EP3441694B1 - Method for operating a thermotechnical system - Google Patents
Method for operating a thermotechnical system Download PDFInfo
- Publication number
- EP3441694B1 EP3441694B1 EP18181566.3A EP18181566A EP3441694B1 EP 3441694 B1 EP3441694 B1 EP 3441694B1 EP 18181566 A EP18181566 A EP 18181566A EP 3441694 B1 EP3441694 B1 EP 3441694B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- contamination
- time
- expected
- critical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 51
- 238000011109 contamination Methods 0.000 claims description 67
- 238000001514 detection method Methods 0.000 claims description 31
- 238000013213 extrapolation Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/0005—Details for water heaters
- F24H9/0042—Cleaning arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/14—Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/269—Time, e.g. hour or date
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/288—Accumulation of deposits, e.g. lime or scale
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/395—Information to users, e.g. alarms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/40—Control of fluid heaters characterised by the type of controllers
- F24H15/414—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
- F24H15/421—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C3/00—Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/235—Temperature of exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/242—Pressure
Definitions
- the DE 102013110489 A1 , the GB 2406901 A and the US 2005/133211 A1 show objects according to the preamble of claim 1. Disclosure of the invention
- the method according to the invention for operating a thermal engineering system wherein the thermal engineering system comprises several components, in particular a heating and / or steam boiler, is characterized in that from detected pollution values of the thermal engineering system and / or at least one component an expected attainment time value is determined at which a predefinable critical contamination value of the thermal engineering system and / or the at least one component is reached or exceeded, in particular for the first time, and that the expected attainment time value is written into a memory, with an actual attainment time value to which the recorded Pollution value reaches or exceeds the critical pollution value in particular for the first time, is written into the memory.
- a thermal engineering system is understood to mean an installation or a system with which heat or a thermal output can be provided, in particular in the form of a warm heat transfer fluid or a warm heat transfer fluid flow such as water, air or steam, or in the form of radiation.
- This provision is based on an energy conversion, in particular a combustion of a solid, liquid or gaseous fuel.
- Components of the heating system are to be understood as the components and assemblies that make up the system, in particular those that are related to the provision of heat, for example a heating and / or steam boiler, a water room or a furnace of the boiler, supply lines for fuel and Combustion air, a burner, a fan, a heat exchanger, discharge lines for exhaust gas or heat transfer fluid.
- Contamination is understood to mean a condition that changes over time, which is particularly related to the operation of the system and can mean impairment of the system operation, for example deposits in the air, on the burner, in the combustion chamber or exhaust gas path, in the water room, in the heat exchanger, for example lime, sludge, mineral or dust or soot deposits.
- a contamination value is understood to be a value, in particular a numerical value, which provides information about a size of an existing contamination.
- a critical pollution value is a pollution value which means an impairment of the system operation that is no longer tolerated because, for example, an air duct cross-section is significantly reduced, a heat transfer at a heat exchanger is significantly reduced, an exhaust gas loss is significantly too high, an efficiency or efficiency too low, operating costs too high , an operational risk turns out to be too high.
- Such a critical pollution value can be specified, in particular specified numerically by a system operator as part of a system control.
- a time value is understood to mean the value, in particular a numerical value, of a time, in particular a point in time, for example a time or a calendar date.
- An expected attainment time value is understood to mean a time value at which the pollution value of the installation and / or the at least one component is the critical pollution value expected to be reached or exceeded. To expect means a forward-looking forecast or calculation or assumption or conjecture.
- a memory is here an electronic element (also called data memory, data carrier or storage medium) that can hold data, in particular an element into which data is stored, i.e. written, in which data can be stored, and from which data can be read out, i.e. output , in particular for further use and / or processing.
- the method according to the invention can be controlled and / or regulated by a control device assigned to the thermal engineering system.
- the control device can include the memory.
- an actual attainment time value at which the detected pollution value reaches or exceeds the critical pollution value, in particular for the first time is written into the memory. This makes it possible to evaluate and evaluate this value.
- a method for predictive monitoring of the pollution state of a thermal engineering system and / or at least one component is created, which makes it possible to determine a future time value at which a critical pollution value is expected, and with this stored value in the context to continue working with the system control.
- a system operator is informed that the critical value is imminent and / or exceeded and is able to plan cleaning of the thermal system and / or components, maintenance, repairs or component replacement and to carry them out in good time before a Failure or an operational restriction or a loss of efficiency of the system due to pollution occurs.
- Another method for operating a thermal engineering system is characterized by the following steps.
- First step acquisition of at least one first contamination value and at least one associated first acquisition time value
- second step acquisition of at least one second contamination value and at least one associated second Detection time value, wherein a detected pollution value represents a pollution state of the thermal engineering system and / or at least one component present at a selectable detection time, and wherein a detection time value represents the respective detection time.
- Third step extrapolating at least one pollution value expected for a future and / or a time course of pollution values expected for the future, on the basis of the first and second pollution values and the associated first and second detection time values.
- Fourth step determining at least one expected attainment time value at which the at least one expected pollution value reaches or exceeds at least one predeterminable critical pollution value of the thermal engineering system and / or the at least one component, in particular for the first time.
- Fifth step Writing the expected time to reach a memory.
- Further step Writing into the memory an actual attainment time value at which the detected pollution value reaches or exceeds the critical pollution value, in particular for the first time.
- the contamination value is recorded during a recording time, for example a point in time or a period of time.
- the recording time value represents the recording time by assigning a time value (for example a time or a current date or a calendar week number) to the recording time.
- the acquisition time value can be, for example, the time value of a start or an end of an acquisition.
- the detection time value is thus assigned to a soiling value (“value pair” comprising the soiling value and the detection time value), the soiling value being detected during the detection time.
- a recording time can be selected according to a predefined time rule. Extrapolating means deriving and / or calculating a value or value pair expected for the future based on known (historical) values or value pairs.
- the extrapolation is based on a certain assumption about a relationship between the known and the expected values or value pairs. Under an expected temporal course of pollution values, a temporal sequence or a functional temporal relationship of value pairs, expected pollution value, is more expected Understand time value. In the method, an actual attainment time value at which the detected pollution value reaches or exceeds the critical pollution value, in particular for the first time, is written into the memory. This makes it possible to evaluate and evaluate this value.
- a method for predictive monitoring of the pollution condition is created, which makes it possible to predict a pollution value expected for a future and / or an expected pollution profile and to determine a future time value for which a critical pollution value of a thermal engineering system and / or a component is expected, and to continue working with this stored value within the framework of the system control.
- This enables a system operator to plan cleaning of the thermal system and / or component, maintenance, repair or component replacement and to carry it out in good time before the system fails or is operationally restricted or the efficiency of the system is reduced due to contamination .
- the expected attainment time value is output on an output device.
- the expected remaining running time until the critical contamination value is reached can be output.
- Such an output device can be an analog or digital output device, preferably an output device with a dial display or numeric display or plain text display.
- a ratio of a detected pollution value to the critical pollution value is determined and output.
- Such a ratio value shows a system operator how much pollution, based on the critical pollution value, is already present, for example in a percentage display. This also makes it possible for a system operator to quickly find out about to inform about the state of soiling and to plan cleaning in advance.
- a first warning message is output when the expected time to be reached is less than a predeterminable first warning time from a most recent acquisition time value.
- a warning message can be a one-time or recurring or permanent warning message, which can be perceived acoustically or visually, for example, and informs the system operator that the expected time to be reached is approaching and is now within a predefinable advance warning time.
- the advance warning time is a type of monitored or monitored time horizon or forecast horizon. This is of great advantage in particular when the predefinable critical pollution value is a maximum permissible pollution value.
- a second warning message is output and / or at least one function, in particular a power, of the thermal system and / or at least one component is changed, in particular reduced and / or switched off, if the expected attainment time value is less than a predeterminable one second warning time is removed from a most recent acquisition time value.
- the system can react to the approaching of the expected attainment value and initiate first steps in a forward-looking manner, in particular automatically, for example to delay the expected attainment value and to give the system operator more time for forward planning, or to lower one associated with the expected attainment value Risks to the plant operation such as failure or an operational restriction or a loss of efficiency of the plant due to pollution. This is of great advantage in particular when the predefinable critical pollution value is a maximum permissible pollution value.
- the acquisition of a contamination value comprises a measurement and / or a calculation and / or a reading in via a data interface.
- Detecting by measuring can be a direct Measure a pollution value such as a thickness of a layer of dirt (e.g. a layer of lime) or an amount of a sludge.
- Detecting by calculating means a computational determination of the pollution value on the basis of, in particular, measured values and / or assumptions about the operating behavior.
- Detection by reading in via a data interface means that the contamination value is determined (measured and / or calculated) outside of the method described here and fed to this method.
- the detected contamination value is a value that is averaged over time, in particular over the detection time. Successive instantaneous values can fluctuate to a greater or lesser extent around a mean value depending on the type of measurement and / or calculation. So that these fluctuations are not reflected in fluctuating forecasts, the mean value is used as the basis for determining the expected pollution values and current values.
- the duration of the acquisition time is in the range between one hour and one month.
- the duration of the recording time is the period of time during which a state of contamination is recorded, for example with several measured values and / or calculated values. This duration is used in particular for averaging the pollution value.
- a time interval between two immediately successive acquisition time values representing a respective acquisition time is in the range between one hour and one week.
- the acquisition times can regularly follow one another.
- the acquisition times can also follow one another more closely with increasing contamination levels.
- a time interval between the acquisition time values on which an extrapolation is based lies in the range between one day and one month.
- At least two acquisition time values are used for the extrapolation; these can be two acquisition time values that follow one another, advantageously, the acquisition time values can also be further apart in time and thus enable more reliable predictions.
- a computational model on which an extrapolation is based is optimized in a self-learning manner based on the actual attainment time value.
- self-optimization also accesses the expected time to be achieved.
- the arithmetic model can represent an assumption of a linear or non-linear, for example, pollution behavior that increases at an accelerated rate over time.
- the actual attainment value and the expected attainment value may differ from one another.
- the prediction accuracy of a computational model can be improved by adapting assumptions, computational algorithms or parameters of the computational model to the actual pollution behavior.
- a recorded first pollution value is compared with the minimum pollution value, the method being terminated when the minimum pollution value is reached or undershot, and the method is continued if it is exceeded.
- a ratio of the recorded first pollution value to a predefinable critical pollution value is determined and output.
- a forecast horizon is set for a future
- time horizon extrapolated the expected pollution value on the basis of the first pollution value, a selectable detected second pollution value, first and second detection time values associated therewith, and a safety factor.
- the expected pollution value is compared with the critical pollution value, with a counter value of an excess counter being set to zero if the value falls below the critical pollution value, and the counter value of the excess counter is increased by one when it is reached or exceeded.
- an expected attainment time value at which the expected pollution value reaches or exceeds the critical pollution value for the first time is determined based on a difference between the forecast horizon and the count of the excess counter.
- the expected attainment time value is written into a memory. This can be followed by further steps in accordance with the configurations mentioned above.
- the method for predictive monitoring of the pollution state provides predictive recommendations that inform the operator about future events on the basis of currently recorded operating data.
- the state of contamination can be determined, for example, from a flue gas outlet temperature from the boiler, the operating pressure of a steam boiler and the power demand on the burner or the amount of fuel.
- a pollution value is a compact characteristic value which provides compressed information as to whether there is pollution under the current operating conditions or how much this pollution restricts the use of heat in the system, i.e. its efficiency.
- a critical value is defined for the pollution value. From this value onwards, cleaning the boiler is recommended.
- Recorded data are used for predictive monitoring of the pollution state in order to derive from the previous system behavior in advance whether the maximum permissible value of the pollution state will be reached or exceeded in a defined period of time in the future.
- the aim is to inform the system operator about an impending exceedance of the critical value and This enables the targeted planning of the cleaning in advance, which increases the efficiency of the system again.
- Figure 1 shows a first exemplary embodiment of a method according to the invention for operating a thermal engineering system, the thermal engineering system comprising several components, in particular a heating boiler.
- a first step A1 at least one first contamination value V1 and at least one associated first acquisition time value T1 are recorded.
- a second step A2 at least one second contamination value V2 and at least one associated second acquisition time value T2 are recorded.
- a detected pollution value V1 and / or V2 represent a pollution state of the thermal engineering system and / or at least one component at a selectable detection time, and a detection time value T1 and / or T2 also represent the respective detection time.
- a third step A3 at least one pollution value Ve expected for a future and / or a time profile Vt of pollution values Ve expected for the future is extrapolated; this takes place on the basis of the first and second pollution values V1, V2 and the assigned first and second detection time values T1, T2.
- at least one expected attainment time value Te is determined, at which the at least one expected contamination value Ve reaches or exceeds at least one predeterminable critical contamination value Vk of the thermal system and / or the at least one component, in particular for the first time. This can be done arithmetically, for example, by solving an equation in which the expected time course Vt with the critical pollution value Vk is equated.
- a fifth step A5 the expected attainment time value Te is written into a memory.
- an actual attainment time value Tt at which the detected contamination value V1, V2 reaches or exceeds the critical contamination value Vk, in particular for the first time, is written into the memory.
- further steps such as outputting the expected attainment time value Te and / or a ratio value R of a detected pollution value V1, V2 to the critical pollution value Vk on an output device, outputting a first and / or second warning message, and so on.
- Figure 2 shows a second embodiment of a method according to the invention for operating a thermal engineering system, wherein in a first step S1 a recorded first pollution value V1 is compared with a minimum pollution value Vm, the method being terminated when the minimum pollution value Vm is reached or undershot (transition to step S6), and if the limit is exceeded, the procedure is continued.
- a ratio value R of the detected first pollution value V1 to a predefinable critical pollution value Vk is determined and output.
- a pollution value Ve expected for a forecast horizon P in the future is extrapolated based on the first pollution value V1, a selectable detected second pollution value V2, assigned first and second detection time values T1, T2, and optionally one Safety factor.
- a fourth step S4 the expected pollution value Ve is compared with the critical pollution value Vk, a count value I of an excess counter being set to zero when the critical pollution value Vk is not reached. When it is reached or exceeded, the counter value I of the overrun counter is increased by one.
- an expected attainment time value Te is determined at which the expected pollution value Ve reaches or exceeds the critical pollution value Vk for the first time; this is done on the basis of a difference between the forecast horizon P and the count value I of the excess counter.
- the expected attainment time value Te is stored in a memory written.
- an actual attainment time value Tt at which the detected contamination value V1, V2 reaches or exceeds the critical contamination value Vk, in particular for the first time, is written into the memory.
- This can be followed by a new run of the method (possibly with a time delay) and / or further steps such as outputting the expected attainment time value Te and / or the ratio value R of the detected pollution value V1, V2 to the critical pollution value Vk on an output means and / or outputting a first and / or a second warning message and / or a cleaning recommendation.
- This refinement of the method evaluates historical data on the state of pollution and predicts how many days (based on the previous system operation) will remain until the critical pollution value is reached.
- the prediction is based on two sets of historical pollution status data.
- the first set comprises the data for the soiling status on the last 10 days, for example, before the current execution of the method (duration D1 of the recording time).
- the second set comprises the data for the pollution status over a period of 10 days, for example one month before the current method execution (time interval D3 between the acquisition time values on which an extrapolation is based).
- the mean value is formed over both data sets in order to smooth the recorded data and prepare it for statistical purposes. As a result, the prediction based on this is possible with increased accuracy.
- the prediction evaluates the two mean values and uses their time interval to form the expected value of the state of pollution, which will be reached in 25 days, for example. Based on the expected value for the pollution state, it is calculated how many days remain until the critical pollution value is reached for the first time and / or is permanently exceeded. The calculation method can be designed to be carried out every 24 hours (time interval D2 between two immediately successive acquisition time values). The evaluation method provides the remaining operating time in days until a contamination value greater than or equal to the critical value is reached. In the first step, it is checked whether the value of the pollution status is a Exceeds minimum pollution level as the prediction will only run if this condition is met. At the beginning of the plant operation (new condition or cleaned condition) the pollution value is theoretically zero.
- the ratio of the current to the critical value is first established. It is then determined which value is available for the pollution status at the time of the forecast in 25 days. The prediction time can be varied, the prediction quality decreasing with an increase in its distance from the time of the current method execution. The value of 25 days represents an exemplary compromise between forecast accuracy and a far-reaching perspective. A safety factor can also be taken into account in the forecast. If the prediction is to be made with increased certainty, this can be set to a value greater than 1. Greater certainty means that the time of cleaning tends to be predicted too early rather than too late within the existing uncertainty.
- the excess counter is increased by one. Otherwise the excess counter is set to zero.
- the days until the critical value is reached or exceeded for the first time are calculated as the defined period for the forecast minus the number of times the critical value of the pollution state is exceeded. If the expected contamination value is less than the critical value, the excess counter is reset to zero. In the next calculation step, the remaining time until the critical value of 25 days is reached for the first time is determined. In the evaluation it is implemented that a calculated value of 25 days is to be equated with the fact that no statistically reliable forecast can take place.
- the process sequence can be provided with a reset function. If the boiler is cleaned due to the increased level of contamination, this can be communicated via an interface of the system or a control device of the system. In this case, the forecast calculation is only started again when the new one System behavior after cleaning, historical values are available from which the first and second pollution values can be taken.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Testing And Monitoring For Control Systems (AREA)
Description
Aus der
Die
Unter einer wärmetechnischen Anlage ist eine Anlage oder ein System zu verstehen, mit der/dem Wärme bzw. eine Wärmeleistung bereitgestellt werden kann, insbesondere in Form eines warmen Wärmeträgerfluids bzw. eines warmen Wärmeträgerfluidstroms wie Wasser, Luft oder Dampf, oder in Form von Strahlung. Diese Bereitstellung beruht auf einer Energiewandlung, insbesondere einer Verbrennung eines festen, flüssigen oder gasförmigen Brennstoffs. Unter Komponenten der wärmetechnischen Anlage sind die Bauteile und Baugruppen zu verstehen, aus denen sich die Anlage zusammensetzt, insbesondere solche, die mit der Wärmebereitstellung in Verbindung stehen, beispielsweise ein Heizund/oder Dampfkessel, ein Wasserraum oder ein Feuerraum des Heizkessels, Zuführleitungen für Brennstoff und Verbrennungsluft, ein Brenner, ein Gebläse, ein Wärmetauscher, Abführleitungen für Abgas oder Wärmeträgerfluid. Unter Verschmutzung wird ein zeitveränderlicher Zustand verstanden, der insbesondere mit dem Betrieb der Anlage in Zusammenhang steht und Beeinträchtigungen des Anlagenbetriebs bedeuten kann, beispielsweise Ablagerungen im Luftweg, am Brenner, im Feuerraum oder Abgasweg, im Wasserraum, im Wärmetauscher, beispielsweise Kalk, Schlamm, mineralische oder Staub- oder Rußablagerungen. Unter einem Verschmutzungswert wird ein Wert, insbesondere ein Zahlenwert, verstanden, der Aufschluss über eine Größe einer vorliegenden Verschmutzung gibt. Ein kritischer Verschmutzungswert ist ein Verschmutzungswert, der eine nicht mehr tolerierte Beeinträchtigung des Anlagenbetriebs bedeutet, weil zum Beispiel ein Luftleitungsquerschnitt deutlich reduziert, ein Wärmeübergang an einem Wärmetauscher deutlich herabgesetzt, ein Abgasverlust deutlich zu hoch, ein Wirkungsgrad oder eine Effizienz zu niedrig, Betriebskosten zu hoch, ein Betriebsrisiko zu hoch ausfällt. Ein solcher kritischer Verschmutzungswert kann vorgegeben, insbesondere von einem Anlagenbetreiber im Rahmen einer Anlagenregelung numerisch vorgegeben, sein. Unter einem Zeitwert wird der Wert, insbesondere Zahlenwert, einer Zeit, insbesondere eines Zeitpunkts, verstanden, beispielsweise eine Uhrzeit oder ein Kalenderdatum. Unter einem erwarteten Erreichungszeitwert wird ein Zeitwert verstanden, zu dem der Verschmutzungswert der Anlage und/oder der mindestens einen Komponente den kritischen Verschmutzungswert erwartetermaßen erreicht oder überschreitet. Erwarten bedeutet eine in die Zukunft gerichtete Prognose oder Berechnung oder Annahme oder Vermutung. Ein Speicher ist hier ein elektronisches Element (auch Datenspeicher, Datenträger oder Speichermedium genannt), das Daten festhalten kann, insbesondere ein Element, in das Daten eingespeichert, also eingeschrieben, in dem Daten aufbewahrt, und aus dem Daten ausgelesen, also ausgegeben, werden können, insbesondere zur weiteren Nutzung und/oder Verarbeitung. Das erfindungsgemäße Verfahren kann von einem der wärmetechnischen Anlage zugeordneten Regelgerät gesteuert und/oder geregelt werden. Beispielsweise kann das Regelgerät den Speicher umfassen. Bei dem Verfahren wird ein tatsächlicher Erreichungszeitwert, zu dem der erfasste Verschmutzungswert den kritischen Verschmutzungswert insbesondere erstmalig erreicht oder überschreitet, in den Speicher geschrieben. Damit wird eine Auswertung und Bewertung dieses Werts möglich.A thermal engineering system is understood to mean an installation or a system with which heat or a thermal output can be provided, in particular in the form of a warm heat transfer fluid or a warm heat transfer fluid flow such as water, air or steam, or in the form of radiation. This provision is based on an energy conversion, in particular a combustion of a solid, liquid or gaseous fuel. Components of the heating system are to be understood as the components and assemblies that make up the system, in particular those that are related to the provision of heat, for example a heating and / or steam boiler, a water room or a furnace of the boiler, supply lines for fuel and Combustion air, a burner, a fan, a heat exchanger, discharge lines for exhaust gas or heat transfer fluid. Contamination is understood to mean a condition that changes over time, which is particularly related to the operation of the system and can mean impairment of the system operation, for example deposits in the air, on the burner, in the combustion chamber or exhaust gas path, in the water room, in the heat exchanger, for example lime, sludge, mineral or dust or soot deposits. A contamination value is understood to be a value, in particular a numerical value, which provides information about a size of an existing contamination. A critical pollution value is a pollution value which means an impairment of the system operation that is no longer tolerated because, for example, an air duct cross-section is significantly reduced, a heat transfer at a heat exchanger is significantly reduced, an exhaust gas loss is significantly too high, an efficiency or efficiency too low, operating costs too high , an operational risk turns out to be too high. Such a critical pollution value can be specified, in particular specified numerically by a system operator as part of a system control. A time value is understood to mean the value, in particular a numerical value, of a time, in particular a point in time, for example a time or a calendar date. An expected attainment time value is understood to mean a time value at which the pollution value of the installation and / or the at least one component is the critical pollution value expected to be reached or exceeded. To expect means a forward-looking forecast or calculation or assumption or conjecture. A memory is here an electronic element (also called data memory, data carrier or storage medium) that can hold data, in particular an element into which data is stored, i.e. written, in which data can be stored, and from which data can be read out, i.e. output , in particular for further use and / or processing. The method according to the invention can be controlled and / or regulated by a control device assigned to the thermal engineering system. For example, the control device can include the memory. In the method, an actual attainment time value at which the detected pollution value reaches or exceeds the critical pollution value, in particular for the first time, is written into the memory. This makes it possible to evaluate and evaluate this value.
Mit dieser Erfindung ist ein Verfahren zur vorausschauenden Überwachung des Verschmutzungszustandes einer wärmetechnischen Anlage und/oder mindestens einer Komponente geschaffen, das es ermöglicht, einen in der Zukunft liegenden Zeitwert zu ermitteln, zu dem ein kritischer Verschmutzungswert erwartet wird, und mit diesem gespeicherten Wert im Rahmen der Anlagenregelung weiterzuarbeiten. Somit wird ein Anlagenbetreiber über eine anstehende Erreichung und/oder Überschreitung des kritischen Wertes informiert und in die Lage versetzt, eine Reinigung der wärmetechnischen Anlage und/oder Komponente, eine Wartung, eine Instandsetzung oder einen Komponententausch zu planen und rechtzeitig durchzuführen, bevor es zu einem Ausfall oder einer Betriebseinschränkung oder einem Wirkungsgradverlust der Anlage aufgrund von Verschmutzung kommt.With this invention, a method for predictive monitoring of the pollution state of a thermal engineering system and / or at least one component is created, which makes it possible to determine a future time value at which a critical pollution value is expected, and with this stored value in the context to continue working with the system control. In this way, a system operator is informed that the critical value is imminent and / or exceeded and is able to plan cleaning of the thermal system and / or components, maintenance, repairs or component replacement and to carry them out in good time before a Failure or an operational restriction or a loss of efficiency of the system due to pollution occurs.
Ein weiteres erfindungsgemäßes Verfahren zum Betreiben einer wärmetechnischen Anlage, wobei die wärmetechnische Anlage mehrere Komponenten, insbesondere einen Heizkessel, umfasst, ist gekennzeichnet durch folgende Schritte. Erster Schritt: Erfassen mindestens eines ersten Verschmutzungswerts und mindestens eines zugeordneten ersten Erfassungszeitwerts sowie zweiter Schritt: Erfassen mindestens eines zweiten Verschmutzungswerts und mindestens eines zugeordneten zweiten Erfassungszeitwerts, wobei ein erfasster Verschmutzungswert einen zu einer auswählbaren Erfassungszeit vorliegenden Verschmutzungszustand der wärmetechnischen Anlage und/oder mindestens einer Komponente repräsentiert, und wobei ein Erfassungszeitwert die jeweilige Erfassungszeit repräsentiert. Dritter Schritt: Extrapolieren mindestens eines für eine Zukunft erwarteten Verschmutzungswerts und/oder eines für die Zukunft erwarteten zeitlichen Verlaufs von Verschmutzungswerten, auf Grundlage der ersten und zweiten Verschmutzungswerte und der zugeordneten ersten und zweiten Erfassungszeitwerte. Vierter Schritt: Ermitteln mindestens eines erwarteten Erreichungszeitwerts, zu dem der mindestens eine erwartete Verschmutzungswert mindestens einen vorgebbaren kritischen Verschmutzungswert der wärmetechnischen Anlage und/oder der mindestens einen Komponente insbesondere erstmalig erreicht oder überschreitet. Fünfter Schritt: Schreiben des erwarteten Erreichungszeitwerts in einen Speicher. Weiterer Schritt: Schreiben eines tatsächlichen Erreichungszeitwerts, zu dem der erfasste Verschmutzungswert den kritischen Verschmutzungswert insbesondere erstmalig erreicht oder überschreitet, in den Speicher.Another method according to the invention for operating a thermal engineering system, the thermal engineering system comprising several components, in particular a heating boiler, is characterized by the following steps. First step: acquisition of at least one first contamination value and at least one associated first acquisition time value and second step: acquisition of at least one second contamination value and at least one associated second Detection time value, wherein a detected pollution value represents a pollution state of the thermal engineering system and / or at least one component present at a selectable detection time, and wherein a detection time value represents the respective detection time. Third step: extrapolating at least one pollution value expected for a future and / or a time course of pollution values expected for the future, on the basis of the first and second pollution values and the associated first and second detection time values. Fourth step: determining at least one expected attainment time value at which the at least one expected pollution value reaches or exceeds at least one predeterminable critical pollution value of the thermal engineering system and / or the at least one component, in particular for the first time. Fifth step: Writing the expected time to reach a memory. Further step: Writing into the memory an actual attainment time value at which the detected pollution value reaches or exceeds the critical pollution value, in particular for the first time.
Die Erfassung des Verschmutzungswerts erfolgt während einer Erfassungszeit, beispielsweise ein Zeitpunkt oder eine Zeitdauer. Der Erfassungszeitwert repräsentiert die Erfassungszeit, indem der Erfassungszeit ein Zeitwert (beispielsweise eine Uhrzeit oder ein Tagesdatum oder eine Kalenderwochennummer) zugeordnet wird. Der Erfassungszeitwert kann beispielsweise der Zeitwert eines Beginns oder eines Endes einer Erfassung sein. Somit ist der Erfassungszeitwert einem Verschmutzungswert zugeordnet ("Wertepaar" aus Verschmutzungswert und Erfassungszeitwert), wobei der Verschmutzungswert während der Erfassungszeit erfasst wird. Eine Erfassungszeit kann nach einer vorgegebenen Zeitregel ausgewählt sein. Extrapolieren bedeutet ein Ableiten und/oder Berechnen eines für die Zukunft erwarteten Wertes oder Wertepaares basierend auf bekannten (historischen) Werten oder Wertepaaren. Dem Extrapolieren liegt eine bestimmte Annahme über einen Zusammenhang zwischen den bekannten und den erwarteten Werten oder Wertepaaren zugrunde. Unter einem erwarteten zeitlichen Verlauf von Verschmutzungswerten ist eine zeitliche Abfolge oder ein funktionaler zeitlicher Zusammenhang von Wertepaaren erwarteter Verschmutzungswert, erwarteter Zeitwert zu verstehen. Bei dem Verfahren wird ein tatsächlicher Erreichungszeitwert, zu dem der erfasste Verschmutzungswert den kritischen Verschmutzungswert insbesondere erstmalig erreicht oder überschreitet, in den Speicher geschrieben. Damit wird eine Auswertung und Bewertung dieses Werts möglich.The contamination value is recorded during a recording time, for example a point in time or a period of time. The recording time value represents the recording time by assigning a time value (for example a time or a current date or a calendar week number) to the recording time. The acquisition time value can be, for example, the time value of a start or an end of an acquisition. The detection time value is thus assigned to a soiling value (“value pair” comprising the soiling value and the detection time value), the soiling value being detected during the detection time. A recording time can be selected according to a predefined time rule. Extrapolating means deriving and / or calculating a value or value pair expected for the future based on known (historical) values or value pairs. The extrapolation is based on a certain assumption about a relationship between the known and the expected values or value pairs. Under an expected temporal course of pollution values, a temporal sequence or a functional temporal relationship of value pairs, expected pollution value, is more expected Understand time value. In the method, an actual attainment time value at which the detected pollution value reaches or exceeds the critical pollution value, in particular for the first time, is written into the memory. This makes it possible to evaluate and evaluate this value.
Mit dieser Erfindung ist ein Verfahren zur vorausschauenden Überwachung des Verschmutzungszustandes geschaffen, das es ermöglicht, einen für eine Zukunft erwarteten Verschmutzungswert und/oder einen erwarteten Verschmutzungsverlauf vorherzusagen sowie einen in der Zukunft liegenden Zeitwert zu ermitteln, zu dem ein kritischer Verschmutzungswert einer wärmetechnischen Anlage und/oder einer Komponente erwartet wird, und mit diesem gespeicherten Wert im Rahmen der Anlagenregelung weiterzuarbeiten. Somit wird ein Anlagenbetreiber in die Lage versetzt, eine Reinigung der wärmetechnischen Anlage und/oder Komponente, eine Wartung, eine Instandsetzung oder einen Komponententausch zu planen und rechtzeitig durchzuführen, bevor es zu einem Ausfall oder einer Betriebseinschränkung oder einem Wirkungsgradverlust der Anlage aufgrund von Verschmutzung kommt.With this invention, a method for predictive monitoring of the pollution condition is created, which makes it possible to predict a pollution value expected for a future and / or an expected pollution profile and to determine a future time value for which a critical pollution value of a thermal engineering system and / or a component is expected, and to continue working with this stored value within the framework of the system control. This enables a system operator to plan cleaning of the thermal system and / or component, maintenance, repair or component replacement and to carry it out in good time before the system fails or is operationally restricted or the efficiency of the system is reduced due to contamination .
Bei einer vorteilhaften Ausgestaltung des Verfahrens wird der erwartete Erreichungszeitwert auf einem Ausgabemittel ausgegeben. Alternativ oder ergänzend kann die erwartete Restlaufzeit bis zum Erreichen des kritischen Verschmutzungswerts ausgegeben werden. Ein solches Ausgabemittel kann ein ein analoges oder digitales Ausgabemittel, vorzugsweise ein Ausgabemittel mit Skalenanzeige oder Ziffernanzeige oder Klartextanzeige, sein. Eine solche Ausgestaltung ermöglicht es einem Anlagenbetreiber, sich schnell über den Verschmutzungszustand zu informieren und vorausschauend eine Reinigung zu planen.In an advantageous embodiment of the method, the expected attainment time value is output on an output device. As an alternative or in addition, the expected remaining running time until the critical contamination value is reached can be output. Such an output device can be an analog or digital output device, preferably an output device with a dial display or numeric display or plain text display. Such a configuration enables a system operator to quickly find out about the state of contamination and to plan cleaning in advance.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird ein Verhältniswert eines erfassten Verschmutzungswerts zum kritischen Verschmutzungswert ermittelt und ausgegeben. Ein solcher Verhältniswert zeigt einem Anlagenbetreiber an, wie viel Verschmutzung, bezogen auf den kritischen Verschmutzungswert, bereits vorliegt, beispielsweise in einer prozentualen Anzeige. Auch damit ist es für einen Anlagenbetreiber möglich, sich schnell über den Verschmutzungszustand zu informieren und vorausschauend eine Reinigung zu planen.In a further advantageous embodiment of the method, a ratio of a detected pollution value to the critical pollution value is determined and output. Such a ratio value shows a system operator how much pollution, based on the critical pollution value, is already present, for example in a percentage display. This also makes it possible for a system operator to quickly find out about to inform about the state of soiling and to plan cleaning in advance.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird eine erste Warnmeldung ausgegeben, wenn der erwartete Erreichungszeitwert weniger als eine vorgebbare erste Vorwarnzeit von einem jüngsten Erfassungszeitwert entfernt ist. Eine Warnmeldung kann eine einmalige oder wiederkehrende oder dauernde Warnmeldung sein, die beispielsweise akustisch oder visuell wahrnehmbar ist und den Anlagenbetreiber darüber informiert, dass der erwartete Erreichungszeitwert näher rückt und nunmehr innerhalb einer vorgebbaren Vorwarnzeit liegt. Die Vorwarnzeit ist dabei eine Art überblickter bzw. überwachter Zeithorizont oder Prognosehorizont. Dies ist insbesondere dann von großem Vorteil, wenn der vorgebbare kritische Verschmutzungswert ein maximal zulässiger Verschmutzungswert ist.In a further advantageous refinement of the method, a first warning message is output when the expected time to be reached is less than a predeterminable first warning time from a most recent acquisition time value. A warning message can be a one-time or recurring or permanent warning message, which can be perceived acoustically or visually, for example, and informs the system operator that the expected time to be reached is approaching and is now within a predefinable advance warning time. The advance warning time is a type of monitored or monitored time horizon or forecast horizon. This is of great advantage in particular when the predefinable critical pollution value is a maximum permissible pollution value.
Bei noch einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird eine zweite Warnmeldung ausgegeben und/oder mindestens eine Funktion, insbesondere eine Leistung, der wärmetechnischen Anlage und/oder mindestens einer Komponente verändert, insbesondere reduziert und/oder abgeschaltet, wenn der erwartete Erreichungszeitwert weniger als eine vorgebbare zweite Vorwarnzeit von einem jüngsten Erfassungszeitwert entfernt ist. Mithilfe dieser Ausgestaltung kann die Anlage auf das Näherrücken des erwarteten Erreichungszeitwerts reagieren und vorausschauend, insbesondere selbsttätig, erste Schritte einleiten, beispielsweise zum Hinauszögern des erwarteten Erreichungszeitwerts und um dem Anlagebetreiber mehr Zeit für eine vorausschauende Planung einzuräumen, oder zum Absenken eines mit dem erwarteten Erreichungszeitwert einhergehenden Risikos für den Anlagenbetrieb wie beispielsweise ein Ausfall oder eine Betriebseinschränkung oder ein Wirkungsgradverlust der Anlage aufgrund von Verschmutzung. Dies ist insbesondere dann von großem Vorteil, wenn der vorgebbare kritische Verschmutzungswert ein maximal zulässiger Verschmutzungswert ist.In yet another advantageous embodiment of the method, a second warning message is output and / or at least one function, in particular a power, of the thermal system and / or at least one component is changed, in particular reduced and / or switched off, if the expected attainment time value is less than a predeterminable one second warning time is removed from a most recent acquisition time value. With the help of this configuration, the system can react to the approaching of the expected attainment value and initiate first steps in a forward-looking manner, in particular automatically, for example to delay the expected attainment value and to give the system operator more time for forward planning, or to lower one associated with the expected attainment value Risks to the plant operation such as failure or an operational restriction or a loss of efficiency of the plant due to pollution. This is of great advantage in particular when the predefinable critical pollution value is a maximum permissible pollution value.
Bei einer Ausgestaltung des Verfahrens umfasst das Erfassen eines Verschmutzungswerts ein Messen und/oder ein Berechnen und/oder ein Einlesen über eine Datenschnittstelle. Erfassen durch Messen kann ein direktes Messen eines Verschmutzungswerts wie eine Dicke einer Schmutzschicht (beispielsweise eine Kalkschicht) oder eine Menge eines Schlammes sein. Andererseits kann es auch ein indirektes Messen eines Verschmutzungswerts sein durch Messen jener Werte, die sich aufgrund der Verschmutzung verändern, beispielsweise eine Abgastemperatur, eine Kesselvorlauftemperatur, eine Brennerleistung, ein Wirkungsgrad. Erfassen durch Berechnen bedeutet ein rechnerisches Ermitteln des Verschmutzungswerts auf Grundlage von insbesondere Messwerten und/oder Annahmen zum Betriebsverhalten. Erfassen durch Einlesen über eine Datenschnittstelle bedeutet, dass der Verschmutzungswert außerhalb des hier beschriebenen Verfahrens ermittelt (gemessen und/oder berechnet) und diesem Verfahren zugeführt wird.In one embodiment of the method, the acquisition of a contamination value comprises a measurement and / or a calculation and / or a reading in via a data interface. Detecting by measuring can be a direct Measure a pollution value such as a thickness of a layer of dirt (e.g. a layer of lime) or an amount of a sludge. On the other hand, it can also be an indirect measurement of a pollution value by measuring those values that change due to pollution, for example an exhaust gas temperature, a boiler flow temperature, a burner output, an efficiency. Detecting by calculating means a computational determination of the pollution value on the basis of, in particular, measured values and / or assumptions about the operating behavior. Detection by reading in via a data interface means that the contamination value is determined (measured and / or calculated) outside of the method described here and fed to this method.
Bei einer weiteren Ausgestaltung des Verfahrens werden beim Extrapolieren und/oder Ermitteln nur erfasste Verschmutzungswerte größer oder gleich einem Mindestverschmutzungswert berücksichtigt. Gerade niedrige Werte können durch eine Messunschärfe oder Ungenauigkeit verfälscht sein. Dies soll nach dieser Ausgestaltung nicht zur Ermittlung falscher erwarteter Werte führen. Dadurch wird die Vorhersage zuverlässiger und sicherer.In a further embodiment of the method, only detected pollution values greater than or equal to a minimum pollution value are taken into account when extrapolating and / or determining. Low values in particular can be falsified by a measurement uncertainty or inaccuracy. According to this embodiment, this should not lead to the determination of incorrect expected values. This makes the forecast more reliable and more certain.
Bei einer weiteren Ausgestaltung des Verfahrens ist der erfasste Verschmutzungswert ein insbesondere über der Erfassungszeit zeitlich gemittelter Wert. Aufeinanderfolgende momentane Werte können je nach Art der Messung und/oder Berechnung mehr oder weniger stark um einen Mittelwert schwanken. Damit diese Schwankungen sich nicht in schwankenden Vorhersagen niederschlagen, wird als Grundlage für die Ermittelung der erwarteten Verschmutzungswerte und Zeitwerte der Mittelwert herangezogen.In a further embodiment of the method, the detected contamination value is a value that is averaged over time, in particular over the detection time. Successive instantaneous values can fluctuate to a greater or lesser extent around a mean value depending on the type of measurement and / or calculation. So that these fluctuations are not reflected in fluctuating forecasts, the mean value is used as the basis for determining the expected pollution values and current values.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens liegt eine Dauer der Erfassungszeit im Bereich zwischen einer Stunde und einem Monat. Die Dauer der Erfassungszeit ist die Zeitdauer, während der ein Verschmutzungszustand erfasst wird, beispielsweise mit mehreren Messwerten und/oder Berechnungswerten. Diese Dauer wird insbesondere zur Mittelwertbildung des Verschmutzungswerts herangezogen.In a further advantageous embodiment of the method, the duration of the acquisition time is in the range between one hour and one month. The duration of the recording time is the period of time during which a state of contamination is recorded, for example with several measured values and / or calculated values. This duration is used in particular for averaging the pollution value.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens liegt ein zeitlicher Abstand zwischen zwei unmittelbar aufeinanderfolgenden, eine jeweilige Erfassungszeit repräsentierenden Erfassungszeitwerten im Bereich zwischen einer Stunde und einer Woche. Beispielsweise können die Erfassungszeiten regelmäßig aufeinander folgen. Alternativ können die Erfassungszeiten auch mit zunehmenden Verschmutzungswerten zeitlich dichter aufeinander folgen.In a further advantageous embodiment of the method, a time interval between two immediately successive acquisition time values representing a respective acquisition time is in the range between one hour and one week. For example, the acquisition times can regularly follow one another. Alternatively, the acquisition times can also follow one another more closely with increasing contamination levels.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens liegt ein zeitlicher Abstand zwischen den einer Extrapolation zugrundegelegten Erfassungszeitwerten im Bereich zwischen einem Tag und einem Monat. Zur Extrapolation werden mindestens zwei Erfassungszeitwerte herangezogen, dies können zwei unmittelbar aufeinander folgende Erfassungszeitwerte sein, vorteilhafterweise können die Erfassungszeitwerte auch zeitlich weiter auseinander liegen und somit zuverlässigere Vorhersagen ermöglichen.In a further advantageous embodiment of the method, a time interval between the acquisition time values on which an extrapolation is based lies in the range between one day and one month. At least two acquisition time values are used for the extrapolation; these can be two acquisition time values that follow one another, advantageously, the acquisition time values can also be further apart in time and thus enable more reliable predictions.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens optimiert sich ein einer Extrapolation zugrundeliegendes Rechenmodell selbstlernend anhand des tatsächlichen Erreichungszeitwerts. Optional greift die Selbstoptimierung auch auf den erwarteten Erreichungszeitwert zu. Das Rechenmodell kann eine Annahme eines linearen oder nichtlinearen, beispielsweise zeitlich beschleunigt zunehmenden, Verschmutzungsverhaltens abbilden. Der tatsächliche Erreichungszeitwert und der erwartete Erreichungszeitwert können sich voneinander unterscheiden. Anhand dieser Differenz kann die Vorhersagegenauigkeit eines Rechenmodells verbessert werden, indem Annahmen, Rechenalgorithmen oder Parameter des Rechenmodells an das tatsächliche Verschmutzungsverhalten angepasst werden.In a further advantageous embodiment of the method, a computational model on which an extrapolation is based is optimized in a self-learning manner based on the actual attainment time value. Optionally, self-optimization also accesses the expected time to be achieved. The arithmetic model can represent an assumption of a linear or non-linear, for example, pollution behavior that increases at an accelerated rate over time. The actual attainment value and the expected attainment value may differ from one another. On the basis of this difference, the prediction accuracy of a computational model can be improved by adapting assumptions, computational algorithms or parameters of the computational model to the actual pollution behavior.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird in einem ersten Schritt ein erfasster erster Verschmutzungwert mit dem Mindestverschmutzungswert verglichen, wobei bei Erreichung oder Unterschreitung des Mindestverschmutzungswerts das Verfahren beendet wird, und wobei bei Überschreitung das Verfahren fortgesetzt wird. In einem zweiten Schritt wird ein Verhältniswert des erfassten ersten Verschmutzungswerts zu einem vorgebbaren kritischen Verschmutzungswert ermittelt und ausgegeben. In einem dritten Schritt wird ein für einen in der Zukunft liegenden PrognosehorizontIn a further advantageous embodiment of the method, in a first step a recorded first pollution value is compared with the minimum pollution value, the method being terminated when the minimum pollution value is reached or undershot, and the method is continued if it is exceeded. In a second step, a ratio of the recorded first pollution value to a predefinable critical pollution value is determined and output. In a third step, a forecast horizon is set for a future
(Zeithorizont) erwarteter Verschmutzungswert auf Grundlage von dem ersten Verschmutzungswert, einem auswählbaren erfassten zweiten Verschmutzungswert, diesen zugeordneten ersten und zweiten Erfassungszeitwerten, und einem Sicherheitsfaktor extrapoliert. In einem vierten Schritt wird der erwartete Verschmutzungswert mit dem kritischen Verschmutzungswert verglichen, wobei bei Unterschreitung des kritischen Verschmutzungswerts ein Zählwert eines Überschreitungszählers auf Null gesetzt wird, und wobei bei Erreichung oder Überschreitung der Zählwert des Überschreitungszählers um Eins erhöht wird. In einem fünften Schritt wird ein erwarteter Erreichungszeitwert, zu dem der erwartete Verschmutzungswert den kritischen Verschmutzungswert erstmalig erreicht oder überschreitet, auf einer Differenz aus dem Prognosehorizont und dem Zählwert des Überschreitungszählers basierend ermittelt. In einem sechsten Schritt wird der erwartete Erreichungszeitwert in einen Speicher geschrieben. Hierauf können weitere Schritte, entsprechend der vorstehend genannten Ausgestaltungen, folgen.(Time horizon) extrapolated the expected pollution value on the basis of the first pollution value, a selectable detected second pollution value, first and second detection time values associated therewith, and a safety factor. In a fourth step, the expected pollution value is compared with the critical pollution value, with a counter value of an excess counter being set to zero if the value falls below the critical pollution value, and the counter value of the excess counter is increased by one when it is reached or exceeded. In a fifth step, an expected attainment time value at which the expected pollution value reaches or exceeds the critical pollution value for the first time is determined based on a difference between the forecast horizon and the count of the excess counter. In a sixth step, the expected attainment time value is written into a memory. This can be followed by further steps in accordance with the configurations mentioned above.
Im Ergebnis gibt das Verfahren zur vorausschauenden Überwachung des Verschmutzungszustands vorausschauende Empfehlungen, welche den Betreiber über zukünftige Ereignisse auf Basis aktuell erfasster Betriebsdaten informieren. Der Verschmutzungszustand kann beispielsweise aus einer Rauchgasaustrittstemperatur aus dem Kessel, dem vorliegenden Betriebsdruck eines Dampfkessels und der Leistungsanforderung an den Brenner bzw. der Brennstoffmenge ermittelt werden. Dementsprechend ist ein Verschmutzungswert ein kompakter Kennwert, welcher komprimiert die Information zur Verfügung stellt, ob bei den derzeitigen Betriebsbedingungen eine Verschmutzung vorliegt beziehungsweise wie sehr diese Verschmutzung die Wärmenutzung in der Anlage, also deren Effizienz, einschränkt. Für den Verschmutzungswert ist ein kritischer Wert definiert. Ab diesem Wert wird eine Reinigung des Kessels empfohlen. Für die vorausschauende Überwachung des Verschmutzungszustandes werden aufgezeichnete Daten herangezogen, um aus dem bisherigen Anlagenverhalten im Voraus abzuleiten, ob der maximal zulässige Wert des Verschmutzungszustands in einer definierten Zeitspanne in der Zukunft erreicht bzw. überschritten wird. Ziel ist es den Anlagenbetreiber über eine anstehende Überschreitung des kritischen Wertes zu informieren und somit vorab die gezielte Planung der Reinigung, welche die Effizienz der Anlage wieder steigert, zu ermöglichen.As a result, the method for predictive monitoring of the pollution state provides predictive recommendations that inform the operator about future events on the basis of currently recorded operating data. The state of contamination can be determined, for example, from a flue gas outlet temperature from the boiler, the operating pressure of a steam boiler and the power demand on the burner or the amount of fuel. Accordingly, a pollution value is a compact characteristic value which provides compressed information as to whether there is pollution under the current operating conditions or how much this pollution restricts the use of heat in the system, i.e. its efficiency. A critical value is defined for the pollution value. From this value onwards, cleaning the boiler is recommended. Recorded data are used for predictive monitoring of the pollution state in order to derive from the previous system behavior in advance whether the maximum permissible value of the pollution state will be reached or exceeded in a defined period of time in the future. The aim is to inform the system operator about an impending exceedance of the critical value and This enables the targeted planning of the cleaning in advance, which increases the efficiency of the system again.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigt
-
Figur 1 : ein erstes Ausführungsbeispiel eines erfindungsgemäßen Verfahrens, -
Figur 2 : ein zweites Ausführungsbeispiel eines erfindungsgemäßen Verfahrens.
-
Figure 1 : a first embodiment of a method according to the invention, -
Figure 2 : a second embodiment of a method according to the invention.
Diese Ausgestaltung des Verfahrens wertet historische Daten des Verschmutzungszustands aus und sagt vorher, wie viele Tage (basierend auf der bisherigen Anlagenbetriebsweise) verbleiben, bis der kritische Verschmutzungswert erreicht wird. Die Vorhersage basiert auf zwei Sätzen an historischen Daten zum Verschmutzungszustand. Der erste Satz umfasst die Daten für den Verschmutzungszustand an den beispielsweise 10 letzten Tagen vor aktueller Verfahrensausführung (Dauer D1 der Erfassungszeit). Der zweite Satz umfasst die Daten für den Verschmutzungszustand über eine Zeitspanne von 10 Tagen, beispielsweise einen Monat vor aktueller Verfahrensausführung (zeitlicher Abstand D3 zwischen den einer Extrapolation zugrundegelegten Erfassungszeitwerten). Über beide Datensätze wird jeweils der Mittelwert gebildet, um die aufgenommenen Daten zu glätten und statistisch aufzubereiten. Dies führt dazu, dass die darauf aufbauende Vorhersage mit erhöhter Genauigkeit möglich ist. Die Vorhersage wertet die beiden Mittelwerte aus und bildet aus deren zeitlichem Abstand den erwarteten Wert des Verschmutzungszustands, welcher in beispielsweise 25 Tagen erreicht wird. Basierend auf dem erwarteten Wert für den Verschmutzungszustand wird berechnet, wie viele Tage verbleiben, bis der kritische Verschmutzungswert erstmalig erreicht und/oder dauerhaft überschritten wird. Die Rechenmethode kann für eine Ausführung alle 24 Stunden konzipiert sein (zeitlicher Abstand D2 zwischen zwei unmittelbar aufeinanderfolgenden Erfassungszeitwerten). Die Auswertemethode liefert die verbleibende Betriebszeit in Tagen bis zum Erreichen eines Verschmutzungswerts größer gleich dem kritischen Wert. Im ersten Schritt wird überprüft, ob der Wert des Verschmutzungszustands einen Mindestverschmutzungswert überschreitet, da die Vorhersage nur ausgeführt wird, wenn diese Bedingung erfüllt ist. Bei Beginn des Anlagenbetriebs (Neuzustand oder gereinigter Zustand) ist der Verschmutzungswert theoretisch gleich null. Bei einem Anstieg des Verschmutzungswerts von in Summe weniger als der Mindestverschmutzungswert ist die Basis für eine qualitativ hochwertige Vorhersage nicht ausreichend. Im Verlauf der Vorhersage wird zunächst das Verhältnis von aktuellem zu kritischem Wert gebildet. Im Anschluss wird ermittelt, welcher Wert für den Verschmutzungszustand zum Vorhersagezeitpunkt in 25 Tagen vorliegt. Der Vorhersagezeitpunkt kann variiert werden, wobei mit Zunahme dessen Abstand vom Zeitpunkt der aktuellen Verfahrensausführung die Vorhersagequalität sinkt. Der Wert von 25 Tagen stellt einen beispielhaften Kompromiss zwischen Vorhersagegenauigkeit und weitreichender Sichtweise dar. Bei der Vorhersage kann ferner ein Sicherheitsfaktor berücksichtigt sein. Soll die Vorhersage mit erhöhter Sicherheit erfolgen, kann dieser auf einen Wert größer 1 gesetzt werden. Größere Sicherheit bedeutet hierbei, dass der Reinigungszeitpunkt innerhalb der vorhandenen Unsicherheit tendenziell zu früh als zu spät vorhergesagt wird. Ist der berechnete, erwartete Verschmutzungswert größer gleich dem kritischen Wert, wird der Überschreitungszähler um eins erhöht. Ansonsten wird der Überschreitungszähler auf null gesetzt. Die Tage bis zum erstmaligen Erreichen bzw. Überschreiten des kritischen Wertes werden berechnet als der definierte Zeitraum für die Vorhersage abzüglich der Anzahl an Überschreitungen des kritischen Wertes des Verschmutzungszustands. Wenn der erwartete Verschmutzungswert kleiner als der kritische Wert ist, wird der Überschreitungszähler auf null zurückgesetzt. Im nächsten Rechenschritt wird somit eine verbleibende Zeit bis zum erstmaligen Erreichen des kritischen Wertes von 25 Tagen ermittelt. In der Auswertung ist implementiert, dass ein berechneter Wert von 25 Tagen damit gleichzusetzen ist, dass keine statistisch zuverlässige Vorhersage stattfinden kann.This refinement of the method evaluates historical data on the state of pollution and predicts how many days (based on the previous system operation) will remain until the critical pollution value is reached. The prediction is based on two sets of historical pollution status data. The first set comprises the data for the soiling status on the last 10 days, for example, before the current execution of the method (duration D1 of the recording time). The second set comprises the data for the pollution status over a period of 10 days, for example one month before the current method execution (time interval D3 between the acquisition time values on which an extrapolation is based). The mean value is formed over both data sets in order to smooth the recorded data and prepare it for statistical purposes. As a result, the prediction based on this is possible with increased accuracy. The prediction evaluates the two mean values and uses their time interval to form the expected value of the state of pollution, which will be reached in 25 days, for example. Based on the expected value for the pollution state, it is calculated how many days remain until the critical pollution value is reached for the first time and / or is permanently exceeded. The calculation method can be designed to be carried out every 24 hours (time interval D2 between two immediately successive acquisition time values). The evaluation method provides the remaining operating time in days until a contamination value greater than or equal to the critical value is reached. In the first step, it is checked whether the value of the pollution status is a Exceeds minimum pollution level as the prediction will only run if this condition is met. At the beginning of the plant operation (new condition or cleaned condition) the pollution value is theoretically zero. If the pollution value increases by less than the minimum pollution value, the basis for a high-quality forecast is not sufficient. In the course of the forecast, the ratio of the current to the critical value is first established. It is then determined which value is available for the pollution status at the time of the forecast in 25 days. The prediction time can be varied, the prediction quality decreasing with an increase in its distance from the time of the current method execution. The value of 25 days represents an exemplary compromise between forecast accuracy and a far-reaching perspective. A safety factor can also be taken into account in the forecast. If the prediction is to be made with increased certainty, this can be set to a value greater than 1. Greater certainty means that the time of cleaning tends to be predicted too early rather than too late within the existing uncertainty. If the calculated, expected pollution value is greater than or equal to the critical value, the excess counter is increased by one. Otherwise the excess counter is set to zero. The days until the critical value is reached or exceeded for the first time are calculated as the defined period for the forecast minus the number of times the critical value of the pollution state is exceeded. If the expected contamination value is less than the critical value, the excess counter is reset to zero. In the next calculation step, the remaining time until the critical value of 25 days is reached for the first time is determined. In the evaluation it is implemented that a calculated value of 25 days is to be equated with the fact that no statistically reliable forecast can take place.
Der Verfahrensablauf kann mit einer Resetfunktion versehen sein. Findet eine Reinigung des Kessels auf Grund des erhöhten Verschmutzungszustands statt, so kann dies über eine Schnittstelle der Anlage beziehungsweise einem Regelgerät der Anlage mitgeteilt werden. In diesem Fall wird die Vorhersageberechnung erst dann wieder gestartet, wenn mit dem neuen Anlagenverhalten nach Reinigung historische Werte vorliegen, aus welchen der erste und zweite Verschmutzungswert entnommen werden können.The process sequence can be provided with a reset function. If the boiler is cleaned due to the increased level of contamination, this can be communicated via an interface of the system or a control device of the system. In this case, the forecast calculation is only started again when the new one System behavior after cleaning, historical values are available from which the first and second pollution values can be taken.
Claims (12)
- Method for operating a thermotechnical system, wherein the thermotechnical system comprises multiple components, in particular a heating and/or steam boiler, wherein detected contamination values (V1, V2) of the thermotechnical system and/or at least one component are used to determine an expected reaching time value (Te), at which a predeterminable critical contamination value (Vk) of the thermotechnical system and/or at least one component is reached or exceeded, in particular for the first time, and that the expected reaching time value (Te) is written to a memory,
characterized in that an actual reaching time value (Tt), at which the detected contamination value (V1, V2) reaches or exceeds the critical contamination value (Vk), in particular for the first time, is written to the memory. - Method according to Claim 1,
characterized by the steps of• detecting (A1) at least one first contamination value (V1) and at least one assigned first detection time value (T1),• detecting (A2) at least one second contamination value (V2) and at least one assigned second detection time value (T2),• wherein a detected contamination value (V1, V2) represents a state of contamination of the thermotechnical system and/or at least one component that exists at a selectable detection time, and wherein the detection time value (T1, T2) represents the respective detection time,• extrapolating (A3) at least one contamination value (Ve) expected for the future and/or a variation over time (Vt) of contamination values (Ve) expected for the future on the basis of the first and second contamination values (V1, V2) and the assigned first and second detection time values (T1, T2),• determining (A4) at least one expected reaching time value (Te), at which the at least one expected contamination value (Ve), at which the at least one expected contamination value (Ve) reaches or exceeds at least one predeterminable critical contamination value (Vk) of the thermotechnical system and/or the at least one component, in particular for the first time,• writing (A5) to a memory the expected reaching time value (Te),• writing to the memory an actual reaching time value (Tt), at which the detected contamination value (V1, V2) reaches or exceeds the critical contamination value (Vk), in particular for the first time. - Method according to Claim 1 or 2,
wherein the expected reaching time value (Te) is output on output means. - Method according to one of the preceding claims,
wherein a ratio value (R) of a detected contamination value (V1, V2) in relation to the critical contamination value (Vk) is determined and output. - Method according to one of Claims 2 to 4,
wherein a first warning message is output if the expected reaching time value (Te) is less than a predeterminable first prewarning time away from the most recent detection time value (T1). - Method according to one of Claims 2 to 5,
wherein a second warning message is output and/or at least one function, in particular a power output, of the thermotechnical system and/or at least one component is changed, in particular reduced, and/or switched off if the expected reaching time value (Te) is less than a predeterminable second prewarning time away from the most recent detection time value (T1). - Method according to one of the preceding claims,
wherein the detection of a contamination value (V1, V2) comprises measuring and/or calculating and/or reading in via a data interface. - Method according to one of Claims 2 to 7,
wherein the extrapolation and/or determination only takes into consideration detected contamination values (V1, V2) greater than or equal to a minimum contamination value (Vm). - Method according to one of Claims 2 to 8,
wherein the detected contamination value (V1, V2) is a value averaged over time, in particular over the detection time. - Method according to one of Claims 2 to 9,• wherein a duration (D1) of the detection time lies in the range between one hour and one month, and/or• wherein a time interval (D2) between two directly successive detection time values (T1, T2), representing a respective detection time, lies in the range between one hour and one week, and/or• wherein a time interval (D3) between the detection time values (T1, T2) on which an extrapolation is based lies in the range between one day and one month.
- Method according to one of Claims 2 to 10,
wherein a computing model used as a basis for an extrapolation optimizes itself in a self-learning manner on the basis of the actual reaching time value (Tt) . - Method according to one of the preceding claims, wherein• in a first step (S1), a detected first contamination value (V1) is compared with the minimum contamination value (Vm), wherein the method is ended if the contamination reaches or is below the minimum contamination value (Vm), and wherein the method is continued if the contamination exceeds the minimum value,• in a second step (S2), a ratio value (R) of the detected first contamination value (V1) in relation to a predeterminable critical contamination value (Vk) is determined and output,• in a third step (S3), a contamination value (Ve) expected for a forecast horizon (P) lying in the future is extrapolated on the basis of the first contamination value (V1), a detected second contamination value (V2), first and second detection time values (T1, T2) assigned to these contamination values, and a safety factor,• in a fourth step (S4), the expected contamination value (Ve) is compared with the critical contamination value (Vk), wherein a counting value (I) of an exceeding counter is set to zero if the contamination is below the critical contamination value (Vk), and wherein the counting value (I) of the exceeding counter is incremented by one if the contamination reaches or exceeds the critical value,• in a fifth step (S5), an expected reaching time value (Te), at which the expected contamination value (Ve) reaches or exceeds the critical contamination value (Vk) for the first time is determined on the basis of a difference obtained from the forecast horizon (P) and the counting value (I) of the exceeding counter,• in a sixth step (S6), the expected reaching time value (Te) is written to a memory.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017214069.0A DE102017214069A1 (en) | 2017-08-11 | 2017-08-11 | Method for operating a thermal installation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3441694A1 EP3441694A1 (en) | 2019-02-13 |
EP3441694B1 true EP3441694B1 (en) | 2021-04-28 |
Family
ID=62874583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18181566.3A Active EP3441694B1 (en) | 2017-08-11 | 2018-07-04 | Method for operating a thermotechnical system |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3441694B1 (en) |
DE (1) | DE102017214069A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021207162B3 (en) | 2021-07-07 | 2022-11-03 | Viessmann Climate Solutions Se | HEATING SYSTEM AND METHOD OF OPERATING A HEATING SYSTEM |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10222187A1 (en) * | 2002-05-18 | 2003-12-18 | Daimler Chrysler Ag | Method for determining the remaining service life of technical system components e.g. for maintenance module in vehicle, involves measuring values representative of service life parameters and weighted averages of their rate of change |
DE102013110489A1 (en) * | 2013-09-23 | 2015-03-26 | Rational Aktiengesellschaft | Cooking appliance and method for detecting the degree of contamination of a filter unit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19504325C2 (en) * | 1995-02-10 | 1997-07-17 | Tepcon Eng Gmbh | Method and device for cost-oriented monitoring and / or display of the operating state of a cleanable heat exchanger |
DE10050147A1 (en) | 2000-10-11 | 2002-05-02 | Peter Renner | Monitoring condition of machine, using processing units located in immediate vicinity of machine |
GB2406901B (en) * | 2003-10-06 | 2007-12-27 | Ec Power As | Heat transfer system |
US7455099B2 (en) * | 2003-12-19 | 2008-11-25 | General Electric Company | Heat exchanger performance monitoring and analysis method and system |
AU2009349362A1 (en) * | 2009-07-07 | 2011-12-22 | A-Heat Allied Heat Exchange Technology Ag | Heat exchange system and method for operating a heat exchange system |
DE102014202478A1 (en) * | 2014-02-12 | 2015-08-13 | Robert Bosch Gmbh | Method for diagnosing a heating system with at least one heat exchanger |
-
2017
- 2017-08-11 DE DE102017214069.0A patent/DE102017214069A1/en active Pending
-
2018
- 2018-07-04 EP EP18181566.3A patent/EP3441694B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10222187A1 (en) * | 2002-05-18 | 2003-12-18 | Daimler Chrysler Ag | Method for determining the remaining service life of technical system components e.g. for maintenance module in vehicle, involves measuring values representative of service life parameters and weighted averages of their rate of change |
DE102013110489A1 (en) * | 2013-09-23 | 2015-03-26 | Rational Aktiengesellschaft | Cooking appliance and method for detecting the degree of contamination of a filter unit |
Also Published As
Publication number | Publication date |
---|---|
DE102017214069A1 (en) | 2019-02-14 |
EP3441694A1 (en) | 2019-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009040261B4 (en) | Method for monitoring water quality on a flow meter and flow meter | |
EP3441694B1 (en) | Method for operating a thermotechnical system | |
DE102008012097B4 (en) | Monitoring device for the operation of control cabinet devices | |
EP2721376B1 (en) | Method and apparatus for assessing the consumption of a medium in a supply system | |
EP2006660A2 (en) | Method for monitoring the use of a section of a tube | |
WO2021180581A1 (en) | Method and device for determining fouling in a heat exchanger | |
DE68915011T2 (en) | Gas cut-off device. | |
WO2018224222A1 (en) | Method for operating a thermal consumption system | |
EP0617239A2 (en) | Method for monitoring the state of clogging and/or calcification of heat exchangers in heating or cooling systems | |
EP2725312B1 (en) | Method and device for monitoring a coolant fill level | |
EP1598717B1 (en) | Method for monitoring of a plurality of gas plants | |
DE19504325C2 (en) | Method and device for cost-oriented monitoring and / or display of the operating state of a cleanable heat exchanger | |
EP3434983B1 (en) | Method for diagnosing a heat exchanger | |
DE102017108281B4 (en) | Internal combustion engine and method for monitoring the internal combustion engine | |
DE102009006918A1 (en) | Method and device for monitoring the heating curve of a heating system | |
DE10254219A1 (en) | Flow valve monitoring device for industrial process plant evaluating stored data for providing warning signal when maintenance is required | |
WO2019166375A1 (en) | Method for operating an internal combustion engine, control device and internal combustion engine | |
DE10329909A1 (en) | Managing, monitoring and regulating water losses in a water supply network by use of a system of field units linked to central data capture and processing units | |
DE102021207162B3 (en) | HEATING SYSTEM AND METHOD OF OPERATING A HEATING SYSTEM | |
EP2677374A2 (en) | Method for monitoring a heating system | |
DE3841741C2 (en) | ||
DE102017000821A1 (en) | Electric drive unit with intelligent maintenance requirement monitoring | |
DE102016223612A1 (en) | Method for analyzing and / or diagnosing at least one heat generator of a heating system, control unit and heating system for this purpose | |
EP4116637A1 (en) | Method and device for determining a heating characteristic and heating installation with such device | |
EP4288738A1 (en) | Method and device for ascertaining fouling in a heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190813 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1387496 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018004978 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210729 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210830 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018004978 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
26N | No opposition filed |
Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210704 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210704 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1387496 Country of ref document: AT Kind code of ref document: T Effective date: 20230704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240919 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240717 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230704 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240731 Year of fee payment: 7 |