EP3437111B1 - Transformateur électrique à enroulements - Google Patents

Transformateur électrique à enroulements Download PDF

Info

Publication number
EP3437111B1
EP3437111B1 EP17712527.5A EP17712527A EP3437111B1 EP 3437111 B1 EP3437111 B1 EP 3437111B1 EP 17712527 A EP17712527 A EP 17712527A EP 3437111 B1 EP3437111 B1 EP 3437111B1
Authority
EP
European Patent Office
Prior art keywords
primary
winding
windings
axis
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17712527.5A
Other languages
German (de)
English (en)
Other versions
EP3437111A1 (fr
Inventor
Sébastien FONTAINE
Daniel Sadarnac
Charif KARIMI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Safran Electronics and Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics and Defense SAS filed Critical Safran Electronics and Defense SAS
Publication of EP3437111A1 publication Critical patent/EP3437111A1/fr
Application granted granted Critical
Publication of EP3437111B1 publication Critical patent/EP3437111B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings

Definitions

  • the invention relates to a winding electric transformer.
  • a known transformer comprises at least two windings: a primary winding, generally connected to a power supply, and a secondary winding generally connected to a "load" that it supplies with energy drawn from the source.
  • the Figures 1a and 1b illustrate two conventional electrical transformers, in which the primary winding P comprises n 1 turns extending around an axis X, and the secondary winding S comprises n 2 turns extending around the X axis and around the n 1 turns.
  • a magnetic circuit M consisting of a material with high magnetic permeability such as ferrite, is used to channel this magnetic flux and thus improve the coupling between the windings.
  • the magnetic circuit M of the transformer of the figure 1a has a disk-shaped section in a plane transverse to the X axis, while that of the transformer of the figure 1b has an annular section in such a plane.
  • the windings P and S are traversed by currents i 1 and i 2 as shown in FIG. figure 1 .
  • the "ampere x turns" of the primary winding and the secondary winding are then almost identical, as illustrated by the following formula: not 1 i 1 ⁇ not 2 i 2
  • the magnetic circuit weighs down the electrical transformer.
  • FIG. 2a An example of a known rotating transformer is illustrated on the figure 2a .
  • the figure 2b illustrates an unconventional transformer that could theoretically be considered in a process of lightening and simplifying the geometry of parts.
  • These transformers comprise an "air gap" e, namely a space formed in the magnetic circuit so that one winding can rotate relative to the other. Connecting wires turn in this space e if the two parts of the magnetic circuit are fixed (only one winding rotates).
  • This space corresponds to the necessary mechanical clearance if the two parts of the magnetic circuit are each fixed to a winding (a winding then rotates with a part of the magnetic circuit).
  • the air gap e the magnetic flux between the two windings P and S is less well channeled. This results in a not insignificant difference between the "amps x turns" of the primary winding and the secondary winding: not 1 i 1 ⁇ not 2 i 2
  • the figure 3 illustrates this compensation effect.
  • the left part of the figure 3 shows a single conductor in space, rectilinear and of infinite length: the induction lines are circular with an induction which decreases inversely proportional to the radial distance to this conductor.
  • the central part of the figure 3 shows the association of two such conductors, arranged parallel and traversed by currents of opposite directions. Their effects are superimposed on the right side of the figure 3 : induction is reinforced between drivers as it decreases very rapidly towards the outside, as one moves away from the drivers. Magnetic circuit portions placed around the conductors are sufficient in this 1 st configuration to channel these low external leakage fluxes.
  • the Figures 4a and 4b show the magnetic fluxes generated by the transformers of Figures 2a and 2b in the 2 nd configuration (the only current imposed on the transformer is the magnetizing current in the primary winding). In this 2 nd configuration, there is no more compensation effect. Magnetic leakage propagates to the outside of these transformers, the leakage being all the more important as the air gaps e are wide.
  • the figure 5 details the profile of the induction obtained along the line D of the transformer of the figure 4b for a given magnetizing current imposed on the primary winding.
  • This figure shows the presence of magnetic leaks outside the transformer.
  • the induction profile is computable simply by approximating the internal induction lines to parallel lines: the 2 lines drawn in a thicker line on this figure surround part of the "amps x turns"; the induction on these two lines is proportional to these encircled "ampere x towers".
  • the fact that the induction is not zero along the line D in regions adjacent to the transformer is the manifestation of the aforementioned magnetic leakage.
  • the magnetic circuit weighs down the electrical transformer.
  • An object of the invention is to reduce the magnetic disturbances generated by a transformer operating on the basis of windings, while allowing to significantly reduce this transformer.
  • a transformer T comprises two parts: a primary part A and a secondary part B.
  • the primary part A comprises three primary windings 11a, 12a, 13a and the secondary part B comprises three secondary windings 11b, 12b, 13b.
  • each winding mentioned in this document comprises one or more turns.
  • a turn is defined as a winding portion extending 360 degrees about an axis in a given direction.
  • the following defines a "winding" as a turn or a set of consecutive turns wound in the same direction.
  • a change of direction marks a separation between two adjacent windings.
  • the six windings 11a, 12a, 13a, 11b, 12b, 13b extend around a reference axis X.
  • the primary winding 11a said central primary winding, is arranged between the primary windings 12a and 13a, said peripheral primary windings.
  • the primary windings 11a, 12a, 13a are intended to be connected to one or more electrical power sources (not shown in the figures). These primary windings 11a, 12a, 13a are therefore supplied with current by such electric sources.
  • the central primary winding 11a is configured to be traversed by a current rotating in a first direction around the axis X.
  • the two peripheral primary windings 12a, 13a are configured to be traversed by a current rotating in a second direction around the X axis which is opposed to the first sense. In other words, the flow directions of the current in the different primary windings are alternated.
  • the three primary windings 11a, 12a, 13a can be connected in series, that is to say that they form different portions of the same primary electrical conductor. In this way, the primary windings can be traversed by a current of the same intensity, for example provided by a single electrical source.
  • An alternation of directions of the currents flowing through the three primary windings 11a, 12a, 13a can for example be obtained by alternating the direction in which these windings 11a, 12a, 13a are wound around the axis X.
  • the peripheral primary windings 12a, 13a are then wound around the axis X in a first direction of winding (for example hourly), and the central primary winding 11a is wound around the axis X in a second direction of winding opposite the first direction of winding (counterclockwise). This is such as to minimize the length of conductor needed to connect the central primary winding to each of the adjacent peripheral primary windings, when these are connected in series.
  • the central primary winding 11a and the peripheral primary winding 12a are directly connected to each other, via a junction 14a forming a hairpin: it is at this junction 14a that the direction winding around the reference axis X is reversed between the two primary windings 11a and 12a. It is the same for the junction 15a between the windings 11a and 13a.
  • the three windings can be contiguous two by two. In other words, the windings are in contact two by two (the junctions 14a and 15a can then form a simple fold).
  • the three primary windings are at a distance from each other; in this case, the junction 14a passes through a space between the two windings 11a and 12a, and the junction 15a passes through a space between the two windings 11a and 13a.
  • This space is useful (but not essential) to maximize the magnetic flux closing through the primary and secondary windings, thus to maximize the resulting magnetization inductance. Maximization of the magnetization inductance is useful (but not necessary) to minimize the no-load (no load) current of the transformer.
  • peripheral primary windings 12a, 13a of the figure 6 have the same number of turns and together have a cumulative number of turns equal to the number of turns of the central primary winding 11a.
  • the secondary winding 11b is arranged between the secondary windings 12b and 13b, said peripheral secondary windings.
  • the secondary windings 11b, 12b, 13b are intended to be connected to one or more electrical devices to supply energy, also referred to as "charges" (not shown in the figures).
  • the central primary winding 11a is configured to generate a central magnetic flux in cooperation with the central secondary winding 11b.
  • the peripheral primary winding 12a (respectively 13a) is configured to generate a central magnetic flux in cooperation with the secondary winding 12b (respectively 13b).
  • the central secondary winding 11b is configured to be traversed by a current rotating in the second direction about the axis X (thus in a direction opposite to the direction of the current rotating in the central primary winding 11a with which it cooperates).
  • the two peripheral secondary windings 12b, 13b are configured to be traversed by a current rotating in the first direction about the axis X which is opposite to the second direction. In other words, the flow directions of the current in the different secondary windings 11b-13b are also alternated.
  • the three secondary windings 11b, 12b, 13b can be connected in series, that is to say they form different portions of the same secondary electrical conductor.
  • An alternation of direction of the currents flowing through the three secondary windings 11b, 12b, 13b can for example be obtained by alternating the direction in which these windings are wound around the axis X.
  • the peripheral secondary windings 12b, 13b are then wound around the X axis in a certain direction of winding (for example counterclockwise), and the central secondary winding 11b is wound around the axis X in the other direction (for example hourly).
  • the central secondary winding 11b and the peripheral secondary winding 12b are directly connected to each other, via a junction 14b forming a hairpin: it is at this junction 14b that the direction winding around the reference axis X is reversed between the two secondary windings 11b and 12b.
  • the central secondary winding 11b and the secondary winding 13b are directly connected to one another, via another junction 15b forming a half-turn: it is at this junction 15b that the winding direction around the reference axis X is reversed between the two secondary windings 11b and 13b.
  • peripheral secondary windings 12b, 13b of the figure 6 have the same number of turns and together have a cumulative number of turns equal to the number of turns of the central secondary winding 11b.
  • n n of turns in the primary windings and m turns in the secondary windings, divided as follows: n / 4 turns for each device primary windings n / 2 turns for the central primary winding, m / 4 turns for each of the peripheral secondary windings and m / 2 turns for the central secondary winding.
  • n m or n different from m (in which case the transformer will have a transformation ratio different from 1).
  • the transformer is of rotary type, in that the primary windings 11a, 12a, 13a are rotatable about the X axis relative to the secondary windings 11b, 12b, 13b (or vice versa).
  • the primary part A of the transformer is for example a stator comprising a primary casing 2a extending around the reference axis X.
  • the primary casing 2a has a generally annular shape, for example cylindrical and / or of revolution.
  • the secondary portion B is furthermore a rotor rotating about the reference axis X with respect to the stator A.
  • the rotor B comprises a secondary casing 2b having a generally annular shape, for example cylindrical and / or of revolution.
  • the secondary casing 2b is inside the primary casing 2a, or vice versa.
  • the casing closest to the X axis is hollow; it is understood that this housing can alternatively be full.
  • the primary windings are fixed to the stator A, and the secondary windings are fixed to the rotor B.
  • each winding extends in volume around and along the axis X. More specifically, each winding comprises a succession of localized turns in different positions along the reference axis X (for better readability, we have shown on the figure 6 only one turn of each primary winding).
  • the primary conductor in which the primary windings are formed is wound along a substantially helical path around and along the X axis, and occupies a generally annular volume centered on the reference axis X.
  • the primary windings are wound at a first radial distance from the reference axis X.
  • the junction 14a between the peripheral primary winding 12a and the central primary winding 11a is a portion of the primary conductor which is confined between the two windings 11a, 12a in a direction parallel to the X axis. the same goes for the junction 15a which connects the primary windings 11a and 13a.
  • the foregoing features also apply to the secondary conductor, wherein the secondary windings 11b, 12b, 13b and the junctions 14b-15b are formed.
  • This secondary conductor is wound in a substantially helical path around and along the X axis, and occupies a generally annular volume centered on the reference axis X.
  • the secondary windings 11b, 12b, 13b are wound at a second radial distance of the reference axis X, different from the first radial distance.
  • the secondary windings 11b, 12b, 13b are wound around the primary windings 11a, 12a, 13a with respect to the X axis, or vice versa. More specifically, each secondary winding is wound around a primary winding, and facing it.
  • the "cylindrical" winding transformer T may be of rotary type.
  • the windings radially further from the X axis can then be fixed to the outer annular casing 2b, and the windings radially closer to the X axis be fixed to the inner annular casing 2a as illustrated in FIG. figure 6 both housings being rotatable relative to one another.
  • the left part of the figure 6 shows the induction lines that result from the magnetizing current flowing in the primary conductor in the cylindrical winding transformer T, and the right part of the figure 6 shows the induction profile measured along a line D parallel to the X axis and located between the annular structure formed by the primary windings and the annular structure formed by the secondary windings.
  • the central secondary winding 11b receives at least partly the central magnetic flux generated by the central primary winding 11a
  • the secondary peripheral winding 12b receives the peripheral magnetic flux generated by the peripheral primary winding 12a (13a respectively).
  • a voltage is generated in the secondary windings connected to the load or loads used.
  • the central secondary winding 11b is then traversed by a current rotating in a third direction about the X axis, and the two peripheral secondary windings 12b, 13b are traversed by a current rotating in a fourth direction about the X axis which is opposed to the third sense.
  • the directions of flow of the current in the different secondary windings 11b, 12b, 13b are alternated as is the case for the primary conductors 11a, 12a, 13a.
  • the peripheral magnetic flux generated by the primary peripheral windings 12a, 13a compensate for the effects of the central magnetic flux generated by the primary central winding 11a.
  • the induction is in particular zero along the two half-lines of the straight line D starting from the two opposite ends of the segment D0.
  • Equipment located in these peripheral regions, and in particular located along the line D or the X axis, are thus very effectively protected against radiation emitted by the windings of the transformer, without the need for recourse a magnetic circuit weighing the transformer or complicating its shape in order to minimize the air gap discussed in the introduction.
  • the phenomenon of compensation of inductions in the peripheral regions illustrated in the right part of the figure 6 can be explained using the figures 7a and 7b .
  • the figure 7a shows the central magnetic induction obtained in the transformer T when power is supplied to the central primary winding 11a alone (the peripheral primary windings 12a, 13a, located on either side, being disconnected).
  • the figure 7b shows the magnetic inductions obtained in the transformer T when current is supplied to the peripheral primary windings 12a, 13a alone (the central primary winding 11a being disconnected).
  • the compensation phenomenon is not limited to the line D but is generalizable outside a ball. Compensation occurs at every point of the space farther from this center of the radius of the ball, in all directions of space.
  • the center of the ball is the intersection between the X axis and a plane intersecting the central conductors 11a, 11b in the particular embodiment. figure 6 .
  • the transformer T may comprise such a magnetic circuit.
  • the magnetic circuit is for example made of mu-metal (single sheet or stacked sheets (laminating)) or ferrite.
  • the magnetic circuit is formed by the casings 2a and 2b.
  • the magnetic circuit has two opposite ends having different positions along the X axis.
  • the primary and secondary windings are confined strictly between these two positions.
  • the magnetic circuit extends beyond the peripheral windings in a direction parallel to the X axis. This makes it possible to improve the coupling between the windings of the transformer T.
  • the figure 8 schematically illustrates a transformer T 'according to another embodiment, said "planar".
  • This embodiment differs from the cylindrical winding embodiment in that the windings are arranged differently.
  • each winding comprises at least one spiral portion arranged transversely to the axis X, that is to say that each winding comprises several spirals wound around each other transversely to the axis X.
  • the two ends of the spiral portion thus have different radial positions with respect to the X axis.
  • a given winding may consist of a single spiral with several turns wound around each other, or may comprise several spiral parts stacked on each other in a direction of stacking parallel to the axis.
  • X each spiral portion comprising a plurality of turns wrapped around the others.
  • each winding has a planar spiral shape extending perpendicular to the X axis.
  • the primary windings 11a, 12a, 13a are coplanar.
  • the secondary windings 11b, 12b, 13b are also coplanar.
  • Each primary winding 11a, 12a, 13a is located in an annular sector around the axis X which is specific to it, the annular sectors being located in different ranges of radial positions with respect to the reference axis X.
  • the transformer T ' may further comprise a magnetic circuit.
  • the magnetic circuit is for example made of mu-metal (single sheet or stacked sheets (laminating)) or ferrite.
  • the magnetic circuit is for example formed by the casings 2a and 2b.
  • the peripheral primary winding 13a is located in an outer annular sector, and the central primary winding 11a is located in an intermediate annular sector, closer to the reference axis X that the outer annular sector, and the peripheral primary winding 12a is located in an inner annular sector, closer to the X axis than the intermediate annular sector.
  • the junction 14a between the primary winding 11a and the primary winding 12a is a portion of the primary hairpin conductor.
  • This portion 14a may be rectilinear or curved (for example U-shaped). It is the same for the junction 15a which connects the primary windings 11a and 13a.
  • the three annular sectors can be contiguous two by two. In other words, the windings are in contact two by two (the junctions 14a and 15a can then form a simple fold).
  • the three primary windings are at a distance from each other; in this case, the junction 14a passes through an annular space between the two windings 11a and 12a, and the junction 15a passes through an annular space between the two windings 11a and 13a.
  • one way of optimizing the compensation phenomenon is to provide for the two annular spaces crossed by the junctions 14a and 15a to be of approximately the same area in a plane perpendicular to the X axis.
  • the primary windings 11a, 12a, 13a may be made on a plate-shaped washer (or "slab") centered on the axis X.
  • the plate is for example made of an electrically insulating material such as epoxy .
  • Each secondary winding 11b, 12b, 13b is arranged facing a primary winding 11a, 12a, 13a, in a direction parallel to the axis X.
  • the transformer according to the "pancake” embodiment can also be of the rotary type.
  • the two housings 2a, 2b have two annular surfaces 22a, 22b facing each other, which extend in two parallel planes offset from one another along the reference axis X .
  • the primary windings 11a, 12a, 13a are fixed to the annular surface 22a of the primary casing 2a, and the secondary windings 11b, 12b, 13b are fixed to the annular surface 22b of the secondary casing 2b, vis-à-vis.
  • Each primary winding faces a secondary winding, regardless of the angular position of the rotor when it rotates relative to the stator around the reference axis X.
  • Compensation can be optimized by dissymmetrizing certain parameters related to peripheral windings (number of turns, dimensions, spacing %) because these peripheral windings are by nature asymmetrical (the average radii are different).
  • This embodiment is particularly advantageous when equipment sensitive to magnetic radiation must be arranged along the reference axis X, in the ball-shaped region.
  • the transformer T ' may further comprise a magnetic circuit.
  • the magnetic circuit is for example formed by the housings 2a, 2b which extend radially with respect to the axis X.
  • the magnetic circuit has two opposite ends having different radial positions with respect to the axis X.
  • the primary and secondary windings occupy a space whose ends are strictly confined between and at a distance from these two radial positions.
  • the magnetic circuit extends beyond the peripheral windings in a direction radial to the X axis. This makes it possible to improve the coupling between the windings of the transformer T '.
  • planar spiral shape of the windings results in different sections offered to the passage of the magnetic flux through the turns. This results in a differential flow which closes outside the transformer T '.
  • a first option to improve the reduction of magnetic leaks is to opt for a number of turns different from the distribution n / 4, n / 2 and n / 4, between the inner side and the outer side (see figure 10 ), so that the peripheral inductions exactly compensate the central induction.
  • Another option is to space the windings differently, in accordance with the figure 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

    DOMAINE DE L'INVENTION
  • L'invention concerne un transformateur électrique à enroulements.
  • ETAT DE LA TECHNIQUE
  • On connaît de l'état de la technique des transformateurs électriques comprenant deux parties, dans lesquels de la puissance doit être transmise de l'une des deux parties à l'autre partie.
  • A cet effet, un transformateur connu comporte au moins deux enroulements : un enroulement primaire, généralement raccordé à une source d'alimentation électrique, et un enroulement secondaire généralement raccordé à une « charge » qu'il alimente par de l'énergie puisée à la source.
  • Les figures 1a et 1b illustrent deux transformateurs électriques conventionnels, dans lesquels l'enroulement primaire P comprend n 1 spires s'étendant autour d'un axe X, et l'enroulement secondaire S comprend n 2 spires s'étendant autour de l'axe X et autour des n 1 spires.
  • Dans de tels transformateurs, de l'énergie est transmise de l'enroulement primaire P à l'enroulement secondaire S via un « flux magnétique » rayonné par l'enroulement primaire P et en partie reçu par l'enroulement secondaire S. Un circuit magnétique M, constitué d'un matériau à forte perméabilité magnétique tel que de la ferrite, est utilisé pour canaliser ce flux magnétique et ainsi améliorer le couplage entre les enroulements. Le circuit magnétique M du transformateur de la figure 1a présente une section en forme de disque dans un plan transversal à l'axe X, tandis que celui du transformateur de la figure 1b présente une section annulaire dans un tel plan.
  • Les enroulements P et S sont parcourus par des courants i 1 et i 2 comme représentés sur la figure 1. Lorsque la perméabilité du circuit magnétique M est suffisante, les « ampères x tours » de l'enroulement primaire et de l'enroulement secondaire sont alors presque identiques, comme l'illustre la formule suivante : n 1 i 1 n 2 i 2
    Figure imgb0001
  • Or, le circuit magnétique alourdit le transformateur électrique.
  • Par ailleurs, dans certains transformateurs électriques, il est désirable que la puissance soit transmise d'une partie à l'autre sans contact entre les deux parties. C'est le cas notamment des transformateurs dits « tournants » ou « rotatifs », qui se caractérisent par des enroulements primaire et secondaire mobiles l'un par rapport à l'autre.
  • Un exemple de transformateur tournant connu est illustré sur la figure 2a . La figure 2b illustre quant à elle un transformateur non conventionnel qui pourrait être théoriquement envisagé dans une démarche d'allègement et de simplification de la géométrie des pièces. Ces transformateurs comprennent un « entrefer » e, à savoir un espace formé dans le circuit magnétique de sorte qu'un enroulement puisse tourner par rapport à l'autre. Des fils de raccordement tournent dans cet espace e si les deux parties du circuit magnétique sont fixes (seul un enroulement tourne). Cet espace correspond au jeu mécanique nécessaire si les deux parties du circuit magnétique sont fixées chacune à un enroulement (un enroulement tourne alors avec une partie du circuit magnétique). Or, à cause de la présence de l'entrefer e, le flux magnétique entre les deux enroulements P et S est moins bien canalisé. Il en résulte une différence non négligeable entre les « ampères x tours » de l'enroulement primaire et de l'enroulement secondaire : n 1 i 1 n 2 i 2
    Figure imgb0002
  • Cette différence intervient dans l'environnement magnétique du système. Il est possible de réécrire la relation précédente en définissant « le courant magnétisant » im1 vu par l'enroulement primaire : n 1 i 1 = n 2 i 2 + n 1 im 1
    Figure imgb0003
  • Un circuit magnétique M classique n'est pas un système linéaire. Cependant, compte tenu des entrefers e, il est possible de considérer le système global comme presque linéaire, ce qui permet d'utiliser le théorème de superposition: l'environnement magnétique peut être considéré comme la somme des deux rayonnements émis par les enroulements dans les deux configurations suivantes:
    • 1ère configuration : on a des « ampères x tours » identiques n1 i1 = n2 i2 (imposé par la charge)
    • 2ème configuration : seul l'enroulement est alimenté par le courant magnétisant : n1 i1 = n1 im1 (calculable à partir de la tension imposée par la source).
  • Dans la 1ère configuration, les effets des deux enroulements P, S se compensent autour du système. L'ensemble des flux magnétiques est pratiquement contenu dans le système. Les fuites magnétiques vers l'extérieur du transformateur sont limitées. La figure 3 illustre cet effet de compensation. La partie gauche de la figure 3 montre un conducteur unique dans l'espace, rectiligne et de longueur infinie : les lignes d'induction sont circulaires avec une induction qui décroit de manière inversement proportionnelle à la distance radiale à ce conducteur. La partie centrale de la figure 3 montre l'association de deux tels conducteurs, agencés parallèlement et parcourus par des courants de sens opposés. Leurs effets sont superposés dans la partie droite de la figure 3: l'induction est renforcée entre les conducteurs alors qu'elle décroit très rapidement vers l'extérieur, au fur et à mesure que l'on s'éloigne des conducteurs. Des portions de circuit magnétique placées autour des conducteurs suffisent dans cette 1ère configuration à canaliser ces faibles flux de fuite extérieurs.
  • Les figures 4a et 4b montrent les flux magnétiques générés par les transformateurs des figures 2a et 2b dans la 2ème configuration (le seul courant imposé au transformateur est le courant magnétisant dans l'enroulement primaire). Dans cette 2ème configuration, il n'y a plus d'effet de compensation. Des fuites magnétiques se propagent vers l'extérieur de ces transformateurs, les fuites étant d'autant plus importantes que les entrefers e sont larges.
  • La figure 5 détaille le profil de l'induction obtenue le long de la droite D du transformateur de la figure 4b pour un courant magnétisant donné imposé à l'enroulement primaire. Cette figure traduit la présence de fuites magnétiques à l'extérieur du transformateur. À l'intérieur du transformateur, le profil d'induction est calculable simplement en approximant les lignes d'induction intérieures à des droites parallèles : les 2 lignes tracées selon un trait plus épais sur cette figure entourent une partie des « ampères x tours » ; l'induction sur ces deux lignes est proportionnelle à ces « ampères x tours » encerclés. Le fait que l'induction ne soit pas nulle le long de la droite D dans des régions attenantes au transformateur est la manifestation des fuites magnétiques précitées.
  • Or, ces fuites magnétiques sont susceptibles de perturber le fonctionnement d'autres composants situés à proximité du transformateur ou à l'extérieur du système dans lequel celui-ci est implanté.
  • Par ailleurs, même si le circuit magnétique M peut contribuer à réduire ces fuites magnétiques, ce circuit magnétique demeure une solution imparfaite pour les supprimer dans le cas d'un transformateur électrique dont les deux parties ne se touchent pas, tel qu'un transformateur du type rotatif, puisqu'un entrefer e y subsiste.
  • En outre, comme indiqué précédemment, le circuit magnétique alourdit le transformateur électrique.
  • US 5,608 771 et US 5,572,178 divulguent un transformateur électrique selon le préambule de la revendication 1.
  • EXPOSE DE L'INVENTION
  • Un but de l'invention est de réduire les perturbations magnétiques générées par un transformateur fonctionnant à base d'enroulements, tout en permettant d'alléger de façon significative ce transformateur.
  • Afin d'atteindre ce but l'invention propose un transformateur électrique comprenant :
    • un enroulement primaire central s'étendant autour d'un axe et configuré pour générer un flux magnétique central, lorsqu'il est parcouru par un courant tournant selon un premier sens autour de l'axe,
    • deux enroulements primaires périphériques s'étendant autour de l'axe, entre lesquels l'enroulement primaire central est localisé, et configurés pour générer des flux magnétiques périphériques lorsqu'ils sont parcourus par des courants respectifs tournant selon un deuxième sens autour de l'axe qui est opposé au premier sens, les flux magnétiques périphériques se superposant au flux magnétique central,
    • dans lequel les enroulements sont en outre configurés de sorte que les flux magnétiques périphériques compensent le flux magnétique central dans des régions localisées au-delà des enroulements périphériques.
  • Dans le transformateur ainsi proposé, un phénomène de compensation de flux magnétique est obtenu par l'adjonction des enroulements périphériques de part et d'autre de l'enroulement primaire. Cette compensation permet de réduire voire annuler les fuites magnétiques dans les régions périphériques du transformateur sans avoir à intégrer nécessairement un circuit magnétique susceptible d'alourdir le transformateur.
  • L'invention peut également être complétée par les caractéristiques suivantes, prises seules ou en combinaison lorsque cela est techniquement possible.
    • Les enroulements primaires sont montés en série.
    • l'enroulement primaire central est enroulé autour de l'axe selon un premier sens d'enroulement, et les enroulements primaires périphériques sont enroulés autour de l'axe selon un deuxième sens d'enroulement opposé au premier sens d'enroulement.
    • Les enroulements primaires périphériques présentent ensemble un nombre de spires cumulé égal au nombre de spires de l'enroulement primaire central.
    • Chaque enroulement primaire présente au moins une partie hélicoïdale autour et le long de l'axe, les parties hélicoïdales des trois enroulements primaires s'étendant dans des gammes de positions respectives différentes le long de l'axe.
    • Le transformateur comprend en outre un circuit magnétique présentant deux extrémités opposées ayant des positions longitudinales différentes suivant une direction parallèle à l'axe, et les enroulements primaires sont strictement confinés entre et à distance de ces deux positions longitudinales.
    • Chaque enroulement primaire présente au moins une partie en spirale enroulée sur elle-même transversalement à l'axe, les parties en spirale des trois enroulements primaires s'étendant dans des gammes de positions annulaires respectives différentes par rapport à l'axe.
    • Les enroulements primaires sont coplanaires.
    • Le transformateur comprend en outre un circuit magnétique présentant deux extrémités opposées ayant des positions radiales différentes suivant une direction perpendiculaire à l'axe, et les enroulements primaire et secondaire sont strictement confinés entre et à distance de ces deux positions radiales.
    • Le transformateur électrique comprend en outre un enroulement secondaire central configuré pour recevoir au moins en partie le flux magnétique central.
    • Le transformateur électrique comprend en outre deux enroulements secondaires périphériques, entre lesquels l'enroulement secondaire central est localisé, chaque enroulement secondaire périphérique étant configuré pour recevoir au moins partiellement l'un des flux magnétiques périphériques.
    • Le transformateur comprend un carter primaire auquel chaque enroulement primaire est fixé, et un carter secondaire auquel le ou chaque enroulement secondaire est fixé, les deux carters étant mobiles en rotation l'une par rapport à l'autre relativement à l'axe.
    • Le transformateur comprend un carter primaire présentant une surface annulaire primaire s'étendant perpendiculairement à l'axe, chaque enroulement primaire étant fixé sur la surface annulaire primaire, un carter secondaire présentant une surface annulaire secondaire s'étendant perpendiculairement à l'axe et en vis-à-vis de la surface annulaire primaire, chaque enroulement secondaire étant fixé sur la surface annulaire secondaire de sorte à être en regard d'un enroulement primaire.
    DESCRIPTION DES FIGURES
  • D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
    • Les figures 1a, 1b, 2a, 2b sont des vues en coupe de trois transformateurs à enroulements conventionnels.
    • La figure 3 illustre de façon schématique la superposition de deux flux magnétiques générés par deux conducteurs rectilignes.
    • Les figures 4a, 4b illustrent des lignes de flux magnétiques générés par les transformateurs des figures 2a et 2b respectivement.
    • La figure 5 comprend une vue en coupe du transformateur de la figure 4b en association, et un profil d'induction obtenu lorsque ce transformateur est alimenté en courant.
    • La figure 6 comprend une vue en coupe d'un transformateur selon un premier mode de réalisation de l'invention, et un profil d'induction le long d'une droite D obtenu lorsque le transformateur est alimenté en courant.
    • Les figures 7a et 7b comprennent des vues en coupe du transformateur selon le premier mode de réalisation de l'invention, et des profils d'induction le long d'une droite D obtenus lorsque des enroulements spécifiques et différents du transformateur sont alimentés en courant.
    • La figure 8 comprend une vue en coupe longitudinale d'un transformateur selon un deuxième mode de réalisation de l'invention, et un profil d'induction le long d'une droite D obtenu lorsque ce transformateur est alimenté en courant.
    • La figure 9 est une vue en coupe transversale du transformateur de la figure 8 détaillant des enroulements primaires.
    • Les figures 10 et 11 montrent d'autres enroulements primaires vus transversalement.
    Sur l'ensemble des figures, les éléments similaires portent des références identiques. DESCRIPTION DETAILLEE DE L'INVENTION
  • En référence à la partie gauche de la figure 6 , un transformateur T comprend deux parties : une partie primaire A et une partie secondaire B.
  • Dans la suite du présent texte, un élément se rapportant à la partie A sera qualifié de « primaire » et désigné sur les figures par une référence suffixée par « a » ; similairement, un élément se rapportant à la partie B sera qualifié de « secondaire » et désigné sur les figures par une référence suffixée par « b ».
  • La partie primaire A comprend trois enroulements primaires 11a, 12a, 13a et la partie secondaire B comprend trois enroulements secondaires 11b, 12b, 13b.
  • Bien que cela n'apparaisse pas sur les figures, qui ne sont que schématiques, chaque enroulement mentionné dans le présent document comprend une ou plusieurs spires. On définit une spire comme une partie d'enroulement s'étendant à 360 degrés autour d'un axe suivant un sens donné. Formellement, on définit dans ce qui suit un « enroulement » comme une spire ou un ensemble de spires consécutives enroulées dans le même sens. En conséquence, un changement de sens marque une séparation entre deux enroulements adjacents.
  • Les six enroulements 11a, 12a, 13a, 11b, 12b, 13b s'étendent autour d'un axe X de référence.
  • L'enroulement primaire 11a, dit enroulement primaire central, est agencé entre les enroulements primaires 12a et 13a, dits enroulements primaires périphériques.
  • Les enroulements primaires 11a, 12a, 13a sont destinés à être raccordés à une ou plusieurs sources d'alimentation électriques (non représentées sur les figures). Ces enroulements primaires 11a, 12a, 13a sont donc alimentés en courant par de telles sources électriques.
  • L'enroulement primaire central 11a est configuré pour être parcouru par un courant tournant selon un premier sens autour de l'axe X. Les deux enroulements primaires périphériques 12a, 13a sont configurés pour être parcourus par un courant tournant selon un deuxième sens autour de l'axe X qui est opposé au premier sens. Autrement dit, les sens de parcours du courant dans les différents enroulements primaires sont alternés.
  • Les trois enroulements primaires 11a, 12a, 13a peuvent être montés en série, c'est-à-dire qu'ils forment différentes portions d'un même conducteur électrique primaire. De la sorte, les enroulements primaires peuvent êtres parcourus par un courant de même intensité, par exemple fourni par une unique source électrique.
  • Une alternance de sens des courants parcourant les trois enroulements primaires 11a, 12a, 13a peut par exemple être obtenue en alternant le sens dans lequel ces enroulements 11a, 12a, 13a sont enroulés autour de l'axe X. Les enroulements primaires périphériques 12a, 13a sont alors enroulés autour de l'axe X selon un premier sens d'enroulement (par exemple horaire), et l'enroulement primaire central 11a est enroulé autour de l'axe X selon un deuxième sens d'enroulement opposé au premier sens d'enroulement (antihoraire). Ceci est de nature à minimiser la longueur de conducteur nécessaire pour relier l'enroulement primaire central à chacun des enroulements primaires périphériques adjacents, lorsque ceux-ci sont montés en série.
  • Dans ce cas, l'enroulement primaire central 11a et l'enroulement primaire périphérique 12a sont directement reliés l'un à l'autre, via une jonction 14a formant une épingle à cheveux : c'est au niveau de cette jonction 14a que le sens d'enroulement autour de l'axe de référence X s'inverse entre les deux enroulements primaires 11a et 12a. Il en va de même pour la jonction 15a entre les enroulements 11a et 13a.
  • Les trois enroulements peuvent être contigus deux à deux. En d'autres termes, les enroulements sont en contact deux à deux (les jonctions 14a et 15a peuvent alors former un simple pli).
  • Alternativement, les trois enroulements primaires sont à distance les uns des autres ; dans ce cas, la jonction 14a traverse un espace entre les deux enroulements 11a et 12a, et la jonction 15a traverse un espace entre les deux enroulements 11a et 13a. Cet espace est utile (mais non indispensable) pour maximiser le flux magnétique se refermant à travers les enroulements primaire et secondaire, donc pour maximiser l'inductance de magnétisation qui en résulte. La maximisation de l'inductance de magnétisation est utile (mais non indispensable) pour minimiser le courant à vide (sans charge) du transformateur.
  • Par ailleurs, les enroulements primaires périphériques 12a, 13a de la figure 6 comportent un même nombre de spires et présentent ensemble un nombre de spires cumulé égal au nombre de spires de l'enroulement primaire central 11a.
  • Similairement, l'enroulement secondaire 11b, dit enroulement secondaire central, est agencé entre les enroulements secondaires 12b et 13b, dits enroulements secondaires périphériques.
  • Les enroulements secondaires 11b, 12b, 13b sont destinés à être raccordés à un ou plusieurs dispositifs électriques à alimenter en énergie, également désignés comme des « charges » (non représentées sur les figures).
  • L'enroulement primaire central 11a est configuré pour générer un flux magnétique central en coopération avec l'enroulement secondaire central 11b. L'enroulement primaire périphérique 12a (respectivement 13a) est configuré pour générer un flux magnétique central en coopération avec l'enroulement secondaire 12b (respectivement 13b).
  • L'enroulement secondaire central 11b est configuré pour être parcouru par un courant tournant selon le deuxième sens autour de l'axe X (donc selon un sens opposé au sens du courant tournant dans l'enroulement primaire central 11a avec lequel il coopère). Les deux enroulements secondaires périphériques 12b, 13b sont eux configurés pour être parcourus par un courant tournant selon le premier sens autour de l'axe X qui est opposé au deuxième sens. Autrement dit, les sens de parcours du courant dans les différents enroulements secondaires 11b-13b sont également alternés.
  • Les trois enroulements secondaires 11b, 12b, 13b peuvent être montés en série, c'est-à-dire qu'ils forment différentes portions d'un même conducteur électrique secondaire.
  • Une alternance de sens des courants parcourant les trois enroulements secondaires 11b, 12b, 13b peut par exemple être obtenue en alternant le sens dans lequel ces enroulements sont enroulés autour de l'axe X. Les enroulements secondaires périphériques 12b, 13b sont alors enroulés autour de l'axe X selon un certain sens d'enroulement (par exemple antihoraire), et l'enroulement secondaire central 11b est enroulé autour de l'axe X selon l'autre sens (par exemple horaire).
  • Dans ce cas, l'enroulement secondaire central 11b et l'enroulement secondaire périphérique 12b sont directement reliés l'un à l'autre, via une jonction 14b formant une épingle à cheveux : c'est au niveau de cette jonction 14b que le sens d'enroulement autour de l'axe de référence X s'inverse entre les deux enroulements secondaires 11b et 12b. Similairement, l'enroulement secondaire central 11b et l'enroulement secondaire 13b sont directement reliés l'un à l'autre, via une autre jonction 15b formant un demi-tour : c'est au niveau cette jonction 15b que le sens d'enroulement autour de l'axe de référence X s'inverse entre les deux enroulements secondaires 11b et 13b.
  • Par ailleurs, les enroulements secondaires périphériques 12b, 13b de la figure 6 comportent un même nombre de spires et présentent ensemble un nombre de spires cumulé égal au nombre de spires de l'enroulement secondaire central 11b.
  • Il peut être prévu un nombre n de spires dans les enroulements primaires et m spires dans les enroulements secondaires, réparties de la manière suivante : n/4 spires pour chacun des enroulements primaires périphériques, n/2 spires pour l'enroulement primaire central, m/4 spires pour chacun des enroulements secondaires périphériques et m/2 spires pour l'enroulement secondaire central. Par exemple, on peut avoir n = m ou n différent de m (auquel cas le transformateur aura un rapport de transformation différent de 1).
  • Dans une application particulièrement avantageuse, le transformateur est de type rotatif, en ce sens que les enroulements primaires 11a, 12a, 13a sont mobiles en rotation autour de l'axe X par rapport aux enroulements secondaires 11b, 12b, 13b (ou inversement).
  • La partie primaire A du transformateur est par exemple un stator comprenant un carter primaire 2a s'étendant autour de l'axe de référence X. Le carter primaire 2a présente une forme globalement annulaire, par exemple cylindrique et/ou de révolution.
  • La partie secondaire B est en outre un rotor en rotation autour de l'axe de référence X par rapport au stator A. Le rotor B comprend un carter secondaire 2b présentant une forme globalement annulaire, par exemple cylindrique et/ou de révolution.
  • Le carter secondaire 2b est à l'intérieur du carter primaire 2a, ou vice-versa. Sur les figures, le carter le plus proche de l'axe X est creux ; il est entendu que ce carter peut alternativement être plein.
  • Les enroulements primaires sont fixés au stator A, et les enroulements secondaires sont fixés au rotor B.
  • Dans ce qui suit, seront détaillés deux modes de réalisation différents comprenant chacun les caractéristiques discutées précédemment.
  • Mode de réalisation à enroulements « cylindriques »
  • La partie gauche de la figure 6 illustre de façon schématique un mode de réalisation de transformateur T, dit à enroulements « cylindriques », dans lequel chaque enroulement s'étend en volume autour et le long de l'axe X. Plus précisément, chaque enroulement comprend une succession de spires localisées en des positions différentes le long de l'axe X de référence (pour une meilleur lisibilité, on a représenté sur la figure 6 seulement une spire de chaque enroulement primaire).
  • Le conducteur primaire dans lequel sont formés les enroulements primaires est enroulé selon une trajectoire sensiblement hélicoïdale autour et le long de l'axe X, et occupe un volume globalement annulaire centré sur l'axe de référence X. Les enroulements primaires sont enroulés à une première distance radiale de l'axe de référence X.
  • Dans ce mode de réalisation, la jonction 14a entre l'enroulement primaire périphérique 12a et l'enroulement primaire central 11a est une portion du conducteur primaire qui est confinée entre les deux enroulements 11a, 12a suivant une direction parallèle à l'axe X. Il en va de même pour la jonction 15a qui relie les enroulements primaires 11a et 13a.
  • Les caractéristiques qui précèdent s'appliquent également au conducteur secondaire, dans lequel sont formés les enroulements secondaires 11b, 12b, 13b et les jonctions 14b-15b. Ce conducteur secondaire est enroulé selon une trajectoire sensiblement hélicoïdale autour et le long de l'axe X, et occupe un volume globalement annulaire centré sur l'axe de référence X. Les enroulements secondaires 11b, 12b, 13b sont enroulés à une deuxième distance radiale de l'axe de référence X, différente de la première distance radiale.
  • Par exemple, les enroulements secondaires 11b, 12b, 13b sont enroulés autour des enroulements primaires 11a, 12a, 13a par rapport à l'axe X, ou vice-versa. Plus précisément, chaque enroulement secondaire est enroulé autour d'un enroulement primaire, et en regard de celui-ci.
  • Le transformateur T à enroulements « cylindriques » peut être de type rotatif. Les enroulements radialement plus éloignés de l'axe X peuvent alors être fixés au carter annulaire extérieur 2b, et les enroulements radialement plus proches de l'axe X être fixés au carter annulaire intérieur 2a comme illustré sur la figure 6, les deux carters étant mobiles en rotation l'un par rapport à l'autre.
  • Lorsque les enroulements primaires 11a, 12a, 13a sont alimentés en courant, il est possible en première approximation de considérer que chacun de ces enroulements crée un flux magnétique, l'ensemble des trois flux se superposant pour former le flux global résultant. C'est ainsi que peuvent être tracées les lignes d'induction dans la partie gauche de la figure 6 et le profil d'induction dans la partie droite.
  • La partie gauche de la figure 6 montre les lignes d'induction qui résultent du courant magnétisant circulant dans le conducteur primaire dans le transformateur à enroulements cylindriques T, et la partie droite de la figure 6 montre le profil d'induction mesuré le long d'une droite D parallèle à l'axe X et se trouvant entre la structure annulaire formée par les enroulements primaires et la structure annulaire formée par les enroulements secondaires.
  • On distingue trois régions de l'espace: une région centrale centrée au niveau des enroulements centraux 11a et 11b, contenant un segment D0 de la droite D, et deux régions périphériques, contenant les deux demi-droites restantes de la droite D.
  • Dans la région centrale, de l'énergie est transférée des enroulements primaires aux enroulements secondaires.
  • L'enroulement secondaire central 11b reçoit au moins en partie le flux magnétique central généré par l'enroulement primaire central 11a, l'enroulement périphérique secondaire 12b (respectivement 13b) reçoit le flux magnétique périphérique généré par l'enroulement primaire périphérique 12a (respectivement 13a).
  • Une tension est générée dans les enroulements secondaires connectés à la ou les charges utilisées. L'enroulement secondaire central 11b est alors parcouru par un courant tournant selon un troisième sens autour de l'axe X, et les deux enroulements secondaires périphériques 12b, 13b sont parcourus par un courant tournant selon un quatrième sens autour de l'axe X qui est opposé au troisième sens. Autrement dit, les sens de parcours du courant dans les différents enroulements secondaires 11b, 12b, 13b sont alternés comme c'est le cas pour les conducteurs primaires 11a, 12a, 13a.Quel que soit le type de charge, dans les régions périphériques, les flux magnétiques périphériques engendrés par les enroulements périphériques primaires 12a, 13a, compensent les effets du flux magnétique central engendré par l'enroulement central primaire 11a. A titre d'exemple, l'induction est en particulier nulle le long des deux demi-droites de la droite D partant des deux extrémités opposées du segment D0. Des équipements localisés dans ces régions périphériques, et en particulier localisés le long de la droite D ou de l'axe X sont ainsi très efficacement protégés contre les rayonnements émis par les enroulements du transformateur, et ce sans qu'il y ait besoin de recourir à un circuit magnétique alourdissant le transformateur ou complexifiant sa forme dans le but de minimiser l'entrefer discuté en introduction.
  • Le phénomène de compensation des inductions dans les régions périphériques illustré dans la partie droite de la figure 6 peut être expliqué à l'aide des figures 7a et 7b. La figure 7a montre l'induction magnétique centrale obtenue dans le transformateur T lorsque l'on alimente en courant l'enroulement primaire central 11a seul (les enroulements primaires périphériques 12a, 13a, situés de part et d'autre, étant déconnectés). La figure 7b montre les inductions magnétiques obtenues dans le transformateur T lorsque l'on alimente en courant les enroulements primaires périphériques 12a, 13a seuls (l'enroulement primaire central 11a étant déconnecté). En superposant les inductions magnétiques représentées sur les figures 7a et 7b, le phénomène de compensation illustré sur la partie droite de la figure 6 dans les régions périphériques précitées se produit.
  • On comprendra que le phénomène de compensation n'est pas limité à la droite D mais est généralisable à l'extérieur d'une boule. Une compensation se produit en tout point de l'espace plus éloigné de ce centre du rayon de la boule, dans toutes les directions de l'espace. Le centre de la boule est l'intersection entre l'axe X et un plan coupant les conducteurs centraux 11a, 11b dans le mode de réalisation particulier en figure 6.
  • Grâce à ce phénomène de compensation, des fuites magnétiques sont ainsi évitées dans les régions périphériques sans avoir à recourir absolument à un circuit magnétique. Cependant, même si cela n'est plus absolument nécessaire, le transformateur T peut comprendre un tel circuit magnétique. Le circuit magnétique est par exemple constitué de mu-métal (tôle unique ou tôles empilées (feuilletage)) ou de ferrite. Sur les figures 6, 7a et 7b, le circuit magnétique est formé par les carters 2a et 2b.
  • Le circuit magnétique présente deux extrémités opposées ayant des positions différentes suivant l'axe X. De préférence, les enroulements primaires et secondaires sont confinés strictement entre ces deux positions.
  • Autrement dit, le circuit magnétique s'étend au-delà des enroulements périphériques selon une direction parallèle à l'axe X. Ceci permet d'améliorer le couplage entre les enroulements du transformateur T.
  • Mode de réalisation « planaire »
  • La figure 8 illustre de façon schématique un transformateur T' selon un autre mode de réalisation, dit « planaire ».
  • Ce mode de réalisation se différencie du mode de réalisation à enroulements cylindriques en ce que les enroulements sont agencés de manière différente.
  • Dans ce mode de réalisation, chaque enroulement comprend au moins une partie en spirale agencée transversalement à l'axe X, c'est-à-dire que chaque enroulement comprend plusieurs spirales enroulées les unes autour des autres transversalement à l'axe X. Les deux extrémités de la partie en spirale ont ainsi des positions radiales différentes par rapport à l'axe X.
  • Il est entendu qu'un enroulement donné peut être constitué d'une seule spirale à plusieurs spires enroulées les unes autour des autres, ou peut comprendre plusieurs parties en spirales empilées les unes sur les autres selon une direction d'empilement parallèle à l'axe X, chaque partie en spirale comprenant plusieurs spires enroulées autour des autres.
  • Dans ce qui suit, on considérera une variante de réalisation particulièrement simple mais non limitative dans laquelle chaque enroulement présente une forme de spirale planaire s'étendant perpendiculairement à l'axe X.
  • Les enroulements primaires 11a, 12a, 13a sont coplanaires. Les enroulements secondaires 11b, 12b, 13b sont également coplanaires.
  • Chaque enroulement primaire 11a, 12a, 13a est localisé dans un secteur annulaire autour de l'axe X qui lui est propre, les secteurs annulaires étant localisés en des gammes de positions radiales différentes par rapport à l'axe de référence X.
  • Le transformateur T' peut en outre comprendre un circuit magnétique. Le circuit magnétique est par exemple constitué de mu-métal (tôle unique ou tôles empilées (feuilletage)) ou de ferrite. Le circuit magnétique est par exemple formé par les carters 2a et 2b.
  • En référence à la figure 9 (dans un plan perpendiculaire à l'axe X), l'enroulement primaire périphérique 13a est localisé dans un secteur annulaire extérieur, et l'enroulement primaire central 11a est localisé dans un secteur annulaire intermédiaire, plus proche de l'axe de référence X que le secteur annulaire extérieur, et l'enroulement primaire périphérique 12a est localisé dans un secteur annulaire intérieur, plus proche de l'axe X que le secteur annulaire intermédiaire.
  • Dans ce mode de réalisation, la jonction 14a entre l'enroulement primaire 11a et l'enroulement primaire 12a est une portion du conducteur primaire en épingle à cheveux. Cette portion 14a peut être rectiligne ou courbe (par exemple en forme de U). Il en va de même pour la jonction 15a qui relie les enroulements primaires 11a et 13a.
  • Les trois secteurs annulaires peuvent être contigus deux à deux. En d'autres termes, les enroulements sont en contact deux à deux (les jonctions 14a et 15a peuvent alors former un simple pli).
  • Alternativement, les trois enroulements primaires sont à distance les uns des autres ; dans ce cas, la jonction 14a traverse un espace annulaire entre les deux enroulements 11a et 12a, et la jonction 15a traverse un espace annulaire entre les deux enroulements 11a et 13a.
  • Dans le mode de réalisation à galette, une manière d'optimiser le phénomène de compensation est de prévoir que les deux espaces annulaires traversés par les jonctions 14a et 15a soient approximativement de même aire dans un plan perpendiculaire à l'axe X.
  • Les enroulements primaires 11a, 12a, 13a peuvent être réalisés sur une plaque en forme de rondelle (ou de « galette ») centrée sur l'axe X. La plaque est par exemple constituée d'un matériau électriquement isolant tel que de l'époxy.
  • Tout ce qui précède est également applicable aux enroulements secondaires 11b, 12b, 13b (en remplaçant « a » par « b » dans les références mentionnées dans les paragraphes qui précèdent se rapportant à la figure 8).
  • Chaque enroulement secondaire 11b, 12b, 13b est agencé en regard d'un enroulement primaire 11a, 12a, 13a, selon une direction parallèle à l'axe X.
  • Le transformateur selon le mode de réalisation à « galettes » peut également être de type rotatif.
  • Les deux carters 2a, 2b présentent deux surfaces annulaires 22a, 22b en vis-à-vis l'une de l'autre, qui s'étendent dans deux plans parallèles décalés l'un de l'autre suivant l'axe de référence X.
  • Les enroulements primaires 11a, 12a, 13a sont fixés à la surface annulaire 22a du carter primaire 2a, et les enroulements secondaires 11b, 12b, 13b sont fixés à la surface annulaire 22b du carter secondaire 2b, en vis-à-vis. Chaque enroulement primaire est en regard d'un enroulement secondaire, et ce quelle que soit la position angulaire du rotor lorsqu'il tourne par rapport au stator autour de l'axe de référence X.
  • Le phénomène de compensation d'induction, déjà décrit pour le transformateur T à enroulements « cylindriques », se produit également dans le transformateur T' planaire, lorsque les enroulements primaires 11a, 12a, 13a sont alimentés en courant. On a représenté à titre d'exemple un profil d'induction sur la figure 8 le long d'une droite D s'étendant radialement (perpendiculairement) à l'axe X.
  • La compensation peut être optimisée en dissymétrisant certains paramètres liés aux enroulements périphériques (nombre de spires, dimensions, espacement...) car ces enroulements périphériques sont par nature dissymétriques (les rayons moyens sont différents).
  • Dans ce mode de réalisation, la région centrale est localisée entre deux sphères concentriques : une première sphère et une deuxième sphère entourant la première sphère. Les régions périphériques où l'induction est annulée comprennent :
    • une région en forme de boule centrée sur l'axe X et délimitée par la première sphère,
    • une région externe plus éloignée de l'axe X que les enroulements (donc de dimensions infinies et allant vers l'extérieur du transformateur), laquelle est délimitée intérieurement par la deuxième sphère.
  • Ce mode de réalisation est particulièrement avantageux lorsque des équipements sensibles à des rayonnements magnétiques doivent être agencés le long de l'axe de référence X, dans la région en forme de boule.
  • Le transformateur T' peut en outre comprendre un circuit magnétique. Le circuit magnétique est par exemple formé par les carters 2a, 2b qui s'étendent radialement par rapport à l'axe X.
  • Le circuit magnétique présente deux extrémités opposées ayant des positions radiales différentes par rapport à l'axe X. De préférence, les enroulements primaires et secondaires occupent un espace dont les extrémités sont strictement confinés entre et à distance de ces deux positions radiales. Autrement dit, le circuit magnétique s'étend au-delà des enroulements périphériques selon une direction radiale à l'axe X. Ceci permet d'améliorer le couplage entre les enroulements du transformateur T'.
  • Par ailleurs, la forme en spirale planaire des enroulements se traduit par des sections différentes offertes au passage du flux magnétique à travers les spires. Il en résulte un flux différentiel qui se referme à l'extérieur du transformateur T'.
  • Une première option pour améliorer la réduction des fuites magnétiques est d'opter pour une répartition de nombre de spires différente de la répartition n/4, n/2 et n/4, entre le côté intérieur et le côté extérieur (voir figure 10 ), de façon à ce que les inductions périphériques compensent exactement l'induction centrale.
  • Une autre option consiste à espacer différemment les enroulements, conformément à la figure 11 .
  • L'invention ne se limite pas aux modes de réalisation qui viennent d'être décrits. En particulier :
    • Le transformateur n'est pas nécessairement de type rotatif (en d'autre termes, les parties A et B ne sont pas forcément mobiles entre elles, mais peuvent être fixes l'une par rapport à l'autre).
    • Le positionnement du stator et du rotor peut être inversé.
    • Chaque enroulement peut être alimenté en courant indépendamment des autres enroulements.
    • Le sens d'enroulement des spires des enroulements primaires autour de l'axe X n'est pas obligatoirement alterné. Il suffit en effet, pour obtenir le phénomène de compensation d'induction désiré, que les courants qui circulent dans les enroulements primaires périphériques soient de sens opposé au courant qui circule dans l'enroulement primaire central. Il en est de même pour les enroulements secondaires.
    • Deux enroulements adjacents (primaires ou secondaires) sont reliés entre eux par deux spires extrémales immédiatement voisines, permettant ainsi de réduire la longueur de la jonction entre deux enroulements adjacents à une simple épingle à cheveux. En variante, il peut être prévu des jonctions plus complexes entre deux enroulements adjacents.

Claims (13)

  1. Transformateur électrique (T, T') comprenant :
    • un enroulement primaire central (11a) s'étendant autour d'un axe (X) et configuré pour générer un flux magnétique central, lorsqu'il est parcouru par un courant tournant selon un premier sens autour de l'axe (X),
    caractérisé en ce qu'il comprend en plus :
    • deux enroulements primaires périphériques (12a, 13a) s'étendant autour de l'axe (X), entre lesquels l'enroulement primaire (11a) central est localisé, et configurés pour générer des flux magnétiques périphériques lorsqu'ils sont parcourus par des courants respectifs tournant selon un deuxième sens autour de l'axe (X) qui est opposé au premier sens, les flux magnétiques périphériques se superposant au flux magnétique central,
    dans lequel les enroulements sont en outre configurés de sorte que les flux magnétiques périphériques compensent le flux magnétique central dans des régions localisées au-delà des enroulements périphériques.
  2. Transformateur (T, T') selon la revendication précédente, dans lequel les enroulements primaires (11a, 12a, 13a) sont montés en série.
  3. Transformateur (T, T') selon l'une des revendications précédentes, dans lequel :
    • l'enroulement primaire central (11a) est enroulé autour de l'axe (X) selon un premier sens d'enroulement,
    • les enroulements primaires périphériques (12a, 13a) sont enroulés autour de l'axe (X) selon un deuxième sens d'enroulement opposé au premier sens d'enroulement.
  4. Transformateur (T, T') selon l'une des revendications précédentes, dans lequel les enroulements primaires périphériques (12a, 13a) présentent ensemble un nombre de spires cumulé égal au nombre de spires de l'enroulement primaire central (11a).
  5. Transformateur (T) selon l'une des revendications précédentes, dans lequel chaque enroulement primaire présente au moins une partie hélicoïdale autour et le long de l'axe (X), les parties hélicoïdales des trois enroulements primaires s'étendant dans des gammes de positions respectives différentes le long de l'axe (X).
  6. Transformateur (T) selon la revendication précédente, comprenant en outre un circuit magnétique présentant deux extrémités opposées ayant des positions longitudinales différentes suivant une direction parallèle à l'axe (X), et dans lequel les enroulements primaires sont strictement confinés entre et à distance de ces deux positions longitudinales.
  7. Transformateur (T') selon l'une des revendications 1 à 4, dans lequel chaque enroulement primaire présente au moins une partie en spirale enroulée sur elle-même transversalement à l'axe (X), les parties en spirale des trois enroulements primaires s'étendant dans des gammes de positions annulaires respectives différentes par rapport à l'axe (X).
  8. Transformateur (T') selon la revendication précédente, dans lequel les enroulements primaires (11a, 12a, 13a) sont coplanaires.
  9. Transformateur (T') selon l'une des revendications 7 à 8, comprenant en outre un circuit magnétique présentant deux extrémités opposées ayant des positions radiales différentes suivant une direction perpendiculaire à l'axe (X), et dans lequel les enroulements primaire et secondaire sont strictement confinés entre et à distance de ces deux positions radiales.
  10. Transformateur électrique (T, T') selon l'une des revendications précédentes, comprenant en outre :
    • un enroulement secondaire central (11b) configuré pour recevoir au moins en partie le flux magnétique central.
  11. Transformateur électrique (T, T') selon la revendication précédente, comprenant en outre :
    • deux enroulements secondaires périphériques (12b, 13b), entre lesquels l'enroulement secondaire central (12b) est localisé, chaque enroulement secondaire périphérique étant configuré pour recevoir au moins partiellement l'un des flux magnétiques périphériques.
  12. Transformateur (T, T') selon l'une des revendications 10 à 11, comprenant un carter primaire (2a) auquel chaque enroulement primaire (11a, 12a, 13a) est fixé, et un carter secondaire (2b) auquel le ou chaque enroulement secondaire (11b, 12b, 13b) est fixé, les deux carters (2a, 2b) étant mobiles en rotation l'une par rapport à l'autre relativement à l'axe (X).
  13. Transformateur (T') selon l'une des revendications 10 à 12, comprenant :
    • un carter primaire (2a) présentant une surface annulaire primaire (22a) s'étendant perpendiculairement à l'axe (X), chaque enroulement primaire (11a, 12a) étant fixé sur la surface annulaire primaire,
    • un carter secondaire (2b) présentant une surface annulaire secondaire (22b) s'étendant perpendiculairement à l'axe (X) et en vis-à-vis de la surface annulaire primaire (22a), chaque enroulement secondaire (11b, 12b) étant fixé sur la surface annulaire secondaire de sorte à être en regard d'un enroulement primaire.
EP17712527.5A 2016-03-30 2017-03-27 Transformateur électrique à enroulements Active EP3437111B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652755A FR3049759B1 (fr) 2016-03-30 2016-03-30 Transformateur electrique a enroulements
PCT/EP2017/057219 WO2017167699A1 (fr) 2016-03-30 2017-03-27 Transformateur électrique à enroulements

Publications (2)

Publication Number Publication Date
EP3437111A1 EP3437111A1 (fr) 2019-02-06
EP3437111B1 true EP3437111B1 (fr) 2019-10-23

Family

ID=56511677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17712527.5A Active EP3437111B1 (fr) 2016-03-30 2017-03-27 Transformateur électrique à enroulements

Country Status (4)

Country Link
US (1) US11145454B2 (fr)
EP (1) EP3437111B1 (fr)
FR (1) FR3049759B1 (fr)
WO (1) WO2017167699A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959465A (zh) * 2021-10-18 2022-01-21 深圳英恒电子有限公司 一种旋转变压器的信号补偿方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2109652A1 (fr) * 1992-11-25 1994-05-26 Richard J. Becker Dynamoteur
US5608771A (en) * 1995-10-23 1997-03-04 General Electric Company Contactless power transfer system for a rotational load
US7019608B2 (en) * 2000-03-21 2006-03-28 Metal Manufactures Limited Superconducting transformer
JP5103728B2 (ja) * 2005-11-24 2012-12-19 ウシオ電機株式会社 放電ランプ点灯装置
US7197113B1 (en) * 2005-12-01 2007-03-27 General Electric Company Contactless power transfer system
US9048022B2 (en) * 2006-08-28 2015-06-02 Youngtack Shim Electromagnetically-countered transformer systems and methods
EP2740130B1 (fr) * 2011-08-01 2015-07-01 Alstom Technology Ltd Limiteur de courant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3049759A1 (fr) 2017-10-06
WO2017167699A1 (fr) 2017-10-05
EP3437111A1 (fr) 2019-02-06
FR3049759B1 (fr) 2018-04-06
US11145454B2 (en) 2021-10-12
US20190385782A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
EP1646126B1 (fr) Rotor pour moteur électrique et moteur électrique correspondant
FR3015794A1 (fr) Element de machine electromagnetique a circuits electromagnetiques optimises integres a des pistes sous forme de lignes crenelees annulaires
EP0613594B1 (fr) Moteur-couple allongé et dispositif de commande en debattement angulaire le comportant
WO2021064122A1 (fr) Bobinage électrique pour une machine électrique tournante
EP3437111B1 (fr) Transformateur électrique à enroulements
FR2570488A1 (fr) Dispositif de detection magnetique des deplacements radiaux d'un rotor
EP2847773B1 (fr) Transformateur tournant triphase-diphase
EP2071708B1 (fr) Couronne d'orientation motorisée
FR3054745A1 (fr) Machine electrique tournante munie d'un interconnecteur a crochets d'ecrouissage
EP3120445B1 (fr) Machine electrique hybride
EP3198617B1 (fr) Noyau magnetique de transformateur tournant
FR3076113B1 (fr) Machine synchrone a inducteur bobine
EP1619779A1 (fr) Moteur électrique triphase
FR3133444A1 (fr) Capteur linéaire inductif
FR2775383A1 (fr) Transformateur tournant comportant un corps fixe et un corps rotatif disposes l'un en face de l'autre
FR2944164A1 (fr) Moteur electrique ameliore.
FR3075503B1 (fr) Stator pour machine electrique tournante
WO2003098783A1 (fr) Moteur lineaire
EP0890033A1 (fr) Dispositif de detection des deplacements d'un rotor monte sur des paliers magnetiques actifs
WO2022200740A1 (fr) Système de capteur pour la détermination d'une position angulaire relative, un procédé de fabrication d'un corps aimanté et une méthode mettant en œuvre un tel capteur
WO2020260259A1 (fr) Bobinage électrique pour une machine électrique tournante
EP3899434A1 (fr) Rotor pour capteur inductif de déplacement angulaire
EP4268355A1 (fr) Machine électrique polyphasée intégrée
EP3729478A1 (fr) Dipôle limiteur de courant à supraconducteur, comportant au moins quatre câbles supraconducteurs
FR2731833A1 (fr) Bobine d'induction deformable pour un dispositif de magnetoformage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017008079

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1194611

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017008079

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1194611

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 8

Ref country code: GB

Payment date: 20240220

Year of fee payment: 8