EP3436271B1 - Printing press having an infrared dryer unit - Google Patents

Printing press having an infrared dryer unit Download PDF

Info

Publication number
EP3436271B1
EP3436271B1 EP18706251.8A EP18706251A EP3436271B1 EP 3436271 B1 EP3436271 B1 EP 3436271B1 EP 18706251 A EP18706251 A EP 18706251A EP 3436271 B1 EP3436271 B1 EP 3436271B1
Authority
EP
European Patent Office
Prior art keywords
printing
accordance
heater element
printing machine
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18706251.8A
Other languages
German (de)
French (fr)
Other versions
EP3436271A1 (en
Inventor
Lotta Gaab
Larisa Von Riewel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP3436271A1 publication Critical patent/EP3436271A1/en
Application granted granted Critical
Publication of EP3436271B1 publication Critical patent/EP3436271B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0403Drying webs
    • B41F23/0406Drying webs by radiation
    • B41F23/0413Infrared dryers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/044Drying sheets, e.g. between two printing stations
    • B41F23/045Drying sheets, e.g. between two printing stations by radiation
    • B41F23/0456Drying sheets, e.g. between two printing stations by radiation by infrared dryers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00216Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using infrared [IR] radiation or microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a printing press with a printing unit for applying solvent-containing printing ink to a printing material, a transport device for transporting the printing material from the printing unit to a dryer unit, which comprises at least one infrared radiator for drying the printing material.
  • Offset printing machines lithographic printing machines, rotary printing machines or flexographic printing machines are used, for example, for printing sheet-shaped or web-shaped printing materials made of paper, cardboard, foil or cardboard with printing inks.
  • Typical ingredients of printing inks are oils, resins and binders.
  • UV-curable printing inks curing and adhesion to the printing material are based on polymerization, which is triggered by photoinitiation using UV light.
  • drying is required, which can be based on both physical and chemical drying processes. Physical drying processes include the evaporation of solvents and their diffusion into the substrate, which is also known as "knocking away”. Chemical drying means the oxidation or polymerization of printing ink ingredients.
  • the DE 10 2005 046 230 A1 describes a rotary printing press with a printing unit for printing a printing sheet with printing ink, a coating device for applying a coating on the printed printing sheet.
  • a coating device for applying a coating on the printed printing sheet.
  • drying devices in the form of infrared emitters, which can also be designed as carbon emitters, are arranged after the printing unit and the coating device.
  • EP 0 495 770 A1 relates to an infrared radiator with a carrier plate on which at least one conductor track made of a material that generates heat by electrical energy is arranged.
  • a heating filament made of carbon or tungsten in the form of a coil or ribbon is enclosed in an inert gas-filled radiator tube, which is usually made of quartz glass.
  • the heating filaments are connected to electrical connections that are inserted through one end or both ends of the radiator tube.
  • the heating filaments themselves have a very low thermal mass and therefore a fast response time in the range of 1 to 2 seconds. However, it can take several minutes until the entire IR dryer system consisting of quartz tube, filament, electrical connections and a reflector is in thermal equilibrium.
  • the increase in power not only increases the amount of energy emitted by the infrared radiator, which can lead to overheating of the printing material, but also changes the main wavelength of the emitted radiation, which shifts in the direction of the short-wave spectral range.
  • the main emission wavelength of the infrared radiators matches the absorption characteristics of the water, that is to say about 2.75 ⁇ m.
  • the previous commercial infrared heaters therefore either have an adapted emission spectrum; then they have a low electrical power and require a comparatively large radiation area and accordingly a large heat capacity for a sufficiently large radiation power, which in turn requires comparatively long heating and cooling times of the infrared radiator and thus inertness of the dryer unit.
  • the infrared emitters have a high electrical output and low inertia; then their emission spectrum is not optimally adapted to the absorption characteristics of the water.
  • the distance between the surface heater and the substrate should be at least 1.5 times the center distance between the individual heater tubes if the heater tube longitudinal axes are aligned in the transport direction of the substrate. This comparatively high minimum distance between the surface emitter and the substrate leads to a low effective radiation intensity on the substrate level, which extends the reaction time within which the required radiation power is applied to the substrate.
  • both short- and medium-wave infrared emitters with an emission wavelength in the range of about 1000-2750 nm must be actively cooled, in particular in narrow installation spaces, as are typical for printing presses, in order to protect them from overheating.
  • a cooling air stream is often generated for this purpose, which blows the infrared radiators directly.
  • cooling air flowing past the infrared radiator interacts with warm process air, which among other things serves to remove moisture and thereby change the temperature at the printing material and reduce the removal of moisture.
  • the invention is therefore based on the object of providing a printing press with a dryer device which is improved for drying solvent-based and in particular water-based printing ink with regard to homogeneity and speed of drying and in which the dryer unit does not require active cooling of the infrared radiator.
  • the infrared radiator is designed as a flat heating element made of a dielectric heating element material which emits infrared radiation when heated and which has a heating surface facing the printing material to be dried and a contacting surface on which a heat conductor conductor made of an electrically conductive, noble metal-containing resistance material is applied, which is connected to an electrical contact to an adjustable power source.
  • the infrared dryer unit comprises at least one heating element which has a heating surface facing the printing material to be dried.
  • the heating surface emits infrared radiation in the direction of the substrate. It is flat and, in the simplest case, flat, but it can also have a structure and a flat geometric shape that deviates from flatness.
  • the flatness of the heating surface results in an equally flat radiation field and enables the setting of a short distance between the substrate and the heating element. This contributes to the homogeneity and speed of drying; as explained in more detail below.
  • the heating element consists at least partially of a dielectric material. This is not electrically conductive and can therefore not be easily heated by direct current flow, but by heat conduction via the conductor of the heating conductor.
  • the conductor track thus serves directly to heat the heating element.
  • the heating element material emits infrared radiation in the medium-wave wavelength range, which matches the absorption characteristics of water as closely as possible.
  • the heating element forms the actual element that emits infrared radiation. It can be made in several layers, but it is preferably made entirely of the dielectric heating element material. It is essential that the surface areas covered with conductor tracks consist of electrically insulating material in order to reliably prevent flashovers and short circuits between adjacent conductor track sections.
  • the heating element is contacted with the heating conductor, for example, via a contacting surface opposite the heating surface. This is in direct contact or in indirect contact - via an electrically insulating and heat-conducting intermediate layer - with the conductor track made of a resistance material.
  • the conductor track is preferably used as a thick film layer, for example made from resistance paste by means of screen printing or from metal-containing ink using ink jet printing generated and then baked at high temperature.
  • the conductor track runs, for example, in a spiral or meandering line pattern.
  • the high absorption capacity of the heating element material enables homogeneous radiation even with a comparatively low conductor occupancy density of the heating surface.
  • a low occupancy density is characterized in that the minimum distance between adjacent conductor track sections is 1 mm or more, preferably 2 mm or more.
  • a large distance between the conductor track sections prevents flashovers, which can occur in particular when operating at high voltages under vacuum.
  • the conductor track can be at least partially covered with a cover layer made of an electrically insulating and / or optically scattering material.
  • the cover layer serves as a reflector and / or for mechanical protection and for stabilizing the conductor track.
  • the heat conductor conductor track is connected to an electrical contact via which it can be connected to a circuit.
  • the electrical contact can preferably be releasably connected to a circuit via the electrical contact, for example via a plug, screw or clamp connection.
  • the flat shape of the heating element and the infrared emission enable a flat-homogeneous radiation of infrared radiation and the associated reduction in the distance between the printing material and the heating element. This makes it possible to provide a higher radiation output per unit area and to produce a homogeneous radiation and a uniform temperature field even with thin heating element wall thicknesses and / or with a comparatively low conductor occupancy density.
  • the distance between the substrate and the heating element can be small, which increases the radiation intensity and increases the efficiency accordingly.
  • the distance is preferably less than 15 mm.
  • the short distance enables high power densities of more than 100 kW / m 2 and even more than 200 kW / m 2 on the substrate and leads to a reduction in waste in modern high-performance printing machines.
  • the heating element is preferred to achieve a power density above 180 kW / m 2 , preferably to achieve a power density in the range from 180 kW / m 2 to 265 kW / m 2 .
  • the area power is defined as the electrical connection power of the conductor track in relation to the base body area occupied by the conductor track.
  • the temperature on the substrate is regulated and moisture is removed by forced flow of warm process air.
  • the removal of moisture depends on the absorption capacity of the process air (mainly determined by the temperature) and its degree of influence on the substrate (mainly determined by flow properties).
  • Thin heating elements have a low heat capacity and enable rapid temperature changes. Active cooling by means of cooling air flowing past the infrared radiator is therefore not necessary.
  • interactions with the warm process air are avoided which affect their temperature and flow behavior and which reduce the temperature of the printing material and the warm process air and thus slow down the removal of moisture.
  • the printing press according to the invention is therefore preferably equipped with a plate-shaped heating element with a plate thickness of less than 10 mm.
  • the transport device has a maximum format width for transporting the printing material, in the preferred case the heating element for irradiation over the entire format width consisting of several heating element sections which can be controlled electrically independently of one another.
  • the heating element sections span the maximum possible format width of the printing press. For example, they are juxtaposed. Because they can be switched on and off separately, individual heating elements can be switched on or off as required. Additional thermal separation can reduce heat loss due to heat conduction from the heating element (s) switched on to the heating element (s) that are not switched on.
  • the heating element material comprises an amorphous matrix component and an additional component in the form of a semiconductor material.
  • the amorphous material such as quartz glass
  • the additional component embedded in it forms its own amorphous or crystalline phase made of semiconductor material, such as silicon.
  • the energy difference between the valence band and the conduction band (band gap energy) decreases with increasing temperature.
  • band gap energy the energy difference between the valence band and the conduction band
  • electrons can be lifted from the valence band into the conduction band, which is accompanied by a significant increase in the absorption coefficient.
  • the thermally activated occupation of the conduction band means that the semiconductor material can to a certain extent be transparent to certain wavelengths (such as from 1000 nm) at room temperature and become opaque at high temperatures.
  • absorption and emissivity can increase. This effect depends, among other things, on the structure (amorphous / crystalline) and doping of the semiconductor. Pure silicon, for example, shows a noticeable increase in emissions from around 600 ° C, which saturates from around 1000 ° C.
  • the semiconductor material If the semiconductor material is heated sufficiently, it can therefore assume an energetic, excited state in which it emits infrared radiation with a high power density.
  • the semiconducting additional component decisively determines the optical and thermal properties of the heating element; more precisely, it causes absorption in the infrared spectral range (that is, in the wavelength range between 780 nm and 1 mm) and in particular absorption in the wavelength range around 2750 nm.
  • power densities above 180 kW / m 2 preferably power densities in Range from 180 kW / m 2 to 265 kW / m 2 , achievable.
  • Such a heating element material thus shows an excitation temperature which must at least be reached in order to maintain the thermal excitation of the material and thus a high radiation emission.
  • the additional component then causes the heating element material to emit infrared radiation.
  • spectral emissivity is understood to mean the “spectral normal emissivity”. This is determined on the basis of a measurement principle which is known as “Black Body Boundary Conditions” (BBC) and is published in “ DETERMINING THE TRANSMITTANCE AND EMITTANCE OF TRANSPARENT AND SEMITRANSPARENT MATERIALS AT ELEVATED TEMPERATURES”; J. Manara, M. Keller, D. Kraus, M. Arduini-Schuster; 5th European Thermal-Sciences Conference, The Netherlands (2008 ).
  • BBC Black Body Boundary Conditions
  • the matrix doped with the additional component has a higher heat radiation absorption than would be the case without the additional component. This results in an increased proportion of energy transmission by radiation from the conductor track into the heating element, a faster distribution of the heat and a higher radiation rate on the substrate. This makes it possible to provide a higher radiation output per unit area and to produce a homogeneous radiation and a uniform temperature field even with thin heating element wall thicknesses and / or with a comparatively low conductor occupancy density.
  • the additional component is preferably at least partly in the form of elemental silicon and is stored in an amount that has a spectral emissivity ⁇ of at least 0.7 at a temperature of 600 ° for wavelengths between 2 and 8 ⁇ m in the heating element material C and a spectral emissivity ⁇ of at least 0.8 at a temperature of 1000 ° C.
  • the semiconductor material and in particular the preferably used elementary silicon therefore cause the glassy matrix material to turn black, at room temperature, but also at an elevated temperature above, for example, 600 ° C. This achieves good radiation characteristics in the sense of broadband, high emissions at high temperatures.
  • the semiconductor material forms an elementary semiconductor phase dispersed in the matrix. This can contain several semiconductor elements or metals (metals, however, up to a maximum of 50% by weight, better not more than 20% by weight; based on the proportion by weight of the additional component).
  • the heat absorption of the heating element material depends on the proportion of the additional component.
  • the weight fraction should preferably be at least 0.1%.
  • a high silicon content can impair the chemical and mechanical properties of the quartz glass matrix.
  • the weight fraction of the weight fraction of the silicon additional component is preferably in the range between 0.1 and 5%.
  • the dryer unit comprises a plurality of heating elements which are arranged one behind the other in the transport direction of the printing material.
  • a pressure unit is assigned to each dryer unit.
  • the larger number of printing units enables a high printing speed and a high printing quality.
  • the desire to process is used to dry the printing material and to remove the printing ink from the solvent, for example water.
  • the aim is to achieve a reproducible, laminar flow of the process air.
  • the flat, preferably flat heating surface of the heating elements and the narrow gap between the heating surfaces and the printing material contribute to this in the printing press according to the invention.
  • the printing press according to the invention can be used for rotary printing, offset printing, planographic printing, letterpress printing, screen printing or gravure printing.
  • the printing unit comprises an inkjet print head, with at least one traction roller equipped with a drive motor being arranged downstream of the dryer unit when viewed in the transport direction of the printing material.
  • the image-forming device is designed as an inkjet printing head which has one or more nozzles by means of which ink drops are transferred to the printing material.
  • the printing material deforms, for example waves, which can lead to poor print quality, damage to the print head and printing material and to uneven drying of the printing material.
  • the latter is particularly noticeable when - as is adjustable in the printing press according to the invention - the distance between the printing material and the dryer unit is very small.
  • at least one draw roller equipped with its own drive motor is arranged downstream of the dryer unit.
  • the pull roller is also designed as a cooling roller, the printing material can be cooled after the dryer unit, which can be helpful in particular in view of the potentially high energy input in order to minimize damage to the printing material.
  • Figure 1 schematically shows an embodiment of a printing machine according to the invention in the form of a roll inkjet printing machine, to which reference number 1 is assigned overall.
  • the material web 3 from a printing material such as paper, for example, arrives at a printing unit 40.
  • This comprises a plurality of ink jet print heads 4 arranged one behind the other along the material web 3, through which solvent-based and in particular water-containing printing inks are applied to the printing material.
  • the material web 3 then arrives from the printing unit 40 via a deflection roller 6 to an infrared dryer unit 70.
  • This is equipped with a plurality of infrared heating elements 7, which are designed for drying or knocking off the solvent into the material web.
  • the further transport path of the material web 3 goes to a take-up roll 9 via a pull roller 8 which is equipped with its own pull drive motor and via which the web tension is adjusted.
  • heating elements 7 are combined in a heating block which extends over the maximum format width of the printing press 1.
  • the individual heating elements 7 are arranged in a row in the heating block and can be controlled separately from one another in accordance with the dimensions and color assignment of the printing material.
  • An electrical and thermal insulator is located between the individual heating elements 7. The free distance between the heating surface of the heating elements and the top of the material web 3 is 10 mm.
  • the transport speed of the material web 3 is set to 5 m / s. This is a comparatively high speed, which is made possible by optimizing the individual processing steps, and which in particular requires a high drying rate.
  • the dryer unit 70 required to achieve this requirement is described below with reference to FIG Figures 2 to 5 explained in more detail.
  • the schematically shown embodiment of a heating element 7 is an infrared radiator with a tiled base body 20 with a flat radiation surface (underside 26) and also a flat top side 25.
  • a conductor track 23 is applied to the base body top side 25, which in turn is embedded in a reflector layer 24.
  • the base body 20 has a rectangular shape with a plate thickness of 2.0 mm and lateral dimensions of 10 cm x 20 cm. It consists of a composite material with a matrix of quartz glass in which phase areas made of elemental silicon are homogeneously distributed. The weight fraction of this Si phase is 2.5% and the maximum dimensions of the Si phase areas are on average (median) in the range from about 1 to 10 ⁇ m.
  • the composite material is gas-tight, it has a density of 2.19 g / cm 3 and it is stable in air up to a temperature of around 1200 ° C. It shows a high absorption of heat radiation and a high emissivity at high temperature.
  • the conductor track 23 is produced from a platinum resistance paste on the upper side 25 of the base body 20. Lines or clamps for feeding in electrical energy are welded onto both ends.
  • the conductor track 23 shows a meandering course, which covers a heating surface of the base body 20 so densely that there is a uniform distance between adjacent conductor track sections of 2 mm remains.
  • the conductor track 23 has a rectangular profile with a width of 1 mm and a thickness of 20 ⁇ m. As a result of the small thickness, the proportion of material of the expensive conductor track material (platinum) in the infrared radiator is small compared to its efficiency.
  • the conductor track 23 has direct contact with the top 25 of the base body 20, so that the greatest possible heat transfer into the base body 20 is achieved.
  • the opposite underside 26 serves as an emitting surface for the heat radiation when using the infrared radiator.
  • the direction of radiation is indicated by the directional arrow 27.
  • the reflector layer 24 consists of opaque quartz glass and has an average layer thickness between 1.0-1.5 mm. It is characterized by freedom from cracks and a high density of about 2.15 g / cm3 and it is thermally resistant up to temperatures above 1100 ° C.
  • the reflector layer 24 covers the entire heating area of the base body 20 and it completely covers the conductor track 23 and thus shields it from chemical or mechanical influences from the environment.
  • a quick response time of the dryer unit 70 after the printing machine is switched on is a prerequisite for low waste in the printing process.
  • the diagram of Figure 3 shows the temperature profile over time after switching on the Figure 2 described heating element 7.
  • a temperature T rel (in%) normalized to a maximum temperature, which arises during operation with the maximum electrical connected load, is plotted against the operating time t in seconds.
  • T rel is measured at a distance of 5 mm from the heating surface using a thermopile measuring sensor.
  • the maximum temperature which remains essentially constant in the further heating process, is established after a short time in comparison with conventional medium-wave infrared radiators.
  • the short reaction time compared to conventional medium-wave infrared emitters reduces waste.
  • the combination of uncooled heating elements 7 and warm convective process air for moisture transport optimizes the printing process in modern high-performance printing machines.
  • the composite material shows a high absorption of heat radiation and a high emissivity at high temperature.
  • the emissivity of the composite material is measured using an integrating sphere. This allows the measurement of the directional-hemispherical spectral reflectance R gh and the directional-hemispherical spectral transmittance T gh , from which the normal spectral emissivity is calculated.
  • the emissivity at elevated temperature is measured in the wavelength range from 2 to 18 ⁇ m using an FTIR spectrometer (Bruker IFS 66v FTIR), to which a BBC sample chamber is coupled using additional optics, using the BBC measuring principle mentioned above.
  • the sample chamber has temperate blackbody environments and a beam exit opening with detector in the half-spaces in front of and behind the sample holder.
  • the measurement samples with a thickness of 2 mm are heated to a specified temperature in a separate oven and placed in the beam path of the sample chamber with the blackbody surroundings set to the specified temperature for measurement.
  • the intensity detected by the detector is composed of an emission, a reflection and a transmission component, namely intensity that is emitted by the sample itself, intensity that falls on the sample from the front half space and is reflected by it, and intensity that falls on the sample from the rear half-space and is transmitted by it.
  • Three measurements must be carried out in order to determine the individual variables of emissivity, reflection and transmittance.
  • the emissivity measured on the composite material in the wavelength range from 2 to about 4 ⁇ m depends on the temperature. The higher the temperature, the higher the emission. At 600 ° C, the normal emissivity in the wavelength range from 2 to 4 ⁇ m is above 0.7. The normal temperature is 1000 ° C Emissivity in the entire wavelength range between 2 and 8 ⁇ m above 0.8.
  • Figure 4 shows the emission spectrum of the heating element 7 (curve A) compared to the emission spectrum of a conventional infrared radiator with quartz glass cladding tube and heating coil made of Kanthal® (curve B) with the same power.
  • the emitted power P rel (as a relative value related to the maximum value in%) is plotted on the left y-axis and the wavelength ⁇ (in nm) on the x-axis.
  • the transmission spectrum of water is entered in the diagram (curve C), the right y-axis indicating a relative value T H2O .
  • the temperature of the conductor track 23 on the base body 20 is set to 1000 ° C.
  • the comparison heater with a Kanthal® filament is also operated at a temperature of around 1000 ° C. It can be seen that the tiled heating element 7 has an emission maximum in the wavelength range of 1,500 nm to about 2,000 nm that better matches the transmission maximum of water at 2750 nm than the emission curve of the standard radiator. This results in an approximately 25% higher power density on the substrate 3 compared to the standard infrared emitter with the same electrical power and the same distance.
  • the infrared area heater is installed in a test device and mounted on a movable table.
  • the optical power is detected by means of a thermoelectric detector.
  • the irradiance is determined at several measuring points in steps of 5 mm.
  • the irradiance is defined as sufficiently homogeneous if it deviates from the maximum value measured at 10 measuring points around the center of the sample by no more than +/- 5%. This type of measurement is also referred to below as "axial measurement",
  • FIG. 5 illustrates the result of axial measurements when using the tile-shaped heating element 7.
  • a normalized optical power L (in%) is plotted on the y-axis, and the lateral distance A (in mm) from the axis zero point on the x-axis extending center line, which relates to the lateral dimension of the heating element 7.
  • the lateral profile of the optical power is measured at a working distance of 10 mm. This is comparatively homogeneous over a larger area around the center line at almost 100%. This is shown by the fact that in a work area with more than 10 measuring points around the center line, the optical power does not drop below 95% compared to the maximum value (100%).
  • Diagrams (a) and (b) of Figure 6 illustrate schematically the relationship between irradiation homogeneity or intensity and the distance between the radiator and the substrate, as well as differences in this regard between an infrared area radiator composed of several individual radiators (diagram (a)) and the tiled heating element 7 for use in the printing press 1 according to the invention ( Diagram (b)).
  • Diagram (b) On the ordinate of diagrams (a) and (b), the homogeneity "H” or the radiation intensity "I” incident on the heating material against the distance "A” (also in relative unit) between the radiator and Printed material applied.
  • the surface radiator 71 in diagram (a) is represented by a plurality of medium-wave or short-wave radiant heaters arranged side by side, the cladding tubes of which are indicated by three circles.
  • the tile-shaped heating element 7 of the printing press according to the invention is indicated in diagram (b) by a hatched rectangle.
  • the tile-shaped heating element 7 and the flat arrangement 71 of the carbon radiators have the same electrical connection power.
  • the course of the homogeneity H with the distance A is indicated by the dashed curve line H, and the course of the intensity I by the solid curve line. Accordingly, both in the case of the standard area radiator 71 and in the case of the tiled heating element 7, the radiation intensity I decreases with the distance A to approximately the same extent, but the homogeneity of the radiation is in the heating element 7 largely independent of the distance A, whereas in the standard infrared area heater 71 it is small at a short distance.
  • the gray hatched area schematically defines a "work area" in which there is an acceptable irradiation homogeneity on the substrate. It becomes clear that this homogeneity can be achieved with the standard infrared surface radiator 71 by maintaining a certain distance, but for this a significant loss in radiation intensity has to be accepted. In contrast to this, the tile-shaped heating element 7 enables a sufficiently high homogeneity even at very small distances, at which the radiation intensity is also high. Thus, the efficiency of the heating element 7 1 compared to the surface radiator 71 made of carbon single radiators - is significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Resistance Heating (AREA)
  • Ink Jet (AREA)

Description

Technischer HintergrundTechnical background

Die Erfindung betrifft eine Druckmaschine mit einem Druckaggregat zum Aufbringen lösungsmittelhaltiger Druckfarbe auf einem Bedruckstoff, einer Transporteinrichtung zum Transport des Bedruckstoffs von dem Druckaggregat zu einer Trocknereinheit, die mindestens einen Infrarotstrahler zum Trocknen des Bedruckstoffs umfasst.The invention relates to a printing press with a printing unit for applying solvent-containing printing ink to a printing material, a transport device for transporting the printing material from the printing unit to a dryer unit, which comprises at least one infrared radiator for drying the printing material.

Stand der TechnikState of the art

Zum Bedrucken bogenförmiger oder bahnförmiger Bedruckstoffe aus Papier, Pappe, Folie oder Karton mit Druckfarben werden beispielsweise Offset-Druckmaschinen, lithographische Druckmaschinen, Rotationsdruckmaschinen oder Flexo-Druckmaschinen eingesetzt. Typische Inhaltsstoffe von Druckfarben sind Öle, Harze und Bindemittel. Bei UV-härtbaren Druckfarben beruhen Härtung und Haftung auf dem Bedruckstoff auf Polymerisation, die durch Photoinitiation mittels UV-Licht ausgelöst wird. Bei lösungsmittelhaltigen und vor Allem wasserhaltigen Druckfarben und Lacken ist ein Trocknen erforderlich, das sowohl auf physikalischen als auch auf chemischen Trocknungsprozessen beruhen kann. Physikalische Trocknungsprozesse umfassen das Verdunsten von Lösungsmitteln und deren Diffusion in den Bedruckstoff, was auch als "Wegschlagen" bezeichnet wird. Unter chemischer Trocknung wird die Oxidation beziehungsweise Polymerisation von Druckfarben-Inhaltsstoffen verstanden.Offset printing machines, lithographic printing machines, rotary printing machines or flexographic printing machines are used, for example, for printing sheet-shaped or web-shaped printing materials made of paper, cardboard, foil or cardboard with printing inks. Typical ingredients of printing inks are oils, resins and binders. In the case of UV-curable printing inks, curing and adhesion to the printing material are based on polymerization, which is triggered by photoinitiation using UV light. In the case of printing inks and varnishes containing solvents and, above all, water, drying is required, which can be based on both physical and chemical drying processes. Physical drying processes include the evaporation of solvents and their diffusion into the substrate, which is also known as "knocking away". Chemical drying means the oxidation or polymerization of printing ink ingredients.

Zwischen physikalischer und chemischer Trocknung gibt es Übergänge. So kann beispielsweise das Wegschlagen der Lösungsmittel eine Annäherung monomerer Harzmoleküle bewirken, so dass diese gegebenenfalls einfacher polymerisieren. Trocknungsvorrichtungen zum Trocknen des bedruckten Bedruckstoffs dienen somit zum Entfernen von Lösungsmittel und/oder zum Auslösen von Vernetzungsreaktionen.There are transitions between physical and chemical drying. For example, knocking away the solvents can cause monomeric resin molecules to converge, so that they may polymerize more easily. Drying devices for drying the printed substrate thus serve to remove solvents and / or to trigger crosslinking reactions.

Die DE 10 2005 046 230 A1 beschreibt eine Rotationsdruckmaschine mit einem Druckwerk zum Bedrucken eines Druckbogens mit Druckfarbe, einer Lackiereinrichtung zum Aufbringen eines Lackes auf dem bedruckten Druckbogen. Im Bereich des Bogenweges sind dem Druckwerk und der Lackiereinrichtung IR-Strahlung emittierende Trocknungseinrichtungen in Form von Infrarotstrahlern nachgeordnet, die auch als Carbonstrahler ausgeführt sein können.The DE 10 2005 046 230 A1 describes a rotary printing press with a printing unit for printing a printing sheet with printing ink, a coating device for applying a coating on the printed printing sheet. In the area of the sheet path, drying devices in the form of infrared emitters, which can also be designed as carbon emitters, are arranged after the printing unit and the coating device.

EP 0 495 770 A1 betrifft einen Infrarotstrahler mit einer Trägerplatte, auf welcher wenigstens eine Leiterbahn aus einem Werkstoff, der durch elektrische Energie Wärme erzeugt, angeordnet ist. EP 0 495 770 A1 relates to an infrared radiator with a carrier plate on which at least one conductor track made of a material that generates heat by electrical energy is arranged.

Technische AufgabenstellungTechnical task

Bei derartigen Infrarotstrahlern ist ein Heizfilament aus Carbon oder Wolfram in Wendel- oder Bandform in ein inertgasgefülltes Strahlerrohr eingeschlossen, das meist aus Quarzglas gefertigt ist. Die Heizfilamente sind mit elektrischen Anschlüssen verbunden, die über ein Ende oder beiden Enden des Strahlerrohres eingeführt werden.In such infrared radiators, a heating filament made of carbon or tungsten in the form of a coil or ribbon is enclosed in an inert gas-filled radiator tube, which is usually made of quartz glass. The heating filaments are connected to electrical connections that are inserted through one end or both ends of the radiator tube.

Die Heizfilamente selbst haben zwar eine sehr geringe thermische Masse und damit eine schnelle Reaktionszeit im Bereich von 1 bis 2 Sekunden. Bis jedoch das gesamte IR-Trocknersystem aus Quarzrohr, Filament, elektrische Anschlüssen und einem Reflektor im thermischen Gleichgewicht ist, können mehrere Minuten vergehen.The heating filaments themselves have a very low thermal mass and therefore a fast response time in the range of 1 to 2 seconds. However, it can take several minutes until the entire IR dryer system consisting of quartz tube, filament, electrical connections and a reflector is in thermal equilibrium.

Da der Bedruckstoff in modernen Rotationsdruckmaschinen mit einer Bahngeschwindigkeit von 3 bis 5 m/s läuft und diese Geschwindigkeit zu Beginn bereits vorhanden ist, können bis zum Erreichen des thermischen Gleichgewichts bis zu 1500 m Bedruckstoff verloren gehen. Bei wechselnden individuellen Bedruckprozessen entstehen diese Verluste bei jedem Druckvorgang neu.Since the printing stock runs at a web speed of 3 to 5 m / s in modern rotary printing machines and this speed is already available at the beginning, up to 1500 m of printing stock can be lost until thermal equilibrium is reached. With changing individual printing processes, these losses arise again with each printing process.

Je höher die elektrische Leistung der Quarzrohrstrahler ist, umso schneller erreichen sie die Temperatur des IR-Trocknersystems. Die Erhöhung der Leistung erhöht aber nicht nur die vom Infrarotstrahler abgestrahlte Energiemenge, was zu einer Überhitzung des Bedruckstoffs führen kann, sondern sie verändert auch die Hauptwellenlänge der abgegebenen Strahlung, die sich in Richtung des kurzwelligen Spektralbereichs verschiebt.The higher the electrical power of the quartz tube emitters, the faster they reach the temperature of the IR dryer system. The increase in power not only increases the amount of energy emitted by the infrared radiator, which can lead to overheating of the printing material, but also changes the main wavelength of the emitted radiation, which shifts in the direction of the short-wave spectral range.

Bei wasserbasierten Druckfarben ist es wünschenswert, dass die Emissions-Hauptwellenlänge der Infrarotstrahler zur Absorptionscharakteristik des Wassers passt, also bei etwa 2,75 µm liegt. Die bisherigen kommerziellen Infrarotstrahler weisen daher entweder ein daran angepasstes Emissionsspektrum auf; dann haben sie aber eine geringe elektrische Leistung und benötigen für eine hinreichend große Strahlungsleistung eine vergleichsweise große Abstrahlungsfläche und dementsprechend eine große Wärmekapazität, welche wiederum vergleichsweise lange Aufheiz- und Abkühlzeiten des Infrarotstrahlers und somit Reaktionsträgheit der Trocknereinheit bedingt. Oder die Infrarotstrahler haben eine hohe elektrische Leistung und eine geringe Reaktionsträgheit; dann ist ihr Emissionsspektrum aber nicht optimal an die Absorptionscharakteristik des Wassers angepasst.In the case of water-based printing inks, it is desirable that the main emission wavelength of the infrared radiators matches the absorption characteristics of the water, that is to say about 2.75 μm. The previous commercial infrared heaters therefore either have an adapted emission spectrum; then they have a low electrical power and require a comparatively large radiation area and accordingly a large heat capacity for a sufficiently large radiation power, which in turn requires comparatively long heating and cooling times of the infrared radiator and thus inertness of the dryer unit. Or the infrared emitters have a high electrical output and low inertia; then their emission spectrum is not optimally adapted to the absorption characteristics of the water.

Häufig bilden mehrere nebeneinander liegende Infrarot-Strahlerrohre einen Flächenstrahler. Um dabei eine homogene Abstrahlung auf dem Bedruckstoff zu erhalten, sollte der Abstand zwischen dem Flächenstrahler und dem Bedruckstoff mindestens dem 1,5-fachen Mittenabstand zwischen den Einzel-Strahlerrohren betragen, wenn die Strahlerrohr-Längsachsen in Transportrichtung des Bedruckstoffs ausgerichtet sind. Dieser vergleichsweise hohe Mindestabstand zwischen Flächenstrahler und Bedruckstoff führt zu einer geringen effektiven Strahlungsintensität auf der Bedruckstoff-Ebene, was die Reaktionszeit verlängert, innerhalb der die erforderliche Strahlungsleistung auf dem Bedruckstoff aufgebracht ist.Often, several infrared emitter tubes lying side by side form a surface emitter. In order to obtain a homogeneous radiation on the substrate, the distance between the surface heater and the substrate should be at least 1.5 times the center distance between the individual heater tubes if the heater tube longitudinal axes are aligned in the transport direction of the substrate. This comparatively high minimum distance between the surface emitter and the substrate leads to a low effective radiation intensity on the substrate level, which extends the reaction time within which the required radiation power is applied to the substrate.

Eine schnelle Reaktionszeit ist aber insbesondere bei Mehrfarbdruck erforderlich, bevor der Bedruckstoff entweder mit der nächsten Farbe bedruckt oder durch einen Lackauftrag veredelt wird oder in der Druckmaschine zum Zwecke des Bedruckens der Rückseite gewendet wird. Denn aufgrund der relativ kurzen Zeit, in denen der Bedruckstoff zwischen den Druckwerken verweilt, muss die erforderliche Strahlungsleistung auf den Bedruckstoff einwirken, ohne das Druckbild durch Überhitzung beschädigt wird.However, a fast response time is particularly necessary with multi-color printing, before the substrate is either printed with the next color or finished with a varnish or turned in the printing machine for the purpose of printing the back. Because of the relatively short time in which the printing material stays between the printing units, the required radiation power must act on the printing material without the print image being damaged by overheating.

Darüber hinaus müssen sowohl kurz- als auch mittewellige Infrarotstrahler mit einer Emissionswellenlänge im Bereich von etwa 1000- 2750 nm insbesondere in engen Bauräumen, wie sie für Druckmaschine typisch sind, aktiv gekühlt werden, um sie vor Überhitzung zu schützen. Häufig wird dafür ein Kühlluftstrom erzeugt, der die Infrarotstrahler direkt anbläst. Es hat sich aber gezeigt, dass sich am Infrarotstrahler vorbeiströmende Kühlluft mit warmer Prozessluft, die unter anderem dem Abtransport von Feuchtigkeit dient interagiert und dadurch die Temperatur am Bedruckstoff verändert und den Abtransport von Feuchtigkeit vermindert.In addition, both short- and medium-wave infrared emitters with an emission wavelength in the range of about 1000-2750 nm must be actively cooled, in particular in narrow installation spaces, as are typical for printing presses, in order to protect them from overheating. A cooling air stream is often generated for this purpose, which blows the infrared radiators directly. However, it has been shown that cooling air flowing past the infrared radiator interacts with warm process air, which among other things serves to remove moisture and thereby change the temperature at the printing material and reduce the removal of moisture.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Druckmaschine mit einer Trocknereinrichtung bereitzustellen, die für die Trocknung lösungsmittelhaltiger und insbesondere wasserbasierter Druckfarbe hinsichtlich Homogenität und Schnelligkeit der Trocknung verbessert ist und bei der die Trocknereinheit ohne aktive Kühlung des Infrarotstrahlers auskommt.The invention is therefore based on the object of providing a printing press with a dryer device which is improved for drying solvent-based and in particular water-based printing ink with regard to homogeneity and speed of drying and in which the dryer unit does not require active cooling of the infrared radiator.

Allgemeine Beschreibung der ErfindungGeneral description of the invention

Diese Aufgabe wird ausgehend von einem Infrarotstrahler der eingangs genannten Gattung erfindungsgemäß dadurch gelöst, dass der Infrarotstrahler als flächiges Heizelement aus einem dielektrischen und bei Erwärmung Infrarotstrahlung emittierenden Heizelement-Werkstoff ausgebildet ist, das eine dem zu trocknenden Bedruckstoff zugewandte Heizfläche und eine Kontaktierungsfläche aufweist, auf der eine Heizleiter-Leiterbahn aus einem elektrisch leitenden, edelmetallhaltigen Widerstandsmaterial aufgebracht ist, die mit einer elektrische Kontaktierung zu einer einstellbaren Stromquelle verbunden ist.This object is achieved on the basis of an infrared radiator of the type mentioned in the introduction in that the infrared radiator is designed as a flat heating element made of a dielectric heating element material which emits infrared radiation when heated and which has a heating surface facing the printing material to be dried and a contacting surface on which a heat conductor conductor made of an electrically conductive, noble metal-containing resistance material is applied, which is connected to an electrical contact to an adjustable power source.

Bei der erfindungsgemäßen Druckmaschine umfasst die Infrarot-Trocknereinheit mindestens ein Heizelement, das eine dem zu trocknenden Bedruckstoff zugewandte Heizfläche aufweist. Die Heizfläche emittiert Infrarotstrahlung in Richtung auf den Bedruckstoff. Sie ist flächig und im einfachsten Fall eben ausgeführt, sie kann aber auch eine Struktur und eine von der Planheit abweichende flächige geometrische Form aufweisen. Die Ebenheit der Heizfläche ergibt ein gleichermaßen ebenes Strahlungsfeld und ermöglich das Einstellen eines kurzen Abstandes zwischen Bedruckstoff und Heizelement. Dies trägt zur Homogenität und Schnelligkeit der Trocknung bei; wie weiter unten noch näher erläutert.In the printing press according to the invention, the infrared dryer unit comprises at least one heating element which has a heating surface facing the printing material to be dried. The heating surface emits infrared radiation in the direction of the substrate. It is flat and, in the simplest case, flat, but it can also have a structure and a flat geometric shape that deviates from flatness. The flatness of the heating surface results in an equally flat radiation field and enables the setting of a short distance between the substrate and the heating element. This contributes to the homogeneity and speed of drying; as explained in more detail below.

Das Heizelement besteht mindestens teilweise aus einem dielektrischen Werkstoff. Dieser ist elektrisch nicht leitend und daher nicht ohne weiteres durch direkten Stromdurchfluss, sondern durch Wärmeleitung über die Leiterbahn des Heizleiters erwärmbar. Die Leiterbahn dient somit unmittelbar zur Erwärmung des Heizelements. Infolge der Erwärmung emittiert der Heizelement-Werkstoff Infrarotstrahlung im mittelwelligen Wellenlängenbereich, der möglichst gut mit der Absorptionscharakteristik von Wasser übereinstimmt.The heating element consists at least partially of a dielectric material. This is not electrically conductive and can therefore not be easily heated by direct current flow, but by heat conduction via the conductor of the heating conductor. The conductor track thus serves directly to heat the heating element. As a result of heating, the heating element material emits infrared radiation in the medium-wave wavelength range, which matches the absorption characteristics of water as closely as possible.

Das Heizelement bildet das eigentliche, Infrarotstrahlung emittierende Element. Es kann mehrschichtig ausgeführt sein, es ist aber bevorzugt vollständig aus dem dielektrischen Heizelement-Werkstoff gefertigt. Wesentlich ist, dass die mit Leiterbahn belegten Oberflächenbereiche aus elektrisch isolierendem Werkstoff bestehen, um Überschläge und Kurzschlüsse zwischen benachbarten Leiterbahn-Abschnitten zuverlässig zu verhindern.The heating element forms the actual element that emits infrared radiation. It can be made in several layers, but it is preferably made entirely of the dielectric heating element material. It is essential that the surface areas covered with conductor tracks consist of electrically insulating material in order to reliably prevent flashovers and short circuits between adjacent conductor track sections.

Die Kontaktierung des Heizelements mit dem Heizleiter erfolgt beispielsweise über eine der Heizfläche gegenüberliegende Kontaktierungsfläche. Diese ist in direktem Kontakt oder in mittelbarem Kontakt - über eine elektrisch isolierende und wärmeleitende Zwischenschicht - mit der Leiterbahn aus einem Widerstandsmaterial.The heating element is contacted with the heating conductor, for example, via a contacting surface opposite the heating surface. This is in direct contact or in indirect contact - via an electrically insulating and heat-conducting intermediate layer - with the conductor track made of a resistance material.

Das Widerstandsmaterial ist infrarotfähig in dem Sinne, dass es bis mindestens 1000 °C temperaturbeständig ist, im Idealfall auch in oxidativer Umgebung, dass es elektrisch leitfähig ist, und dass sich seine elektrische Leitfähigkeit mit der Temperatur nicht wesentlich verändert oder die Widerstandsänderung bekannt ist. Diese Bedingungen werden insbesondere erfüllt:

  1. (1) von einem edelmetallhaltigen Widerstandsmaterial. Das in dieser Hinsicht bevorzugte Widerstandsmaterial besteht zu mindestens 50 Atom-%, vorzugsweise zu mindestens 95 At.-% aus Elementen der Platingruppe. Die Platingruppe umfasst die folgenden Edelmetalle: Ru, Rh, Pd, Os, Ir, Pt. Diese liegen in reiner Form oder als Legierung untereinander oder mit einem oder mehreren anderen Metallen vor, insbesondere mit Au, Ag.
  2. (2) von Widerstandsmaterial aus hochtemperaturfestem Stahl, Tantal, einer ferritischen FeCrAl-Legierung, einer austenitischen CrFeNi-Legierung, Siliziumcarbid, Molybdändisilicid oder einer Molybdän-Basislegierung. Dieses Werkstoffe, insbesondere Siliziumcarbid (SiC), Molybdändisilicid (MoSi2), Tantal (Ta), hochwarmfester Stahl oder eine ferritische FeCrAl-Legierung wie Kanthal® (Kanthal® ist eine eingetragene Marke der SANDVIK INTELLECTUAL PROPERTY AB, 811 81 Sandviken, SE) sind an Luft oxidationsbeständig und kostengünstiger als Platingruppenmetalle.
The resistance material is infrared-capable in the sense that it is temperature-resistant up to at least 1000 ° C, ideally even in an oxidative environment, that it is electrically conductive, and that its electrical conductivity does not change significantly with temperature or the change in resistance is known. These conditions are met in particular:
  1. (1) from a noble metal-containing resistance material. The preferred resistance material in this regard consists of at least 50 atom%, preferably at least 95 atom%, of platinum group elements. The platinum group includes the following precious metals: Ru, Rh, Pd, Os, Ir, Pt. These are in pure form or as an alloy with one another or with one or more other metals, in particular with Au, Ag.
  2. (2) Resistance material made of high-temperature steel, tantalum, a ferritic FeCrAl alloy, an austenitic CrFeNi alloy, silicon carbide, molybdenum disilicide or a molybdenum-based alloy. This material, in particular silicon carbide (SiC), molybdenum disilicide (MoSi 2 ), tantalum (Ta), high-temperature steel or a ferritic FeCrAl alloy such as Kanthal® (Kanthal® is a registered trademark of SANDVIK INTELLECTUAL PROPERTY AB, 811 81 Sandviken, SE) are resistant to oxidation in air and less expensive than platinum group metals.

Die Leiterbahn wird bevorzugt als Dickfilmschicht beispielsweise aus Widerstandspaste mittels Siebdruck oder aus metallhaltiger Tinte mittels Tintenstrahldruck erzeugt und anschließend bei hoher Temperatur eingebrannt. Die Leiterbahn verläuft beispielsweise in einem spiral- oder mäanderförmigen Linienmuster. Das hohe Absorptionsvermögen des Heizelement-Werkstoffs ermöglicht auch bei vergleichsweise geringer Leiterbahn-Belegungsdichte der Heizfläche eine homogene Abstrahlung. Eine geringe Belegungsdichte ist dadurch gekennzeichnet, dass der minimale Abstand zwischen benachbarten Leiterbahn-Abschnitten 1 mm oder mehr, bevorzugt 2 mm oder mehr beträgt. Ein großer Abstand zwischen den Leiterbahnabschnitten vermeidet Überschläge, die insbesondere beim Betrieb mit hohen Spannungen unter Vakuum auftreten können. Die Leiterbahn kann mindestens teilweise mit einer Deckschicht aus einem elektrisch isolierenden und/oder optisch streuenden Werkstoff überzogen sein. Die Deckschicht dient als Reflektor und/oder zum mechanischen Schutz und zur Stabilisierung der Leiterbahn.The conductor track is preferably used as a thick film layer, for example made from resistance paste by means of screen printing or from metal-containing ink using ink jet printing generated and then baked at high temperature. The conductor track runs, for example, in a spiral or meandering line pattern. The high absorption capacity of the heating element material enables homogeneous radiation even with a comparatively low conductor occupancy density of the heating surface. A low occupancy density is characterized in that the minimum distance between adjacent conductor track sections is 1 mm or more, preferably 2 mm or more. A large distance between the conductor track sections prevents flashovers, which can occur in particular when operating at high voltages under vacuum. The conductor track can be at least partially covered with a cover layer made of an electrically insulating and / or optically scattering material. The cover layer serves as a reflector and / or for mechanical protection and for stabilizing the conductor track.

Die Heizleiter-Leiterbahn ist mit einer elektrischen Kontaktierung verbunden, über das sie mit einem Stromkreis verbindbar ist. Vorzugsweise ist die elektrische Kontaktierung über die elektrische Kontaktierung lösbar mit einem Stromkreis verbindbar, beispielsweise über eine Steck-, Schraub- oder Klemmverbindung.The heat conductor conductor track is connected to an electrical contact via which it can be connected to a circuit. The electrical contact can preferably be releasably connected to a circuit via the electrical contact, for example via a plug, screw or clamp connection.

Die flächige Form des Heizelements und die Infrarot-Emission ermöglichen eine flächig-homogene Abstrahlung von Infrarotstrahlung und damit einhergehend eine Reduzierung des Abstandes zwischen dem Bedruckstoff und dem Heizelement. Dadurch gelingt es, eine höhere Strahlungsleistung pro Flächeneinheit bereitzustellen und auch bei dünnen Heizelement -Wandstärken und/oder bei einer vergleichsweise geringen Leiterbahn-Belegungsdichte eine homogene Abstrahlung und ein gleichförmiges Temperaturfeld zu erzeugen.The flat shape of the heating element and the infrared emission enable a flat-homogeneous radiation of infrared radiation and the associated reduction in the distance between the printing material and the heating element. This makes it possible to provide a higher radiation output per unit area and to produce a homogeneous radiation and a uniform temperature field even with thin heating element wall thicknesses and / or with a comparatively low conductor occupancy density.

Durch die gleichmäßige Abstrahlung und hohe Emissivität kann der Abstand zwischen Bedruckstoff und Heizelement gering ausfallen, wodurch die Bestrahlungs-intensität erhöht und die Effizienz entsprechend zunimmt. Der Abstand ist bevorzugt kleiner als 15 mm.Due to the uniform radiation and high emissivity, the distance between the substrate and the heating element can be small, which increases the radiation intensity and increases the efficiency accordingly. The distance is preferably less than 15 mm.

Der geringe Abstand ermöglicht hohe Leistungsdichten von mehr als 100 kW/m2 und sogar mehr 200 kW/m2 auf dem Bedruckstoff und führt zu einer Verringerung der Makulatur in modernen Hochleistungs-Druckmaschinen. Bevorzugt ist das Heizelement zur Erzielung einer Leistungsdichte oberhalb von 180 kW/m2, vorzugsweise zur Erzielung einer Leistungsdichte im Bereich von 180 kW/m2 bis 265 kW/m2, ausgelegt. Die Flächenleistung ist dabei definiert als die elektrische Anschlussleistung der Leiterbahn bezogen auf die von der Leiterbahn belegte Basiskörper-Fläche.The short distance enables high power densities of more than 100 kW / m 2 and even more than 200 kW / m 2 on the substrate and leads to a reduction in waste in modern high-performance printing machines. The heating element is preferred to achieve a power density above 180 kW / m 2 , preferably to achieve a power density in the range from 180 kW / m 2 to 265 kW / m 2 . The area power is defined as the electrical connection power of the conductor track in relation to the base body area occupied by the conductor track.

Durch erzwungene Strömung warmer Prozessluft wird die Temperatur auf dem Bedruckstoff reguliert und Feuchtigkeit abtransportiert. Der Abtransport von Feuchtigkeit hängt vom Aufnahmevermögen der Prozessluft (maßgeblich bestimmt durch die Temperatur) und deren Einwirkungsgrad auf den Bedruckstoff (maßgeblich bestimmt durch Strömungseigenschaften) ab. Dünne Heizelemente haben eine geringe Wärmekapazität und ermöglichen schnelle Temperaturwechsel. Eine aktive Kühlung mittels am Infrarotstrahler vorbeiströmender Kühlluft ist daher nicht erforderlich. Dadurch werden bei Einsatz der erfindungsgemäßen Druckmaschine Interaktionen mit der warmen Prozessluft vermieden, die sich auf deren Temperatur und Strömungsverhalten auswirken und die die Temperatur des Bedruckstoffs und der warmen Prozessluft verringern und so den Abtransport von Feuchtigkeit verlangsamen würden.The temperature on the substrate is regulated and moisture is removed by forced flow of warm process air. The removal of moisture depends on the absorption capacity of the process air (mainly determined by the temperature) and its degree of influence on the substrate (mainly determined by flow properties). Thin heating elements have a low heat capacity and enable rapid temperature changes. Active cooling by means of cooling air flowing past the infrared radiator is therefore not necessary. As a result, when using the printing press according to the invention, interactions with the warm process air are avoided which affect their temperature and flow behavior and which reduce the temperature of the printing material and the warm process air and thus slow down the removal of moisture.

Im Hinblick auf eine möglichst kurze Reaktionszeit ist die erfindungsgemäße Druckmaschine daher vorzugsweise mit einem plattenförmigen Heizelement mit einer Plattendicke von weniger als 10 mm ausgestattet. Die Transporteinrichtung weist eine maximale Formatbreite für den Transport des Bedruckstoffs auf, wobei im bevorzugten Fall das Heizelement zur Bestrahlung über die gesamte Formatbreite aus mehreren Heizelement-Teilstücken besteht, die unabhängig voneinander elektrisch ansteuerbar sind.In view of the shortest possible response time, the printing press according to the invention is therefore preferably equipped with a plate-shaped heating element with a plate thickness of less than 10 mm. The transport device has a maximum format width for transporting the printing material, in the preferred case the heating element for irradiation over the entire format width consisting of several heating element sections which can be controlled electrically independently of one another.

Die Heizelement-Teilstücke überspannen hierbei die maximal mögliche Formatbreite der Druckmaschine. Sie sind beispielsweise stoßförmig aneinandergesetzt. Dadurch, dass sie getrennt voneinander schalt- und regelbar sind, können je nach Bedarf einzelne Heizelemente zu- oder abgeschaltet werden. Durch zusätzliche thermische Trennung kann ein Wärmeverlust durch Wärmeleitung von dem oder den eingeschalteten Heizelementen auf das oder die nicht eingeschalteten Heizelemente vermindert werden.The heating element sections span the maximum possible format width of the printing press. For example, they are juxtaposed. Because they can be switched on and off separately, individual heating elements can be switched on or off as required. Additional thermal separation can reduce heat loss due to heat conduction from the heating element (s) switched on to the heating element (s) that are not switched on.

Es hat sich als vorteilhaft erwiesen, wenn der Heizelement-Werkstoff eine amorphe Matrixkomponente sowie eine Zusatzkomponente in Form eines Halbleitermaterials umfasst.It has proven to be advantageous if the heating element material comprises an amorphous matrix component and an additional component in the form of a semiconductor material.

Der amorphe Werkstoff, wie etwa Quarzglas, kann einfach an die für den Anwendungsfall geeignete geometrische Gestalt gebracht werden, also beispielsweise in Form ebener, gebogener oder gewellter Platten. Die darin eingelagerte Zusatzkomponente bildet eine eigene amorphe oder kristalline Phase aus Halbleitermaterial, wie etwa aus Silizium. Der Energieunterschied zwischen Valenzband und Leitungsband (Bandlückenenergie) nimmt mit zunehmender Temperatur ab. Andererseits können bei ausreichend hoher Aktivierungsenergie Elektronen vom Valenzband in das Leitungsband gehoben werden, was mit einem deutlichen Anstieg des Absorptionskoeffizienten einhergeht. Die thermisch aktivierte Besetzung des Leitungsbandes führt dazu, dass das Halbleitermaterial bei Raumtemperatur für bestimmte Wellenlängen (wie etwa ab 1000 nm) in gewissem Umfang transparent sein kann und bei hohen Temperaturen undurchsichtig wird. Mit steigender Temperatur des Heizelement-Werkstoffs können daher Absorption und Emissionsgrad zunehmen. Dieser Effekt hängt unter anderem von Struktur (amorph/kristallin) und Dotierung des Halbleiters ab. Reines Silizium zeigt beispielsweise ab etwa 600 °C eine merkliche Emissionszunahme, die etwa ab etwa 1000 °C eine Sättigung erreicht.The amorphous material, such as quartz glass, can easily be brought to the geometric shape suitable for the application, for example in the form of flat, curved or corrugated plates. The additional component embedded in it forms its own amorphous or crystalline phase made of semiconductor material, such as silicon. The energy difference between the valence band and the conduction band (band gap energy) decreases with increasing temperature. On the other hand, with sufficiently high activation energy, electrons can be lifted from the valence band into the conduction band, which is accompanied by a significant increase in the absorption coefficient. The thermally activated occupation of the conduction band means that the semiconductor material can to a certain extent be transparent to certain wavelengths (such as from 1000 nm) at room temperature and become opaque at high temperatures. With increasing temperature of the heating element material, absorption and emissivity can increase. This effect depends, among other things, on the structure (amorphous / crystalline) and doping of the semiconductor. Pure silicon, for example, shows a noticeable increase in emissions from around 600 ° C, which saturates from around 1000 ° C.

Sofern das Halbleitermaterial hinreichend erwärmt wird, kann es daher einen energiereichen, angeregten Zustand einnehmen, in dem er Infrarotstrahlung mit hoher Leistungsdichte emittiert. In diesem Zustand bestimmt die halbleitende Zusatzkomponente maßgeblich die optischen und thermischen Eigenschaften des Heizelements; genauer gesagt, sie bewirkt eine Absorption im infraroten Spektralbereich (das heißt, im Wellenlängenbereich zwischen 780 nm und 1 mm) und insbesondere eine Absorption im Wellenlängenbereich um 2750 nm. Mit einem solchen Heizelement sind Leistungsdichten oberhalb von 180 kW/m2, vorzugsweise Leistungsdichten im Bereich von 180 kW/m2 bis 265 kW/m2, erzielbar.If the semiconductor material is heated sufficiently, it can therefore assume an energetic, excited state in which it emits infrared radiation with a high power density. In this state, the semiconducting additional component decisively determines the optical and thermal properties of the heating element; more precisely, it causes absorption in the infrared spectral range (that is, in the wavelength range between 780 nm and 1 mm) and in particular absorption in the wavelength range around 2750 nm. With such a heating element, power densities above 180 kW / m 2 , preferably power densities in Range from 180 kW / m 2 to 265 kW / m 2 , achievable.

Ein solcher Heizelement-Werkstoff zeigt somit eine Anregungstemperatur, die mindestens erreicht werden muss, um die thermische Anregung des Werkstoffs und damit eine hohe Strahlungsemission zu erhalten. Die Zusatzkomponente führt dann dazu, dass der Heizelement-Werkstoff Infrarotstrahlung emittiert. Der spektrale Emissionsgrad ελ lässt sich bei bekannten gerichtet-hemisphärischen spektralen Reflexionsgrad Rgh und Transmissionsgrad Tgh wie folgt berechnen: ε λ = 1 R gh T gh

Figure imgb0001
Such a heating element material thus shows an excitation temperature which must at least be reached in order to maintain the thermal excitation of the material and thus a high radiation emission. The additional component then causes the heating element material to emit infrared radiation. The spectral emissivity ε λ can be calculated as follows for known directional-hemispherical spectral reflectance R gh and transmittance T gh : ε λ = 1 - R gh - T gh
Figure imgb0001

Unter dem "spektralen Emissionsgrad" wird der "spektrale normale Emissionsgrad" verstanden. Dieser wird anhand eines Messprinzips ermittelt, das unter der Bezeichnung "Black-Body Boundary Conditions" (BBC) bekannt ist und veröffentlicht ist in " DETERMINING THE TRANSMITTANCE AND EMITTANCE OF TRANSPARENT AND SEMITRANSPARENT MATERIALS AT ELEVATED TEMPERATURES"; J. Manara, M. Keller, D. Kraus, M. Arduini-Schuster; 5th European Thermal-Sciences Conference, The Netherlands (2008 ).The "spectral emissivity" is understood to mean the "spectral normal emissivity". This is determined on the basis of a measurement principle which is known as "Black Body Boundary Conditions" (BBC) and is published in " DETERMINING THE TRANSMITTANCE AND EMITTANCE OF TRANSPARENT AND SEMITRANSPARENT MATERIALS AT ELEVATED TEMPERATURES "; J. Manara, M. Keller, D. Kraus, M. Arduini-Schuster; 5th European Thermal-Sciences Conference, The Netherlands (2008 ).

Die mit der Zusatzkomponente dotierte Matrix hat eine höhere Wärmestrahlungs-Absorption als dies ohne die Zusatzkomponente der Fall wäre. Dadurch ergibt sich ein erhöhter Anteil von Energieübertragung durch Strahlung von der Leiterbahn in das Heizelement, eine schnellere Verteilung der Wärme und eine höhere Abstrahlungsrate auf den Bedruckstoff. Dadurch gelingt es, eine höhere Strahlungsleistung pro Flächeneinheit bereitzustellen und auch bei dünnen Heizelement-Wandstärken und/oder bei einer vergleichsweise geringen Leiterbahn-Belegungsdichte eine homogene Abstrahlung und ein gleichförmiges Temperaturfeld zu erzeugen.The matrix doped with the additional component has a higher heat radiation absorption than would be the case without the additional component. This results in an increased proportion of energy transmission by radiation from the conductor track into the heating element, a faster distribution of the heat and a higher radiation rate on the substrate. This makes it possible to provide a higher radiation output per unit area and to produce a homogeneous radiation and a uniform temperature field even with thin heating element wall thicknesses and / or with a comparatively low conductor occupancy density.

Im Heizelement-Werkstoff liegt die Zusatzkomponente bevorzugt mindestens zum Teil als elementares Silizium vor und ist in einer Menge eingelagert ist, die im Heizelement-Werkstoff für Wellenlängen zwischen 2 und 8 µm einen spektralen Emissionsgrad ε von mindestens 0,7 bei einer Temperatur von 600 °C und einen spektralen Emissionsgrad ε von mindestens 0,8 bei einer Temperatur von 1000 °C bewirkt.In the heating element material, the additional component is preferably at least partly in the form of elemental silicon and is stored in an amount that has a spectral emissivity ε of at least 0.7 at a temperature of 600 ° for wavelengths between 2 and 8 μm in the heating element material C and a spectral emissivity ε of at least 0.8 at a temperature of 1000 ° C.

Das Halbleitermaterial und insbesondere das vorzugsweise eingesetzte, elementare Silizium bewirken daher eine Schwarzfärbung des glasigen Matrix-Werkstoffs und zwar bei Raumtemperatur, aber auch bei erhöhter Temperatur oberhalb von beispielsweise 600 °C. Dadurch wird eine gute Abstrahlungscharakteristik im Sinne einer breitbandigen, hohen Emission bei hohen Temperaturen erreicht. Das Halbleitermaterial bildet dabei eine in der Matrix dispergierte, elementare Halbleiter-Phase. Diese kann mehrere Halbleiterelemente oder Metalle enthalten (Metalle jedoch maximal bis zu 50 Gew.-%, besser nicht mehr als 20 Gew.-%; bezogen auf den Gewichtsanteil der Zusatzkomponente).The semiconductor material and in particular the preferably used elementary silicon therefore cause the glassy matrix material to turn black, at room temperature, but also at an elevated temperature above, for example, 600 ° C. This achieves good radiation characteristics in the sense of broadband, high emissions at high temperatures. The semiconductor material forms an elementary semiconductor phase dispersed in the matrix. This can contain several semiconductor elements or metals (metals, however, up to a maximum of 50% by weight, better not more than 20% by weight; based on the proportion by weight of the additional component).

Die Wärmeabsorption des Heizelement-Werkstoffs hängt vom Anteil der Zusatzkomponente ab. Im Fall von Silizium sollte der Gewichtsanteil vorzugsweise mindestens 0,1% betragen. Andererseits kann ein hoher Silizium-Anteil die chemischen und mechanischen Eigenschaften der Quarzglas-Matrix beeinträchtigen. Im Hinblick darauf liegt der Gewichtsanteil der Gewichtsanteil der Silizium-Zusatzkomponente bevorzugt im Bereich zwischen 0,1 und 5 %.The heat absorption of the heating element material depends on the proportion of the additional component. In the case of silicon, the weight fraction should preferably be at least 0.1%. On the other hand, a high silicon content can impair the chemical and mechanical properties of the quartz glass matrix. In view of this, the weight fraction of the weight fraction of the silicon additional component is preferably in the range between 0.1 and 5%.

Bei einer bevorzugten Ausführungsform der erfindungsgemäßen Druckmaschine umfasst die Trocknereinheit eine Vielzahl von Heizelementen, die in Transportrichtung des Bedruckstoffs hintereinander angeordnet sind.In a preferred embodiment of the printing press according to the invention, the dryer unit comprises a plurality of heating elements which are arranged one behind the other in the transport direction of the printing material.

Dabei ist jeder Trocknereinheit ein Druckaggregat zugeordnet. Die größere Anzahl von Druckaggregaten ermöglicht eine hohe Druckgeschwindigkeit und eine hohe Druckqualität.A pressure unit is assigned to each dryer unit. The larger number of printing units enables a high printing speed and a high printing quality.

Insbesondere bei dieser Ausführungsform der Druckmaschine hat es sich als vorteilhaft erwiesen, wenn eine Einrichtung zur Zufuhr von Prozessluft in den Zwischenraum zwischen dem Bedruckstoff und den Heizelementen vorgesehen ist.In this embodiment of the printing press in particular, it has proven to be advantageous if a device for supplying process air into the intermediate space between the printing material and the heating elements is provided.

Die Prozesslust dient zum Trocknen des Bedruckstoffs und dem Abtransport des aus dem Lösungsmittels der Druckfarbe, also beispielsweise von Wasser. Um eine über die Bahnbreie des Bedruckstoffs gleichmäßige und zeitlich gleichbleibende Trocknung des Bedruckstoffs zu erreichen, wird eine möglichst reproduzierbare, laminare Strömung der Prozessluft angestrebt. Dazu tragen bei der erfindungsgemäßen Druckmaschine die flächige, vorzugsweise plane Heizfläche der Heizelemente und der enge Spalt zwischen den Heizflächen und dem Bedruckstoff bei.The desire to process is used to dry the printing material and to remove the printing ink from the solvent, for example water. In order to achieve a drying of the printing material which is uniform over the web width of the printing material and which is constant over time, the aim is to achieve a reproducible, laminar flow of the process air. The flat, preferably flat heating surface of the heating elements and the narrow gap between the heating surfaces and the printing material contribute to this in the printing press according to the invention.

Die erfindungsgemäße Druckmaschine ist für den Rotationsdruck, Offset-Druck, Flachdruck, Hochdruck, Siebdruck oder Tiefdruck einsetzbar. Es hat sich aber insbesondere bewährt, wenn das Druckaggregat einen Tintenstrahldruckkopf umfasst, wobei in Transportrichtung des Bedruckstoffs gesehen der Trocknereinheit mindestens eine mit Antriebsmotor ausgestatte Zugwalze nachgeordnet ist.The printing press according to the invention can be used for rotary printing, offset printing, planographic printing, letterpress printing, screen printing or gravure printing. However, it has proven particularly useful if the printing unit comprises an inkjet print head, with at least one traction roller equipped with a drive motor being arranged downstream of the dryer unit when viewed in the transport direction of the printing material.

Beim Inkjet-Druckverfahren oder Tintenstrahldruckverfahren ist die bilderzeugende Einrichtung als Tintenstrahldruckkopf ausgeführt, der eine oder mehrere Düsen aufweist, mittels denen Tintentropfen auf den Bedruckstoff übertragen werden. Insbesondere bei Einsatz wasserbasierter Tinte kann es vorkommen, dass sich der Bedruckstoff verformt, beispielsweise Wellen schlägt, was zu einer geringen Druckqualität, zu Beschädigungen von Druckkopf und Bedruckstoff und zu einer ungleichmäßigen Trocknung des Bedruckstoffs führen kann. Letzteres macht sich insbesondere bemerkbar, wenn - wie bei der erfindungsgemäßen Druckmaschine einstellbar - der Abstand zwischen dem Bedruckstoff und der Trocknereinheit sehr klein ist. Um dem entgegenzuwirken und um einen möglichst gleichmäßige und reproduzierbare Ebenheit des Bedruckstoffs zu gewährleisten, ist in Transportrichtung des Bedruckstoffs gesehen der Trocknereinheit mindestens eine mit eigenem Antriebsmotor ausgestatte Zugwalze nachgeordnet.In the inkjet printing process or inkjet printing process, the image-forming device is designed as an inkjet printing head which has one or more nozzles by means of which ink drops are transferred to the printing material. In particular when using water-based ink, it can happen that the printing material deforms, for example waves, which can lead to poor print quality, damage to the print head and printing material and to uneven drying of the printing material. The latter is particularly noticeable when - as is adjustable in the printing press according to the invention - the distance between the printing material and the dryer unit is very small. In order to counteract this and to ensure the most uniform and reproducible flatness of the printing material, viewed in the transport direction of the printing material, at least one draw roller equipped with its own drive motor is arranged downstream of the dryer unit.

Ist die Zugwalze gleichzeitig als Kühlwalze ausgebildet, kann der der Bedruckstoff im Anschluss an die Trocknereinheit abgekühlt werden, was insbesondere in Anbetracht des potenziell hohen Energieeintrags hilfreich sein kann, um Beschädigungen des Bedruckstoffs zu minimieren.If the pull roller is also designed as a cooling roller, the printing material can be cooled after the dryer unit, which can be helpful in particular in view of the potentially high energy input in order to minimize damage to the printing material.

Ausführungsbeispielembodiment

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und einer Patentzeichnung näher erläutert. In der Zeichnung zeigt im Einzelnen:

Figur 1
einen Ausschnitt einer erfindungsgemäßen Druckmaschine mit dem Transportweg für den Bedruckstoff durch ein Druckaggregat und eine Infrarot-Trocknereinheit in schematischer Darstellung,
Figur 2
eine Ausführungsform des erfindungsgemäßen Heizelements mit einer Reflektorschicht in schematischer Darstellung und in einer Seitenansicht,
Figur 3
zeigt ein Diagramm zum Anschaltverhalten eines Heizelements der Trocknereinheit,
Figur 4
ein Diagramm mit Emissionsspektren eines kachelförmigen Heizelements im Vergleich zu einem herkömmlichen Infrarotstrahler mit Quarzglas-Hüllrohr und Kanthal® -Wendel,
Figur 5
ein Diagramm zur Verdeutlichung des Bestrahlungsprofils der auf dem Bedruckstoff auftreffenden Infrarotstrahlung bei Einsatz der erfindungsgemäßen Druckmaschine, und
Figur 6
anhand zweier Diagramme (a) und (b) einen Vergleich von Homogenität und Intensität der Bestrahlung von Bedruckstoff mittels kachelförmigem Heizelement und mittels Infrarot-Flächenstrahler nach dem Stand der Technik.
The invention is explained in more detail below on the basis of an exemplary embodiment and a patent drawing. The drawing shows in detail:
Figure 1
a section of a printing machine according to the invention with the transport path for the printing material through a printing unit and an infrared dryer unit in a schematic representation,
Figure 2
An embodiment of the heating element according to the invention with a reflector layer in a schematic representation and in a side view,
Figure 3
shows a diagram of the switching behavior of a heating element of the dryer unit,
Figure 4
a diagram with emission spectra of a tiled heating element in comparison to a conventional infrared radiator with quartz glass cladding tube and Kanthal® coil,
Figure 5
a diagram to illustrate the radiation profile of the infrared radiation impinging on the printing material when using the printing press according to the invention, and
Figure 6
Using two diagrams (a) and (b), a comparison of the homogeneity and intensity of the irradiation of printing material by means of a tiled heating element and by means of an infrared area heater according to the prior art.

Druckmaschinepress

Figur 1 zeigt schematisch eine Ausführungsform einer erfindungsgemäßen Druckmaschine in Form einer Rollen-Tintenstrahldruckmaschine, der insgesamt die Bezugsziffer 1 zugeordnet ist. Ausgehend von einem Abwickler 2 gelangt die Materialbahn 3 aus einem Bedruckstoff, wie beispielsweise aus Papier, zu einem Druckaggregat 40. Dieses umfasst mehrere, entlang der Materialbahn 3 hintereinander angeordnete Tintenstrahldruckköpfe 4, durch die auf den Bedruckstoff lösungsmittelhaltige und insbesondere wasserhaltige Druckfarben aufgetragen werden. Figure 1 schematically shows an embodiment of a printing machine according to the invention in the form of a roll inkjet printing machine, to which reference number 1 is assigned overall. Starting from an unwinder 2, the material web 3 from a printing material, such as paper, for example, arrives at a printing unit 40. This comprises a plurality of ink jet print heads 4 arranged one behind the other along the material web 3, through which solvent-based and in particular water-containing printing inks are applied to the printing material.

In Transportrichtung 5 gesehen gelangt die Materialbahn 3 vom Druckaggregat 40 über eine Umlenkwalze 6 anschließend zu einer Infrarot-Trocknereinheit 70. Diese ist mit mehreren Infrarot-Heizelementen 7 bestückt, die für das Trocknen beziehungsweise Wegschlagen des Lösungsmittels in die Materialbahn ausgelegt sind.Viewed in the transport direction 5, the material web 3 then arrives from the printing unit 40 via a deflection roller 6 to an infrared dryer unit 70. This is equipped with a plurality of infrared heating elements 7, which are designed for drying or knocking off the solvent into the material web.

Der weitere Transportweg der Materialbahn 3 geht über eine Zugwalze 8, die mit eigenem Zugantriebsmotor ausgestattet ist und über die die Einstellung der Bahnspannung erfolgt, zu einer Aufwickelrolle 9.The further transport path of the material web 3 goes to a take-up roll 9 via a pull roller 8 which is equipped with its own pull drive motor and via which the web tension is adjusted.

Jeweils mehrere -im Ausführungsbeispiel sind es acht - Heizelemente 7 sind in einem Heizblock zusammengefasst, der sich über die maximale Formatbreite der Druckmaschine 1 erstreckt. Die einzelnen Heizelemente 7 sind in dem Heizblock dabei stoßweise aneinander gereiht und entsprechend der Abmessungen und Farbbelegung des Bedruckstoffs getrennt voneinander ansteuerbar. Zwischen den einzelnen Heizelementen 7 befindet sich ein elektrischer und thermischer Isolator. Der freie Abstand zwischen der Heizfläche der Heizelemente und der Oberseite der Materialbahn 3 beträgt 10 mm.Several - in the exemplary embodiment there are eight - heating elements 7 are combined in a heating block which extends over the maximum format width of the printing press 1. The individual heating elements 7 are arranged in a row in the heating block and can be controlled separately from one another in accordance with the dimensions and color assignment of the printing material. An electrical and thermal insulator is located between the individual heating elements 7. The free distance between the heating surface of the heating elements and the top of the material web 3 is 10 mm.

Die Transportgeschwindigkeit der Materialbahn 3 wird auf 5 m/s eingestellt. Dabei handelt es sich um eine vergleichsweise hohe Geschwindigkeit, die durch eine Optimierung der einzelnen Bearbeitungsschritte ermöglicht wird, und die insbesondere eine hohe Trocknungsrate erfordert. Die zum Erreichen dieser Anforderung erforderliche Trocknereinheit 70 wird im Folgenden anhand der Figuren 2 bis 5 näher erläutert.The transport speed of the material web 3 is set to 5 m / s. This is a comparatively high speed, which is made possible by optimizing the individual processing steps, and which in particular requires a high drying rate. The dryer unit 70 required to achieve this requirement is described below with reference to FIG Figures 2 to 5 explained in more detail.

Sofern in anderen Figuren dieselben Bezugsziffern wie in Figur 1 verwendet sind, so sind damit baugleiche oder äquivalente Bauteile und Bestandteile bezeichnet, wie sie oben anhand der Beschreibung der erfindungsgemäßen Druckmaschine näher erläutert sind.If the same reference numbers are used in other figures as in Figure 1 are used to designate identical or equivalent components and components, as are explained in more detail above with reference to the description of the printing press according to the invention.

Heizelementheating element

Bei der in Figur 2 schematisch gezeigten Ausführungsform eines Heizelements 7 handelt es sich um einen Infrarotstrahler mit kachelförmigem Basiskörper 20 mit planer Abstrahlfläche (Unterseite 26) und ebenso planer Oberseite 25. Auf der Basiskörper-Oberseite 25 ist eine Leiterbahn 23 aufgebracht, die wiederum in eine Reflektorschicht 24 eingebettet ist.At the in Figure 2 The schematically shown embodiment of a heating element 7 is an infrared radiator with a tiled base body 20 with a flat radiation surface (underside 26) and also a flat top side 25. A conductor track 23 is applied to the base body top side 25, which in turn is embedded in a reflector layer 24.

Der Basiskörper 20 hat Rechteckform mit einer Plattenstärke von 2,0 mm und seitlichen Abmessungen von 10 cm x 20 cm. Es besteht aus einem Kompositwerkstoff mit einer Matrix aus Quarzglas, in der Phasenbereiche aus elementarem Silizium homogen verteilt sind. Der Gewichtsanteil dieser Si-Phase beträgt 2,5% und die maximalen Abmessungen der Si-Phasenbereiche liegen im Mittel (Medianwert) im Bereich von etwa 1 bis 10 µm. Der Kompositwerkstoff ist gasdicht, er hat eine Dichte von 2,19 g/cm3 und er ist an Luft bis zu einer Temperatur von etwa 1200 °C stabil. Er zeigt bei hoher Temperatur eine hohe Absorption von Wärmestrahlung und einen hohen Emissionsgrad.The base body 20 has a rectangular shape with a plate thickness of 2.0 mm and lateral dimensions of 10 cm x 20 cm. It consists of a composite material with a matrix of quartz glass in which phase areas made of elemental silicon are homogeneously distributed. The weight fraction of this Si phase is 2.5% and the maximum dimensions of the Si phase areas are on average (median) in the range from about 1 to 10 µm. The composite material is gas-tight, it has a density of 2.19 g / cm 3 and it is stable in air up to a temperature of around 1200 ° C. It shows a high absorption of heat radiation and a high emissivity at high temperature.

Die Leiterbahn 23 wird aus einer Platin-Widerstandspaste auf der Oberseite 25 des Basiskörpers 20 erzeugt. An beiden Enden sind Leitungen oder Klemmen zum Einspeisen elektrischer Energie angeschweißt. Die Leiterbahn 23 zeigt einen mäanderförmigen Verlauf, der eine Heizfläche des Basiskörpers 20 so dicht bedeckt, dass zwischen benachbarten Leiterbahnabschnitten ein gleichmäßiger Abstand von 2 mm verbleibt. Im gezeigten Querschnitt hat die Leiterbahn 23 Rechteckprofil mit einer Breite von 1 mm und einer Dicke von 20 µm. Infolge der geringen Dicke ist der Materialanteil des teueren Leiterbahn-Werkstoffs (Platin) am Infrarotstrahler im Vergleich zu dessen Effizienz gering. Die Leiterbahn 23 hat direkten Kontakt mit der Oberseite 25 des Basiskörpers 20, so dass eine größtmögliche Wärmeübertragung in den Basiskörper 20 erreicht wird. Die gegenüberliegende Unterseite 26 dient beim Einsatz des Infrarotstrahlers als Abstrahlfläche für die Wärmestrahlung. Die Abstrahlrichtung wird vom Richtungspfeil 27 angezeigt.The conductor track 23 is produced from a platinum resistance paste on the upper side 25 of the base body 20. Lines or clamps for feeding in electrical energy are welded onto both ends. The conductor track 23 shows a meandering course, which covers a heating surface of the base body 20 so densely that there is a uniform distance between adjacent conductor track sections of 2 mm remains. In the cross section shown, the conductor track 23 has a rectangular profile with a width of 1 mm and a thickness of 20 μm. As a result of the small thickness, the proportion of material of the expensive conductor track material (platinum) in the infrared radiator is small compared to its efficiency. The conductor track 23 has direct contact with the top 25 of the base body 20, so that the greatest possible heat transfer into the base body 20 is achieved. The opposite underside 26 serves as an emitting surface for the heat radiation when using the infrared radiator. The direction of radiation is indicated by the directional arrow 27.

Die Reflektorschicht 24 besteht aus opakem Quarzglas und hat eine mittlere Schichtdicke zwischen 1,0-1,5 mm. Sie zeichnet sich durch Rissfreiheit und eine hohe Dichte von etwa 2,15 g/cm3 aus und sie ist bis Temperaturen oberhalb von 1100 °C thermisch beständig. Die Reflektorschicht 24 bedeckt den gesamten Heizbereich des Basiskörpers 20 und sie bedeckt die Leiterbahn 23 vollständig und schirmt sie somit vor chemischen oder mechanischen Einflüssen aus der Umgebung ab.The reflector layer 24 consists of opaque quartz glass and has an average layer thickness between 1.0-1.5 mm. It is characterized by freedom from cracks and a high density of about 2.15 g / cm3 and it is thermally resistant up to temperatures above 1100 ° C. The reflector layer 24 covers the entire heating area of the base body 20 and it completely covers the conductor track 23 and thus shields it from chemical or mechanical influences from the environment.

Messung des AnschaltverhaltensMeasurement of the switch-on behavior

Eine schnelle Reaktionszeit der Trocknereinheit 70 nach dem Einschalten der Druckmaschine ist Voraussetzung für eine geringe Makulatur beim Druckprozess. Das Diagramm von Figur 3 zeigt den zeitlichen Temperaturverlauf nach dem Anschalten des anhand Figur 2 beschriebenen Heizelements 7. Auf der y-Achse ist eine Temperatur Trel (in %) normiert auf eine Maximaltemperatur, die sich im Betrieb mit maximaler elektrischer Anschlussleistung einstellt, gegen die Einschaltdauer t in Sekunden aufgetragen. Trel wird dabei in einem Anstand von 5 mm von der Heizfläche mittels eines Thermopile-Messsensors gemessen.A quick response time of the dryer unit 70 after the printing machine is switched on is a prerequisite for low waste in the printing process. The diagram of Figure 3 shows the temperature profile over time after switching on the Figure 2 described heating element 7. On the y-axis, a temperature T rel (in%) normalized to a maximum temperature, which arises during operation with the maximum electrical connected load, is plotted against the operating time t in seconds. T rel is measured at a distance of 5 mm from the heating surface using a thermopile measuring sensor.

Bei Anlegen der maximalen elektrischen Anschlussleistung von bis zu 200 kW/m2 an die Leiterbahn 23 stellt sich im Vergleich zu konventionellen mittelwelligen Infrarotstrahlern nach kurzer Zeit die Maximaltemperatur ein, die auch im weiteren Heizprozess im Wesentlichen konstant bleibt. Die im Vergleich zu konventionellen mittelwelligen Infrarotstrahlern kurze Reaktionszeit reduziert die Makulatur. Außerdem erübrigt sich bei der erfindungsgemäßen Druckmaschine 1 die Implementierung einer Luftkühlung für die Heizelemente 7. Dies erhöht die Prozesseffizienz, da kalte Kühlluft die Temperatur des Bedruckstoffs 3 verringert und den Abtransport von Feuchtigkeit behindert. Die Kombination aus ungekühlten Heizelementen 7 und warmer konvektiver Prozessluft zum Feuchtigkeitstransport optimiert den Druckprozess in modernen Hochleistungsdruckmaschinen.When the maximum electrical connected load of up to 200 kW / m 2 is applied to the conductor track 23, the maximum temperature, which remains essentially constant in the further heating process, is established after a short time in comparison with conventional medium-wave infrared radiators. The short reaction time compared to conventional medium-wave infrared emitters reduces waste. In addition, in the printing press 1 according to the invention, there is no need to implement air cooling for the heating elements 7. This increases the process efficiency, since cold cooling air reduces the temperature of the printing material 3 and hinders the removal of moisture. The combination of uncooled heating elements 7 and warm convective process air for moisture transport optimizes the printing process in modern high-performance printing machines.

Messung des EmissionsgradesMeasurement of emissivity

Der Kompositwerkstoff zeigt bei hoher Temperatur eine hohe Absorption von Wärmestrahlung und einen hohen Emissionsgrad. Bei Raumtemperatur wird der Emissionsgrad des Kompositwerkstoffs unter Einsatz einer Ulbrichtkugel gemessen. Diese erlaubt die Messung des gerichtet-hemisphärischen spektralen Reflexionsgrades Rgh und des gerichtet-hemisphärischen spektralen Transmissionsgrades Tgh, woraus der normale spektrale Emissionsgrad berechnet wird. Die Messung des Emissionsgrades bei erhöhter Temperatur erfolgt im Wellenlängenbereich von 2 bis 18 µm mittels eines FTIR-Spektrometers (Bruker IFS 66v FTIR), an das über eine Zusatzoptik eine BBC-Probenkammer angekoppelt wird, anhand des oben genannten BBC-Messprinzips. Die Probenkammer verfügt dabei in den Halbräumen vor und hinter der Probenhalterung über temperierbare Schwarzkörperumgebungen und eine Strahlausgangsöffnung mit Detektor. Die Messproben mit einer Dicke von 2 mm werden d in einem separaten Ofen auf eine vorgegebene Temperatur aufgeheizt und zur Messung in den Strahlengang der Probenkammer mit den auf vorgegebene Temperatur eingestellten Schwarzkörperumgebungen verbracht. Die vom Detektor erfasste Intensität setzt sich aus einem Emissions-, einem Reflexions- und einem Transmissionsanteil zusammen, nämlich aus Intensität, die von der Probe selbst emittiert wird, Intensität, die vom vorderen Halbraum auf die Probe fällt und von dieser reflektiert wird, sowie Intensität, die vom hinteren Halbraum auf die Probe fällt und von dieser transmittiert wird. Zur Ermittlung der einzelnen Größen Emissions-, Reflexions- und Transmissionsgrad müssen drei Messungen durchgeführt werden.The composite material shows a high absorption of heat radiation and a high emissivity at high temperature. At room temperature the emissivity of the composite material is measured using an integrating sphere. This allows the measurement of the directional-hemispherical spectral reflectance R gh and the directional-hemispherical spectral transmittance T gh , from which the normal spectral emissivity is calculated. The emissivity at elevated temperature is measured in the wavelength range from 2 to 18 µm using an FTIR spectrometer (Bruker IFS 66v FTIR), to which a BBC sample chamber is coupled using additional optics, using the BBC measuring principle mentioned above. The sample chamber has temperate blackbody environments and a beam exit opening with detector in the half-spaces in front of and behind the sample holder. The measurement samples with a thickness of 2 mm are heated to a specified temperature in a separate oven and placed in the beam path of the sample chamber with the blackbody surroundings set to the specified temperature for measurement. The intensity detected by the detector is composed of an emission, a reflection and a transmission component, namely intensity that is emitted by the sample itself, intensity that falls on the sample from the front half space and is reflected by it, and intensity that falls on the sample from the rear half-space and is transmitted by it. Three measurements must be carried out in order to determine the individual variables of emissivity, reflection and transmittance.

Der am Kompositwerkstoff gemessene Emissionsgrad im Wellenlängenbereich von 2 bis etwa 4 µm hängt von der Temperatur ab. Je höher die Temperatur ist, umso höher ist die Emission. Bei 600 °C liegt der normale Emissionsgrad im Wellenlängenbereich von 2 bis 4 µm oberhalb von 0,7. Bei 1000 °C liegt der normale Emissionsgrad im gesamten Wellenlängenbereich zwischen 2 und 8 µm oberhalb von 0,8.The emissivity measured on the composite material in the wavelength range from 2 to about 4 µm depends on the temperature. The higher the temperature, the higher the emission. At 600 ° C, the normal emissivity in the wavelength range from 2 to 4 µm is above 0.7. The normal temperature is 1000 ° C Emissivity in the entire wavelength range between 2 and 8 µm above 0.8.

Figur 4 zeigt das Emissionsspektrum des Heizelements 7 (Kurve A) im Vergleich zu dem Emissionsspektrum eines herkömmlichen Infrarotstrahlers mit Quarzglas-Hüllrohr und Heizwendel aus Kanthal® (Kurve B) bei gleicher Leistung. Auf der linken y-Achse ist die emittierte Leistung Prel (als auf den Maximalwert bezogener Relativwert in %) aufgetragen und auf der x-Achse die Wellenlänge λ (in nm). Außerdem ist in das Diagramm das Transmissionsspektrum von Wasser eingetragen (Kurve C), wobei die rechte y-Achse einen Relativwert TH2O angibt. Figure 4 shows the emission spectrum of the heating element 7 (curve A) compared to the emission spectrum of a conventional infrared radiator with quartz glass cladding tube and heating coil made of Kanthal® (curve B) with the same power. The emitted power P rel (as a relative value related to the maximum value in%) is plotted on the left y-axis and the wavelength λ (in nm) on the x-axis. In addition, the transmission spectrum of water is entered in the diagram (curve C), the right y-axis indicating a relative value T H2O .

Die Temperatur der Leiterbahn 23 auf dem Basiskörper 20 wird auf 1000°C eingestellt. Der Vergleichsstrahler mit einer Kanthal®-Wendel wird ebenfalls bei einer Temperatur von etwa 1000°C betrieben. Es zeigt sich, dass das kachelförmige Heizelement 7 im Wellenlängenbereich 1.500 nm bis etwa 2.000 nm ein Emissionsmaximum aufweist, dass zum Transmissionsmaximum von Wasser bei 2750 nm besser passt, als der Emissionsverlauf des Standard-Strahlers. Daraus ergibt sich bei gleicher elektrischer Leistung und gleichem Abstand eine um etwa 25 % höhere Leistungsdichte auf dem Bedruckstoff 3 im Vergleich zum Standard-Infrarotstrahler.The temperature of the conductor track 23 on the base body 20 is set to 1000 ° C. The comparison heater with a Kanthal® filament is also operated at a temperature of around 1000 ° C. It can be seen that the tiled heating element 7 has an emission maximum in the wavelength range of 1,500 nm to about 2,000 nm that better matches the transmission maximum of water at 2750 nm than the emission curve of the standard radiator. This results in an approximately 25% higher power density on the substrate 3 compared to the standard infrared emitter with the same electrical power and the same distance.

Messung der räumlichen Homogenität der emittierten StrahlungMeasurement of the spatial homogeneity of the emitted radiation

Die Prüfung der räumlichen Homogenität der emittierten Strahlung erfolgt nach der IEC 62798 (2014). Dazu wird der Infrarot-Flächenstrahler in eine Prüfvorrichtung eingebaut und auf einem verfahrbaren Tisch montiert. In einem vorgegebenen Arbeitsabstand von 10 mm zur Abstrahlfläche des Infrarotstrahlers wird die optische Leistung mittels eines thermoelektrischen Detektors erfasst. Die Bestrahlungsstärke wird an mehreren Messstellen in Schritten von 5 mm ermittelt. Als ausreichend homogen wird die Bestrahlungsstärke definiert, wenn sie an 10 Messstellen um die Probenmitte um nicht mehr als +/- 5% von dem dabei gemessen Maximalwert abweicht. Diese Art der Messung wird im Folgenden auch als "Axialmessung" bezeichnet,The spatial homogeneity of the emitted radiation is tested in accordance with IEC 62798 (2014). For this purpose, the infrared area heater is installed in a test device and mounted on a movable table. At a predetermined working distance of 10 mm from the radiation surface of the infrared radiator, the optical power is detected by means of a thermoelectric detector. The irradiance is determined at several measuring points in steps of 5 mm. The irradiance is defined as sufficiently homogeneous if it deviates from the maximum value measured at 10 measuring points around the center of the sample by no more than +/- 5%. This type of measurement is also referred to below as "axial measurement",

Das Diagramm von Figur 5 veranschaulicht das Ergebnis von Axialmessungen bei Einsatz des kachelförmigen Heizelements 7. Auf der y-Achse ist eine normierte optische Leistung L (in %) aufgetragen, und auf der x-Achse der laterale Abstand A (in mm) von einer durch den Achsen-Nullpunkt verlaufenden Mittellinie, die sich auf die laterale Abmessung des Heizelements 7 bezieht.The diagram of Figure 5 illustrates the result of axial measurements when using the tile-shaped heating element 7. A normalized optical power L (in%) is plotted on the y-axis, and the lateral distance A (in mm) from the axis zero point on the x-axis extending center line, which relates to the lateral dimension of the heating element 7.

Das laterale Profil der optischen Leistung ist in einem Arbeitsabstand von 10 mm , gemessen. Dieses liegt über einen größeren Bereich um die Mittellinie vergleichsweise homogen bei nahe 100 %. Dies zeigt sich darin, dass in einem Arbeitsbereich mit mehr als 10 Messpunkten um die Mittellinie die optische Leistung nicht unter 95 % gegenüber dem Maximalwert (100 %) abfällt.The lateral profile of the optical power is measured at a working distance of 10 mm. This is comparatively homogeneous over a larger area around the center line at almost 100%. This is shown by the fact that in a work area with more than 10 measuring points around the center line, the optical power does not drop below 95% compared to the maximum value (100%).

Die Diagramme (a) und (b) von Figur 6 veranschaulichen schematisch den Zusammenhang zwischen Bestrahlungs-Homogenität beziehungsweise - Intensität und dem Abstand zwischen Strahler und Bedruckstoff sowie diesbezügliche Unterschiede zwischen einem aus mehreren Einzelstrahlern zusammengesetzten Infrarot-Flächenstrahler (Diagramm (a)) und dem kachelförmigen Heizelement 7 zum Einsatz in der Druckmaschine 1gemäß der Erfindung (Diagramm (b)). Auf der Ordinate der Diagramme (a) und (b) ist dabei in relativen Einheiten jeweils die Homogenität "H" beziehungsweise die auf dem Heizgut auftreffende Strahlungs-Intensität "I" gegen den Abstand "A" (ebenfalls in relativer Einheit) zwischen Strahler und Bedruckstoff aufgetragen. Der Flächenstrahler 71 in Diagramm (a) wird von mehreren, nebeneinander angeordneten mittel- oder kurzwelligen Heizstrahlern repräsentiert, deren Hüllrohre durch drei Kreise angedeutet sind. Das kachelförmige Heizelement 7 der erfindungsgemäßen Druckmaschine ist in Diagramm (b) durch ein schraffiertes Rechteck angedeutet. Das kachelförmige Heizelement 7 und die flächenförmige Anordnung 71 der Carbonstrahler haben dabei die gleiche elektrische Anschlussleistung.Diagrams (a) and (b) of Figure 6 illustrate schematically the relationship between irradiation homogeneity or intensity and the distance between the radiator and the substrate, as well as differences in this regard between an infrared area radiator composed of several individual radiators (diagram (a)) and the tiled heating element 7 for use in the printing press 1 according to the invention ( Diagram (b)). On the ordinate of diagrams (a) and (b), the homogeneity "H" or the radiation intensity "I" incident on the heating material against the distance "A" (also in relative unit) between the radiator and Printed material applied. The surface radiator 71 in diagram (a) is represented by a plurality of medium-wave or short-wave radiant heaters arranged side by side, the cladding tubes of which are indicated by three circles. The tile-shaped heating element 7 of the printing press according to the invention is indicated in diagram (b) by a hatched rectangle. The tile-shaped heating element 7 and the flat arrangement 71 of the carbon radiators have the same electrical connection power.

Der Verlauf der Homogenität H mit dem Abstand A ist jeweils durch die gestrichelte Kurvenlinie H, und der Verlauf der Intensität I durch die durchgezogene Kurvenlinie angezeigt. Demnach nimmt sowohl beim Standard-Flächenstrahler 71 als auch beim kachelförmigen Heizelement 7 die Bestrahlungs-Intensität I mit dem Abstand A in etwa gleichem Maße ab, jedoch ist die Homogenität der Bestrahlung beim Heizelement 7 weitgehend unabhängig vom Abstand A, wohingegen sie beim Standard-Infrarot-Flächenstrahler 71 bei kurzem Abstand gering ist.The course of the homogeneity H with the distance A is indicated by the dashed curve line H, and the course of the intensity I by the solid curve line. Accordingly, both in the case of the standard area radiator 71 and in the case of the tiled heating element 7, the radiation intensity I decreases with the distance A to approximately the same extent, but the homogeneity of the radiation is in the heating element 7 largely independent of the distance A, whereas in the standard infrared area heater 71 it is small at a short distance.

Die grau-schraffierte Fläche definiert schematisch einen "Arbeitsbereich", in dem eine akzeptable Bestrahlungs-Homogenität auf dem Bedruckstoff gegeben ist. Es wird deutlich, dass diese Homogenität beim Standard-Infrarot-Flächenstrahler 71 zwar durch Einhaltung eines gewissen Abstandes erreichbar ist, dafür aber eine nennenswerte Einbuße an Bestrahlungs-Intensität in Kauf genommen werden muss. Im Unterscheid dazu ermöglicht das kachelförmige Heizelement 7 eine ausreichend hohe Homogenität auch bei sehr geringen Abständen, bei denen gleichzeitig auch die Intensität der Strahlung hoch ist. Somit ist die Effizienz des Heizelements 7 1 gegenüber dem Flächenstrahler 71 aus Carbon-Einzelstrahlern - wesentlich verbessert.The gray hatched area schematically defines a "work area" in which there is an acceptable irradiation homogeneity on the substrate. It becomes clear that this homogeneity can be achieved with the standard infrared surface radiator 71 by maintaining a certain distance, but for this a significant loss in radiation intensity has to be accepted. In contrast to this, the tile-shaped heating element 7 enables a sufficiently high homogeneity even at very small distances, at which the radiation intensity is also high. Thus, the efficiency of the heating element 7 1 compared to the surface radiator 71 made of carbon single radiators - is significantly improved.

Claims (10)

  1. A printing machine comprising a printing unit for applying a solvent-containing printing ink onto a printing substrate, a transport facility for transporting the printing substrate from the printing unit to a drier unit comprising at least one infrared heater for drying the printing substrate, characterised in that the infrared heater is formed as a plane heater element made of a dielectric heater element material that emits infrared radiation when being heated, said heater element having a heating surface facing the printing substrate to be dried and a contact surface onto which a heating conductor path made of an electrically conductive resistor material containing a noble metal has been applied, said heating conductor path being connected to a point electrically contacting an adjustable power source.
  2. The printing machine in accordance with Claim 1, characterised in that the heater element is formed as a plate having a plate thickness of less than 10 mm.
  3. The printing machine in accordance with Claim 1 or 2, characterised in that the transport facility has a maximum format width for transporting the printing substrate and that the heater element consists of a plurality of heater element sections for radiation across the format width, wherein said heater element sections can be electrically energised independently of each other.
  4. The printing machine in accordance with any one of the preceding claims, characterised in that the heater element material comprises an amorphous matrix component as well as an additional component having the form of a semiconductor material.
  5. The printing machine in accordance with any one of the preceding claims, characterised in that the drier unit comprises a plurality of heater elements which are arranged in series in the transport direction of the printing substrate.
  6. The printing machine in accordance with Claim 5, characterised in that a facility for supplying process air into the space between the printing substrate and the heater elements is provided.
  7. The printing machine in accordance with any one of the preceding claims, characterised in that the printing unit comprises an ink jet printing head and that, viewed in the transport direction of the printing substrate, at least one draw roller equipped with a drive motor is provided downstream of the drier unit.
  8. The printing machine in accordance with Claim 7, characterised in that the draw roller is formed as a cooling roller.
  9. The printing machine in accordance with any one of the preceding claims, characterised in that the heater element is configured to achieve a power density of more than 180 kW/m2.
  10. The printing machine in accordance with Claim 9, characterised in that the heater element is configured to achieve a power density within a range from 180 kW/m2 to 265 kW/m2.
EP18706251.8A 2017-04-12 2018-02-19 Printing press having an infrared dryer unit Active EP3436271B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017107920.3A DE102017107920A1 (en) 2017-04-12 2017-04-12 Printing machine with an infrared dryer unit
PCT/EP2018/053972 WO2018188839A1 (en) 2017-04-12 2018-02-19 Printing press having an infrared dryer unit

Publications (2)

Publication Number Publication Date
EP3436271A1 EP3436271A1 (en) 2019-02-06
EP3436271B1 true EP3436271B1 (en) 2020-02-19

Family

ID=61249639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18706251.8A Active EP3436271B1 (en) 2017-04-12 2018-02-19 Printing press having an infrared dryer unit

Country Status (7)

Country Link
US (1) US10899144B2 (en)
EP (1) EP3436271B1 (en)
JP (1) JP6882493B2 (en)
KR (1) KR20190125464A (en)
CN (1) CN110546005B (en)
DE (1) DE102017107920A1 (en)
WO (1) WO2018188839A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018122910A1 (en) * 2018-09-18 2020-03-19 Heraeus Noblelight Gmbh Infrared heating unit for drying inks or varnishes in a printing machine, as well as infrared heater module for a printing machine
CN109823042B (en) * 2019-03-22 2024-05-07 深圳市旺润自动化有限公司 Oven device, screen printing equipment and printing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495770B1 (en) * 1991-01-16 1995-07-12 Friedrich Hoffmann Infrared radiant heater
JP3826961B2 (en) * 1996-03-25 2006-09-27 ローム株式会社 Heating body and manufacturing method thereof
JPH10323974A (en) * 1997-03-25 1998-12-08 Canon Inc Method and device for ink jet recording and fixing heating element used in the same
US6732651B2 (en) 2002-03-22 2004-05-11 Oxy-Dry Corporation Printing press with infrared dryer safety system
DE102004020454A1 (en) * 2004-04-27 2005-11-24 Heidelberger Druckmaschinen Ag Device for supplying radiant energy to a substrate
DE102006026652B4 (en) * 2005-07-12 2016-10-06 Heidelberger Druckmaschinen Ag IR dryer of a sheetfed press
DE102005046230A1 (en) 2005-09-28 2007-03-29 Koenig & Bauer Ag Rotary printing machine e.g. sheet offset rotary printing machine, has radiation source assigned to printed sheet, where emission spectrum of source covers absorbing spectral region of adhesive agent of applied lacquer
JP2011143626A (en) * 2010-01-15 2011-07-28 Seiko Epson Corp Uv-ray irradiating apparatus, recording apparatus, and abnormality determining method of uv-ray irradiating apparatus
CN107856411B (en) * 2012-06-15 2019-10-01 海德堡印刷机械股份公司 Method for being applied indirectly to printed liquid on printable fabric
JP2016060186A (en) * 2014-09-22 2016-04-25 富士ゼロックス株式会社 Ink jet recording apparatus, and ink jet recording method
DE102015220280A1 (en) * 2014-11-14 2016-05-19 Heidelberger Druckmaschinen Ag Method of printing on an object by ink-jet printing
DE102015119763A1 (en) 2015-11-16 2017-05-18 Heraeus Quarzglas Gmbh & Co. Kg infrared Heaters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10899144B2 (en) 2021-01-26
US20200023653A1 (en) 2020-01-23
CN110546005A (en) 2019-12-06
JP2020508897A (en) 2020-03-26
JP6882493B2 (en) 2021-06-02
EP3436271A1 (en) 2019-02-06
CN110546005B (en) 2021-08-06
KR20190125464A (en) 2019-11-06
DE102017107920A1 (en) 2018-10-18
WO2018188839A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
EP3516925B1 (en) Infrared flat radiator
DE69828212T2 (en) Ink jet recording apparatus and fixing heating element for such a device
EP3169137B1 (en) Infrared heating unit
DE102013104577B3 (en) Apparatus for drying and sintering metal-containing ink on a substrate
WO2020058163A1 (en) Infrared heating unit for drying inks or paints in a printing machine, and infrared emitter module for a printing machine
DE102013105959B4 (en) Operating method and apparatus for irradiating a substrate
EP3436271B1 (en) Printing press having an infrared dryer unit
EP3720716B1 (en) Method for drying a substrate, dryer module for carrying out the method and dryer system
EP1775997A2 (en) Radiation assembly and its use and it method for treating upper surfaces
EP0978388B1 (en) Device for drying print
DE102016120536A1 (en) infrared Heaters
EP4139618A1 (en) Method for drying a material for irradiation, and infrared irradiation device for carrying out said method
WO2019076609A1 (en) Heatable gas injector
WO2017220268A1 (en) Device for thermally treating a substrate, carrier rack, and substrate carrier element for said device
DE19907638A1 (en) Ceramic calibration filter for use in image processing systems
WO2022013137A1 (en) Medium-wave infrared emitter and method for producing same
EP0412305B1 (en) Apparatus for controlling the thickness of a web passing through a press nip
EP1631121B1 (en) Infrared heating element and vacuum chamber with substrate heating, in particular for vacuum coating instalations
WO2021180388A1 (en) Heating system
DE10204931A1 (en) Drying unit for a print machine, comprises an infrared or ultraviolet radiator with an associated heat shield to protect other heat sensitive components such as the radiator control unit
DE7238360U (en) Dryers, in particular continuous dryers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20191125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018000795

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1234487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200712

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018000795

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220223

Year of fee payment: 5

Ref country code: DE

Payment date: 20220217

Year of fee payment: 5

Ref country code: CH

Payment date: 20220216

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220216

Year of fee payment: 5

Ref country code: FR

Payment date: 20220216

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018000795

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1234487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230219