EP3438416B1 - Segment d'aube statorique pour une turbomachine - Google Patents

Segment d'aube statorique pour une turbomachine Download PDF

Info

Publication number
EP3438416B1
EP3438416B1 EP17184855.9A EP17184855A EP3438416B1 EP 3438416 B1 EP3438416 B1 EP 3438416B1 EP 17184855 A EP17184855 A EP 17184855A EP 3438416 B1 EP3438416 B1 EP 3438416B1
Authority
EP
European Patent Office
Prior art keywords
functional surface
curvature
guide vane
vane segment
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17184855.9A
Other languages
German (de)
English (en)
Other versions
EP3438416A1 (fr
Inventor
Bernd Kislinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to ES17184855T priority Critical patent/ES2865387T3/es
Priority to EP17184855.9A priority patent/EP3438416B1/fr
Priority to US16/045,867 priority patent/US11268391B2/en
Publication of EP3438416A1 publication Critical patent/EP3438416A1/fr
Application granted granted Critical
Publication of EP3438416B1 publication Critical patent/EP3438416B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/047Nozzle boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/75Shape given by its similarity to a letter, e.g. T-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention relates to a guide vane segment for a turbomachine, in particular for a gas turbine, in particular for a turbine stage of a gas turbine, a guide vane, in particular a turbine stage, with the guide vane segment and a turbo machine, in particular a gas turbine, with the guide vane segment and a method for producing the guide vane segment .
  • guide vane segments for turbomachines are known from the prior art, in particular for gas turbines, which have one or more profiles for fastening the guide vane segment in a turbomachine housing. Due to the high temperatures occurring during operation of the turbomachine, uneven thermal expansion of the guide vane segment during operation can lead to undesirable stresses and / or leaks in the area of the fastening of the guide vane segments to the turbomachine housing.
  • One object of an embodiment of the present invention is to improve a guide vane segment, in particular its fastening in a turbomachine housing.
  • a guide vane segment for a turbomachine in particular for a gas turbine, in particular for a turbine stage of a gas turbine, has one or more guide vanes and one or more shrouds, in particular at least one outer shroud, with at least one profile arranged on the shroud, which In the present case also referred to as the first profile, for fastening the guide vane segment on the turbomachine housing side, the (first) profile extending in the circumferential direction at least partially over a circumferential length of the guide vane segment along the shroud of the guide vane segment and at least one extending at least partially in the axial direction and in the circumferential direction
  • Functional surface in particular for fastening the guide vane segment on the turbomachine housing side, at least the functional surface of at least this (first) profile in one or more radial planes perpendicular to a he axis of rotation of the turbomachine in the circumferential direction at the temperatures of at least one temperature range below a
  • the functional surface of at least one profile for fastening the guide vane segment on the turbomachine housing side is curved in the circumferential direction of the guide vane segment, based on a functional installation state in a turbomachine housing, at the temperatures of at least one temperature range below a defined operating temperature with at least two mutually different curvatures and in the circumferential direction there are in particular at least one functional surface of the profile in at least one radial plane to the axis of rotation of the turbo machine at least two different circles of curvature, the two circles of curvature differing in particular in their radius of curvature and / or in their center of curvature.
  • a change in curvature occurring as a result of heating of the guide vane segment can be at least partially compensated for, so that in one embodiment at least the defined operating temperature on the turbomachine housing side, an at least substantially complete contact of the functional surface on an associated, turbomachine housing-side contact surface can be achieved, in particular on a contact surface on the turbomachine housing side that is curved with a constant curvature.
  • an improved, turbomachine housing-side support of the guide vane segment in the turbomachine housing can be achieved in one embodiment.
  • a sealing effect on the turbo machine housing side can be improved in one embodiment, which has an advantageous effect on the efficiency of the turbo machine.
  • the indication of direction “axial” refers to a direction parallel to a rotation or (main) machine axis of the turbo machine
  • the indication of direction “circumferential direction” corresponds to a direction of rotation about this rotation or (main) machine axis
  • the indication of direction “radial” means a direction perpendicular to the axial direction and the circumferential direction.
  • the term “radial plane” refers in a manner customary in the art to a normal plane (s) to an axis of rotation, in the present case in particular to a normal plane (s) to the axis of rotation of the turbomachine, ie in particular to a plane oriented perpendicular to the (main) machine axis.
  • the at least one profile of the guide vane segment extends in the circumferential direction, in particular completely over the circumferential length of the shroud of the guide vane segment.
  • the functional surface of the profile extends in the circumferential direction, in particular completely over the entire circumferential length of the profile.
  • the at least one profile arranged on the shroud is designed for fastening the guide vane segment on the turbomachine housing side, in particular for supporting and / or sealing on the turbomachine housing side.
  • at least one functional surface in particular at least partially, is designed as a support surface, via which forces acting on the guide vane segment, in particular during operation of the turbomachine, can be supported on the turbine housing side, and / or at least partially designed as a sealing surface for sealing on the turbomachine housing side, in particular corresponding to a contact surface on the turbomachine housing side.
  • the at least one functional surface of the at least one profile runs in at least a partial axial direction, ie at least with one directional component in a direction parallel to the axis of rotation of the turbo machine, in one embodiment without curvature, ie it extends in this direction in particular linearly , or points across its width in at least partial axial direction has a constant curvature or also has at least two different curvatures, ie or follows a curve profile with a changing radius of curvature in at least partial axial direction.
  • constant means “constant” in the customary manner within the meaning of the invention, but includes deviations of up to ⁇ 10%, in particular deviations within the usual tolerance ranges.
  • a guide vane segment in particular additionally has an inner shroud for fastening the guide vane segment on the rotation axis side, in particular for fastening on a turbo machine housing on the rotation axis side.
  • the guide vane segment has at least one or the first, in particular upstream, in particular most upstream, profile and a second, in particular downstream, in particular most downstream, profile, the functional surface of the first Profile and the functional surface of the second profile in particular each have at least two different curvatures in at least one radial plane to the axis of rotation of the turbomachine in the circumferential direction at the temperatures of at least one temperature range below a defined operating temperature.
  • the two profiles are arranged at axially opposite end regions and / or ends of a shroud, in particular a common shroud, in particular the outer shroud, and extend in particular in the circumferential direction at least partially over a circumferential length of the guide vane segment, in particular along of the associated shroud of the guide vane segment, and in particular each have at least one functional surface extending at least in the axial direction and at least partially, preferably completely, over the circumferential length of the guide vane segment, in the circumferential direction.
  • At least one profile arranged on the shroud is designed at least partially over its length in the circumferential direction as a hook profile, preferably completely over the entire circumferential length of the guide vane segment.
  • the first profile and / or the second profile has at least one projection extending at least partially in the axial direction and in the circumferential direction with (each) an inner surface oriented inward in the radial direction and one in the radial direction outwardly oriented outer surface, with the first, upstream profile in particular the inner surface of the projection and in the second, downstream profile in particular the outer surface of the projection (each) at least partially forming the functional surface.
  • the first profile and / or the second profile in particular in each case, have a profile cross-section with a first projection lying inward in the radial direction and extending at least partially in the axial direction and in the circumferential direction and with a second projection in further out in the radial direction and also at least partially in the axial direction and in the circumferential direction and with a web connecting the two projections, at least partially in the radial direction in between, in particular (each) an at least partially U-shaped profile cross-section, where, in particular (in each case) in the first profile, the inner surface of the second, radially further outward projection at least partially forms the functional surface and / or in the second profile in particular (in each case) the outer surface of the second, further outward projection.
  • At least one functional surface of at least one profile has a first functional surface section and at least one further functional surface section, in particular at least two further functional surface sections, the first functional surface section in at least one radial plane perpendicular to the axis of rotation of the turbomachine in the circumferential direction in at least one temperature range below the defined operating temperature of the turbo machine is curved with a first, in particular constant, curvature and at least one further functional surface section, in particular at least two further functional surface sections, in at least one radial plane to the axis of rotation of the turbo machine in the circumferential direction in at least one temperature range below the defined operating temperature of the turbo machine with another, is curved different from the first curvature and in particular constant curvature.
  • the curvature of the functional surface in particular in the first functional surface section, is defined in the circumferential direction by a first circle of curvature and / or a first cylinder of curvature extending in the axial direction, i.e. parallel to the axis of rotation of the turbo machine, and in particular in the second functional surface section by a further circle of curvature or cylinder of curvature.
  • At least one functional surface of at least one profile runs in the first functional surface section in the circumferential direction, in particular along a circular path segment defined by a first circle of curvature or by a first cylinder of curvature, and in the second functional surface section in the circumferential direction, in particular along one defined by a second circle of curvature or a second cylinder of curvature Circular segment.
  • the first functional surface section in the circumferential direction in particular directly adjoins at least one of the further functional surface sections, the first functional surface section merging in at least one radial plane to the axis of rotation of the turbo machine in the circumferential direction, in particular tangentially, into the further functional surface section adjoining the first functional surface section.
  • At least one functional surface section of at least one functional surface of at least one profile has a constant curvature in the circumferential direction at least over part of its circumferential length, in particular over its entire circumferential length.
  • At least one functional surface of at least one profile has three functional surface sections, in particular a first functional surface section, a first further functional surface section and a second further functional surface section, the first functional surface section being arranged in the circumferential direction in particular between the two further functional surface sections.
  • the functional surface of at least one profile has only a first functional surface section and only one further functional surface section, i.e. only two functional surface sections, at least one of the functional surface sections extends in particular over half of the functional surface in the circumferential direction, with both functional surface sections in particular each over half of the functional surface in the circumferential direction extend.
  • At least one of the functional surface sections extends over a proportion of the circumferential length of the associated functional surface of at least 20%, at least 30%, at least 40% or at least 50% up to a maximum of 50%, 60%, 70% or 80%.
  • At least one of the functional surface sections extends over a portion of the Circumferential length of the associated functional surface of approximately 33%, in particular 33% of the circumferential length of the functional surface.
  • the curvature of the functional surface of the first functional surface section is defined over at least part of the circumferential length, in particular over the entire circumferential length of the first functional surface section, in the circumferential direction by a first circle of curvature with a first radius of curvature, which lies in a radial plane to the axis of rotation of the turbo machine the center of the first circle of curvature lies in particular on the axis of rotation of the turbomachine.
  • the center of curvature of the first circle of curvature defining the curvature of the first functional surface section coincides in particular with the axis of rotation of the turbomachine, i.e. with the (main) machine axis.
  • the curvature of the functional surface in the first functional surface section is constant over the circumferential length of the first functional surface section, i.e. defined by the same circle of curvature, the course of the functional surface of the first functional surface section being defined in particular by a segment of the first circle of curvature in the associated radial plane.
  • the curvature of the functional surface of at least one further functional surface section is defined over at least part of the circumferential length, in particular over the entire circumferential length of the further functional surface section, in the circumferential direction by a further circle of curvature with a further radius of curvature lying in a radial plane to the axis of rotation of the turbo machine , wherein the center of the further circle of curvature is in particular offset from the axis of rotation of the turbo machine.
  • the center of the further circle of curvature lies in a common radial plane, in particular with the center of the first circle of curvature, which defines the curvature of the first functional surface section.
  • the radius of the second circle of curvature can be different from the radius of the first circle of curvature, or if the center of the second circle of curvature does not coincide with the center of the first circle of curvature, it can be equal to the radius of the first circle of curvature.
  • the second circle of curvature which defines the curvature of the second functional surface section, in particular over the entire circumferential length of the second functional surface section, is the same, in particular the course of the functional surface in the second functional surface section through a circle segment of the second circle of curvature in the radial plane in the associated Radial plane is defined.
  • the center point of the first circle of curvature is arranged offset to the axis of rotation, in particular the center point of at least one further circle of curvature coinciding with the axis of rotation.
  • all center points of the first circle of curvature and the further circles of curvature which define the curvature of at least one functional surface are offset from the axis of rotation, and in particular at least two center points of the circle of curvature are offset from one another and / or at least two circles of curvature point two from one another different radii of curvature.
  • At least one further radius of curvature of at least one further circle of curvature is smaller than the first radius of curvature of the first circle of curvature, in particular by at least 2%, 3%, or 5% and a maximum of 5%, 7.5% or 10%. That is to say, in particular, the radius of at least one further circle of curvature is at most 98%, 97% or 95% and at least 95%, 92.5% or 90% of the radius of the first circle of curvature.
  • an “expansion”, i.e. a reduction in the curvature of the functional surface in the circumferential direction, in particular of the outer functional surface sections, can be compensated for, in particular in a targeted manner.
  • the functional surface is curved symmetrically in the circumferential direction in at least one radial plane to the axis of rotation of the turbomachine, based on the circumferential length of the functional surface of the guide vane segment, in particular symmetrically with a deviation of up to ⁇ 10% with regard to the position of the axis of symmetry to a center of the functional surface in the circumferential direction and / or with regard to the course of the functional surface with a deviation of up to ⁇ 10% from the associated radius of curvature.
  • the at least two mutually different curvatures of at least one functional surface of at least one profile of the guide vane segment are selected in such a way that the functional surfaces have a constant curvature in the circumferential direction when the guide vane segment is properly installed in a turbomachine when the turbomachine is in operation, at least at the defined operating temperature has, which in particular by a circle of curvature lying in a radial plane to the axis of rotation of the turbomachine is defined with a radius of curvature, the center of which lies on the axis of rotation of the turbomachine.
  • a guide vane for one, in particular one, turbo machine, in particular for one, in particular one, gas turbine, in particular for one, in particular one, turbine stage of a gas turbine has one or more guide vane segments according to one of the embodiments described here.
  • a turbomachine in particular a gas turbine, in particular at least one turbine stage of the gas turbine, has at least one guide vane segment according to one of the embodiments described here.
  • the guide vane segment is first produced by primary molding, in particular by casting or a generative process, and then machined, with at least one functional surface of at least one profile, in particular at least by machining with a geometrically undefined cutting edge is machined, in particular by grinding, to introduce the at least two mutually different curvatures of the functional surface in the circumferential direction.
  • the first curvature is introduced into the functional surface over its entire length in the circumferential direction and, in particular, in at least one further step, the associated further curvature in at least one further functional surface section.
  • at least one of the functional surfaces is machined with a geometrically undefined cutting edge, in particular by grinding, in particular its mutually different curvatures are produced.
  • the center point of a rotationally symmetrical machining tool in particular the center point of a rotationally symmetrical grinding tool, coincides with the center point of the first circle of curvature and in particular defines a first grinding center point.
  • the center of a rotationally symmetrical machining tool in particular the center of a rotationally symmetrical grinding tool, coincides with the center of the associated, further circle of curvature and defines a further grinding center point, the further grinding center point being offset in particular to the center of the first grinding center point lies.
  • the guide vane segment is made from a nickel-based alloy, in particular a nickel-based superalloy or a cobalt-based superalloy, or has a nickel-based alloy, nickel-based superalloy or cobalt-base -Super alloy on.
  • Fig. 1 shows a section of a guide vane segment according to a first embodiment of the present invention in a perspective illustration at an operating temperature below a defined operating temperature.
  • This guide vane segment 10 has six guide vanes 11, which are each connected to one another by an outer shroud 12 that is further outward in the radial direction, based on an axis of rotation A of an associated turbomachine, and by an inner shroud 12 that is further radially inward and not shown here.
  • the outer shroud 12 Arranged on the outer shroud 12 are two profiles 16, 17 each extending in the circumferential direction U over the entire circumferential length L of the guide vane segment 10 for fastening the guide vane segment 10 on the turbine housing side, the guide vane segment 10 having a first upstream profile 16 and a second, downstream profile 17 , with respect to a flow direction S, in which the guide vane segment 10 is flown through during the operation of an associated turbo machine.
  • the two profiles 16 and 17 are each designed as continuous hook profiles 16, 17 with an essentially U-shaped cross section.
  • Both hook profiles 16 and 17 each have two projections 16I and 16A or 17I and 17A, one further inward in the radial direction 16I or 17I and one further outward in the radial direction 16A and 17A, the projections 16I and 16A or 17I and 17A of the two hook profiles 16, 17 each extend essentially in the axial direction, ie essentially parallel to the axis of rotation A.
  • An outer surface 18 of the outer projection 17A of the second, downstream profile 17, which is oriented outward in the radial direction, and an inner surface 19 of the outer projection 16A of the first, upstream profile 16, which is oriented inward in the radial direction, are each designed as a functional surface 18 and 19, respectively.
  • the functional surfaces 18 and 19 each extend in a radial plane perpendicular to the axis of rotation A of the turbomachine in the circumferential direction U, ie along the outer projections 17A and 16A in the circumferential direction U, and in the axial direction, in particular parallel to the axis of rotation A.
  • the functional surface 18 points in a radial plane perpendicular to the axis of rotation A, in particular over its entire width in the axial direction two mutually different curvatures, the functional surface 18 being defined in at least two points by two mutually different circles of curvature, symbolized by the two mutually different radii of curvature R1 and R2.
  • the two circles of curvature that define the curvature of the functional surface 18 differ both in the position of their centers M1 and M2 and in their radius R1 and R2, the center M1 of the first circle of curvature with the radius R1 coincides with the axis of rotation A.
  • the Fig. 2a and 2 B each show a section of a guide vane segment 20 according to a second embodiment of the present invention, for the sake of clarity in FIGS Fig. 2a and 2 B only a part of the reference numerals is shown in each case.
  • the guide vane segment 20 differs from that in FIG Fig. 1 guide vane segment 10 shown according to a first embodiment of the present invention that both the functional surface 18 and the functional surface 19 have three adjoining and tangentially merging functional surface sections, wherein in Fig. 2a the functional surface sections 18A, 18B and 18C of the functional surface 18 are shown recognizable and in FIG Figure 2b the functional surface sections 19A, 19B and 19C of the functional surface 19, which each have different curvatures from one another.
  • the curvature of the individual functional surface sections 18A, 18B and 18C or 19A, 19B and 19C in the circumferential direction U is constant.
  • the functional surfaces 18 and 19 in the first functional surface section 18A and 19A run along a circular path segment of a first circle of curvature, which is defined by a circle center M1 and a first radius of curvature R1 or R4, while the functional surfaces in the second functional surface section 18B and 19B extend in the circumferential direction U along a circular path segment of a second circle of curvature which is defined by a second center of the circle of curvature M2 and a second radius of curvature R2 or R5.
  • the functional surfaces 18 and 19 run in the circumferential direction U along a circular path segment which is defined by a third circle of curvature with a third center of the circle of curvature M3 and a third radius of curvature R3 and R6.
  • the center of the circle of curvature M1 of the first circle of curvature is selected in such a way that it coincides with the axis of rotation A of the turbomachine, while the two centers of the circle of curvature M2 and M3 of the two further circles of curvature are offset from the axis of rotation A and in this case, in particular, are also offset from one another.
  • the centers of curvature M1, M2 and M3 of the circles of curvature defining the curvature of the functional surface all lie in a common radial plane to the axis of rotation A.
  • the centers of the circle of curvature of a profile 16 or 17 can lie with the centers of the circle of curvature of the other profile 17 or 16 in a common radial plane or in a radial plane different therefrom.
  • the two radii of curvature R2 or R5 and R3 or R6 of the two outer functional surface sections 18B and 18C or 19B and 19C are each selected to be smaller in this embodiment than the radius of curvature R1 or R4 of the first circle of curvature, which is the curvature of the central functional surface section 18A or .19A defined.
  • the associated functional surface can be achieved in a relatively simple manner 18 or 19 are deformed as a result of the guide vane segment 20 heating up during operation of the turbomachine in such a way that at least at the defined operating temperature, a constant curvature of the functional surface 18 or 19 is established in the circumferential direction U, in particular over the entire circumferential length L of the functional surface 18 or 19
  • an "expansion" ie a reduction in the curvature of the functional surface 18 or 19 in the circumferential direction, in particular of the outer functional surface sections 18B and 18C or 19B and 19C, can be compensated for, in particular in a targeted manner.
  • the functional surfaces 18, 19 have no curvature in the axial direction. That is, the functional surfaces 18, 19 extend in the axial direction along a straight line.
  • the individual, respectively adjacent functional surface sections 18A, 18B and 18C or 19A, 19B and 19C each directly adjoin one another and each merge tangentially into one another.
  • Fig. 3 shows a section of the guide vane segment from Fig. 2a and 2 B in a state fastened on the turbomachine housing side in a schematic sectional view, with the aid of this illustration particularly clearly showing how the guide vane segment 20 is supported on the turbomachine housing side via the two profiles 17 and 16 on the turbomachine housing 30, in each case via the outer projections 16A and 17A of the two profiles 16 and 17.
  • the guide vane segment 20 in particular its Functional surfaces 18 and 19, raised from the associated contact surface or contact surface on the turbomachine housing side, the guide vane segment 20 is supported on the turbomachine housing 30 via the radially outwardly oriented functional surface 18 of the second, downstream hook and the radially inwardly oriented functional surface 19.
  • tilting moments occurring as a result of a flow lead to increased support instead of lifting of the functional surfaces 18, 19 from the associated contact surfaces of the housing 30.
  • Fig. 4 shows the shroud 22 of the guide vane segment 20 from Fig. 3 in a first perspective illustration, in which it is particularly easy to see in this perspective illustration how the functional surface 18 of the second, downstream profile 17 extends both in the circumferential direction U along the profile 17 and in the axial direction, in particular linearly without a curvature.
  • the functional surface 19 of the front, upstream profile 16 also extending in the axial direction as well as in the circumferential direction U over the length of the profile 16 and also not having any curvature in the axial direction.
  • the first functional surface section 19A of the functional surface 19 is defined by a first circle of curvature with a first radius of curvature R4, the center of curvature of the associated circle of curvature in particular also coinciding with the axis of rotation A.
  • the second functional surface section 19B also has a constant curvature in the circumferential direction U over the length of the functional section 19B, the curvature of the second functional surface section 19B being defined by a second circle of curvature with a second radius of curvature R5, the center of which is offset from the axis of rotation A, but in particular in a common radial plane with the center of the first circle of curvature.
  • the third functional surface section 19C also has a constant curvature in the circumferential direction U over the length of the functional surface section 19C, the curvature of the third functional surface section 19C being defined by a third circle of curvature with a third center of the circle of curvature and a third radius of curvature R6, the third center of the circle of curvature also being offset is arranged to the axis of rotation A, but in particular also lies in a common radial plane with the first center of the circle of curvature and the second center of curvature.
  • the radius R5 of the second circle of curvature and the radius R6 of the third circle of curvature are in particular, as in the case of the functional surface 18, each smaller than the radius R4 of the first circle of curvature.
  • the radius of the second circle of curvature R5 and the radius of the third circle of curvature R6 are also different from each other.
  • FIG. 10 shows the guide vane segment 20 from FIG Fig. 2a and 2 B at the defined operating temperature, only the individual functional surface sections 19A, 19B and 19C of the functional surface 19 being designated for the sake of clarity.
  • the guide vane segment 20 shown has deformed, in particular "widened", as a result of the heating during operation of the turbomachine, compared to that in FIG Fig. 2a and 2 B shown condition below the defined operating temperature.
  • the curvature of the functional surfaces 18 and 19 has decreased, in particular in the two outer functional surface sections 19B and 19C or 18B and 18C.
  • the two functional surfaces 18 and 19 of the guide vane segment 20 each have a constant curvature in the circumferential direction U over the entire circumferential length L of the profiles 16 and 17, instead of two different curvatures as below the defined operating temperature according to the Fig. 2a and 2 B what in Fig. 7 is symbolized in each case by arrows labeled "R", which represent the respective radii R of the associated circles of curvature at the operating temperature.
  • the bearing or contact surfaces on the turbomachine housing side generally deform significantly less during operation, so that their curvature hardly changes when heated.
  • the contact surfaces or contact surfaces on the turbo machine housing side are therefore preferably produced with a constant, in particular concentric curvature with respect to the matter of rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Segment d'aube directrice (10, 20) destiné à une turbomachine, le segment d'aube directrice (10, 20) présentant au moins une aube directrice (11) et au moins un carénage (12) comportant au moins un premier profil (16, 17) disposé sur le carénage (12) pour la fixation, côté carter de turbomachine, du segment d'aube directrice (10, 20), le profil (16, 17) s'étendant, dans la direction circonférentielle (U), au moins partiellement sur une longueur circonférentielle (L) du segment d'aube directrice (10, 20) le long du carénage (12) du segment d'aube directrice (10, 20) et présentant au moins une surface fonctionnelle (18, 19) s'étendant au moins partiellement dans la direction axiale et dans la direction circonférentielle (U), caractérisé en ce que la surface fonctionnelle (18, 19) du profil (16, 17) présente, dans au moins un plan radial perpendiculaire à un axe de rotation (A) de la turbomachine dans la direction circonférentielle (U), à toutes les températures d'au moins une plage de température inférieure à u ne température de fonctionnement définie de la turbomachine, respectivement au moins deux courbures différentes l'une de l'autre.
  2. Segment d'aube directrice (10, 20) selon la revendication 1, caractérisé en ce que le segment d'aube directrice (10, 20) présente au moins un premier profil amont (16) et un second profil aval (17), la surface fonctionnelle (19) du premierprofil (16) et la surface fonctionnelle (18) du second profil (17) présentant, respectivement dans au moins un plan radial par rapport à l'axe de rotation (A) de la turbomachine dans la direction circonférentielle (U), dans au moins une plage de température inférieure à une température de fonctionnement définie, au moins deux courbures différentes l'une de l'autre.
  3. Segment d'aube directrice (10, 20) selon l'une des revendications précédentes, caractérisé en ce que le premier profil (16) et/ou le second profil (17) présentent au moins une saillie (16I, 16A ; 17I, 17A), laquelle s'étend au moins partiellement dans la direction axiale et dans la direction circonférentielle (U) et comporte une surface intérieure orientée vers l'intérieur dans la direction radiale et une surface extérieure orientée vers l'extérieur dans la direction radiale, la surface fonctionnelle (19) étant formée, dans le premier profil (16), au moins partiellement par la surface intérieure de la saillie (16A) et/ou, dans le second profil aval (17), par la surface extérieure de la saillie (17A).
  4. Segment d'aube directrice (10, 20) selon l'une des revendications précédentes, caractérisé en ce que le premier profil (16) et/ou le second profil (17) présentent une section transversale de profil comportant une première saillie (16I, 17I) située vers l'intérieur dans la direction radiale et s'étendantau moins partiellement dans la direction axiale et dans la direction circonférentielle (U), une seconde saillie (16A, 17A) située davantage vers l'extérieurdans la direction radiale et s'étendant également au moins partiellement dans la direction axiale et dans la direction circonférentielle (U) et une entretoise reliant les deux saillies (16I, 16A ; 17I, 17A) et s'étendant au moins partiellement dans la direction radiale, la surface fonctionnelle (19) étant formée, dans le premier profil (16), au moins partiellement par la surface intérieure de la seconde saillie (16A) située davantage vers l'extérieur radialement et/ou, dans le second profil (17), par la surface extérieure (18) de la seconde saillie (17A) située davantage vers l'extérieur.
  5. Segment d'aube directrice (10, 20) selon l'une des revendications précédentes, caractérisé en ce qu'au moins une surface fonctionnelle (18, 19) d'au moins un profil (16, 17) présente une première section de surface fonctionnelle (18A, 19A) et au moins une autre section de surface fonctionnelle (18B, 18C ; 19B, 19C), la première section de surface fonctionnelle (18A, 19A) étant courbée avecune première courbure dans la direction circonférentielle (U) dans au moins un plan radial perpendiculaire à l'axe de rotation (A) de la turbomachine dans au moins une plage de température inférieure à la température de fonctionnement définie de la turbomachine, et au moins une autre section de surface fonctionnelle (18B, 18C ; 19B, 19C) étant courbée avec une courbure supplémentaire différente de la première courbure dans la direction circonférentielle (U) dans au moins un plan radial par rapport à l'axe de rotation (A) de la turbomachine dans au moins une plage de température inférieure à la température de fonctionnement définie de la turbomachine.
  6. Segment d'aube directrice (10, 20) selon la revendication 5, caractérisé en ce que la première section de surface fonctionnelle (18A, 19A) est directement adjacente à au moins l'une des autres sections de surface fonctionnelle (18B, 18C ; 19B, 19C) dans la direction circonférentielle (U), la première section de surface fonctionnelle (18A, 19A) passant, dans la direction circonférentielle (U) dans au moins un plan radial par rapport à l'axe de rotation (A) de la turbomachine, dans l'autre section de surface fonctionnelle (18B, 18C ; 19B, 19C) adjacente à la première section de surface fonctionnelle (18A, 19A).
  7. Segment d'aube directrice (10, 20) selon l'une des revendications précédentes, en particulier selon la revendication 5 ou 6, caractérisé en ce qu'au moins une surface fonctionnelle (18, 19) d'au moins un profil (16, 17) présente trois sections de surface fonctionnelle (18A, 18B, 18C ; 19A, 19B, 19C), à savoir une première section de surface fonctionnelle (18A, 19A), une première autre section de surface fonctionnelle (18B, 19B) et une seconde autre section de surface fonctionnelle (18C, 19C), la première section de surface fonctionnelle (18A, 19A) étant disposée entre les deuxautres sections de surface fonctionnelle (18B, 18C ; 19B, 19C) dans la direction circonférentielle (U).
  8. Segment d'aube directrice (10, 20) selon l'une des revendications 5 à 7, caractérisé en ce que la courbure de la surface fonctionnelle (18, 19) de la première section de surface fonctionnelle (18A, 19A) est définie, au moins sur une partie de la longueur circonférentielle (L) dans la direction circonférentielle (U), par un premier cercle de courbure qui comporte un premier rayon de courbure (R1, R2) et qui est situé dans un plan radial par rapport à l'axe de rotation (A) de la turbomachine, le point central (M1) du premier cercle de courbure étant situé sur l'axe de rotation (A) de la turbomachine.
  9. Segment d'aube directrice (10, 20) selon l'une des revendications 5 à 8, caractérisé en ce que la courbure de la surface fonctionnelle (18, 19) d'au moins une autre section de surface fonctionnelle (18B, 18C ; 19B, 19C) est définie, au moins sur une partie de la longueur circonférentielle (L) dans la direction circonférentielle (U), par un autre cercle de courbure qui comporte un autre rayon de courbure (R2, R3 ; R5, R6) et qui est situé dans un plan radial par rapport à l'axe de rotation (A) de la turbomachine, le point central (M2, M3) de l'autre cercle de courbure étant décalé par rapport à l'axe de rotation (A) de la turbomachine.
  10. Segment d'aube directrice (10, 20) selon les revendications 8 et 9, caractérisé en ce qu'au moins un autre rayon de courbure (R2, R3 ; R5, R6) d'au moins un autre cercle de courbure est inférieur au premier rayon de courbure (R1, R4) du premier cercle de courbure.
  11. Segment d'aube directrice (10, 20) selon l'une des revendications précédentes, caractérisé en ce que la surface fonctionnelle (18, 19) est courbée symétriquement dans la direction circonférentielle (U) dans au moins un plan radial par rapport à l'axe de rotation (A) de la turbomachine, sur la base de la longueur circonférentielle (L) de la surface fonctionnelle (18, 19) du segment d'aube directrice (10, 20).
  12. Segment d'aube directrice (10, 20) selon l'une des revendications précédentes, caractérisé en ce que les au moins deux courbures différentes l'une de l'autre d'au moins une surface fonctionnelle (18, 19) d'au moins un profil (16, 17) du segment d'aube directrice (10, 20) sont choisies de telle sorte que la surface fonctionnelle (18, 19) présente, lors de l'assemblage adéquat sur le plan fonctionnel du segment d'aube directrice (10, 20) dans une turbomachine, lors du fonctionnement de la turbomachine à au moins la température de fonctionnement définie, une courbure constante dans la direction circonférentielle (U), laquelle courbure est définie en particulier par un cercle de courbure qui comporte un rayon de courbure (R) et est situé dans un plan radial par rapport à l'axe de rotation (A) de la turbomachine, le centre (M) dudit cercle de courbure étant situé sur l'axe de rotation (A) de la turbomachine.
  13. Grille directrice destinée à une turbomachine et comportant au moins un segment d'aube directrice (10, 20) selon l'une des revendications précédentes.
  14. Turbomachine comportant au moins un segment d'aube directrice (10, 20) selon l'une des revendications précédentes.
  15. Procédé de fabrication d'un segment d'aube directrice (10, 20) selon l'une des revendications précédentes, caractérisé par les étapes :
    - de fabrication du segment d'aube directrice (10, 20) par moulage primaire,
    - d'usinage d'au moins une surface fonctionnelle (18, 19) d'au moins un profil (16, 17) pour l'introduction des au moins deux courbures différentes l'une de l'autre de la surface fonctionnelle (18, 19) dans la direction circonférentielle (U), à cet effet, dans une première étape, la première courbure étant introduite dans la surface fonctionnelle (18, 19) sur toute sa longueurdans la direction circonférentielle (U) et, dans au moins une étape supplémentaire, la courbure supplémentaire associée étant introduite dans au moins une section supplémentaire de surface fonctionnelle (18B, 18C ; 19B, 19C).
EP17184855.9A 2017-08-04 2017-08-04 Segment d'aube statorique pour une turbomachine Active EP3438416B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES17184855T ES2865387T3 (es) 2017-08-04 2017-08-04 Segmento de paletas guía para una turbina
EP17184855.9A EP3438416B1 (fr) 2017-08-04 2017-08-04 Segment d'aube statorique pour une turbomachine
US16/045,867 US11268391B2 (en) 2017-08-04 2018-07-26 Stator vane segment for a turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17184855.9A EP3438416B1 (fr) 2017-08-04 2017-08-04 Segment d'aube statorique pour une turbomachine

Publications (2)

Publication Number Publication Date
EP3438416A1 EP3438416A1 (fr) 2019-02-06
EP3438416B1 true EP3438416B1 (fr) 2021-03-17

Family

ID=59558257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17184855.9A Active EP3438416B1 (fr) 2017-08-04 2017-08-04 Segment d'aube statorique pour une turbomachine

Country Status (3)

Country Link
US (1) US11268391B2 (fr)
EP (1) EP3438416B1 (fr)
ES (1) ES2865387T3 (fr)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860358A (en) * 1974-04-18 1975-01-14 United Aircraft Corp Turbine blade tip seal
US5071313A (en) * 1990-01-16 1991-12-10 General Electric Company Rotor blade shroud segment
US5641267A (en) * 1995-06-06 1997-06-24 General Electric Company Controlled leakage shroud panel
US6702550B2 (en) * 2002-01-16 2004-03-09 General Electric Company Turbine shroud segment and shroud assembly
US7458772B2 (en) * 2004-10-26 2008-12-02 Alstom Technology Ltd. Guide vane ring of a turbomachine and associated modification method
US7452183B2 (en) * 2005-08-06 2008-11-18 General Electric Company Thermally compliant turbine shroud assembly
US7448846B2 (en) * 2005-08-06 2008-11-11 General Electric Company Thermally compliant turbine shroud mounting
US7442004B2 (en) * 2005-08-06 2008-10-28 General Electric Company Thermally compliant C-clip
US7438520B2 (en) * 2005-08-06 2008-10-21 General Electric Company Thermally compliant turbine shroud mounting assembly
US8096755B2 (en) * 2006-12-21 2012-01-17 General Electric Company Crowned rails for supporting arcuate components
US7798775B2 (en) * 2006-12-21 2010-09-21 General Electric Company Cantilevered nozzle with crowned flange to improve outer band low cycle fatigue
EP2189630A1 (fr) * 2008-11-19 2010-05-26 Siemens Aktiengesellschaft Turbine à gaz, support d'aube directrice pour une telle turbine à gaz, et moteur à turbine à gaz avec une telle turbine à gaz
US8328511B2 (en) 2009-06-17 2012-12-11 General Electric Company Prechorded turbine nozzle
US8313292B2 (en) * 2009-09-22 2012-11-20 Siemens Energy, Inc. System and method for accommodating changing resource conditions for a steam turbine
FR3024884B1 (fr) * 2014-08-14 2019-07-05 Safran Aircraft Engines Procede de realisation d'un anneau sectorise d'etancheite et d'une turbine de turbomachine
US10280780B2 (en) * 2014-10-30 2019-05-07 United Technologies Corporation Sealing systems for gas turbine engine vane platforms
US10808553B2 (en) * 2018-11-13 2020-10-20 Rolls-Royce Plc Inter-component seals for ceramic matrix composite turbine vane assemblies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11268391B2 (en) 2022-03-08
US20190040754A1 (en) 2019-02-07
ES2865387T3 (es) 2021-10-15
EP3438416A1 (fr) 2019-02-06

Similar Documents

Publication Publication Date Title
EP3040560B1 (fr) Dispositif de boitier pour un etage d'un compresseur a plusieurs etages et procede de fabrication d'un dispositif de boitier
EP2478186B1 (fr) Rotor de turbomachine
EP2921716B1 (fr) Groupe de série d'aubes
EP3176370A1 (fr) Ensemble d'aubes directrices pour turbomachine
EP3273001B1 (fr) Procédé de fabrication d'un élément d'aube en tandem
EP1653049B1 (fr) Couronne d'aubes directrices pour turbines à gaz et procédé pour sa modification
EP2921714A1 (fr) Groupe de série d'aubes
DE102004026503A1 (de) Düsenzwischenstufendichtung für Dampfturbinen
EP2818724B1 (fr) Turbomachine et procédé
EP3287611B1 (fr) Turbine à gaz
EP2811118B1 (fr) Segment d'aube directrice d'une turbomachine et turbine
EP2918776B1 (fr) Procédé de fabrication d'une roue à aubes à deux rangées pour une turbomachine et roues à aubes à deux rangées
EP3287608B1 (fr) Bague intérieure d'une couronne d'aubes directrices d'une turbomachine
EP2787178B1 (fr) Ensemble d'aube directrice
EP2696039B1 (fr) Étage de turbine à gaz
EP2410131A2 (fr) Rotor d'une turbomachine
EP2871325A1 (fr) Virole interne d'une turbomachine et distributeur
EP2394028B1 (fr) Dispositif d'étanchéité sur l'arbre à aubes d'un étage de rotor d'une turbomachine axiale et son utilisation
DE102009013819A1 (de) Verfahren zur Herstellung eines Leitschaufelkranzes für eine Gasturbine sowie Leitschaufelkranz
EP3425172A1 (fr) Bague d'étanchéité pour turbomachines, turbomachine ayant une telle badue d'étanchéité et procédé de fabrication d'une telle bague d'étanchéité
EP3056684B1 (fr) Bague intérieure séparée axialement pour une turbomachine, un stator et groupe motopropulseur
EP3438416B1 (fr) Segment d'aube statorique pour une turbomachine
EP3704386B1 (fr) Canal intermédiaire destiné à être placé entre un compresseur basse pression et un compresseur haute pression, produit par fabrication additive, ainsi que procédé de fabrication correspondant
DE102013224199A1 (de) Gasturbinen-Laufschaufel
DE102013213416A1 (de) Schaufel für eine Gasturbomaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190723

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200318

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009717

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2865387

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009717

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210804

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1372412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 7

Ref country code: ES

Payment date: 20230918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 7

Ref country code: DE

Payment date: 20230822

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317