in unlicensed spectrum based on one or more criteria.
  • the method comprises signaling the designed resource allocation to a User Equipment device (UE).
  • UE User Equipment device
  • a method in a UE comprises receiving a resource allocation for a transmission in unlicensed spectrum, the resource allocation designed based on one or more criteria.
  • the method comprises performing a transmission in unlicensed spectrum according to the received resource allocation.
  • one or more of the following may apply:
  • Certain embodiments of the present disclosure may provide one or more technical advantages. For example, certain embodiments may allow higher UL user and system performance to be obtained. Other advantages may be readily apparent to one having skill in the art. Certain embodiments may have none, some, or all of the recited advantages.
  • FIG 8 illustrates an example embodiment of a wireless communications network 10, in accordance with certain embodiments.
  • the wireless communications network 10 includes one or more UE(s) 12 (which may be interchangeably referred to herein as wireless devices 12) and one or more network node(s) 14 (which may be interchangeably referred to as enhanced or evolved Node Bs (eNBs) 14 or more generally radio network nodes 14).
  • the UEs 12 may communicate with the network nodes 14 over a wireless interface.
  • a UE 12 may transmit wireless signals to one or more network nodes 14 and/or receive wireless signals from one or more network nodes 14.
  • the wireless signals may contain voice traffic, data traffic, control signals, and/or any other suitable information.
  • an area of wireless signal coverage associated with a network node 14 may be referred to as a cell 16.
  • the UEs 12 may have Device-to-Device (D2D) capability. Thus, the UEs 12 may be able to receive signals from and/or transmit signals directly to another UE 12.
  • D2D Device-to-Device
  • the network nodes 14 may interface with a radio network controller (not shown).
  • the radio network controller may control the network nodes 14 and may provide certain radio resource management functions, mobility management functions, and/or other suitable functions.
  • the functions of the radio network controller may be included in the network node 14.
  • the radio network controller may interface with a core network node included in a core network 18.
  • the radio network controller may interface with the core network node via an interconnecting network.
  • Interconnecting network may refer to any interconnecting system capable of transmitting audio, video, signals, data, messages, or any combination of the preceding.
  • the interconnecting network may include all or a portion of a Public Switched Telephone Network (PSTN), a public or private data network, a Local Area Network (LAN), a Metropolitan Area Network (MAN), a Wide Area Network (WAN), a local, regional, or global communication or computer network such as the Internet, a wireline or wireless network, an enterprise intranet, or any other suitable communication link, including combinations thereof.
  • PSTN Public Switched Telephone Network
  • LAN Local Area Network
  • MAN Metropolitan Area Network
  • WAN Wide Area Network
  • the core network node may manage the establishment of communication sessions and various other functionalities for the UEs 12.
  • the UEs 12 may exchange certain signals with the core network node using the non-access stratum layer.
  • signals between the UEs 12 and the core network node may be transparently passed through the radio access network.
  • the network nodes 14 may interface with one or more network nodes over an internode interface, such as, for example, an X2 interface.
  • example embodiments of the wireless communications network 10 may include one or more wireless devices 12 and one or more different types of network nodes capable of communicating (directly or indirectly) with the wireless devices 12.
  • UEs 12 described herein can be any type of wireless device capable of communicating with the network nodes 14 or another UE over radio signals.
  • the UE 12 may also be a radio communication device, a target device, a D2D UE, a Machine Type Communication (MTC) UE or a UE capable of Machine-to-Machine (M2M) communication, a low-cost and/or low-complexity UE, a sensor equipped with a UE, a tablet, mobile terminals, a smart phone, Laptop Embedded Equipment (LEE), Laptop Mounted Equipment (LME), Universal Serial Bus (USB) dongles, Customer Premises Equipment (CPE), etc.
  • MTC Machine Type Communication
  • M2M Machine-to-Machine
  • the UE 12 may operate under either normal coverage or enhanced coverage with respect to its serving cell.
  • the enhanced coverage may be interchangeably referred to as extended coverage.
  • the UE 12 may also operate in a plurality of coverage levels (e.g., normal coverage, enhanced coverage level 1, enhanced coverage level 2, enhanced coverage level 3, and so on). In some cases, the UE 12 may also operate in out-of-coverage scenarios.
  • radio network node (or simply “network node”) is used. It can be any kind of network node, which may comprise a base station, a radio base station, a Node B, a Multi-Standard Radio (MSR) radio node such as a MSR base station, an eNB, a network controller, a Radio Network Controller (RNC), a Base Station Controller (BSC), a relay node, a relay donor node controlling relay, a Base Transceiver Station (BTS), an Access Point (AP), a radio AP, transmission points, transmission nodes, a Remote Radio Unit (RRU), a Remote Radio Head (RRH), nodes in a Distributed Antenna System (DAS), a Multi-cell/Multicast Coordination Entity (MCE), a core network node (e.g., a Mobile Switching Center (MSC), a Mobility Management Entity (MME), etc.), Operation and Management (O&M), an Operations Support
  • MSR Multi-Standard Radio
  • network node and UE should be considered non-limiting and does in particular not imply a certain hierarchical relation between the two; in general "eNB” could be considered as device 1 and “UE” device 2, and these two devices communicate with each other over some radio channel.
  • Example embodiments of the UE 12, the network nodes 14, and other network nodes are described in more detail below with respect to Figures 12-16 .
  • the wireless communications network 10 may include any suitable number of UEs 12 and network nodes 14, as well as any additional elements suitable to support communication between UEs or between a UE and another communication device (such as a landline telephone).
  • LTE Long Term Evolution
  • the embodiments may be implemented in any appropriate type of telecommunication system supporting any suitable communication standards (including Fifth Generation (5G) standards) and using any suitable components, and are applicable to any Radio Access Technology (RAT) or multi-RAT systems in which a UE receives and/or transmits signals (e.g., data).
  • 5G Fifth Generation
  • RAT Radio Access Technology
  • multi-RAT systems in which a UE receives and/or transmits signals (e.g., data).
  • the various embodiments described herein may be applicable to LTE, LTE-Advanced, 5G, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Global System for Mobile Communications (GSM), Code Division Multiple Access 2000 (CDMA2000), Wideband CDMA (W-CDMA), WiMax, Ultra Mobile Broadband (UMB), Wi-Fi, another suitable RAT, or any suitable combination of one or more RATs.
  • UMTS Universal Mobile Telecommunications System
  • HSPA High Speed Packet Access
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • W-CDMA Wideband CDMA
  • WiMax Ultra Mobile Broadband
  • Wi-Fi another suitable RAT, or any suitable combination of one or more RATs.
  • LAA License Assisted Access
  • LTE-U standalone LTE-Unlicensed
  • LBT Listen-Before-Talk
  • resource allocation restrictions are designed based on at least the following criteria:
  • the restricted resource allocations are then signaled to the UE 12.
  • the restriction of allocations and the associated signaling is addressed.
  • the subsequent embodiments address the particulars of pruning due to the presence of other signals such as PRACH.
  • Figure 9 illustrates an example of RB mapping when using ten interlaces, in accordance with certain embodiments. More particularly, Figure 9 shows resource allocations that allow for the maximum possible power that can be transmitted given a certain number of interlaces that are allocated and at the same time group transmitted Physical RBs (PRBs) together as much as possible to improve channel estimation performance at the receiver. At the same time constraints of being a product of the factors 2, 3, and 5 is satisfied. In this embodiment, the number of bits needed for resource allocation signaling is reduced by considering some possible scheduling options based on the limited allocations shown in Figure 9 .
  • PRBs Physical RBs
  • Figure 9 illustrates 100 PRBs numbered, or indexed, as PRB 0 through PRB 99 starting from one end, or edge, of the system bandwidth.
  • Interlace 0 is formed by a defined set of RBs consisting of PRBs 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90
  • interlace 1 is formed by a defined set of RBs consisting of PRBs 1, 11, 21, 31, 41, 51, 61, 71, 81, and 91
  • interlace 2 is formed by a defined set of RBs consisting of PRBs 2, 12, 22, 32, 42, 52, 62, 72, 82, and 92
  • interlace 3 is formed by a defined set of RBs consisting of PRBs 3, 13, 23, 33, 43, 53, 63, 73, 83, and 93
  • interlace 4 is formed by a defined set of RBs consisting of PRBs 4, 14, 24, 34, 44, 54, 64
  • a resource allocation for a UL grant is signaled to the UE 12.
  • the resource allocation is an allocation of one or more of the interlaces that are allocated to the UE 12 for the UL grant.
  • the UE 12 may be allocated interlace 0 in which case an indication of this resource allocation is signaled to the UE 12, e.g., in the UL grant.
  • the UE 12 may be allocated interlaces 0, 1, 5, and 6, in which case an indication of this resource allocation is signaled to the UE 12, e.g., in the UL grant.
  • Table 1 below shows the number of possibilities for scheduling given a certain number of interlaces if the allocations were restricted to the ones shown in Figure 9 .
  • Table 1 shows the number of possibilities for scheduling given a certain number of interlaces if the allocations were restricted to the ones shown in Figure 9 .
  • six bits are needed.
  • the use of six bits can cover 64 possibilities. Therefore, there are 25 more possible combinations that can be considered.
  • the remaining combinations are allocated to possible allocations of two and three interlaces that are not shown in Figure 9 .
  • there are 25 ways to choose two out of the ten interlaces One possibility is for 23 of these to be chosen to be added to the list of possibilities in the table so that these can be signaled with the use of six bits.
  • Another possibility is for a fewer number of combinations for two interlaces to be added to the table and a few more combinations of three interlaces to be added. It is also possible for one of the above values for number of interlaces allocated to be eliminated, for example, seven interlaces for a single UE 12 may not be a valid allocation due to the need to prune the number of usable RBs down to 64. This increases the number of combinations for the remaining entries that can be signaled.
  • a similar table with the first five rows of column 1 in Table 1 can be constructed for the case of 10 megahertz (MHz) system bandwidth, assuming a total of five available interlaces with ten RBs per interlace.
  • Table 1 Number of possibilities for interlaced based allocation based on the restricted resource block mapping shown in Figure 9. Number of interlaces allocated Number of possibilities Description 1 10 A single interlace can be in any one of ten positions 2 5 Two interlaces allocated as shown in the figure can be in any one of 5 positions 3 5 ... 4 4 ... 5 4 ... 6 3 ... 7 5 ... 8 2 ... 9 2 ... 10 1 ... Total: 41 ...
  • the structure of the resource allocations themselves are signaled to the UE 12 via Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • a default table is to be used by the UE 12 unless it receives an alternate version via signaling. This allows any UEs 12 performing initial access and receiving allocations to use the default table before they have the opportunity to receive a different table via RRC signaling.
  • Figure 10 illustrates the operation of a network node 14 and a UE 12 according to some aspects of the first embodiment.
  • the network node 14 signals, to the UE 12, an indication of a resource allocation for a UL grant for the UE 12 (step 100).
  • the resource allocation is an allocation of one or more interlaces, where each interlace includes a respective set of RBs that are spread out across the entire bandwidth (i.e., the system bandwidth) of the UL carrier.
  • the indication may be a bit pattern for a number of bits (e.g., six bits), where different possible bit patterns are mapped to different resource allocations. For example, if there are ten interlaces, different bit patterns may be mapped to different combinations of the ten interlaces.
  • the UE 12 receives the indication of the resource allocation (step 102) and performs UL transmission in accordance with the resource allocation for the corresponding UL grant (step 104). In other words, the UE 12 performs UL transmission on the UL carrier on the allocated resources as scheduled by the UL grant.
  • some RBs may be unusable to the UE 12.
  • one or more interlaces may lose a number of RBs.
  • six of the interlaces will lose one RB each.
  • the available bandwidth among the ten interlaces in total for 20 MHz operation is reduced, with six of the interlaces having nine RBs each, and four of the interlaces having ten RBs each.
  • the system may have N (i) interlaces with i RBs each.
  • the number of RBs assigned to a UE 12 is constrained to be a factor of 2, 3, or 5.
  • the allowed number of RBs according to this rule is shown as shaded in Table 2.
  • the second embodiment is similar to that illustrated in Figure 10 . However, in the second embodiment, the resource allocation signaled to the UE 12 is designed as discussed above.
  • the six RB chunks may be placed such that more than six interlaces are affected.
  • Such puncturing may be more desirable if the effect of puncturing is preferred to be distributed as evenly as possible, i.e., it is preferred to have as many interlaces as possible with the same number of RBs.
  • the third embodiment is similar to that illustrated in Figure 10 . However, in the third embodiment, the resource allocation signaled to the UE 12 is punctured as discussed above.
  • a single sequence of interlace indices is signaled to the UE 12 via RRC signaling.
  • the sequence of interlace indices could be [0 5 2 7 4 9 1 6 3 8], with interlace 0 being defined as shown in the first row of Figure 9 and subsequent interlaces being shifted versions of this interlace in frequency.
  • the UE 12 is then signaled a starting index in the sequence above and the number of interlaces being allocated to the UE 12, and the UE 12 simply uses consecutive interlaces from the starting index for its UL transmissions. For example, if the allocation is 0 to 2, then the UE's transmission will be on interlace #0, #2, and #5.
  • the UE's transmission will be on interlace #1, #3, #4, #6, #8, and #9.
  • the full allocation may be signaled for the first UL transmission, while a frequency shift is indicated for one or more of the UL transmissions in subsequent subframes.
  • a key aspect of this embodiment is the ability to signal the interlace sequence given above via RRC signaling since this allows optimization of the scheduling to various deployments.
  • the interlace index sequence can be provided in the System Information Block (SIB) broadcast. This allows the UE 20 to transmit on the correct interlaces before being RRC connected or configured.
  • SIB System Information Block
  • interlace index sequence is [0, 5, 1, 6, 2, 7, 3, 8, 4, 9].
  • Figure 11 illustrates the operation of a network node 14 and a UE 12 according to some aspects of the fourth embodiment.
  • the network node 14 signals, to the UE 12, a interlace sequence (step 200).
  • the network node 14 also signals, to the UE 12, an indication of a resource allocation for a UL grant for the UE 12 (step 202).
  • the indication is, in some embodiments, an indication of the starting RB and the size of the resource allocation (i.e., the number of interlaces).
  • the UE 12 receives the indication of the resource allocation and determines the allocated resources based on the received indication and the interlace sequence (step 204).
  • the UE 12 performs UL transmission in accordance with the resource allocation for the corresponding UL grant (step 206). In other words, the UE 12 performs UL transmission on the UL carrier on the allocated resources as scheduled by the UL grant.
  • FIG. 12 is a block schematic of an exemplary wireless device 12, in accordance with certain embodiments.
  • the wireless device 12 may refer to any type of wireless device communicating with a node and/or with another wireless device in a cellular or mobile communication system.
  • Examples of wireless devices 12 include a mobile phone, a smart phone, a Personal Digital Assistant (PDA), a portable computer (e.g., laptop, tablet), a sensor, a modem, a MTC device / M2M device, LEE, LME, USB dongles, a D2D capable device, or another device that can provide wireless communication.
  • a wireless device 12 may also be referred to as UE, a station, a device, or a terminal in some embodiments.
  • the wireless device 12 includes a transceiver 20, a processor 22, and memory 24.
  • the transceiver 20 facilitates transmitting wireless signals to and receiving wireless signals from a network node 14 (e.g., via an antenna 26)
  • the processor 22 executes instructions to provide some or all of the functionality described above as being provided by the wireless device 12, and the memory 24 stores the instructions executed by the processor 22.
  • the processor 22 may include any suitable combination of hardware and software implemented in one or more modules to execute instructions and manipulate data to perform some or all of the described functions of the wireless device 12, such as the functions of the wireless device 12 described above in relation to Figures 1 through 11 .
  • the processor 22 may include, for example, one or more computers, one or more Central Processing Units (CPUs), one or more microprocessors, one or more applications, one or more Application Specific Integrated Circuits (ASICs), one or more Field Programmable Gate Arrays (FPGAs), and/or other logic.
  • CPUs Central Processing Units
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • the memory 24 is generally operable to store instructions, such as a computer program, software, an application including one or more of logic, rules, algorithms, code, tables, etc., and/or other instructions capable of being executed by a processor.
  • Examples of the memory 24 include computer memory (for example, Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (for example, a hard disk), removable storage media (for example, a compact disk or a digital video disk), and/or or any other volatile or non-volatile, non-transitory computer-readable, and/or computer-executable memory devices that store information, data, and/or instructions that may be used by the processor 22.
  • the wireless device 12 may include additional components beyond those shown in Figure 12 that may be responsible for providing certain aspects of the wireless device's functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the solution described above).
  • the wireless device 12 may include input devices and circuits, output devices, and one or more synchronization units or circuits, which may be part of the processor 22.
  • Input devices include mechanisms for entry of data into the wireless device 12.
  • input devices may include input mechanisms, such as a microphone, input elements, a display, etc.
  • Output devices may include mechanisms for outputting data in audio, video, and/or hard copy format.
  • output devices may include a speaker, a display, etc.
  • FIG. 13 is a block schematic of an exemplary network node 14, in accordance with certain embodiments.
  • the network node 14 may be any type of radio network node or any network node that communicates with a UE 12 and/or with another network node.
  • Examples of the network node 14 include an eNB, a Node B, a base station, a wireless AP (e.g., a Wi-Fi AP), a low power node, a BTS, a relay, a donor node controlling relay, transmission points, transmission nodes, a RRU, a RRH, a MSR radio node such as a MSR base station, nodes in a DAS, O&M, an OSS, a SON, a positioning node (e.g., an E-SMLC), MDT, or any other suitable network node.
  • a wireless AP e.g., a Wi-Fi AP
  • BTS BTS
  • a relay e.g., a
  • the network nodes 14 may be deployed throughout the wireless communications network 10 as a homogenous deployment, a heterogeneous deployment, or a mixed deployment.
  • a homogeneous deployment may generally describe a deployment made up of the same (or similar) type of network nodes 14 and/or similar coverage and cell sizes and inter-site distances.
  • a heterogeneous deployment may generally describe deployments using a variety of types of network nodes 14 having different cell sizes, transmit powers, capacities, and inter-site distances.
  • a heterogeneous deployment may include a plurality of low power nodes placed throughout a macro cell layout.
  • Mixed deployments may include a mix of homogenous portions and heterogeneous portions.
  • the network node 14 may include one or more of a transceiver 28, a processor 30, memory 32, and a network interface 34.
  • the transceiver 28 facilitates transmitting wireless signals to and receiving wireless signals from a wireless device 12 (e.g., via an antenna 36)
  • the processor 30 executes instructions to provide some or all of the functionality described above as being provided by a network node 14
  • the memory 32 stores the instructions executed by the processor 30, and the network interface 34 communicates signals to backend network components, such as a gateway, a switch, a router, the Internet, a PSTN, core network nodes or radio network controllers, etc.
  • the processor 30 may include any suitable combination of hardware and software implemented in one or more modules to execute instructions and manipulate data to perform some or all of the described functions of the network node 14, such as those described above in relation to Figures 1 through 11 .
  • the processor 30 may include, for example, one or more computers, one or more CPUs, one or more microprocessors, one or more applications, and/or other logic.
  • the memory 32 is generally operable to store instructions, such as a computer program, software, an application including one or more of logic, rules, algorithms, code, tables, etc., and/or other instructions capable of being executed by a processor.
  • Examples of the memory 32 include computer memory (for example, RAM or ROM), mass storage media (for example, a hard disk), removable storage media (for example, a compact disk or a digital video disk), and/or or any other volatile or non-volatile, non-transitory computer-readable, and/or computer-executable memory devices that store information.
  • the network interface 34 is communicatively coupled to the processor 30 and may refer to any suitable device operable to receive input for the network node 14, send output from the network node 14, perform suitable processing of the input or output or both, communicate to other devices, or any combination of the preceding.
  • the network interface 34 may include appropriate hardware (e.g., a port, a modem, a network interface card, etc.) and software, including protocol conversion and data processing capabilities, to communicate through a network.
  • network node 14 may include additional components beyond those shown in Figure 13 that may be responsible for providing certain aspects of the radio network node's functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the solutions described above).
  • the various different types of network nodes may include components having the same physical hardware but configured (e.g., via programming) to support different RATs, or may represent partly or entirely different physical components.
  • FIG 14 is a block schematic of an exemplary radio network controller or core network node 37, in accordance with certain embodiments.
  • network nodes can include a MSC, a Serving General Packet Radio Service (GPRS) Support Node (SGSN), a MME, a RNC, a BSC, and so on.
  • the radio network controller or core network node 37 includes a processor 38, memory 40, and a network interface 42.
  • the processor 38 executes instructions to provide some or all of the functionality described above as being provided by the network node
  • the memory 40 stores the instructions executed by the processor 38
  • the network interface 42 communicates signals to any suitable node, such as a gateway, a switch, a router, the Internet, a PSTN, network nodes 14, radio network controllers or core network nodes 37, etc.
  • the processor 38 may include any suitable combination of hardware and software implemented in one or more modules to execute instructions and manipulate data to perform some or all of the described functions of the radio network controller or core network node 37.
  • the processor 38 may include, for example, one or more computers, one or more CPUs, one or more microprocessors, one or more applications, and/or other logic.
  • the memory 40 is generally operable to store instructions, such as a computer program, software, an application including one or more of logic, rules, algorithms, code, tables, etc., and/or other instructions capable of being executed by a processor.
  • Examples of the memory 40 include computer memory (for example, RAM or ROM), mass storage media (for example, a hard disk), removable storage media (for example, a compact disk or a digital video disk), and/or or any other volatile or non-volatile, non-transitory computer-readable, and/or computer-executable memory devices that store information.
  • the network interface 42 is communicatively coupled to the processor 38 and may refer to any suitable device operable to receive input for the network node, send output from the network node, perform suitable processing of the input or output or both, communicate to other devices, or any combination of the preceding.
  • the network interface 42 may include appropriate hardware (e.g., a port, a modem, a network interface card, etc.) and software, including protocol conversion and data processing capabilities, to communicate through a network.
  • network node may include additional components beyond those shown in Figure 14 that may be responsible for providing certain aspects of the network node's functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the solution described above).
  • FIG 15 is a block schematic of an exemplary wireless device 12, in accordance with certain embodiments.
  • the wireless device 12 may include one or more modules.
  • the wireless device 12 may include a receiving module 44 operable to receive an indication of a resource allocation as described above, a determining module 46 for determining the resource allocation based on the received indication, and a communication module 48 operable to perform UL transmission in accordance with a received UL grant on the resources corresponding to the indicated resource allocation.
  • the wireless device 12 may include additional modules such as, e.g., an input module 50, a display module 52, and any other suitable modules.
  • the wireless device 12 may perform the resource allocation and signaling methods for scheduling in unlicensed spectrum described above with respect to Figures 1 through 11 .
  • the determining module 46 may perform the processing functions of the wireless device 12.
  • the determining module 46 may include or be included in one or more processors, such as the processor 22 described above in relation to Figure 12 .
  • the determining module 46 may include analog and/or digital circuitry configured to perform any of the functions of the determining module 46 and/or the processor 22 described above.
  • the functions of the determining module 46 described above may, in certain embodiments, be performed in one or more distinct modules.
  • the communication module 48 may perform the transmission functions of the wireless device 12. For example, the communication module 48 may perform a transmission in unlicensed spectrum according to a received resource allocation. The communication module 48 may transmit messages to one or more of network nodes 14 of the wireless communications network 10.
  • the communication module 48 may include a transmitter and/or a transceiver, such as the transceiver 20 described above in relation to Figure 12 .
  • the communication module 48 may include circuitry configured to wirelessly transmit messages and/or signals.
  • the communication module 48 may receive messages and/or signals for transmission from the determining module 46.
  • the functions of the communication module 48 described above may be performed in one or more distinct modules.
  • the receiving module 44 may perform the receiving functions of the wireless device 12. As one example, the receiving module 44 may receive a resource allocation for a transmission in unlicensed spectrum, the resource allocation designed based on one or more criteria. As another example, the receiving module 44 may receive a structure of the resource allocation.
  • the receiving module 44 may include a receiver and/or a transceiver, such as the transceiver 20 described above in relation to Figure 12 .
  • the receiving module 44 may include circuitry configured to wirelessly receive messages and/or signals. In particular embodiments, the receiving module 44 may communicate received messages and/or signals to the determining module 46.
  • the input module 50 may receive user input intended for the wireless device 12.
  • the input module 50 may receive key presses, button presses, touches, swipes, audio signals, video signals, and/or any other appropriate signals.
  • the input module 50 may include one or more keys, buttons, levers, switches, touchscreens, microphones, and/or cameras.
  • the input module 50 may communicate received signals to the determining module 46.
  • the display module 52 may present signals on a display of the wireless device 12.
  • the display module 52 may include the display and/or any appropriate circuitry and hardware configured to present signals on the display.
  • the display module 52 may receive signals to present on the display from the determining module 46.
  • the determining module 46, the receiving module 44, the communication module 48, the input module 50, and the display module 52 may include any suitable configuration of hardware and/or software.
  • the wireless device 12 may include additional modules beyond those shown in Figure 15 that may be responsible for providing any suitable functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the various solutions described herein).
  • FIG 16 is a block schematic of an exemplary network node 14, in accordance with certain embodiments.
  • the network node 14 may include one or more modules.
  • the network node 14 may include a determining module 54, a communication module 56, a receiving module 58, and any other suitable modules.
  • one or more of the determining module 54, the communication module 56, the receiving module 58, or any other suitable module may be implemented using one or more processors, such as the processor 30 described above in relation to Figure 13 .
  • the functions of two or more of the various modules may be combined into a single module.
  • the network node 14 may perform the resource allocation and signaling methods for scheduling in unlicensed spectrum described above with respect to Figures 1 through 11 .
  • the determining module 54 may perform the processing functions of the network node 14. As one example, the determining module 54 may design a resource allocation for a transmission in unlicensed spectrum based on one or more criteria.
  • the determining module 54 may include or be included in one or more processors, such as the processor 30 described above in relation to Figure 13 .
  • the determining module 54 may include analog and/or digital circuitry configured to perform any of the functions of the determining module 54 and/or the processor 30 described above.
  • the functions of the determining module 54 may, in certain embodiments, be performed in one or more distinct modules. For example, in certain embodiments some of the functionality of the determining module 54 may be performed by an allocation module.
  • the communication module 56 may perform the transmission functions of the network node 14. As one example, the communication module 56 may signal the designed resource allocation to a UE 12. As another example, the communication module 56 may signal a structure of the designed resource allocation to the UE 12. The communication module 56 may transmit messages to one or more of the wireless devices 12.
  • the communication module 56 may include a transmitter and/or a transceiver, such as the transceiver 28 described above in relation to Figure 13 .
  • the communication module 56 may include circuitry configured to wirelessly transmit messages and/or signals. In particular embodiments, the communication module 56 may receive messages and/or signals for transmission from the determining module 54 or any other module.
  • the receiving module 58 may perform the receiving functions of the network node 14.
  • the receiving module 58 may receive any suitable information from a wireless device 12.
  • the receiving module 58 may include a receiver and/or a transceiver, such as the transceiver 28 described above in relation to Figure 13 .
  • the receiving module 58 may include circuitry configured to wirelessly receive messages and/or signals. In particular embodiments, the receiving module 58 may communicate received messages and/or signals to the determining module 54 or any other suitable module.
  • the determining module 54, the communication module 56, and the receiving module 58 may include any suitable configuration of hardware and/or software.
  • the network node 14 may include additional modules beyond those shown in Figure 16 that may be responsible for providing any suitable functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the various solutions described herein).
  • the present disclosure contemplates various embodiments that may enable the management of UL transmissions in unlicensed spectrum by providing the ability to vary the gaps between transmissions by different nodes. Signaling to enable this functionality is disclosed.
  • a method in a node comprises designing a resource allocation for a transmission in unlicensed spectrum based on one or more criteria.
  • the method comprises signaling the designed resource allocation to a UE.
  • one or more of the following may apply:
  • a method in a UE comprises receiving a resource allocation for a transmission in unlicensed spectrum, the resource allocation designed based on one or more criteria.
  • the method comprises performing a transmission in unlicensed spectrum according to the received resource allocation.
  • one or more of the following may apply:

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Claims (20)

  1. Betriebsverfahren für einen Netzwerkknoten (14) in einem drahtlosen Kommunikationsnetzwerk (10), umfassend:
    Signalisieren einer Anzeige eines oder mehrerer zugewiesener Sätze von Ressourcenblöcken, die einer drahtlosen Vorrichtung (12) zugewiesen sind, an die drahtlose Vorrichtung (12) durch eine Uplink-Freigabe zur Übertragung eines Uplink-Trägers in einem unlizenzierten Frequenzspektrum;
    wobei der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken einer oder mehrere von einer Mehrzahl von definierten Sätzen von Ressourcenblöcken sind, die einer Mehrzahl von Zeilensprüngen entsprechen, die jeweils über eine gesamte Bandbreite des Uplink-Trägers verteilt sind,
    dadurch gekennzeichnet, dass das Verfahren umfasst:
    Signalisieren einer Tabelle von Strukturen von Ressourcenzuweisungen für alle Anzeigen eines oder mehrerer Sätze von Ressourcenblöcken, die der drahtlosen Vorrichtung zugewiesen werden können, mittels Funkressourcensteuerungssignalisierung an die drahtlose Vorrichtung, um eine Standardtabelle an der drahtlosen Vorrichtung zu ersetzen.
  2. Verfahren nach Anspruch 1, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit folgenden Ressourcenblockindizes:
    a) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90; oder
    b) 1, 11, 21, 31, 41, 51, 61, 71, 81, 91; oder
    c) 2, 12, 22, 32, 42, 52, 62, 72, 82, 92; oder
    d) 3, 13, 23, 33, 43, 53, 63, 73, 83, 93; oder
    e) 4, 14, 24, 34, 44, 54, 64, 74, 84, 94; und
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit folgenden Ressourcenblockindizes:
    im Fall a) 5, 15, 25, 35, 45, 55, 65, 75, 85, 95;
    im Fall b) 6, 16, 26, 36, 46, 56, 66, 76, 86, 96;
    im Fall c) 7, 17, 27, 37, 47, 57, 67, 77, 87, 97;
    im Fall d) 8, 18, 28, 38, 48, 58, 68, 78, 88, 98;
    im Fall e) 9, 19, 29, 39, 49, 59, 69, 79, 89, 99.
  3. Verfahren nach Anspruch 1, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 0, 10, 20, 30, 40, 50, 60, 70, 80 und 90;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 5, 15, 25, 35, 45, 55, 65, 75, 85 und 95; und
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96.
  4. Verfahren nach Anspruch 1, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 2, 12, 22, 32, 42, 52, 62, 72, 82 und 92;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 3, 13, 23, 33, 43, 53, 63, 73, 83 und 93;
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96;
    einen fünften definierten Satz von Ressourcenblöcken für einen fünften Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 7, 17, 27, 37, 47, 57, 67, 77, 87 und 97; und
    einen sechsten definierten Satz von Ressourcenblöcken für einen sechsten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 8, 18, 28, 38, 48, 58, 68, 78, 88 und 98.
  5. Verfahren nach Anspruch 1, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 2, 12, 22, 32, 42, 52, 62, 72, 82 und 92;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 3, 13, 23, 33, 43, 53, 63, 73, 83 und 93;
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 4, 14, 24, 34, 44, 54, 64, 74, 84 und 94;
    einen fünften definierten Satz von Ressourcenblöcken für einen fünften Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96;
    einen sechsten definierten Satz von Ressourcenblöcken für einen sechsten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 7, 17, 27, 37, 47, 57, 67, 77, 87 und 97;
    einen siebten definierten Satz von Ressourcenblöcken für einen siebten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 8, 18, 28, 38, 48, 58, 68, 78, 88 und 98; und
    einen achten definierten Satz von Ressourcenblöcken für einen achten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 9, 19, 29, 39, 49, 59, 69, 79, 89 und 99.
  6. Verfahren nach Anspruch 1, wobei die Anzeige einer von einer Mehrzahl von definierten möglichen Werten für die Anzeige ist, wobei die Mehrzahl von definierten möglichen Werten eine Mehrzahl von verschiedenen Werten umfasst, die jeweils verschiedene Kombinationen der Mehrzahl von definierten Sätzen von Ressourcenblöcken für die Mehrzahl von Zeilensprüngen anzeigen.
  7. Verfahren nach Anspruch 1, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und die Mehrzahl von definierten Sätzen von Ressourcenblöcken umfasst:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 0, 10, 20, 30, 40, 50, 60, 70, 80 und 90;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 2, 12, 22, 32, 42, 52, 62, 72, 82 und 92;
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 3, 13, 23, 33, 43, 53, 63, 73, 83 und 93;
    einen fünften definierten Satz von Ressourcenblöcken für einen fünften Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 4, 14, 24, 34, 44, 54, 64, 74, 84 und 94;
    einen sechsten definierten Satz von Ressourcenblöcken für einen sechsten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 5, 15, 25, 35, 45, 55, 65, 75, 85 und 95;
    einen siebten definierten Satz von Ressourcenblöcken für einen siebten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96;
    einen achten definierten Satz von Ressourcenblöcken für einen achten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 7, 17, 27, 37, 47, 57, 67, 77, 87 und 97;
    einen neunten definierten Satz von Ressourcenblöcken für einen neunten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 8, 18, 28, 38, 48, 58, 68, 78, 88 und 98; und
    einen zehnten definierten Satz von Ressourcenblöcken für einen zehnten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 9, 19, 29, 39, 49, 59, 69, 79, 89 und 99.
  8. Verfahren nach Anspruch 7, wobei die Anzeige einer von einer Mehrzahl von definierten Werten ist, wobei die Mehrzahl von definierten Werten umfasst:
    einen ersten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den ersten definierten Satz von Ressourcenblöcken für den ersten Zeilensprung und den sechsten definierten Satz von Ressourcenblöcken für den sechsten Zeilensprung umfassen;
    einen zweiten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung und den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung umfassen;
    einen dritten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den dritten definierten Satz von Ressourcenblöcken für den dritten Zeilensprung und den achten definierten Satz von Ressourcenblöcken für den achten Zeilensprung umfassen;
    einen vierten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den vierten definierten Satz von Ressourcenblöcken für den vierten Zeilensprung und den neunten definierten Satz von Ressourcenblöcken für den neunten Zeilensprung umfassen;
    einen fünften Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den fünften definierten Satz von Ressourcenblöcken für den fünften Zeilensprung und den zehnten definierten Satz von Ressourcenblöcken für den zehnten Zeilensprung umfassen;
    einen sechsten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den ersten definierten Satz von Ressourcenblöcken für den ersten Zeilensprung, den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung, den sechsten definierten Satz von Ressourcenblöcken für den sechsten Zeilensprung und den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung umfassen;
    einen siebten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung, den dritten definierten Satz von Ressourcenblöcken für den dritten Zeilensprung, den vierten definierten Satz von Ressourcenblöcken für den vierten Zeilensprung, den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung, den achten definierten Satz von Ressourcenblöcken für den achten Zeilensprung und den neunten definierten Satz von Ressourcenblöcken für den neunten Zeilensprung umfassen; und
    einen achten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung, den dritten definierten Satz von Ressourcenblöcken für den dritten Zeilensprung, den vierten definierten Satz von Ressourcenblöcken für den vierten Zeilensprung, den fünften definierten Satz von Ressourcenblöcken für den fünften Zeilensprung, den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung, den achten definierten Satz von Ressourcenblöcken für den achten Zeilensprung, den neunten definierten Satz von Ressourcenblöcken für den neunten Zeilensprung und den zehnten definierten Satz von Ressourcenblöcken für den zehnten Zeilensprung umfassen.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Anzeige in der Uplink-Freigabe umfasst ist.
  10. Netzwerkknoten (14) für ein drahtloses Kommunikationsnetzwerk (10), wobei der Netzwerkknoten (14) ausgelegt ist zum:
    Signalisieren einer Anzeige eines oder mehrerer zugewiesener Sätze von Ressourcenblöcken, die einer drahtlosen Vorrichtung (12) zugewiesen sind, an die drahtlose Vorrichtung (12) durch eine Uplink-Freigabe zur Übertragung eines Uplink-Trägers in einem unlizenzierten Frequenzspektrum;
    wobei der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken einer oder mehrere von einer Mehrzahl von definierten Sätzen von Ressourcenblöcken sind, die einer Mehrzahl von Zeilensprüngen entsprechen, die jeweils über eine gesamte Bandbreite des Uplink-Trägers verteilt sind,
    dadurch gekennzeichnet, dass der Netzwerkknoten (14) ausgelegt ist zum:
    Signalisieren einer Tabelle von Strukturen von Ressourcenzuweisungen für alle Anzeigen eines oder mehrerer Sätze von Ressourcenblöcken, die der drahtlosen Vorrichtung zugewiesen werden können, mittels Funkressourcensteuerungssignalisierung an die drahtlose Vorrichtung, um eine Standardtabelle an der drahtlosen Vorrichtung zu ersetzen.
  11. Betriebsverfahren für eine drahtlose Vorrichtung (12) in einem drahtlosen Kommunikationsnetzwerk (10), umfassend:
    Empfangen einer Anzeige eines oder mehrerer zugewiesener Sätze von Ressourcenblöcken, die der drahtlosen Vorrichtung (12) zugewiesen sind, von einem Netzwerkknoten (14) durch eine Uplink-Freigabe zur Übertragung eines Uplink-Trägers in einem unlizenzierten Frequenzspektrum, wobei der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken einer oder mehrere von einer Mehrzahl von definierten Sätzen von Ressourcenblöcken sind, die einer Mehrzahl von Zeilensprüngen entsprechen, die jeweils über eine gesamte Bandbreite des Uplink-Trägers verteilt sind; und
    Durchführen von Uplink-Übertragung auf dem Uplink-Träger gemäß der Anzeige des einen oder der mehreren zugewiesenen Sätze von Ressourcenblöcken,
    dadurch gekennzeichnet, dass das Verfahren umfasst:
    Empfangen einer Tabelle von Strukturen von Ressourcenzuweisungen für alle Anzeigen eines oder mehrerer Sätze von Ressourcenblöcken, die der drahtlosen Vorrichtung zugewiesen werden können, vom Netzwerkknoten mittels Funkressourcensteuerungssignalisierung, um eine Standardtabelle an der drahtlosen Vorrichtung zu ersetzen.
  12. Verfahren nach Anspruch 11, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit folgenden Ressourcenblockindizes:
    a) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90; oder
    b) 1, 11, 21, 31, 41, 51, 61, 71, 81, 91; oder
    c) 2, 12, 22, 32, 42, 52, 62, 72, 82, 92; oder
    d) 3, 13, 23, 33, 43, 53, 63, 73, 83, 93; oder
    e) 4, 14, 24, 34, 44, 54, 64, 74, 84, 94; und
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit folgenden Ressourcenblockindizes:
    im Fall a) 5, 15, 25, 35, 45, 55, 65, 75, 85, 95;
    im Fall b) 6, 16, 26, 36, 46, 56, 66, 76, 86, 96;
    im Fall c) 7, 17, 27, 37, 47, 57, 67, 77, 87, 97;
    im Fall d) 8, 18, 28, 38, 48, 58, 68, 78, 88, 98;
    im Fall e) 9, 19, 29, 39, 49, 59, 69, 79, 89, 99.
  13. Verfahren nach Anspruch 11, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 0, 10, 20, 30, 40, 50, 60, 70, 80 und 90;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 5, 15, 25, 35, 45, 55, 65, 75, 85 und 95; und
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96.
  14. Verfahren nach Anspruch 11, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 2, 12, 22, 32, 42, 52, 62, 72, 82 und 92;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 3, 13, 23, 33, 43, 53, 63, 73, 83 und 93;
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96;
    einen fünften definierten Satz von Ressourcenblöcken für einen fünften Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 7, 17, 27, 37, 47, 57, 67, 77, 87 und 97; und
    einen sechsten definierten Satz von Ressourcenblöcken für einen sechsten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 8, 18, 28, 38, 48, 58, 68, 78, 88 und 98.
  15. Verfahren nach Anspruch 11, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken umfassen:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 2, 12, 22, 32, 42, 52, 62, 72, 82 und 92;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 3, 13, 23, 33, 43, 53, 63, 73, 83 und 93;
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 4, 14, 24, 34, 44, 54, 64, 74, 84 und 94;
    einen fünften definierten Satz von Ressourcenblöcken für einen fünften Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96;
    einen sechsten definierten Satz von Ressourcenblöcken für einen sechsten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 7, 17, 27, 37, 47, 57, 67, 77, 87 und 97;
    einen siebten definierten Satz von Ressourcenblöcken für einen siebten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 8, 18, 28, 38, 48, 58, 68, 78, 88 und 98; und
    einen achten definierten Satz von Ressourcenblöcken für einen achten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 9, 19, 29, 39, 49, 59, 69, 79, 89 und 99.
  16. Verfahren nach Anspruch 11, wobei die Anzeige einer von einer Mehrzahl von definierten möglichen Werten für die Anzeige ist, wobei die Mehrzahl von definierten möglichen Werten eine Mehrzahl von verschiedenen Werten umfasst, die jeweils verschiedene Kombinationen der Mehrzahl von definierten Sätzen von Ressourcenblöcken für die Mehrzahl von Zeilensprüngen anzeigen.
  17. Verfahren nach Anspruch 11, wobei die gesamte Bandbreite des Uplink-Trägers 100 Ressourcenblöcken mit Ressourcenblockindizes 0 bis 99 beginnend an einem Rand der gesamten Bandbreite des Uplink-Trägers entspricht, und die Mehrzahl von definierten Sätzen von Ressourcenblöcken umfasst:
    einen ersten definierten Satz von Ressourcenblöcken für einen ersten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 0, 10, 20, 30, 40, 50, 60, 70, 80 und 90;
    einen zweiten definierten Satz von Ressourcenblöcken für einen zweiten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 1, 11, 21, 31, 41, 51, 61, 71, 81 und 91;
    einen dritten definierten Satz von Ressourcenblöcken für einen dritten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 2, 12, 22, 32, 42, 52, 62, 72, 82 und 92;
    einen vierten definierten Satz von Ressourcenblöcken für einen vierten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 3, 13, 23, 33, 43, 53, 63, 73, 83 und 93;
    einen fünften definierten Satz von Ressourcenblöcken für einen fünften Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 4, 14, 24, 34, 44, 54, 64, 74, 84 und 94;
    einen sechsten definierten Satz von Ressourcenblöcken für einen sechsten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 5, 15, 25, 35, 45, 55, 65, 75, 85 und 95;
    einen siebten definierten Satz von Ressourcenblöcken für einen siebten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 6, 16, 26, 36, 46, 56, 66, 76, 86 und 96;
    einen achten definierten Satz von Ressourcenblöcken für einen achten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 7, 17, 27, 37, 47, 57, 67, 77, 87 und 97;
    einen neunten definierten Satz von Ressourcenblöcken für einen neunten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 8, 18, 28, 38, 48, 58, 68, 78, 88 und 98; und
    einen zehnten definierten Satz von Ressourcenblöcken für einen zehnten Zeilensprung bestehend aus Ressourcenblöcken mit den Ressourcenblockindizes 9, 19, 29, 39, 49, 59, 69, 79, 89 und 99.
  18. Verfahren nach Anspruch 17, wobei die Anzeige einer von einer Mehrzahl von definierten Werten ist, wobei die Mehrzahl von definierten Werten umfasst:
    einen ersten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den ersten definierten Satz von Ressourcenblöcken für den ersten Zeilensprung und den sechsten definierten Satz von Ressourcenblöcken für den sechsten Zeilensprung umfassen;
    einen zweiten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung und den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung umfassen;
    einen dritten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den dritten definierten Satz von Ressourcenblöcken für den dritten Zeilensprung und den achten definierten Satz von Ressourcenblöcken für den achten Zeilensprung umfassen;
    einen vierten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den vierten definierten Satz von Ressourcenblöcken für den vierten Zeilensprung und den neunten definierten Satz von Ressourcenblöcken für den neunten Zeilensprung umfassen;
    einen fünften Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den fünften definierten Satz von Ressourcenblöcken für den fünften Zeilensprung und den zehnten definierten Satz von Ressourcenblöcken für den zehnten Zeilensprung umfassen;
    einen sechsten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den ersten definierten Satz von Ressourcenblöcken für den ersten Zeilensprung, den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung, den sechsten definierten Satz von Ressourcenblöcken für den sechsten Zeilensprung und den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung umfassen;
    einen siebten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung, den dritten definierten Satz von Ressourcenblöcken für den dritten Zeilensprung, den vierten definierten Satz von Ressourcenblöcken für den vierten Zeilensprung, den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung, den achten definierten Satz von Ressourcenblöcken für den achten Zeilensprung und den neunten definierten Satz von Ressourcenblöcken für den neunten Zeilensprung umfassen; und
    einen achten Wert, der anzeigt, dass der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken den zweiten definierten Satz von Ressourcenblöcken für den zweiten Zeilensprung, den dritten definierten Satz von Ressourcenblöcken für den dritten Zeilensprung, den vierten definierten Satz von Ressourcenblöcken für den vierten Zeilensprung, den fünften definierten Satz von Ressourcenblöcken für den fünften Zeilensprung, den siebten definierten Satz von Ressourcenblöcken für den siebten Zeilensprung, den achten definierten Satz von Ressourcenblöcken für den achten Zeilensprung, den neunten definierten Satz von Ressourcenblöcken für den neunten Zeilensprung und den zehnten definierten Satz von Ressourcenblöcken für den zehnten Zeilensprung umfassen.
  19. Verfahren nach einem der Ansprüche 11 bis 18, wobei die Anzeige in der Uplink-Freigabe umfasst ist.
  20. Drahtlose Vorrichtung (12) für ein drahtloses Kommunikationsnetzwerk (10), wobei die drahtlose Vorrichtung (12) ausgelegt ist zum:
    Empfangen einer Anzeige eines oder mehrerer zugewiesener Sätze von Ressourcenblöcken, die der drahtlosen Vorrichtung (12) zugewiesen sind, von einem Netzwerkknoten (14) durch eine Uplink-Freigabe zur Übertragung eines Uplink-Trägers in einem unlizenzierten Frequenzspektrum, wobei der eine oder die mehreren zugewiesenen Sätze von Ressourcenblöcken einer oder mehrere einer Mehrzahl von definierten Sätzen von Ressourcenblöcken sind, die einer Mehrzahl von Zeilensprüngen entsprechen, die jeweils über eine gesamte Bandbreite des Uplink-Trägers verteilt sind; und
    Durchführen von Uplink-Übertragung auf dem Uplink-Träger gemäß der Anzeige des einen oder der mehreren zugewiesenen Sätze von Ressourcenblöcken,
    dadurch gekennzeichnet, dass die drahtlose Vorrichtung (12) ausgelegt ist zum:
    Empfangen einer Tabelle von Strukturen von Ressourcenzuweisungen für alle Anzeigen eines oder mehrerer Sätze von Ressourcenblöcken, die der drahtlosen Vorrichtung zugewiesen werden können, vom Netzwerkknoten mittels Funkressourcensteuerungssignalisierung, um eine Standardtabelle an der drahtlosen Vorrichtung zu ersetzen.
EP17727957.7A 2016-05-20 2017-05-19 Ressourcenzuweisung und signalisierung zur planung in einem unlizenzierten spektrum Active EP3459307B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662339722P 2016-05-20 2016-05-20
PCT/IB2017/052972 WO2017199219A1 (en) 2016-05-20 2017-05-19 Resource allocation and signaling methods for scheduling in unlicensed spectrum

Publications (2)

Publication Number Publication Date
EP3459307A1 EP3459307A1 (de) 2019-03-27
EP3459307B1 true EP3459307B1 (de) 2022-02-23

Family

ID=59009710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17727957.7A Active EP3459307B1 (de) 2016-05-20 2017-05-19 Ressourcenzuweisung und signalisierung zur planung in einem unlizenzierten spektrum

Country Status (3)

Country Link
US (1) US11147097B2 (de)
EP (1) EP3459307B1 (de)
WO (1) WO2017199219A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2905355T3 (es) * 2015-05-22 2022-04-08 Ntt Docomo Inc Dispositivo de usuario y estación base
CN107466110B (zh) * 2016-06-06 2022-06-07 北京三星通信技术研究有限公司 一种上行信号的发送方法、用户设备
CN109923928B (zh) * 2016-11-10 2023-02-21 索尼集团公司 通信终端、通信基站及其通信方法
US10536859B2 (en) 2017-08-15 2020-01-14 Charter Communications Operating, Llc Methods and apparatus for dynamic control and utilization of quasi-licensed wireless spectrum
US10340976B2 (en) 2017-10-16 2019-07-02 Charter Communications Operating, Llc Methods and apparatus for coordinated utilization of quasi-licensed wireless spectrum
US10492204B2 (en) 2017-11-15 2019-11-26 Charter Communications Operating, Llc Methods and apparatus for utilization of quasi-licensed wireless spectrum for IoT (Internet-of-Things) services
US10966073B2 (en) 2017-11-22 2021-03-30 Charter Communications Operating, Llc Apparatus and methods for premises device existence and capability determination
CN109842939B (zh) * 2017-11-27 2021-04-02 上海诺基亚贝尔股份有限公司 上行链路传输方法、设备和计算机可读介质
US11201704B2 (en) 2017-12-22 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Interlace hopping in unlicensed band
US10405192B2 (en) 2018-01-15 2019-09-03 Charter Communications Operating, Llc Methods and apparatus for allocation and reconciliation of quasi-licensed wireless spectrum across multiple entities
CN109451864B (zh) 2018-02-13 2023-11-24 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备
EP4120599B1 (de) * 2018-02-14 2024-04-03 LG Electronics Inc. Verfahren zum senden und empfangen von uplink-signalen zwischen einem endgerät und einer basisstation in einem drahtloskommunikationssystem zur unterstützung eines unlizenzierten frequenzbandes und vorrichtung zur unterstützung davon
CN110267350B (zh) * 2018-03-12 2022-09-20 中兴通讯股份有限公司 下行、上行传输方法、装置及基站、终端、存储介质
US10980025B2 (en) 2019-01-31 2021-04-13 Charter Communications Operating, Llc Methods and apparatus for frequency transition management in a quasi-licensed wireless system
US11129171B2 (en) 2019-02-27 2021-09-21 Charter Communications Operating, Llc Methods and apparatus for wireless signal maximization and management in a quasi-licensed wireless system
US10873958B1 (en) * 2019-05-10 2020-12-22 Sprint Spectrum L.P. Controlling PRB allocation for dual-connectivity service
US11374779B2 (en) 2019-06-30 2022-06-28 Charter Communications Operating, Llc Wireless enabled distributed data apparatus and methods
US11438771B2 (en) 2019-07-11 2022-09-06 Charter Communications Operating, Llc Apparatus and methods for heterogeneous coverage and use cases in a quasi-licensed wireless system
US11528748B2 (en) * 2019-09-11 2022-12-13 Charter Communications Operating, Llc Apparatus and methods for multicarrier unlicensed heterogeneous channel access
US11368552B2 (en) 2019-09-17 2022-06-21 Charter Communications Operating, Llc Methods and apparatus for supporting platform and application development and operation
US11317296B2 (en) 2019-10-02 2022-04-26 Charter Communications Operating, Llc Apparatus and methods for interference handling and switching operating frequencies for devices being supported by a wireless access node
US11026205B2 (en) 2019-10-23 2021-06-01 Charter Communications Operating, Llc Methods and apparatus for device registration in a quasi-licensed wireless system
US11581911B2 (en) 2019-10-28 2023-02-14 Charter Communications Operating, Llc Apparatus and methods for phase noise mitigation in wireless systems
US11457485B2 (en) 2019-11-06 2022-09-27 Charter Communications Operating, Llc Methods and apparatus for enhancing coverage in quasi-licensed wireless systems
US11363466B2 (en) 2020-01-22 2022-06-14 Charter Communications Operating, Llc Methods and apparatus for antenna optimization in a quasi-licensed wireless system
CN115399006A (zh) * 2020-04-30 2022-11-25 Oppo广东移动通信有限公司 多载波通信方法、终端设备和网络设备
US11483715B2 (en) 2020-07-06 2022-10-25 Charter Communications Operating, Llc Apparatus and methods for interference management in a quasi-licensed wireless system
US11877344B2 (en) 2020-12-14 2024-01-16 Charter Communications Operating, Llc Apparatus and methods for wireless coverage enhancement using technology detection
WO2023226038A1 (zh) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 一种通信系统中的资源分配方法/装置/设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306632B2 (en) * 2014-09-30 2019-05-28 Qualcomm Incorporated Techniques for transmitting channel usage beacon signals over an unlicensed radio frequency spectrum band
US10827491B2 (en) * 2014-10-07 2020-11-03 Qualcomm Incorporated Techniques for transmitting a sounding reference signal or scheduling request over an unlicensed radio frequency spectrum band
EP3270526B1 (de) * 2015-03-12 2020-08-12 LG Electronics Inc. Verfahren zur verringerung der übertragungsressource eines steuerkanals in kurzem tti und vorrichtung mit verwendung davon
KR102341820B1 (ko) * 2017-05-26 2021-12-21 삼성전자주식회사 무선 통신 시스템에서 채널 액세스를 위한 장치 및 방법

Also Published As

Publication number Publication date
US20190150182A1 (en) 2019-05-16
WO2017199219A1 (en) 2017-11-23
US11147097B2 (en) 2021-10-12
EP3459307A1 (de) 2019-03-27

Similar Documents

Publication Publication Date Title
EP3459307B1 (de) Ressourcenzuweisung und signalisierung zur planung in einem unlizenzierten spektrum
US10314020B2 (en) Systems and methods for uplink control information signaling design
US11770852B2 (en) Scheduling multiple subframes in unlicensed spectrum
US11924771B2 (en) Uplink power control on unlicensed carriers
EP3440887B1 (de) Systeme und verfahren zur selbstausschluss mit gemeinsamer nutzung von downlink- und uplink-übertragungsgelegenheit
CN105309037B (zh) 在经许可的频谱和未经许可的频谱上的并发的无线通信
US20190150196A1 (en) Lbt parameters for uplink in unlicensed spectrum
EP3448108B1 (de) Verfahren und vorrichtung zur übertragung von uplink-steuerinformationen
US20230123052A1 (en) Methods and Apparatuses for Determining a Placement and Duration of a Transient Period of an On/Off Time Mask for Uplink Transmission
WO2018073812A1 (en) Coverage extension frequency hopping scheme

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1471441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017053683

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1471441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017053683

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220519

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

26N No opposition filed

Effective date: 20221124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220519

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230529

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240526

Year of fee payment: 8