EP3438422B1 - Vorrichtung und verfahren zur regulierung der sich im kreislauf befindenden fluidmenge in einem system, das auf einem rankine-zyklus basiert - Google Patents

Vorrichtung und verfahren zur regulierung der sich im kreislauf befindenden fluidmenge in einem system, das auf einem rankine-zyklus basiert Download PDF

Info

Publication number
EP3438422B1
EP3438422B1 EP18187083.3A EP18187083A EP3438422B1 EP 3438422 B1 EP3438422 B1 EP 3438422B1 EP 18187083 A EP18187083 A EP 18187083A EP 3438422 B1 EP3438422 B1 EP 3438422B1
Authority
EP
European Patent Office
Prior art keywords
reservoir
working fluid
fluid
pressure
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18187083.3A
Other languages
English (en)
French (fr)
Other versions
EP3438422A1 (de
Inventor
Arnaud LANDELLE
Nicolas Tauveron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3438422A1 publication Critical patent/EP3438422A1/de
Application granted granted Critical
Publication of EP3438422B1 publication Critical patent/EP3438422B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/004Accumulation in the liquid branch of the circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • F22D11/04Arrangements of feed-water pumps with means to eliminate steam formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems

Definitions

  • the present invention relates to a system for producing electrical or mechanical energy and a method for regulating the fluid charge circulating in the fluid circuit of such a system.
  • the present invention will find application particularly for the thermal management of on-board systems, of low power or presenting strong variations in power over time.
  • Rankine cycles are all based on transformations including successively: the pumping of a working fluid in liquid form, the creation of steam and its eventual overheating, the expansion of the steam to generate movement and the condensation of the steam.
  • the working fluid can be chosen from water, carbon dioxide, ammonia or an organic fluid or a mixture of these components.
  • we speak of the organic Rankine cycle we speak of the organic Rankine cycle. The majority of thermal electricity production systems are based on the use of such cycles.
  • thermodynamic cycle it is on this type of thermodynamic cycle that the majority of nuclear power plants, coal-fired thermal power plants, or even heavy fuel oil thermal power plants are based, in order to produce high powers. For these applications, hot springs have very high power and temperature.
  • thermodynamic efficiency For example metallurgy, chemistry or even papermaking, generate low-temperature thermal discharges, that is to say thermal discharges whose temperature is most often below 200°C, or even lower at 150°C. Systems based on a Rankine cycle would theoretically make it possible to produce electrical or mechanical energy from these thermal releases. However, the powers that could be produced would then be relatively low, typically of the order of a few kilowatts to a hundred kilowatts for thermal discharges of less than a megawatt, because of the low thermodynamic efficiency.
  • Subcooling which corresponds to the difference between the pump inlet temperature and the saturation temperature of the fluid is called subcooling. Too much subcooling indicates that there is too much liquid in the condenser, which leads to a degradation of the performance of the Rankine machine by increasing the condensation pressure. Conversely, insufficient subcooling leads to a risk of cavitation at the pump inlet and therefore a deterioration in the performance of the Rankine machine as well as accelerated wear of the pump.
  • Cavitation appears when the pumped liquid vaporizes at low pressure. This occurs due to insufficient pressure at the pump inlet relative to the saturation pressure of the fluid, in other words, when there is a NPSHa (Net positive Suction Head available), or margin of cavitation, insufficient. When cavitation occurs, steam bubbles are created at low pressure. As liquid flows from the pump suction to its outlet, the bubbles implode, creating shock waves that attack the pump and cause vibration in the pump, reduced pump performance and mechanical damage which could lead to premature wear or even complete destruction of the pump at different levels
  • the pump inlet temperature is determined and limited by the cold source and the heat exchanges at the condenser.
  • the cavitation margin or subcooling are therefore directly linked to the condensation pressure.
  • the closed circuit operating according to a Rankine cycle comprises a closed reservoir containing the fluid in the liquid state tapped on the pump line connecting the condenser to the pump.
  • the tank is connected to a pressure regulating device allowing the pressurization of the tank by a regulator regulator injecting a gas such as air or nitrogen and depressurization of the tank by a valve to evacuate part of the gaseous fluid out of the tank.
  • the regulation device therefore uses an external gas and a control unit receiving information from various sensors to control the regulator and the valve.
  • the fluid entering the pump has a sufficient level of sub-cooling with the absence of fluid in the vapor phase, thus limiting the risks of cavitation.
  • the fluid circuit of the system being configured so that the working fluid passes successively through at least the pump, the first exchanger, the expander and the second exchanger, then the pump again.
  • the system comprises a device for regulating the fluid charge circulating in the fluid circuit comprising elements for supplying thermal energy to the tank, intended to increase the pressure of the tank and inject working fluid from the tank into the fluidic circuit, and elements for removing energy from the tank, intended to reduce the pressure of the tank and drawing working fluid out of the fluid circuit into the reservoir.
  • the regulating device is configured to operate in a closed circuit with the fluidic circuit and to maintain saturation conditions in the tank so that the tank contains the working fluid simultaneously in the liquid state and in the gaseous state.
  • the fluid load regulation device allows, through an energy supply into the tank, to expand the working fluid (liquid and vapor phase) present in the tank, which has the consequence of pressurizing the latter and injecting a fraction of the fluid present. in the tank in the fluid circuit. Conversely, a decrease in reservoir energy tends to increase the average density in the reservoir, decrease its pressure and draw a fraction of the circulating fluid into the fluidic circuit.
  • the system according to the invention makes it possible to avoid having to resort to an external gas source to control the pressure in the tank. Only the working fluid is used, thus limiting the risk of contamination of the working fluid.
  • the compactness of the system is improved by limiting the necessary components, the system does not need a compressor or pressure bottle. The cost of implementation and maintenance is also reduced.
  • the tank is connected directly, continuously, via the tap pipe to the fluid circuit.
  • the reservoir does not include a mechanical element, in particular arranged on the tapping pipe, controlling the injection or suction of the working fluid into the fluid circuit.
  • the system according to the invention thus has low energy consumption and increased simplicity of operation.
  • the system according to the invention comprises as thermal energy supply elements at least one heating rod plunging into the tank, or a partial coupling with the first heat source, or an injection module, into the tank, of working fluid taken at the outlet of the first exchanger.
  • the system according to the invention comprises as energy withdrawal elements a module for ejecting the fluid in the gaseous state, out of the tank, towards the inlet of the second exchanger or an injection module, in the reservoir, of working fluid taken at the outlet of the pump, or a partial coupling with the second heat source.
  • the system according to the invention comprises a module for self-regulating the fluid charge circulating in a fluid circuit of an electrical or mechanical energy production system operating according to a Rankine cycle.
  • the self-regulation module is configured to regulate the pressure of a tank connected to the fluid circuit and receiving the working fluid.
  • the self-regulating module with the details specified in independent claim 1, is mechanically operated, intended to regulate the pressurization and depressurization of the tank.
  • the self-regulation module makes it possible to automatically and preferably only mechanically manage the pressurization and depressurization of the reservoir, that is to say the injection or withdrawal of working fluid into the fluid circuit.
  • the present invention therefore allows control of subcooling and limits the risks of cavitation by a closed circuit system, that is to say not requiring external fluid and advantageously self-regulated by purely mechanical operation simplifying the system and its functioning.
  • the system is thus efficient and easily transposable into embedded systems.
  • the invention makes it possible to make the use of thermal waste at low temperatures profitable, while requiring few energy resources. Furthermore, the present invention provides a simplified, inexpensive system with low energy consumption, while having improved energy efficiency without overloading the pump or increasing the cost and complexity of the system.
  • the invention also makes it possible to minimize the necessary load by confining the working fluid.
  • the working fluid can represent up to more than 20% of the total cost of a Rankine machine. The invention thus minimizes the capital and operating costs of such a system.
  • An advantage of the invention is to be able to control the charge of the fluid and therefore the sub-cooling, so that it is neither too small (risk of cavitation) nor too large (degradation of the overall performance of the cycle).
  • the term 'top' and ⁇ bottom' means a quality of relative positioning of an element of the system according to the invention when it is installed functionally, the 'top ' being oriented away from the ground and the ⁇ bottom being oriented towards the ground.
  • the upper end is at the top and the lower end is at the bottom.
  • the upstream and downstream at a given point are taken with reference to the direction of circulation of the fluid in the circuit.
  • a fluidically connected to B does not necessarily mean that there is no organ between A and B.
  • the outlet 42 of the pump 104 is in fluid communication with the inlet 11 of the first exchanger 101, advantageously through a pipe of the first exchanger 110.
  • the outlet 12 of the first exchanger 101 is in fluid communication with the inlet 31 of the expander 103, advantageously by an expander pipe 111.
  • the outlet 32 of the expander 103 is in fluid communication with the inlet 21 of the second exchanger 102, advantageously by a second exchanger pipe 112.
  • the outlet 22 of the second exchanger 102 is in fluid communication with the inlet 41 of pump 104, advantageously by a pump pipe 113.
  • the fluidic circuit is a closed circuit.
  • the system according to the invention comprises a reservoir 105 configured to receive and store the working fluid.
  • the reservoir 105 is arranged between the second exchanger 102 and the pump 104, more precisely between the outlet 22 of the second exchanger 102 and the inlet 41 of pump 104.
  • the reservoir 105 is connected to the fluidic circuit by a tapping pipe 114.
  • tank 105 is said to be offline.
  • the reservoir 105 is connected directly via the tapping pipe 114 to the fluid circuit.
  • the reservoir 105 is said to be continuously connected to the fluid circuit.
  • the tapping pipe 114 does not include a pump or valve type member.
  • the reservoir 105 receives the working fluid simultaneously in two states, liquid 3 and gaseous 4.
  • the reservoir is subjected to conditions of saturation of the working fluid allowing the fluid to be simultaneously in the liquid state 3 and in the state gaseous 4 in the tank 105.
  • the fluid in the liquid state 3 is located in the lower part of the tank 105 while the fluid in the gaseous state 4 is located in the upper part of the tank 105.
  • the arrangement of the reservoir 105 is configured so that the pressure of the reservoir Pr is uniform with the pressure at the inlet 41 of pump 104.
  • the reservoir 105 and in particular the tapping pipe 114 is arranged in immediate and sufficient proximity to the the inlet of the pump 104.
  • the tapping pipe 114 is preferably of reduced length and horizontal. We mean immediate proximity for example: at least one meter, preferably less than 0.5 meters, or even less than 0.2 meters; this proximity of the reservoir 105 and the inlet 41 of pump 104 also allows rapid restoration of the pressure at the inlet 41 of pump 104 to limit the risks of cavitation.
  • the system comprises a device for regulating the fluid charge circulating in the fluid circuit.
  • This regulation device is configured to operate in a closed circuit with the fluidic circuit.
  • a self-regulation device only uses the working fluid present in the fluid circuit and in the reservoir 105.
  • the regulation device is configured to maintain saturation conditions in the reservoir 105.
  • the regulation device is configured so that at the inlet 41 of pump 104 the temperature of the working fluid is equal to the saturation temperature of the fluid minus the subcooling temperature difference. Likewise, the pressure at the inlet 41 of pump 104 is uniform with the pressure of the reservoir 105.
  • the regulation device comprises elements for providing thermal energy in the tank 105 intended to increase the pressure of the tank and inject the working fluid from the tank 105 towards the fluidic circuit.
  • the energy supply elements increase the enthalpy of the tank, the temperature of the fluid in the tank 105 as well as the pressure increases while the density decreases which induces the movement of the working fluid from the tank 105 towards the fluidic circuit and more precisely the pump pipe 113.
  • the movement takes place passively, that is to say without the action of a mechanical member at the level of the tapping pipe 114.
  • the working fluid injected into the fluidic circuit is at the liquid state.
  • the energy supply elements can be diverse as illustrated in figures 5 to 7 .
  • they include one or two or more heating rods 5 immersed in the tank 105.
  • the heating rods 5 heat the working fluid thus increasing its temperature.
  • a working fluid injection module in the tank 105, taken from the outlet 12 of the first exchanger 101.
  • the injection module comprises a working fluid injection pipe 116 fluidly connected to a first end at exit 12 of the first interchange 101 and at a second end to the tank 105.
  • the working fluid taken and injected into the tank 105 is in the state of high pressure compressed steam.
  • the module comprises an injector 6 and/or a valve, or any other injection control means, intended to control the injection of working fluid.
  • they include at least partial coupling 7 of the first heat source 1 thus making it possible to increase the enthalpy of the fluid in the reservoir 105.
  • the regulation device comprises elements for removing energy, preferably thermal, from the tank 105 intended to reduce the pressure of the tank and suck the working fluid from the fluidic circuit towards the tank.
  • the energy removal elements reduce the enthalpy of the tank 105, the temperature of the fluid in the tank 105 as well as the pressure decreases while the density increases which induces the displacement of the working fluid of the fluidic circuit and more precisely the pipe pump 113 towards the reservoir 105.
  • the removal of the working fluid from the fluidic circuit is done passively by suction without the action of a mechanical member at the level of the tapping pipe 114.
  • the working fluid sucked from the fluidic circuit is at the liquid state.
  • the energy withdrawal elements can be various as illustrated in figures 8 to 10 .
  • the rejection module comprises a pipe 115 for rejecting working fluid fluidly connected to a first end to the tank 105 and a second end to the inlet 21 of the second exchanger 102.
  • the fluid evacuated from the tank and injected into the inlet 21 of the second exchanger 102 is in the gaseous state.
  • the module comprises an injector or ejector 9 and/or a pump and/or a valve, intended to control the rejection of the working fluid.
  • a working fluid injection module in the reservoir 105, taken from the outlet 42 of the pump 104.
  • the injection module comprises a working fluid injection line 117 fluidly connected to a first end at the outlet 41 of the pump 104 and at a second end at the reservoir 105.
  • the working fluid taken and injected into the reservoir is in the state of expanded liquid.
  • the module comprises an injector 8 and/or a valve, intended to control the injection of working fluid.
  • they include at least partial coupling 10 of the second heat source 2, thus making it possible to reduce the enthalpy of the fluid in the reservoir 105.
  • the temperature of the hot source 1 is less than 200°C and preferably less than 150°C and the temperature of the cold source 2 is less than 50°C and preferably of the order of 20°C.
  • the temperature of the cold source 2 is higher than the ambient temperature and more generally of the order of the ambient temperature.
  • the maximum temperature is that of the outlet 32 of the expander 103, that is to say a little less than 150°C.
  • the minimum temperature is that of outlet 42 of pump 104, that is to say a little higher than the ambient temperature.
  • the maximum temperature is that of the outlet of the turbine or other expander 103, that is to say intermediate, between the temperatures of the hot sources (150°C) and cold (20°C).
  • the minimum temperature of the second exchanger 102 is that of the temperature of the cold source, that is to say, generally the ambient temperature.
  • a system according to the invention further comprises a self-regulation module 200 illustrated in figures 11 to 13 intended to regulate the pressurization and depressurization of the tank 105 to control the fluid charge circulating in the fluid circuit.
  • the self-regulation module 200 is mechanically operated allowing fully automatic and mechanical regulation.
  • the self-regulation module 200 illustrated in Figure 13 comprises a compensated regulator 201 coupled to a compensated valve 203.
  • the self-regulation module 200 is configured to prevent the valve 203 and the regulator 201 from being in the open position simultaneously.
  • the regulator 201 and the valve 203 are arranged in a housing 205.
  • the regulator 201 is associated with a spring 202 having stiffness Kd while the valve 203 is associated with a spring 204 having stiffness Ks.
  • the stiffness Kd of the spring 202 of regulator 201 is less than the stiffness Ks of the spring 204 of valve 203.
  • the box 205 is configured to manage pressure differentials to regulate the fluid charge circulating in the fluid circuit.
  • the box 205 is fluidly connected to the elements whose pressure must be controlled.
  • the self-regulation module 200 is associated with the device for regulating the fluid charge circulating in the fluid circuit
  • the housing 205 is connected to the device for regulating the fluid charge and more precisely to the fluid supply elements. energy and energy withdrawal.
  • the energy supply element comprises a module for injecting the working fluid taken at the outlet 12 of the first exchanger 101 and the energy withdrawal element comprises a rejection module of the working fluid in the gaseous state 4 out of the tank 105 towards the inlet 21 of the second exchanger 102 or a working fluid injection module taken from the inlet 41 of the pump 104.
  • the box 205 is fluidly connected to the tank 105, preferably it is connected directly by a pipe so as to be subjected to the pressure of the reservoir Pr.
  • the pressure of the reservoir Pr is exerted on the regulator 201 and the valve 203.
  • the housing 205 includes a first opening 206 allowing the fluid connection of the reservoir 105 with the self-regulation module 200.
  • the housing 205 is fluidly connected to a means of producing a control pressure Pc corresponding preferentially to the saturation pressure of the working fluid at the inlet 41 of pump 104.
  • the control pressure Pc is exerted on the regulator 201 and the valve 203.
  • the housing 205 includes a second opening 207 allowing the fluid connection of the control pressure with the self-regulation module 200.
  • control pressure Pc and the tank pressure Pr are relatively opposed to each other with respect to the valve 203 and the regulator 201. That is to say, the control pressure Pc and the tank pressure Pr exert opposing forces on the valve 203 and the regulator 201.
  • the box 205 is fluidly connected to the fluidic circuit, precisely at the outlet 12 of the first exchanger 101, preferably it is connected directly by a pipe 116. A first end of the pipe 116 is connected to the outlet 12.
  • the box 205 comprises a third opening 208 allowing the fluid connection of the second end of the pipe 116 with the self-regulation module 200.
  • the housing 205 is fluidly connected to the fluidic circuit, precisely to the inlet 41 of the pump 104, preferably it is connected directly by a pipe 117. A first end of the pipe 117 is connected to the inlet 41 of pump 104.
  • the housing 205 includes a fourth opening 209 allowing the fluid connection of the second end of the pipe 117 with the self-regulation module 200.
  • the box 205 is fluidly connected to the fluidic circuit, precisely to the inlet 21 of the second exchanger 102, preferably it is connected directly by a pipe 115.
  • a first end of the pipe 115 is connected to the inlet 21.
  • the housing 205 includes a fourth opening 209 allowing the fluid connection of the second end of the pipe 117 with the self-regulation module 200.
  • FIG. 14 illustrates different cases of self-regulation of the fluid charge circulating in the fluid circuit.
  • the stiffness of the regulator spring Kd is less than the stiffness of the valve spring Ks.
  • the force exerted by the pressure of the reservoir Pr by the first opening 206 of the housing 205 on the regulator 201 and the valve 203 is greater than the force of the control pressure Pc exerted by the second opening 207 of the housing 205 on the regulator 201 and the valve 203.
  • the stiffness of the regulator and valve springs Kd and Ks do not compensate for this differential inducing the opening of the valve 203 (304) and maintaining the regulator 201 closed.
  • the opening of the valve 203 means that the fourth opening 209 of the housing 205 is open, allowing, depending on the embodiment, either the working fluid taken from the inlet 41 of the pump 104 to enter the reservoir, or to exit the reservoir 105. the working fluid in the gaseous state towards the inlet 21 of the second exchanger 102.
  • This movement of fluid causes a drop in pressure (307) in the reservoir 105 generating a suction 120 of working fluid towards the reservoir from the fluid circuit. Reducing the quantity of working fluid in the fluid circuit makes it possible to reduce the pressure at the pump inlet and therefore the subcooling limiting the degradation of the performance of the Rankine machine.
  • the reservoir pressure Pr having decreased, it is now in the second case (302), i.e. lower than the sum of the control pressure Pc and the stiffness of the valve spring Ks and remains greater than the sum of the control pressure Pc and the regulator stiffness Kd.
  • the force exerted by the pressure of the reservoir Pr by the first opening 206 of the housing 205 on the regulator 201 and the valve 203 is greater than the force of the control pressure Pc exerted by the second opening 207 of the housing 205 on the regulator 201 and valve 203.
  • Stiffness regulator and valve springs Kd and Ks compensate for this differential now closing the valve 203 and the regulator 201 (305).
  • the regulator 201 and the valve 203 being closed, there is no circulation of fluid either at the level of the self-regulation module 200 or between the reservoir 105 and the fluid circuit.
  • the tank pressure Pr is less than the sum of the control pressure Pc and the valve spring rate Ks and the sum of the control pressure Pc and the regulator spring rate Kd (303).
  • the force exerted by the pressure of the reservoir Pr by the first opening 206 of the housing 205 on the regulator 201 and the valve 203 is greater than the force of the control pressure Pc exerted by the second opening 207 of the housing 205 on the regulator 201 and the valve 203.
  • the stiffness of the regulator and valve springs Kd and Ks do not compensate for this differential inducing the opening of the regulator 201 (306) and keeping the valve 203 closed.
  • the opening of the regulator 201 means that the third opening 208 of the housing 205 is open allowing the working fluid taken at outlet 12 of the first exchanger 101 to enter the tank.
  • This movement of fluid causes an increase in pressure (309) in the reservoir Pr generating an injection 121 of working fluid towards the fluidic circuit from the reservoir 105.
  • Increasing the quantity of working fluid in the fluidic circuit makes it possible to increase the pressure at the inlet 41 of pump 104 and therefore the subcooling limiting the risks of cavitation.
  • the control pressure Pc is transmitted to the self-regulation module 200 at the second opening 207 by a module for producing a control pressure.
  • control pressure production module Two of them are illustrated in figures 11 and 12 .
  • the control pressure is transmitted by a production module of the gas source type whose pressure is regulated.
  • the module includes measuring means such as sensors for variables at input 41 of pump 104 such as temperature and pressure and means for regulating the control pressure Pc as a function of these variables.
  • the self-regulation module 200 is configured to ensure that the separation between the second opening 207 and the rest of the module 200 is hermetic so as to ensure that there is no contamination of the working fluid. not the gas from the production module of the control pressure.
  • FIG. 12 furthermore illustrates part of the fluidic circuit of the system according to the invention with the pump 104, the first exchanger 101, the second exchanger 102, the reservoir 105, the self-regulation module 200.
  • the outlet 22 of the second exchanger 102 and the outlet 12 of the first exchanger 101 are arranged in the direction of circulation of the working fluid, the tapping pipe 114 of the tank 105, the pump 104, the injection pipe 117 of the energy withdrawal element, the first exchanger 101 and the injection pipe 116 of the energy supply element.
  • the production module comprises a balloon 210 filled with working fluid thus limiting the risks of contamination, fluidly connected to the second opening 207 of the self-regulation module 200.
  • the balloon 210 is maintained at saturation temperature of the fluid at inlet 41 of pump 104.
  • the balloon 210 is advantageously immersed in the working fluid circulating in the fluid circuit.
  • the tank 210 is arranged at the outlet 22 of the second exchanger 102. In this way, the control pressure Pc is equal to the pressure of the fluid in the tank 201, itself equal to the saturation pressure of the fluid circulating in the pump line 113, that is to say at the saturation pressure at the inlet 41 of pump 104.
  • FIG. 11 furthermore illustrates part of the fluidic circuit of the system according to the invention with the pump 104, the first exchanger 101, the second exchanger 102, the reservoir 105, the self-regulation module 200.
  • the balloon 210 plunging into the pump pipe 113, the tapping pipe 114 of the tank 105, the pump 104, the first exchanger 101, the injection pipe 116 of the energy supply element, the expander (not shown) then the rejection pipe 115 of the energy withdrawal element.
  • the principle underlying the invention provides numerous advantages and in particular that of being able to better control the load of the fluid and therefore the subcooling, so that it is neither too small (risk of cavitation) nor too large (degradation of overall cycle performance).
  • An additional advantage of the invention is also to reduce the risk of cavitation in the pump.
  • the inlet pressure into the pump is regulated in the case of the invention. Indeed, the cavitation margin for a given installation is expressed by the difference between the inlet pressure minus the saturated vapor pressure and a characteristic value of the pump (NPSH: net positive suction head).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (17)

  1. System zur Produktion elektrischer oder mechanischer Energie, das einen Fluidkreislauf umfasst, in dem ein Arbeitsfluid zirkuliert, und das eine Vielzahl von Organen umfasst, die von dem Arbeitsfluid durchquert werden, und darunter:
    - mindestens ein erster Wärmetauscher (101), der dazu konfiguriert ist, thermisch mit mindestens einer ersten Wärmequelle (1) gekoppelt zu sein,
    - ein Expander (103), von dem ein Eingang (31) fluidisch an einen Ausgang (12) des ersten Wärmetauschers (101) angeschlossen ist,
    - ein zweiter Wärmetauscher (102), der dazu konfiguriert ist, thermisch mit einer zweiten Wärmequelle (2), die kälter ist als die erste Wärmequelle (1), gekoppelt zu sein,
    - mindestens eine Pumpe (104), die dazu konfiguriert ist, das Arbeitsfluid in dem Fluidkreislauf in Bewegung zu versetzen,
    - mindestens ein Behälter (105), der das Arbeitsfluid aufnimmt und zwischen dem zweiten Wärmetauscher (102) und der Pumpe (104) auf einer Abzweigleitung (114) eingerichtet ist,
    wobei der Fluidkreislauf derart konfiguriert ist, dass das Arbeitsfluid nacheinander durch mindestens die Pumpe (104), den ersten Wärmetauscher (101), den Expander (103) und den zweiten Wärmetauscher (102) und dann erneut durch die Pumpe (104) durchgeht,
    wobei das System eine Regulierungsvorrichtung der Fluidlast in Zirkulation in dem Fluidkreislauf umfasst, die dazu konfiguriert ist, im geschlossenen Kreislauf mit dem Fluidkreislauf zu arbeiten und Sättigungsbedingungen in dem Behälter (105) derart aufrechtzuerhalten, dass der Behälter (105) das Arbeitsfluid gleichzeitig in dem flüssigen Zustand (3) und in dem gasförmigen Zustand (4) enthält, wobei die Regulierungsvorrichtung Wärmeenergiezufuhrelemente (5, 6, 7) in den Behälter (105) umfasst, die dazu bestimmt sind, den Druck (Pr) des Behälters zu erhöhen und das Einspritzen des Arbeitsfluids des Behälters in den Fluidkreislauf einzuleiten, und Energieabzapfelemente (8, 9, 10) aus dem Behälter (105), die dazu bestimmt sind, den Druck (Pr) des Behälters zu verringern und die Ansaugung des Arbeitsfluids zu dem Behälter (105) außerhalb des Fluidkreislauf einzuleiten, und wobei das System ein Selbstregulierungsmodul mit mechanischer Funktionsweise umfasst, das dazu bestimmt ist, die Druckbeaufschlagung und die Druckentlastung des Behälters (105) zu regulieren, und das ein Gehäuse (205) umfasst, das einen Druckminderer (201), der einer Druckmindererfeder (202) zugeordnet ist, und ein Ventil (203) das einer Ventilfeder (204) zugeordnet ist, umfasst.
  2. System nach dem vorstehenden Anspruch, wobei der Behälter (105) direkt an die Abzweigleitung (114) angeschlossen ist, die selbst direkt an den Fluidkreislauf zwischen dem zweiten Wärmetauscher (102) und der Pumpe (104) angeschlossen ist, wobei das System vorteilhafterweise kein anderes Fluid als das Arbeitsfluid umfasst.
  3. System nach einem der vorstehenden Ansprüche, wobei die Wärmeenergiezufuhrelemente mindestens einen Heizstab (5), der in den Behälter (105) eintaucht, und/oder ein Modul zum Einspritzen von Arbeitsfluid, das an dem Ausgang (12) des ersten Wärmetauschers (101) entnommen wird, in den Behälter (105), und/oder eine mindestens teilweise Kopplung (7) des Behälters (105) mit der ersten Wärmequelle (1) umfassen.
  4. System nach einem der vorstehenden Ansprüche, wobei die Energieabzapfelemente ein Modul zum Ausstoßen außerhalb des Behälters (105) des Arbeitsfluids in dem gasförmigen Zustand (4) in Richtung des Eingangs (21) des zweiten Wärmetauschers (102) und/oder ein Modul zum Einspritzen in den Behälter (105) von Arbeitsfluid, das an dem Ausgang (42) der Pumpe (104) entnommen wird, und/oder eine mindestens teilweise Kopplung (10) des Behälters (105) mit der zweiten Wärmequelle (2) umfassen.
  5. System nach einem der vorstehenden Ansprüche, wobei das Selbstregulierungsmodul einen kompensierten Druckminderer (201), der mit einem kompensierten Ventil (203) gekoppelt ist, umfasst.
  6. System nach einem der vorstehenden Ansprüche, wobei die Wärmeenergiezufuhrelemente ein Einspritzmodul in den Behälter (105) von Arbeitsfluid, das an dem Ausgang (12) des ersten Wärmetauschers (101) entnommen wird, umfassen, und die Energieabzapfelemente ein Modul zum Ausstoßen des Fluids in dem gasförmigen Zustand (4) außerhalb des Behälters (105) in Richtung des Eingangs (21) des zweiten Wärmetauschers (102) oder ein Einspritzmodul in den Behälter (105) von Arbeitsfluid, das an dem Ausgang (42) der Pumpe (104) entnommen wird, umfassen.
  7. System nach dem vorstehenden Anspruch, wobei das Gehäuse (205) eine erste Öffnung (206) in Fluidverbindung mit dem Behälter (105) derart umfasst, dass sie dem Druck Pr des Behälters ausgesetzt ist, eine zweite Öffnung (207) in Fluidverbindung mit einem Steuerdruck-Produktionsmodul derart, dass sie einem gesteuerten Druck Pc ausgesetzt ist, eine dritte Öffnung (208) zum Einspritzen in den Behälter (105) von Arbeitsfluid, das an dem Ausgang (12) des ersten Wärmetauschers (101) entnommen wird, eine vierte Öffnung (209) zum Einspritzen in den Behälter (105) von Arbeitsfluid, das an dem Ausgang (42) der Pumpe (104) entnommen wird, oder zum Ausstoßen aus dem Behälter (105) von Arbeitsfluid in dem gasförmigen Zustand (4) zu dem Eingang (21) des zweiten Wärmetauschers (102).
  8. System nach dem vorstehenden Anspruch, wobei der Steuerdruck Pc gleich dem Sättigungsdruck des Fluids am Eingang (41) der Pumpe (104) während des Betriebs des Systems ist.
  9. System nach einem der drei vorstehenden Ansprüche, wobei die Ventilfeder (204) eine Steifigkeit Ks größer als diejenige der Druckmindererfeder (202) aufweist.
  10. System nach dem vorstehenden Anspruch, wobei das Regulierungsmodul (200) dazu konfiguriert ist, bei dem geschlossenen Druckminderer (201) und dem geschlossenen Ventil (203) im Gleichgewicht zu sein, wenn der Druck Pr des Behälters gleichzeitig größer als die Summe des Steuerdrucks Pc und der Steifigkeit Kd der Druckmindererfeder (202) und kleiner als die Summe des Steuerdrucks Pc und der Steifigkeit Ks der Ventilfeder (204) ist.
  11. System nach einem der zwei vorstehenden Ansprüche, wobei das Selbstregulierungsmodul (200) dazu konfiguriert ist, dass die Öffnung des Ventils (203) den Behälter (105) und den Eingang (21) des zweiten Wärmetauschers (102) oder den Ausgang (42) der Pumpe (104) durch die vierte Öffnung (209) in Fluidverbindung versetzt.
  12. System nach einem der drei vorstehenden Ansprüche, wobei das Selbstregulierungsmodul (200) dazu konfiguriert ist, dass die Öffnung des Druckminderers (201) den Behälter (105) und den Ausgang (12) des ersten Wärmetauschers (101) durch die dritte Öffnung (208) in Fluidverbindung versetzt.
  13. System nach einem der sechs vorstehenden Ansprüche, wobei das Steuerdruck-Produktionsmodul einen Ballon (210) umfasst, der mit Arbeitsfluid gefüllt ist, der fluidisch mit der zweiten Öffnung (207) des Gehäuses (205) verbunden ist, wobei der Ballon (210) dazu eingerichtet ist, in das Arbeitsfluid des Fluidkreislaufs am Ausgang (22) des zweiten Wärmetauschers (102) derart einzutauchen, dass die Temperatur des Fluids, das in dem Ballon (210) enthalten ist, gleich derjenigen des Arbeitsfluids des Fluidkreislaufs am Eingang (41) der Pumpe (104) ist.
  14. System nach einem der Ansprüche 7 bis 12, wobei das Steuerdruck-Erzeugungsmodul eine Gasquelle mit reguliertem Druck in Fluidverbindung mit der zweiten Öffnung (207) des Gehäuses (205), Drucksensoren und/oder Temperatursensoren am Eingang (41) der Pumpe (104) und Druckregulierungsmittel der Gasquelle derart umfasst, dass ein Steuerdruck Pc definiert wird.
  15. Regulierungsverfahren der Fluidlast in Zirkulation in dem Fluidkreislauf eines Energieproduktionssystems nach einem der vorstehenden Ansprüche, das die folgenden Schritte umfasst:
    - einen Druckanstiegsschritt des Arbeitsfluids durch die Pumpe (104) hindurch,
    - einen Heizschritt des Arbeitsfluids durch den ersten Wärmetauscher (101) hindurch,
    - einen Entspannungsschritt des Arbeitsfluids, der aus dem ersten Wärmetauscher (101) stammt, durch den Expander (103) hindurch,
    - einen Kühlschritt des Arbeitsfluids durch den zweiten Wärmetauscher (102) hindurch, wobei es Folgendes umfasst
    - einen Halteschritt von Sättigungsbedingungen in dem Behälter (105), um das Arbeitsfluid gleichzeitig in einem gasförmigen (4) und einem flüssigen (3) Zustand in dem Behälter (105) zu erhalten, durch
    - einen Wärmeenergiezufuhrschritt in den Behälter (105), der das Erhöhen des Drucks in dem Behälter (105) und das Hinzufügen von Arbeitsfluid in den Fluidkreislauf durch Einspritzen aus dem Behälter (105) umfasst,
    - oder alternativ einen Energieabzapfschritt aus dem Behälter (105), der die Verringerung des Drucks in dem Behälter (105) und das Abzapfen von Arbeitsfluid des Fluidkreislaufs durch Ansaugung zu dem Behälter (105) umfasst,
    - und wobei es einen Selbstregulierungsschritt umfasst, der dazu bestimmt ist, die Druckbeaufschlagung und die Druckentlastung des Behälters (105) derart zu regulieren, dass bei Gleichgewicht der Druckminderer (201) und das Ventil (203) geschlossen sind, wenn der Druck Pr des Behälters gleichzeitig größer als die Summe des Steuerdrucks Pc und der Steifigkeit Kd der Druckmindererfeder (202) und kleiner als die Summe des Steuerdrucks Pc und der Steifigkeit Ks der Ventilfeder (204) ist.
  16. Verfahren nach dem vorstehenden Anspruch, kombiniert mit den Ansprüchen 7 und 9, das, wenn der Druck Pr des Behälters größer als die Summe des Steuerdrucks Pc und der Steifigkeit Ks der Feder (204) des Ventils (203) ist, die Öffnung des Ventils (203) den Behälter (105) und den Eingang (21) des zweiten Wärmetauschers (102) oder den Eingang (42) der Pumpe (104) durch die vierte Öffnung (209) derart in Fluidverbindung versetzt, dass der Druck Pr des Behälters verringert wird.
  17. Verfahren nach einem der zwei vorstehenden Ansprüche, kombiniert mit den Ansprüchen 7 und 9, das, wenn der Druck Pr des Behälters kleiner als der Steuerdruck Pc hinzugefügt zur Steifigkeit Kd der Druckmindererfeder (202) ist, das Öffnen des Druckminderers den Behälter (105) und den Ausgang (12) des ersten Wärmetauschers (101) durch die dritte Öffnung (208) derart in Fluidverbindung versetzt, dass der Druck Pr des Behälters erhöht wird.
EP18187083.3A 2017-08-02 2018-08-02 Vorrichtung und verfahren zur regulierung der sich im kreislauf befindenden fluidmenge in einem system, das auf einem rankine-zyklus basiert Active EP3438422B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1757413A FR3069912B1 (fr) 2017-08-02 2017-08-02 Dispositif de regulation de la charge fluidique en circulation dans une systeme base sur un cycle de rankine

Publications (2)

Publication Number Publication Date
EP3438422A1 EP3438422A1 (de) 2019-02-06
EP3438422B1 true EP3438422B1 (de) 2023-12-13

Family

ID=60302240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18187083.3A Active EP3438422B1 (de) 2017-08-02 2018-08-02 Vorrichtung und verfahren zur regulierung der sich im kreislauf befindenden fluidmenge in einem system, das auf einem rankine-zyklus basiert

Country Status (2)

Country Link
EP (1) EP3438422B1 (de)
FR (1) FR3069912B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216283B (zh) * 2021-11-26 2023-10-20 潍柴动力股份有限公司 一种朗肯循环系统的冷却压力的控制方法及相关装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29617824U1 (de) * 1996-10-14 1997-02-13 Kuhlmann, Günter, 83413 Fridolfing Kühlkreislauf-Sicherheitsvorrichtung
US20120037243A1 (en) * 2009-04-17 2012-02-16 Taylor Innovations, L.L.C. Pressure Equalization Assembly for a Storage Vessel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19809165C2 (de) * 1998-02-26 2001-11-22 Ver Energiewerke Ag Verfahren und Anordnung zum sicheren Betrieb einer Kesselspeisepumpe bei mit Gleit- oder Festdruck betriebenen Speisewasserbehälter für ein Dampfturbinen-Kraftwerk
US8353684B2 (en) * 2009-02-05 2013-01-15 Grant Peacock Phase change compressor
DE102014206038A1 (de) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh System für einen thermodynamischen Kreisprozess, Steuereinrichtung für ein System für einen thermodynamischen Kreisprozess, Verfahren zum Betreiben eines Systems, und Anordnung mit einer Brennkraftmaschine und einem System
FR3020090B1 (fr) 2014-04-16 2019-04-12 IFP Energies Nouvelles Dispositif de controle d'un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif
DE102015209067A1 (de) * 2015-05-18 2016-11-24 Mahle International Gmbh Behältnis für eine Abwärmenutzungseinrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29617824U1 (de) * 1996-10-14 1997-02-13 Kuhlmann, Günter, 83413 Fridolfing Kühlkreislauf-Sicherheitsvorrichtung
US20120037243A1 (en) * 2009-04-17 2012-02-16 Taylor Innovations, L.L.C. Pressure Equalization Assembly for a Storage Vessel

Also Published As

Publication number Publication date
FR3069912A1 (fr) 2019-02-08
FR3069912B1 (fr) 2020-07-03
EP3438422A1 (de) 2019-02-06

Similar Documents

Publication Publication Date Title
US8869531B2 (en) Heat engines with cascade cycles
US9284855B2 (en) Parallel cycle heat engines
EP1672270B1 (de) Anlage zum Verdichten und Verdampfen von Flüssiggasen
CA2794150C (en) Heat engines with cascade cycles
US8613195B2 (en) Heat engine and heat to electricity systems and methods with working fluid mass management control
FR2590934A1 (fr) Groupe pour la production d'energie, notamment electrique, a partir de la chaleur
EP2715093A2 (de) Vorrichtung zur lagerung und ausgabe von flüssigkeiten und verfahren zur lagerung und ausgabe eines komprimierten gases in einer solchen vorrichtung
WO2012074940A2 (en) Heat engines with cascade cycles
FR2624200A1 (fr) Systeme pour le traitement et le stockage cryogeniques des produits de combustion d'un moteur thermique
EP3807570A1 (de) Energieoptimierte nachspeiseanlage
EP3438422B1 (de) Vorrichtung und verfahren zur regulierung der sich im kreislauf befindenden fluidmenge in einem system, das auf einem rankine-zyklus basiert
WO2013050666A1 (fr) Procédé et système perfectionné de conversion de l'énergie thermique marine
WO2020128400A1 (fr) Poste de détente d'un gaz et de compression d'un fluide
WO2018046807A1 (fr) Système mécanique de production d'énergie mécanique à partir d'azote liquide, et procédé correspondant
US6691514B2 (en) Method and apparatus for generating power
EP3191693B1 (de) System zur stromerzeugung basierend auf einem rankine-prozess
FR3090734A1 (fr) Système de cogénération d'énergie électrique et d'énergie thermique par un module de cycle de Rankine
FR3003897A1 (fr) Machine thermique cryogenique
FR3059355B1 (fr) Installation de production d'energie electrique, d'energie mecanique et/ou de froid
EP4350129A1 (de) System zur energieerzeugung mit einem organischen rankine-zyklus und integriertem absorptionszyklus
WO2022268830A1 (fr) Procede de stockage et de recuperation d'energie avec stockage de chaleur indirect a la compression
FR3117167A1 (fr) procédé de stockage et de récupération d’énergie avec optimisation thermique à la détente
FR3120393A1 (fr) Système et procédé de conditionnement de carburant configuré pour alimenter un turbomoteur d’aéronef à partir de carburant issu d’un réservoir cryogénique
FR3138938A1 (fr) Machine thermique à basse température utilisant un cycle de puissance à co2 supercritique (s-co2)
FR3142535A1 (fr) Dispositif de production de froid comprenant un cycle de réfrigération à éjecteur simple amélioré et procédé de production de froid associé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210916

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230228

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018062495

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1640609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213