EP3452698B1 - Two dimensional reservoir pressure estimation with integrated static bottom hole pressure survey data and simulation modeling - Google Patents
Two dimensional reservoir pressure estimation with integrated static bottom hole pressure survey data and simulation modeling Download PDFInfo
- Publication number
- EP3452698B1 EP3452698B1 EP17722360.9A EP17722360A EP3452698B1 EP 3452698 B1 EP3452698 B1 EP 3452698B1 EP 17722360 A EP17722360 A EP 17722360A EP 3452698 B1 EP3452698 B1 EP 3452698B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reservoir
- pressure
- cells
- wells
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003068 static effect Effects 0.000 title description 6
- 238000005094 computer simulation Methods 0.000 title description 5
- 238000012545 processing Methods 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 43
- 239000004215 Carbon black (E152) Substances 0.000 claims description 15
- 229930195733 hydrocarbon Natural products 0.000 claims description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims description 15
- 238000009530 blood pressure measurement Methods 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 13
- 230000000644 propagated effect Effects 0.000 claims description 10
- 230000001902 propagating effect Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 5
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 22
- 238000004088 simulation Methods 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000010410 layer Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000013500 data storage Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
Definitions
- the present invention relates to determination or mapping of reservoir pressure over a region of interest in a subsurface reservoir with integration of static bottom-hole pressure survey data and simulation modeling.
- underground hydrocarbon reservoirs typically includes development and analysis of computer simulation models of the reservoir.
- These underground hydrocarbon reservoirs are typically complex rock formations which contain both a petroleum fluid mixture and water.
- the reservoir fluid content usually exists in two or more fluid phases.
- the petroleum mixture in reservoir fluids is produced by wells drilled into and completed in these rock formations.
- a computer reservoir model with realistic geological features and properties, appropriate distribution of in-situ fluids, as well as initial pressure conditions of the fluids also help in forecasting the optimal future oil and gas recovery from hydrocarbon reservoirs.
- Oil and gas companies have come to depend on such models as an important tool to enhance the ability to exploit a petroleum reserve.
- the reservoir is simulated in a computer and runs are made of estimated production for a range of times over the projected life of the reservoir.
- the reservoir is organized into a number of individual cells. Seismic data with increasing accuracy has permitted the cells to be on the order of 25 meters areal (x and y axis) intervals. For what are known as giant reservoirs, the number of cells is at least hundreds of millions, and reservoirs of what is known as giga-cell size (a billion cells or more) are encountered.
- An example reservoir of the type for which production data are simulated over the expected reservoir life as illustrated by the model M ( Figure 1 ) is usually one which is known to those in the art as a giant reservoir.
- a giant reservoir may be several miles in length, breadth and depth in its extent beneath the earth and might, for example, have a volume or size on the order of ninety-one billion square meters (three hundred billion cubic feet).
- the reservoir is organized into a matrix which corresponds to the three dimensional extent of the reservoir and is composed of a number of contiguous 3-dimensional cells. It is common for a reservoir matrix to contain millions of cells to obtain as accurate an indication of reservoir conditions as feasible. Actual reservoir models may have several millions of such cells.
- the actual number of wells may also be on the order of a thousand, with each well having a number of perforations into producing formations.
- each well having a number of perforations into producing formations.
- not all of the wells in a reservoir have what are known as permanent downhole pressure gauges in them to monitor reservoir at those locations. This however represents a pressure measurement at only one point in the huge volume of the reservoir.
- the reservoir may have a substantial extent in terms of subsurface breadth, width and depth, leading to a very large number of cells in the model.
- the data points are extremely scarce when compared to the reservoir volume.
- SBHP static bottom-hole pressure
- US2009276100 considered the closest prior art, describes systems, program product, and methods for providing real-time reservoir management of one or more reservoirs across one or more fields.
- US2012179436 describes simulation of a subterranean reservoir where the pore space of media or formation rock is multimodal, and the media may have imbedded multiple scales of fracture networks.
- US2015066373 describes three-dimensional reservoir pressure determination using real-time pressure data from downhole gauges.
- US3303704 describes hydrodynamic exploration in variable density environments.
- the present invention provides a new and improved computer implemented method of forming a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir, the reservoir having a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid.
- the computer processing receives pressure data from the wells based on measurements from the downhole pressure measurement systems, and performs simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir.
- Well cells at an uppermost perforation of each of the wells are populated with assigned pressure values from the received pressure data.
- Pressure values are propagated for the well cells of the wells below the uppermost perforations and for the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest.
- the three-dimensional grid pressure array is then collapsed or transformed to a two-dimensional layer of pressure values for the region of interest.
- the two-dimensional layer of pressure values for the region of interest are assembled in memory of the data processing system and an output image map is formed of the two-dimensional layer of pressure values for the region of interest.
- the present invention also provides a new and improved data processing system for forming a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir, the reservoir having a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid.
- the data processing system includes a processor which receives pressure data from the wells based on measurements from the downhole pressure measurement systems, and performs simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir.
- the processor then populates well cells at an uppermost perforation of each of the wells with assigned pressure values from the received pressure data, and propagates pressure values for the well cells of the wells below the uppermost perforations and to the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest.
- the processor then reduces the three-dimensional grid pressure array to a two-dimensional layer of pressure values for the region of interest, and assembles in memory of the data processing system the measure of two-dimensional layer of pressure values of the region of interest.
- the data processing system also includes a memory storing the two-dimensional layer of pressure values for the region of interest an output display forming a display of the two-dimensional layer of pressure values for the region of interest of the reservoir.
- the present invention also provides a new and improved data storage device which has stored in a computer readable medium non-transitory computer operable instructions for causing a data processing system to form a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir.
- the reservoir has a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid.
- the instructions stored in the data storage device cause the data processing system to receive pressure data from the wells based on measurements from the downhole pressure measurement systems, and perform simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir.
- the instructions also cause the data processing system to populate well cells at an uppermost perforation of each of the wells with assigned pressure values from the received pressure data, and then propagate pressure values for the well cells of the wells below the uppermost perforations and to the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest.
- the instructions further cause the data processing system to reduce the three-dimensional grid pressure array to a two-dimensional layer of pressure values for the region of interest, and assemble in memory of the data processing system the two-dimensional layer of pressure values for the region of interest, then form an output image map of the two-dimensional layer of pressure values for the region of interest.
- the letter M designates a simplified model of a portion of a subsurface hydrocarbon reservoir for which production results based on operating conditions and parameters are simulated over an estimated production life according to the present invention based on geological and fluid characterization information obtained for the cells of the reservoir. The results obtained are thus available and used for simulation of historical performance and for forecasting of production from the reservoir. Based on the results of such simulation, models such as those described and shown in U. S. Patent No. 7,526,418 are then formed and are available for evaluation and analysis. U. S. Patent No. 7,526,418 is owned by the assignee of the present invention.
- the physical size of the reservoir may be several miles in length, breadth and depth in its extent beneath the earth and might, for example, have a volume or size on the order of ninety-one billion square meters (three hundred billion cubic feet).
- the number of cells for a reservoir of this size is, for example, typically on the order of hundreds of millions.
- the actual number of wells may also be on the order of a thousand, with each well having a number of perforations into producing formations.
- a limited number of the wells in a reservoir have what are known as permanent downhole pressure gauges in them to monitor reservoir at those locations. This, however, represents a pressure measurement at only one point in the volume of the reservoir.
- the reservoir may have a substantial extent in terms of subsurface breadth, width and depth, leading to a very large number of cells in the model.
- the reservoir pressure data points are extremely scarce when compared to the reservoir volume.
- Figure 2 illustrates an example placement of a group G of wells W from a portion of a large reservoir R of the type and size exemplified by the model M of Figure 1 .
- the wells in the group G typically include production wells, injection wells and observation wells and are spaced over the extent of the reservoir.
- certain ones of the wells W represented by the group G are provided with permanent downhole measurement systems 20, which are known as PDHMS.
- the PDHMS 20 may, for example be of the type described in U. S. Patents Nos. 8,078,328 and 8,312,320 , commonly owned by the assignee of the present application.
- the PDHMS 20 include surface units which receive reservoir and well data in real time from downhole sensors 22.
- the downhole sensors 22 obtain data of interest, and for the purposes of the present invention the downhole sensors include downhole pressure and temperature sensors located in the wells W at selected depths and positions in the selected group G of wells among the much larger number of wells in the reservoir.
- the downhole sensors 22 furnish the collected real-time pressure and temperature data from the wells W in which they are installed, and a supervisory control and data acquisition (SCADA) system with a host computer or data processing system D ( Figure 4 ) collects and organizes the collected data form the wells in the group G.
- SCADA supervisory control and data acquisition
- the PDHMS 20 also includes sensors to record production and injection data for the injection wells in the group G, which data is also collected and organized by the supervisory control and data acquisition.
- a flow chart F displays a set of processor steps performed according to the methodology of the present invention in a data processing system D ( Figure 10 ) for three-dimensional reservoir pressure determination using real time pressure data from downhole gauges and reservoir simulation values determination to determine and form 2-dimensional isobaric pressure maps according to the present invention.
- the flowchart F indicates the basic computer processing sequence of the present invention and the computation taking place in the data processing system D for the 3-dimensional pressure determination reservoir simulation and map formation according to the present invention.
- Processing according to the flow chart F of Figure 3 is performed in conjunction with results of processing according to Applicant's co-pending, commonly owned U. S. Patent Application No. 14/014,658, filed August 30, 2013 , and in particular to the determination of an i-Reservoir calculated pressure P cal and the pressure gradients between cells of the reservoir model.
- certain input parameters are provided as indicated at step 30 by users interested in reservoir management according to the present invention.
- the input parameters are identifications of each of the following: Field, Reservoir(s), Pressure Survey Data (SBHP), and Target Date for which a two dimensional reservoir pressure estimation map is to be formed.
- step 32 input perforation and production/injection data obtained by the reservoir simulator R in the data processing system D are also provided and subjected to quality checking as shown at step 34.
- the reservoir simulation model is thus updated with the latest perforations and production/injection data for the wells of interest in the reservoir or field.
- step 36 pressure gradients between the reservoir model grid blocks or reservoir cells of the model M are determined according to the techniques of U. S. Patent Application No. 14/014,658 , mentioned above.
- the gradients between grid blocks are indicative of pressure changes in the reservoir due to geological heterogeneity, fluid dynamics, model constrains, and production/injection activities.
- step 38 the pressure gradients determined by reservoir simulator R as a result of step 36 are evaluated.
- a perforation file of the reservoir data in the reservoir data is parsed and stored.
- the perforation file is also sorted by depth for each well in the reservoir.
- Pressure survey or SBHP survey data is also parsed and stored during step 38, as is needed data, which include samples of SBHP and of perforation data from the reservoir simulation model output. Inactive cells which are to be excluded from processing computation are then identified during step 38 and then discarded along with their data content.
- step 39 pressure survey data obtained from the reservoir in the manner described above as illustrated schematically in Figure 2 is then used to determine reservoir pressure values at well top perforations of the wells 22 in the reservoir according to the techniques of U. S. Patent Application No. 14/014,658 , mentioned above. Then, in step 40, pressure values are propagated for each of the perforations of each of the wells 22.
- step 40 there are three methods of performing step 40 for propagation of pressure values based on pressure survey data to be propagated to the perforations in the reservoir model and further to the reservoir models cells away from one or more of the wells. They are: an All Perforation Method as indicated schematically at 42 in Figure 4 ; a Single Perforation Column Method shown schematically at 44 in Figure 5 ; and an All-Perforation Column Method shown at 46 in Figure 6 .
- the All Perforation processing 42 begins with step 48 where SBHP values are assigned to the first or uppermost perforation in a well.
- measures from the simulation model of pressure gradient between the perforated cells are used to propagate pressure calculation successively from the first or uppermost cells to last lowest cells in the well.
- All perforations thus used are control points used in step 52 to propagate pressure assignments to non-perforated cells according to suitable statistical methods as describe in U. S. Patent Application No. 14/014,658 .
- a suitable such method is that known as Distance-Weighted Moving Average or DWMA.
- FIG. 7A illustrates schematically lower performance of step 52, where pressure gradient measures for reservoir simulation are successively propagated from perforation 54 successively to lower perforations 58 and 60. Since inactive cells have, as described above, been excluded from processing, perforations 54, 58 and 60 are shown vertically adjacent each other in Figures 7A , 7B and 7C.
- Figure 7C illustrates schematically the assignment of pressure values to non-perforated cells 62 according to Distance-Weighted Moving Average or DWMA methods, as will be described.
- FIG. 8A illustrates schematically the Single-Perforation Column Method step 64 where average column pressure measures as shown at 72 are determined and a pressure correction factor is subtracted as indicated at 74 resulting in an i-Reservoir pressure as shown at 76 and 78 for different cells in a column 80.
- Figure 8B illustrates schematically step 82 where the resultant i-Reservoir calculated pressure value P cal is determined for the cells 84 of the grid of the simulation model M.
- the average column pressure is the ( P SBHP ).
- each of the i perforations of a well are considered for calculating pressure along the well and away from it.
- the perforations of a well are identified, and measures of pressure along the perforations are determined according to the Single-Perforation Column Method described above.
- step 92 pressure assignments are determined and propagated to the remained or non-perforated grid blocks according to suitable statistical methods as described in U. S. Patent Application No. 14/014,658 .
- the All-Perforation Column Method produces the same results as the Single-Perforation Column Method, as illustrated schematically in Figures 8A and 8B and described above.
- Figure 9 illustrates schematically the All-Perforation Column Method step 84 ( Figure 6 ) for a horizontal well model 93 having a plurality of well perforations 94 as shown.
- pressure assignments are determined and propagated to the remained or non-perforated grid blocks 95 ( Figure 9 ) of the horizontal well model 93 according to suitable statistical methods as described in U. S. Patent Application No. 14/014,658 , as indicated schematically at 96.
- step 40 for pressure computation along the well completions of a selected one of the three alternatives: All Perforation Method; Single-Perforation Column Method or All-Perforation Column Method in the manner described above, the reservoir model has been adjusted.
- the reservoir model M indicates propagated pressure measures which incorporate measured reservoir pressures as adjusted to indicate the effects of physics and geology on the reservoir and its fluids indicated by reservoir simulation processing.
- a user is able to specify one of several techniques for data filtering, such as the type known as a Distance Weighted Moving Average or DWMA.
- the DWMA filtering is a nonlinear filter, designed to be a robust version of a traditional moving average.
- DWMA filtering is then performed during step 98 to reduce the impact of outlier propagated pressure measures in the reservoir model data.
- the result of step 98, as indicated at 100 is a 3-dimensional pressure array of reservoir pressure data which is stored for further processing by the data processing system D.
- the 3-dimensional grid pressure array indicated at 100 is then in step 102 according to the present invention collapsed or changed in format from a 3-dimensional pressure array to 2-dimensional pressure of a region of interest (or entirety of the reservoir) in the reservoir M.
- step 102 There are a number of methods of collapsing the 3-dimensional grid to 2-dimensional maps, the simplest being simple averaging of the propagated pressure measures of the model adjacent the various specified map co-ordinates for 2-dimensional map being formed.
- Pore-Volume Weighted Averaging for step 102 is utilized for collapsing the 3-dimensional grid to a 2-dimensional map of the region of interest.
- Examples of such pore-volume weighted averaging to indicate average reservoir pressure for 2-dimensional isobaric maps are set forth below. Reference is made to the Nomenclature Section for an explanation of the physical measures indicated in the relationships of pore-volume weighted averaging expressed.
- a user engineer or analyst is able to select an area of interest in the reservoir model M for which an isobaric 2-dimensional pressure map is to be formed.
- the display is formed by the data processing system D during performance of step 104 of Figure 3 .
- an engineer can specify an area of interest using an n-sided polygon where all variety of isobaric maps can be generated as indicated at step 106 along with average reservoir pressure calculations.
- an example plot 140 represents a simulated 2-dimensional isobaric pressure map which could be obtained according to the present invention based on governing equations and relationships for a selected area of interest, and representing the interplay of principles of thermodynamics and geophysics formed according to the present invention.
- Example values of SBHP survey data and sample perforation location data according coordinates for perforations are set forth below: FIELD WELL NO. 10/1/2015 ABCD 1 1500 ABCD 2 1300 ABCD 3 2000 ABCD 4 1655 ABCD 5 1582 ABCD 6 1340 ABCD 7 1790 ABCD 8 2469 ABCD 9 4467 ABCD 10 1200 ABCD 11 1400 ABCD 12 4500 ABCD 13 3000 ABCD 14 1500 ABCD 15 4064 ABCD 16 3261 ABCD 17 2531 ABCD 18 5092 ABCD 19 2452 ABCD 20 2401 ABCD 21 2244 ABCD 22 2194
- the map plot 140 indicates by x, y co-ordinates the location in a reservoir model M of a selected area of interest and by contour lines 142, areas of common isobaric pressures at the location. Indications of pressures represented as the 2-dimensional isobaric pressure areas in the reservoir map 140 may be indicated by variations in color, as schematically shown by varying stipple patterns in areas of common pressure within the contour lines.
- the pressures displayed indicate reservoir pressures over the area of interest while also taking into account geological features, aerial and vertical heterogeneity, and numerical model constraints.
- the maps formed according to the present invention are not merely estimates of reservoir pressures based only on readings from pressure measurement instrumentation located at a limited number of wells in a reservoir.
- Figure 10A is a graphical depiction of an example specification of I, J, and K co-ordinates, having reference to Figure 10B for the orientation of the axial disposition of the co-ordinates. Set forth below are examples of numerical dimensions.
- the area of interest given model dimensions (I x J x K): 500 x 300 x 200, is bounded by 4-sided polygon indicated by these two corners (1, 1, 1) and (500, 300, 200) is basically the whole reservoir. Therefore the numerical co-ordinates of the user-specified region of interest in the reservoir model M are as set forth below in Table 1: Table 1 1 1 1 300 1 200 500 500 1 300 1 200 1 500 1 1 1 200 1 500 300 300 1 200
- the numerical co-ordinates of the user-specified region of interest in the reservoir model M are as set forth below in Table 2: Table 2 1 1 50 100 10 190 350 350 50 100 10 190 1 350 50 50 10 190 1 350 100 100 10 190
- the data processing system D includes a computer C having a processor 150 and memory 152 coupled to the processor 100 to store operating instructions, control information and database records therein.
- the data processing system D can be a computer of any conventional type of suitable processing capacity, such as a mainframe, a personal computer, laptop computer, or any other suitable processing apparatus. It should thus be understood that a number of commercially available data processing systems and types of computers may be used for this purpose.
- the data processing system also operates as a reservoir simulator R for simulation of performance and for forecasting of production from the reservoir M.
- the simulator may thus be of the type described and shown in U. S. Patent No. 7,526,418 .
- the computer C has a user interface 154 and an output data display 156 for displaying output data or records of three-dimensional reservoir pressure determination using real time pressure data from downhole gauges according to the present invention.
- the output display 156 includes components such as a printer and an output display screen capable of providing printed output information or visible displays in the form of graphs, data sheets, graphical images, data plots and the like as output records or images.
- the user interface 154 of data processing system D also includes a suitable user input device or input/output control unit 158 to provide a user access to control or access information and database records and operate the computer C.
- Data processing system D further includes a database 160 stored in computer memory, which may be internal memory 152, or an external, networked, or non-networked memory as indicated at 162 in an associated database server 164.
- the data processing system D includes program code 166 stored in non-transitory form in memory 152 of the computer C.
- the program code 166 according to the present invention is in the form of non-transitory computer operable instructions causing the data processor 100 to perform the computer implemented method of the present invention in the manner described above and illustrated in Figure 3 .
- program code 166 may be in the form of microcode, programs, routines, or symbolic computer operable languages that provide a specific set of ordered operations that control the functioning of the data processing system D and direct its operation.
- the instructions of program code 166 may be stored in non-transitory form in memory 152 of the computer C, or on computer diskette, magnetic tape, conventional hard disk drive, electronic read-only memory, optical storage device, or other appropriate non-transitory data storage device having a computer usable medium stored thereon.
- Program code 166 may also be contained on a data storage device such as server 164 as a non-transitory computer readable medium.
- SBHP Bottom-Hole Pressure
- pressure survey data measured at or near the depth of a producing formation interval data is entered and honored at the well locations with respect to the desired reference datum depth.
- SBHP pressures as control points
- the 3-dimensional pressure between the wells is estimated based on results of the numerical simulation by reservoir simulator R based on governing equations and relationships representing actual thermodynamics and geophysics, as well as the most updated geological realization of the subsurface reservoir illustrated as model M.
- the present invention reduces turnaround time for generation of maps and quality checking the data contents displayed in the maps and stored in the data processing system for evaluation of further processing or analysis.
- the integration between the SBHP pressure points and simulation pressure results in a 3D grid populated with estimated reservoir pressure based on appropriate reliability and conformance with statistical quality analysis and control methods (such as Distance-Weighted Moving Average or DWMA).
- the data processing system D then adjusts the pressure values to the datum reference depth, if needed.
- Several alternative methods are then available for collapsing the 3-dimensional pressure grid array into a single layer (2-dimensional) while also taking into account geological features, aerial and vertical heterogeneity, and numerical model constraints.
- the resultant product, a 2-dimensional isobaric map of a reservoir region of interest is the provided and made available to a variety of visualization and quality control tools for reservoir management engineers to utilize.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
- The present invention relates to determination or mapping of reservoir pressure over a region of interest in a subsurface reservoir with integration of static bottom-hole pressure survey data and simulation modeling.
- In the oil and gas industries, massive amounts of data are required to be processed for computerized simulation, modeling and analysis for exploration and production purposes. For example, the development of underground hydrocarbon reservoirs typically includes development and analysis of computer simulation models of the reservoir. These underground hydrocarbon reservoirs are typically complex rock formations which contain both a petroleum fluid mixture and water. The reservoir fluid content usually exists in two or more fluid phases. The petroleum mixture in reservoir fluids is produced by wells drilled into and completed in these rock formations.
- A computer reservoir model with realistic geological features and properties, appropriate distribution of in-situ fluids, as well as initial pressure conditions of the fluids also help in forecasting the optimal future oil and gas recovery from hydrocarbon reservoirs. Oil and gas companies have come to depend on such models as an important tool to enhance the ability to exploit a petroleum reserve.
- It is desirable to be able to monitor pressure conditions in such a reservoir so that production is optimized. Adjustments can be made in production or injection rates to remove undesirable high or low pressure regions that might be observed from such monitoring. For reservoir planning purposes, the reservoir is simulated in a computer and runs are made of estimated production for a range of times over the projected life of the reservoir.
- In simulation models, the reservoir is organized into a number of individual cells. Seismic data with increasing accuracy has permitted the cells to be on the order of 25 meters areal (x and y axis) intervals. For what are known as giant reservoirs, the number of cells is at least hundreds of millions, and reservoirs of what is known as giga-cell size (a billion cells or more) are encountered.
- An example reservoir of the type for which production data are simulated over the expected reservoir life as illustrated by the model M (
Figure 1 ) is usually one which is known to those in the art as a giant reservoir. A giant reservoir may be several miles in length, breadth and depth in its extent beneath the earth and might, for example, have a volume or size on the order of ninety-one billion square meters (three hundred billion cubic feet). - The reservoir is organized into a matrix which corresponds to the three dimensional extent of the reservoir and is composed of a number of contiguous 3-dimensional cells. It is common for a reservoir matrix to contain millions of cells to obtain as accurate an indication of reservoir conditions as feasible. Actual reservoir models may have several millions of such cells.
- For reservoirs of this type, the actual number of wells may also be on the order of a thousand, with each well having a number of perforations into producing formations. Typically, not all of the wells in a reservoir have what are known as permanent downhole pressure gauges in them to monitor reservoir at those locations. This however represents a pressure measurement at only one point in the huge volume of the reservoir.
- Thus, only a relatively small number of wells in a reservoir have such pressure gauges and as mentioned, the reservoir may have a substantial extent in terms of subsurface breadth, width and depth, leading to a very large number of cells in the model. The data points are extremely scarce when compared to the reservoir volume.
- Therefore, the conditions and spatial quantity under which the actual well pressure is measured are completely different than the reservoir pressure which reservoir engineers are interested in for reservoir production optimization. Pressure measurements at the limited number of wells having gauges in the reservoir do not provide an accurate indication of reservoir pressure conditions of interest over the full 3-dimensional extent of the reservoir.
- So far as is known, in previous isobaric mapping techniques, the well's static bottom-hole pressure (SBHP) readings were used to generate isobaric maps. Each SBHP reading was a control point based on which the isobaric map was generated. The interpolation between the control points was a simple linear interpolation that did not account for geological features or for reservoir dynamics during production.
-
US2009276100 , considered the closest prior art, describes systems, program product, and methods for providing real-time reservoir management of one or more reservoirs across one or more fields.US2012179436 describes simulation of a subterranean reservoir where the pore space of media or formation rock is multimodal, and the media may have imbedded multiple scales of fracture networks.US2015066373 describes three-dimensional reservoir pressure determination using real-time pressure data from downhole gauges.US3303704 describes hydrodynamic exploration in variable density environments. - Briefly, the present invention provides a new and improved computer implemented method of forming a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir, the reservoir having a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid.
- The computer processing receives pressure data from the wells based on measurements from the downhole pressure measurement systems, and performs simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir. Well cells at an uppermost perforation of each of the wells are populated with assigned pressure values from the received pressure data. Pressure values are propagated for the well cells of the wells below the uppermost perforations and for the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest. The three-dimensional grid pressure array is then collapsed or transformed to a two-dimensional layer of pressure values for the region of interest. The two-dimensional layer of pressure values for the region of interest are assembled in memory of the data processing system and an output image map is formed of the two-dimensional layer of pressure values for the region of interest.
- The present invention also provides a new and improved data processing system for forming a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir, the reservoir having a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid.
- The data processing system includes a processor which receives pressure data from the wells based on measurements from the downhole pressure measurement systems, and performs simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir. The processor then populates well cells at an uppermost perforation of each of the wells with assigned pressure values from the received pressure data, and propagates pressure values for the well cells of the wells below the uppermost perforations and to the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest. The processor then reduces the three-dimensional grid pressure array to a two-dimensional layer of pressure values for the region of interest, and assembles in memory of the data processing system the measure of two-dimensional layer of pressure values of the region of interest. The data processing system also includes a memory storing the two-dimensional layer of pressure values for the region of interest an output display forming a display of the two-dimensional layer of pressure values for the region of interest of the reservoir.
- The present invention also provides a new and improved data storage device which has stored in a computer readable medium non-transitory computer operable instructions for causing a data processing system to form a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir. The reservoir has a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid.
- The instructions stored in the data storage device cause the data processing system to receive pressure data from the wells based on measurements from the downhole pressure measurement systems, and perform simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir. The instructions also cause the data processing system to populate well cells at an uppermost perforation of each of the wells with assigned pressure values from the received pressure data, and then propagate pressure values for the well cells of the wells below the uppermost perforations and to the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest. The instructions further cause the data processing system to reduce the three-dimensional grid pressure array to a two-dimensional layer of pressure values for the region of interest, and assemble in memory of the data processing system the two-dimensional layer of pressure values for the region of interest, then form an output image map of the two-dimensional layer of pressure values for the region of interest.
-
-
Figure 1 is a schematic diagram of a model of a subsurface hydrocarbon reservoir. -
Figure 2 is a schematic diagram showing a pressure downhole measuring system installed in a selected number of wells in the reservoir ofFigure 1 . -
Figure 3 is a functional block diagram of a set of data processing steps performed in a data processing system for two dimensional reservoir pressure estimation with integrated static bottom-hole pressure survey data and simulation modeling according to the present invention. -
Figures 4, 5 and6 are functional block diagrams of a set of data processing steps performed in connection with processing according toFigure 3 . -
Figures 7A ,7B and 7C are schematic diagrams of grid cells of a subsurface reservoir model illustrative of the workflow according toFigures 3 and4 for propagating pressure determinations to each perforation in a vertical well. -
Figures 8A and8B are schematic diagrams of grid cells of a subsurface reservoir model illustrative of the workflow according toFigures 3 and5 for propagating pressure determinations for a single perforation in a vertical well to other grid cells in the reservoir. -
Figure 9 is a schematic diagram of a subsurface reservoir model illustrative of the workflow according toFigures 3 and6 for propagating pressure determinations for a single perforation in a horizontal well to other grid cells in the reservoir. -
Figures 10A and 10B are schematic diagrams illustrating notations for directions and for grid nomenclature in a reservoir model. -
Figure 11 is a schematic block diagram of a data processing system for two dimensional reservoir pressure estimation with integrated static bottom-hole pressure survey data and simulation modeling according to the present invention. -
Figure 12 is an example simulated plot of a 2-dimensional isobaric pressure map based on governing reservoir actual thermodynamics and geophysics relationships according to the present invention. - In the drawings, the letter M designates a simplified model of a portion of a subsurface hydrocarbon reservoir for which production results based on operating conditions and parameters are simulated over an estimated production life according to the present invention based on geological and fluid characterization information obtained for the cells of the reservoir. The results obtained are thus available and used for simulation of historical performance and for forecasting of production from the reservoir. Based on the results of such simulation, models such as those described and shown in
U. S. Patent No. 7,526,418 are then formed and are available for evaluation and analysis.U. S. Patent No. 7,526,418 is owned by the assignee of the present invention. - For a giant reservoir, the physical size of the reservoir may be several miles in length, breadth and depth in its extent beneath the earth and might, for example, have a volume or size on the order of ninety-one billion square meters (three hundred billion cubic feet). The number of cells for a reservoir of this size is, for example, typically on the order of hundreds of millions.
- For reservoirs of this type, the actual number of wells may also be on the order of a thousand, with each well having a number of perforations into producing formations. Typically, a limited number of the wells in a reservoir have what are known as permanent downhole pressure gauges in them to monitor reservoir at those locations. This, however, represents a pressure measurement at only one point in the volume of the reservoir.
- Thus, only key wells in a reservoir have such pressure gauges and as mentioned, the reservoir may have a substantial extent in terms of subsurface breadth, width and depth, leading to a very large number of cells in the model. The reservoir pressure data points are extremely scarce when compared to the reservoir volume.
-
Figure 2 illustrates an example placement of a group G of wells W from a portion of a large reservoir R of the type and size exemplified by the model M ofFigure 1 . The wells in the group G typically include production wells, injection wells and observation wells and are spaced over the extent of the reservoir. As indicated, certain ones of the wells W represented by the group G are provided with permanentdownhole measurement systems 20, which are known as PDHMS. ThePDHMS 20 may, for example be of the type described inU. S. Patents Nos. 8,078,328 and8,312,320 , commonly owned by the assignee of the present application. - The
PDHMS 20 include surface units which receive reservoir and well data in real time fromdownhole sensors 22. Thedownhole sensors 22 obtain data of interest, and for the purposes of the present invention the downhole sensors include downhole pressure and temperature sensors located in the wells W at selected depths and positions in the selected group G of wells among the much larger number of wells in the reservoir. - The
downhole sensors 22 furnish the collected real-time pressure and temperature data from the wells W in which they are installed, and a supervisory control and data acquisition (SCADA) system with a host computer or data processing system D (Figure 4 ) collects and organizes the collected data form the wells in the group G. ThePDHMS 20 also includes sensors to record production and injection data for the injection wells in the group G, which data is also collected and organized by the supervisory control and data acquisition. -
- Pav
- Average reservoir pressure
- Pcolav
- Average reservoir pressure for a column of grid blocks
- PSBHP
- Static Bottom-hole pressure
- ΔPcf
- Pressure correction factor for a column of cells
- Pcal
- i-Reservoir calculated pressure
- (PVi)
- Pore volume of cell or grid block i, where i=1, 2.....n
- (BV)i
- Bulk Volume of cell or grid block i, where i=1,2.....n
- PVi = (BV)I ∗ Øi
- (Gridblock Bulk Volume) * porosity of grid block i where i=1,2.....n
- (Sw)i
- Water saturation
- (1 - Sw)i
- Hydrocarbon Saturation at grid block i where i=1,2.....n
- I
- Grid block index in x-direction with reference to a layer in the 3D reservoir grid
- J
- Grid block index in y-direction with reference to a layer in the 3D reservoir grid
- K
- Grid block index in z-direction with reference to a column in the 3D reservoir grid
-
- C:
- column
- cf:
- correction factor
- cal:
- calculated
- colav:
- column average
- e:
- grid block index
- av:
- average
- i:
- grid block index
- s:
- start
- w:
- water
- HC:
- hydrocarbon
- avHC:
- hydrocarbon weighted average
- avWC:
- average pressure above contacts (free phase table)
- avHCWC:
- hydrocarbon average above contacts (free phase table)
- Turning to
Figure 3 , a flow chart F displays a set of processor steps performed according to the methodology of the present invention in a data processing system D (Figure 10 ) for three-dimensional reservoir pressure determination using real time pressure data from downhole gauges and reservoir simulation values determination to determine and form 2-dimensional isobaric pressure maps according to the present invention. The flowchart F indicates the basic computer processing sequence of the present invention and the computation taking place in the data processing system D for the 3-dimensional pressure determination reservoir simulation and map formation according to the present invention. - Processing according to the flow chart F of
Figure 3 is performed in conjunction with results of processing according to Applicant's co-pending, commonly ownedU. S. Patent Application No. 14/014,658, filed August 30, 2013 , and in particular to the determination of an i-Reservoir calculated pressure Pcal and the pressure gradients between cells of the reservoir model. In connection with the processing according to the flow chart F, certain input parameters are provided as indicated atstep 30 by users interested in reservoir management according to the present invention. The input parameters are identifications of each of the following: Field, Reservoir(s), Pressure Survey Data (SBHP), and Target Date for which a two dimensional reservoir pressure estimation map is to be formed. - As shown at
step 32, input perforation and production/injection data obtained by the reservoir simulator R in the data processing system D are also provided and subjected to quality checking as shown atstep 34. The reservoir simulation model is thus updated with the latest perforations and production/injection data for the wells of interest in the reservoir or field. - The reservoir simulation is then performed by reservoir simulator R (
Figure 10 ) duringstep 36 with the quality-checked and verified updates to perforation and production/injection data which have been updated duringstep 34 to the date of interest. Duringstep 36, pressure gradients between the reservoir model grid blocks or reservoir cells of the model M are determined according to the techniques ofU. S. Patent Application No. 14/014,658 , mentioned above. The gradients between grid blocks are indicative of pressure changes in the reservoir due to geological heterogeneity, fluid dynamics, model constrains, and production/injection activities. - During
step 38, the pressure gradients determined by reservoir simulator R as a result ofstep 36 are evaluated. In the evaluation duringstep 38, a perforation file of the reservoir data in the reservoir data is parsed and stored. The perforation file is also sorted by depth for each well in the reservoir. Pressure survey or SBHP survey data is also parsed and stored duringstep 38, as is needed data, which include samples of SBHP and of perforation data from the reservoir simulation model output. Inactive cells which are to be excluded from processing computation are then identified duringstep 38 and then discarded along with their data content. - In
step 39, pressure survey data obtained from the reservoir in the manner described above as illustrated schematically inFigure 2 is then used to determine reservoir pressure values at well top perforations of thewells 22 in the reservoir according to the techniques ofU. S. Patent Application No. 14/014,658 , mentioned above. Then, instep 40, pressure values are propagated for each of the perforations of each of thewells 22. - According to the present invention, there are three methods of performing
step 40 for propagation of pressure values based on pressure survey data to be propagated to the perforations in the reservoir model and further to the reservoir models cells away from one or more of the wells. They are: an All Perforation Method as indicated schematically at 42 inFigure 4 ; a Single Perforation Column Method shown schematically at 44 inFigure 5 ; and an All-Perforation Column Method shown at 46 inFigure 6 . - As shown in
Figure 4 , the All Perforation processing 42 begins withstep 48 where SBHP values are assigned to the first or uppermost perforation in a well. Duringstep 50, measures from the simulation model of pressure gradient between the perforated cells are used to propagate pressure calculation successively from the first or uppermost cells to last lowest cells in the well. All perforations thus used are control points used instep 52 to propagate pressure assignments to non-perforated cells according to suitable statistical methods as describe inU. S. Patent Application No. 14/014,658 . A suitable such method is that known as Distance-Weighted Moving Average or DWMA. - As shown schematically in
Figure 7A , during AllPerforation processing step 42 SBHP values are assigned to the first oruppermost perforation 54 in an examplevertical well 56.Figure 7B illustrates schematically lower performance ofstep 52, where pressure gradient measures for reservoir simulation are successively propagated fromperforation 54 successively tolower perforations perforations Figures 7A ,7B and 7C. Figure 7C illustrates schematically the assignment of pressure values tonon-perforated cells 62 according to Distance-Weighted Moving Average or DWMA methods, as will be described. - In the Single-Perforation Column Method shown at 64 (
Figure 5 ), only a first perforation of 56 well is considered as the pivot for calculating pressure along the well and away from it. As shown inFigure 5 , the All Perforation processing 64 begins withstep 66 where after the first perforation is identified and the column of cells where, the first perforation is located is marked, the average column pressure (Pcolav ) is determined from the simulation model: -
-
- In this manner pressure for each of the grid blocks is determined.
Figures 8A illustrates schematically the Single-PerforationColumn Method step 64 where average column pressure measures as shown at 72 are determined and a pressure correction factor is subtracted as indicated at 74 resulting in an i-Reservoir pressure as shown at 76 and 78 for different cells in acolumn 80. -
Figure 8B illustrates schematically step 82 where the resultant i-Reservoir calculated pressure value Pcal is determined for thecells 84 of the grid of the simulation model M. As a result, the average column pressure is the (PSBHP ). - For the All-Perforation Column Method as shown at 84 (
Figure 6 ), each of the i perforations of a well are considered for calculating pressure along the well and away from it. The perforations of a well are identified, and measures of pressure along the perforations are determined according to the Single-Perforation Column Method described above. As shown inFigure 6 , the All Perforation processing begins withstep 86, where the average column pressure (Pcolavi ) is determined for the perforations of each column i from the simulation model: -
-
- Next, in
step 92, pressure assignments are determined and propagated to the remained or non-perforated grid blocks according to suitable statistical methods as described inU. S. Patent Application No. 14/014,658 . For a vertical well, the All-Perforation Column Method produces the same results as the Single-Perforation Column Method, as illustrated schematically inFigures 8A and8B and described above. -
Figure 9 illustrates schematically the All-Perforation Column Method step 84 (Figure 6 ) for ahorizontal well model 93 having a plurality ofwell perforations 94 as shown. Instep 92 of the All-Perforation Column Method, pressure assignments are determined and propagated to the remained or non-perforated grid blocks 95 (Figure 9 ) of thehorizontal well model 93 according to suitable statistical methods as described inU. S. Patent Application No. 14/014,658 , as indicated schematically at 96. - After performance of step 40 (
Figure 3 ) for pressure computation along the well completions of a selected one of the three alternatives: All Perforation Method; Single-Perforation Column Method or All-Perforation Column Method in the manner described above, the reservoir model has been adjusted. The reservoir model M indicates propagated pressure measures which incorporate measured reservoir pressures as adjusted to indicate the effects of physics and geology on the reservoir and its fluids indicated by reservoir simulation processing. - During step 97 (
Figure 3 ), a user is able to specify one of several techniques for data filtering, such as the type known as a Distance Weighted Moving Average or DWMA. The DWMA filtering is a nonlinear filter, designed to be a robust version of a traditional moving average. DWMA filtering is then performed duringstep 98 to reduce the impact of outlier propagated pressure measures in the reservoir model data. The result ofstep 98, as indicated at 100 is a 3-dimensional pressure array of reservoir pressure data which is stored for further processing by the data processing system D. - The 3-dimensional grid pressure array indicated at 100 is then in
step 102 according to the present invention collapsed or changed in format from a 3-dimensional pressure array to 2-dimensional pressure of a region of interest (or entirety of the reservoir) in the reservoir M. There are a number of methods of collapsing the 3-dimensional grid to 2-dimensional maps, the simplest being simple averaging of the propagated pressure measures of the model adjacent the various specified map co-ordinates for 2-dimensional map being formed. - Preferably, however, one of several forms of Pore-Volume Weighted Averaging for
step 102 is utilized for collapsing the 3-dimensional grid to a 2-dimensional map of the region of interest. Examples of such pore-volume weighted averaging to indicate average reservoir pressure for 2-dimensional isobaric maps are set forth below. Reference is made to the Nomenclature Section for an explanation of the physical measures indicated in the relationships of pore-volume weighted averaging expressed. -
-
-
-
- As mentioned a user engineer or analyst is able to select an area of interest in the reservoir model M for which an isobaric 2-dimensional pressure map is to be formed. The display is formed by the data processing system D during performance of
step 104 ofFigure 3 . For this processing step, an engineer can specify an area of interest using an n-sided polygon where all variety of isobaric maps can be generated as indicated atstep 106 along with average reservoir pressure calculations. - As shown in
Figure 12 , anexample plot 140 represents a simulated 2-dimensional isobaric pressure map which could be obtained according to the present invention based on governing equations and relationships for a selected area of interest, and representing the interplay of principles of thermodynamics and geophysics formed according to the present invention. - Example values of SBHP survey data and sample perforation location data according coordinates for perforations are set forth below:
FIELD WELL NO. 10/1/2015 ABCD 1 1500 ABCD 2 1300 ABCD 3 2000 ABCD 4 1655 ABCD 5 1582 ABCD 6 1340 ABCD 7 1790 ABCD 8 2469 ABCD 9 4467 ABCD 10 1200 ABCD 11 1400 ABCD 12 4500 ABCD 13 3000 ABCD 14 1500 ABCD 15 4064 ABCD 16 3261 ABCD 17 2531 ABCD 18 5092 ABCD 19 2452 ABCD 20 2401 ABCD 21 2244 ABCD 22 2194 - WELL_Name=ABCD0001
- PERF I=301 J=71 K=51 Rf=1.0 CD='Z' Skin=1.0/ MDEPTH=3873.5
- PERF I=301 J=71 K=52 Rf=1.0 CD='Z' Skin=2.0 / MDEPTH=3880.5
- PERF I=301 J=71 K=53 Rf=1.0 CD='Z' Skin=1.0 / MDEPTH=3887.5
- PERF I=301 J=71 K=54 Rf=1.0 CD='Z' Skin=0.0 / MDEPTH=3898.5
- PERF I=301 J=71 K=55 Rf=1.0 CD='Z' Skin=0.0 / MDEPTH=3913.5
- PERF I=301 J=71 K=56 Rf=1.0 CD='Z' Skin=0.0/ MDEPTH=3928.5
- PERF I=301 J=71 K=57 Rf=1.0 CD='Z' Skin=1.0 / MDEPTH=3941.5
- WELL_Name=ABCD0002
- PERF I=101 J=71 K=41 Rf=1.0 CD='Z' Skin=0.0 / MDEPTH=4873.0
- PERF I=101 J=71 K=42 Rf=1.1 CD='Y' Skin=0.0 / MDEPTH=4880.0
- PERF I=101 J=71 K=43 Rf=1.0 CD='Z' Skin=0.0 / MDEPTH=4887.0
- PERF I=101 J=71 K=44 Rf=1.0 CD='Z' Skin=0.0 / MDEPTH=4898.0
- PERF I=101 J=71 K=45 Rf=1.2 CD='Z' Skin=0.0 / MDEPTH=4913.0
- PERF I=101 J=71 K=46 Rf=1.0 CD='Y' Skin=0.0 / MDEPTH=4928.0
- PERF I=101J=71 K=47 Rf=1.3 CD='Z' Skin=0.0 / MDEPTH=4941.0
- WELL_Name=ABCD0005
- PERF I=20 J=113 K=83 Rf=1.0CD='Z' Skin=0.0/ MDEPTH=3890.50
- PERF I=21 J=113 K=83 Rf=1.1 CD='X' Skin=0.0 / MDEPTH=3900.50
- PERF I=21 J=113 K=84 Rf=1.0 CD='Z' Skin=0.0/ MDEPTH=3887.50
- PERF I=22 J=113 K=81 Rf=1.0 CD='X' Skin=3.0 / MDEPTH=3887.50
- PERF I=30 J=113 K=81 Rf=1.2 CD='X' Skin=0.0 / MDEPTH=3887.50
- PERF I=31 J=113 K=83 Rf=1.0CD='X' Skin=0.0/ MDEPTH=3887.50
- PERF I=32 J=113 K=83 Rf=1.3 CD='Z' Skin=0.0/ MDEPTH=3890.50
- As can be seen in
Figure 12 , themap plot 140 indicates by x, y co-ordinates the location in a reservoir model M of a selected area of interest and bycontour lines 142, areas of common isobaric pressures at the location. Indications of pressures represented as the 2-dimensional isobaric pressure areas in thereservoir map 140 may be indicated by variations in color, as schematically shown by varying stipple patterns in areas of common pressure within the contour lines. The pressures displayed indicate reservoir pressures over the area of interest while also taking into account geological features, aerial and vertical heterogeneity, and numerical model constraints. The maps formed according to the present invention are not merely estimates of reservoir pressures based only on readings from pressure measurement instrumentation located at a limited number of wells in a reservoir. -
Figure 10A is a graphical depiction of an example specification of I, J, and K co-ordinates, having reference toFigure 10B for the orientation of the axial disposition of the co-ordinates. Set forth below are examples of numerical dimensions. - The area of interest, given model dimensions (I x J x K): 500 x 300 x 200, is bounded by 4-sided polygon indicated by these two corners (1, 1, 1) and (500, 300, 200) is basically the whole reservoir. Therefore the numerical co-ordinates of the user-specified region of interest in the reservoir model M are as set forth below in Table 1:
Table 1 1 1 1 300 1 200 500 500 1 300 1 200 1 500 1 1 1 200 1 500 300 300 1 200 - The area of interest, given model dimensions (I x J x K): 500 x 300 x 200 is bounded by corners (1, 50, 10) and (350, 100, 190). The numerical co-ordinates of the user-specified region of interest in the reservoir model M are as set forth below in Table 2:
Table 2 1 1 50 100 10 190 350 350 50 100 10 190 1 350 50 50 10 190 1 350 100 100 10 190 - As illustrated in
Figure 11 , the data processing system D according to the present invention includes a computer C having aprocessor 150 andmemory 152 coupled to theprocessor 100 to store operating instructions, control information and database records therein. The data processing system D can be a computer of any conventional type of suitable processing capacity, such as a mainframe, a personal computer, laptop computer, or any other suitable processing apparatus. It should thus be understood that a number of commercially available data processing systems and types of computers may be used for this purpose. As indicated, the data processing system also operates as a reservoir simulator R for simulation of performance and for forecasting of production from the reservoir M. The simulator may thus be of the type described and shown inU. S. Patent No. 7,526,418 . - The computer C has a
user interface 154 and an output data display 156 for displaying output data or records of three-dimensional reservoir pressure determination using real time pressure data from downhole gauges according to the present invention. The output display 156 includes components such as a printer and an output display screen capable of providing printed output information or visible displays in the form of graphs, data sheets, graphical images, data plots and the like as output records or images. - The
user interface 154 of data processing system D also includes a suitable user input device or input/output control unit 158 to provide a user access to control or access information and database records and operate the computer C. Data processing system D further includes a database 160 stored in computer memory, which may beinternal memory 152, or an external, networked, or non-networked memory as indicated at 162 in an associateddatabase server 164. - The data processing system D includes
program code 166 stored in non-transitory form inmemory 152 of the computer C. Theprogram code 166 according to the present invention is in the form of non-transitory computer operable instructions causing thedata processor 100 to perform the computer implemented method of the present invention in the manner described above and illustrated inFigure 3 . - It should be noted that
program code 166 may be in the form of microcode, programs, routines, or symbolic computer operable languages that provide a specific set of ordered operations that control the functioning of the data processing system D and direct its operation. The instructions ofprogram code 166 may be stored in non-transitory form inmemory 152 of the computer C, or on computer diskette, magnetic tape, conventional hard disk drive, electronic read-only memory, optical storage device, or other appropriate non-transitory data storage device having a computer usable medium stored thereon.Program code 166 may also be contained on a data storage device such asserver 164 as a non-transitory computer readable medium. - With the present invention, Bottom-Hole Pressure (SBHP) or pressure survey data measured at or near the depth of a producing formation interval data is entered and honored at the well locations with respect to the desired reference datum depth. Establishing the wells SBHP pressures as control points, the 3-dimensional pressure between the wells is estimated based on results of the numerical simulation by reservoir simulator R based on governing equations and relationships representing actual thermodynamics and geophysics, as well as the most updated geological realization of the subsurface reservoir illustrated as model M. The present invention reduces turnaround time for generation of maps and quality checking the data contents displayed in the maps and stored in the data processing system for evaluation of further processing or analysis.
- The integration between the SBHP pressure points and simulation pressure results in a 3D grid populated with estimated reservoir pressure based on appropriate reliability and conformance with statistical quality analysis and control methods (such as Distance-Weighted Moving Average or DWMA). The data processing system D then adjusts the pressure values to the datum reference depth, if needed. Several alternative methods are then available for collapsing the 3-dimensional pressure grid array into a single layer (2-dimensional) while also taking into account geological features, aerial and vertical heterogeneity, and numerical model constraints. The resultant product, a 2-dimensional isobaric map of a reservoir region of interest is the provided and made available to a variety of visualization and quality control tools for reservoir management engineers to utilize.
- The invention has been sufficiently described so that a person with average knowledge in the matter may reproduce and obtain the results mentioned in the invention herein Nonetheless, any skilled person in the field of technique, subject of the invention herein, may carry out modifications not described in the request herein, to apply these modifications to a determined methodology, or in the performance of the same, requires the claimed matter in the following claims; such techniques and procedures shall be covered within the scope of the invention.
- It should be noted and understood that there can be improvements and modifications made of the present invention described in detail above without departing from the scope of the invention as set forth in the accompanying claims.
Claims (7)
- A computer implemented method of forming a two-dimensional pressure map with a data processing system of reservoir pressures in a region of interest in a subsurface hydrocarbon producing reservoir partitioned for modeling purposes into a reservoir model partitioned as an array of a grid of cells extending over the three dimensions of the reservoir, the reservoir having a plurality of wells with perforations for fluid passage from the reservoir into the wells, with selected ones of the wells having downhole pressure measurement systems installed therein, the array of a grid of cells of the reservoir model comprising well cells at the locations of the wells and reservoir cells at the remaining cells of the grid, the method comprising the computer processing steps of:(a) obtaining, by way of a downhole pressure measurement system (20), pressure data (30) for the wells, the downhole pressure measurement system comprising downhole sensors (22) installed in a subset of the wells (G), the pressure data for the wells comprising pressure measurements collected from downhole sensors installed in the subset of the wells;(b) performing simulated pressure calculations on a reservoir simulator in the data processing system for the cells in an array of well cells for an area of interest of the reservoir (36);(c) populating well cells at an uppermost perforation of each of the wells with assigned pressure values from the received pressure data (39);(d) propagating pressure values for the well cells of the wells below the uppermost perforations and to the reservoir cells of the area of interest to form a three-dimensional grid pressure array for the area of interest (40);(e) reducing the three-dimensional grid pressure array to a two-dimensional layer of pressure values for the region of interest (102);(f) assembling in memory of the data processing system the two-dimensional layer of pressure values for the region of interest (106); and(g) forming an output image map (140) of the two-dimensional layer of pressure values for the region of interest for use in management of the reservoir.
- The computer implemented method of Claim 1, further including the step of performing digital filtering of the propagated pressure values for the well cells of the wells (98).
- The computer implemented method of Claim 2, wherein the digital filtering performed comprises digital weighted moving average filtering.
- The computer implemented method of Claim 1, wherein the step of propagating pressure values for the well cells of the wells is performed using each of the perforations for the cells of a well as control points.
- The computer implemented method of Claim 1, wherein the step of propagating pressure values for the well cells of the wells is performed using a single perforation as a control point.
- The computer implemented method of Claim 1, wherein the step of propagating pressure values for the well cells of the wells is performed using each of the perforations for the cells of a well as control points for such well.
- The computer implemented method of Claim 1, wherein the step of reducing the three-dimensional grid pressure array to a two-dimensional layer of pressure values for the region of interest is performed by pore-volume weighted averaging.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/146,323 US10571604B2 (en) | 2013-08-30 | 2016-05-04 | Two dimensional reservoir pressure estimation with integrated static bottom-hole pressure survey data and simulation modeling |
PCT/US2017/030347 WO2017192423A1 (en) | 2016-05-04 | 2017-05-01 | Two dimensional reservoir pressure estimation with integrated static bottom–hole pressure survey data and simulation modeling |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3452698A1 EP3452698A1 (en) | 2019-03-13 |
EP3452698B1 true EP3452698B1 (en) | 2023-06-28 |
Family
ID=58672829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17722360.9A Active EP3452698B1 (en) | 2016-05-04 | 2017-05-01 | Two dimensional reservoir pressure estimation with integrated static bottom hole pressure survey data and simulation modeling |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3452698B1 (en) |
CN (1) | CN109072692B (en) |
WO (1) | WO2017192423A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113361771B (en) * | 2021-06-04 | 2023-04-18 | 合肥工业大学 | Method and device for determining the pressure of a storage tank |
US12000276B2 (en) | 2022-01-14 | 2024-06-04 | Saudi Arabian Oil Company | System for automated real-time water injection well testing |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3303704A (en) * | 1964-04-30 | 1967-02-14 | Mobil Oil Corp | Hydrodynamic exploration in variable density environments |
US7526418B2 (en) | 2004-08-12 | 2009-04-28 | Saudi Arabian Oil Company | Highly-parallel, implicit compositional reservoir simulator for multi-million-cell models |
WO2009137398A2 (en) * | 2008-05-03 | 2009-11-12 | Saudi Arabian Oil Company | System, program product, and related methods for performing automated real-time reservoir pressure estimation enabling optimized injection and production strategies |
EP2385396B1 (en) | 2008-08-25 | 2013-01-09 | Saudi Arabian Oil Company | Data acquisition in an intelligent oil and gas field |
CN102612682B (en) * | 2009-11-12 | 2016-04-27 | 埃克森美孚上游研究公司 | For the method and apparatus of reservoir modeling and simulation |
US8452580B2 (en) * | 2010-02-26 | 2013-05-28 | Chevron U.S.A. Inc. | Method and system for using multiple-point statistics simulation to model reservoir property trends |
CA2820999A1 (en) * | 2010-12-30 | 2012-07-05 | Exxonmobil Upstream Research Company | Systems and methods for subsurface reservoir simulation |
US8583411B2 (en) * | 2011-01-10 | 2013-11-12 | Saudi Arabian Oil Company | Scalable simulation of multiphase flow in a fractured subterranean reservoir as multiple interacting continua |
CN102147479B (en) * | 2011-01-11 | 2013-05-29 | 中国海洋石油总公司 | Modelling method of reservoir space physical property parameters |
US9896930B2 (en) * | 2013-08-30 | 2018-02-20 | Saudi Arabian Oil Company | Three-dimensional reservoir pressure determination using real time pressure data from downhole gauges |
-
2017
- 2017-05-01 CN CN201780027605.1A patent/CN109072692B/en active Active
- 2017-05-01 EP EP17722360.9A patent/EP3452698B1/en active Active
- 2017-05-01 WO PCT/US2017/030347 patent/WO2017192423A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP3452698A1 (en) | 2019-03-13 |
WO2017192423A1 (en) | 2017-11-09 |
CN109072692B (en) | 2021-03-26 |
CN109072692A (en) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3039237B1 (en) | Three-dimensional reservoir pressure determination using real time pressure data from downhole gauges | |
US11066907B2 (en) | Sequential fully implicit well model with tridiagonal matrix structure for reservoir simulation | |
CA2725923C (en) | Heterogeneous earth models for a reservoir field | |
US8140310B2 (en) | Reservoir fracture simulation | |
US20130297272A1 (en) | Three-dimensional multi-modal core and geological modeling for optimal field development | |
US11269113B2 (en) | Modeling of oil and gas fields for appraisal and early development | |
Morton et al. | Integrated interpretation for pressure transient tests in discretely fractured reservoirs | |
EP2769243A1 (en) | 4d saturation modeling | |
CN103946896A (en) | System and method for assessing heterogeneity of a geologic volume of interest with process-based models and dynamic heterogeneity | |
US11073001B2 (en) | Sequential fully implicit horizontal well model with tridiagonal matrix structure for reservoir simulation | |
US20110208499A1 (en) | Method for history matching of a geological model comprising a sub-seismic fault network | |
Chen et al. | Fracture inference and optimal well placement using a multiscale history matching in a HPHT tight gas reservoir, Tarim Basin, China | |
EP3452698B1 (en) | Two dimensional reservoir pressure estimation with integrated static bottom hole pressure survey data and simulation modeling | |
US20220027616A1 (en) | Systems and methods for reservoir history matching quality assessment and visualization | |
US10571604B2 (en) | Two dimensional reservoir pressure estimation with integrated static bottom-hole pressure survey data and simulation modeling | |
Corbett et al. | The integration of geology and well testing for improved fluvial reservoir characterisation | |
Alvaro et al. | Assisted history matching in the presence of frequent well intervention using generalize travel time inversion | |
Gorbovskaia et al. | Geological uncertainties influence on investment decision making | |
Gomes et al. | Lessons learned from static reservoir modelling on complex carbonate fields, onshore UAE | |
Dubey et al. | Systematic evaluation of shale play by introducing integration of inversion geophysics, petroleum system and reservoir simulation workflows | |
Rose et al. | Assessing subeconomic natural gas resources in the Anadarko and Uinta Basins | |
Morton et al. | Integrated Interpretation for Pressure Transient Tests in Discretely Fractured Reservoirs (SPE 154531) | |
Spivak et al. | An Applied Mathematics Method of Formalizing the Comprehensive Approach to the Evaluation of Reservoir and Well Completion Characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181130 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211111 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221222 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1582835 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017070632 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20230628 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230628 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1582835 Country of ref document: AT Kind code of ref document: T Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231030 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231028 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017070632 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
26N | No opposition filed |
Effective date: 20240402 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240627 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |