EP3429787B1 - Process to produde and repair an abradable layer of a turbine ring - Google Patents
Process to produde and repair an abradable layer of a turbine ring Download PDFInfo
- Publication number
- EP3429787B1 EP3429787B1 EP17713747.8A EP17713747A EP3429787B1 EP 3429787 B1 EP3429787 B1 EP 3429787B1 EP 17713747 A EP17713747 A EP 17713747A EP 3429787 B1 EP3429787 B1 EP 3429787B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- abradable
- mold
- equal
- plate
- chemically inert
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 21
- 230000008569 process Effects 0.000 title description 6
- 230000008439 repair process Effects 0.000 title description 2
- 239000000843 powder Substances 0.000 claims description 53
- 238000005245 sintering Methods 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 31
- 238000000576 coating method Methods 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 13
- 229910052582 BN Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 238000005219 brazing Methods 0.000 claims description 4
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 239000010431 corundum Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 238000002490 spark plasma sintering Methods 0.000 description 34
- 229910017052 cobalt Inorganic materials 0.000 description 10
- 239000010941 cobalt Substances 0.000 description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229910000601 superalloy Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000282344 Mellivora capensis Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009688 liquid atomisation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/008—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
- B22F5/106—Tube or ring forms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/22—Manufacture essentially without removing material by sintering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
- F05D2230/237—Brazing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/61—Assembly methods using limited numbers of standard modules which can be adapted by machining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/11—Shroud seal segments
Definitions
- This disclosure relates to a method of manufacturing a turbine ring for a turbomachine.
- the latter in order to protect the turbine ring, it is often preferred to provide the latter with a coating of the thermal barrier type, the materials and high density of which, too high for the coating to be effectively abradable, make it possible to protect the turbine ring. ring against erosion and corrosion.
- the present disclosure aims to remedy at least in part these drawbacks.
- the present disclosure relates to a method of manufacturing at least two abradable plates for a turbomachine turbine ring, according to claim 1 attached.
- cobalt-based is meant a metal powder in which the cobalt has the highest percentage by mass.
- nickel-based is understood to mean a metal powder in which the nickel has the highest percentage by mass.
- a metal powder comprising 38% by mass of cobalt and 32% by mass of nickel will be designated as a cobalt-based powder, the cobalt being the chemical element whose percentage by mass is the greatest in the powder. metallic.
- Metal powders based on cobalt or nickel are powders which, once sintered, exhibit good resistance at high temperature. They can thus fulfill the dual function of abradable and thermal shield. For example, mention may be made of the CoNiCrAlY superalloys. These metal powders also have the advantage of having a chemical composition similar to the chemical composition of the material forming the turbine ring, for example the AM1 or N5 superalloys.
- the powder based on a flux makes it possible to reduce the sintering temperature of the mixture of powders.
- the SPS sintering process in accordance with the English acronym for “Spark Plasma Sintering”, also known under the name FAST sintering, in accordance with the English acronym for “Field Assisted Sintering Technology”, or flash sintering, is a sintering process during which , a powder is subjected simultaneously to a pulsating current of high intensity and to a uniaxial pressure in order to form a sintered material.
- SPS sintering is generally carried out in a controlled atmosphere and can be assisted by heat treatment.
- SPS sintering time is relatively short and SPS sintering allows a choice of starting powders which is relatively limited.
- SPS sintering makes it possible in particular to sinter, that is to say to densify, materials whose welding is relatively complicated to achieve, or even impossible, because these materials crack easily when they are heated. Due to the choice of SPS sintering and the short duration of this sintering, it is therefore possible to produce an abradable layer with a very wide variety of materials.
- the shrinkage due to the sintering of the powder layer to give the abradable plate is limited to the direction of application of the pressure. No shrinkage of the powder layer is therefore observed in directions perpendicular to the direction of application of the pressure. Also, controlling the dimensions of the abradable plate is relatively simple.
- At least two layers of the powder mixture are placed in the mold, the two layers being spaced apart from each other by a chemically inert insert.
- the chemically inert insert helps to reduce or even eliminate chemical reactions between the powder mixture layers during SPS sintering.
- each powder mixture layer being separated from the adjacent layer by a chemically inert insert the powder mixture layers do not sinter on each other and it is therefore easy to make several abradable plates which do not stick together. to the other.
- the chemically inert insert can also be placed between the powder mixture layer and the mold.
- the chemically inert insert makes it possible to reduce, or even eliminate, the chemical reactions between the powder mixture layer and the mold during SPS sintering and therefore reduce, or even avoid, the sticking of the abradable plate with the parts of the mold.
- the chemically inert insert also makes it possible to reduce, or even avoid, the formation of a layer of carbide on the surface of the abradable plate in contact with the mold. It is sought to avoid the formation of this layer of carbide which, if it does form, must be removed from the abradable plate before its use.
- the chemically inert insert can comprise boron nitride or corundum.
- chemically inert insert comprising boron nitride is understood to mean an insert which comprises at least 95% by mass of boron nitride.
- chemically inert insert comprising corundum is understood to mean an insert which comprises at least 95% by mass of corundum.
- the chemically inert insert can take the form of a layer of boron nitride deposited using a spray on the mold.
- the chemically inert insert can also take the form of a plate reproducing the shape of the abradable plate.
- the chemically inert insert makes it possible, during the SPS sintering step, to give its shape to the abradable plate.
- Boron nitride can form an outer layer of the chemically inert insert.
- the chemically inert insert may be a plate of dense material covered with a layer of boron nitride deposited using a spray on the plate.
- the fluxing element is silicon or boron.
- the mixture of powders may comprise a percentage by mass of the fluxing element less than or equal to 5% by mass, preferably less than or equal to 3% by mass.
- the mold can be made of graphite and the SPS sintering can be carried out at a temperature greater than or equal to 800 ° C, preferably greater than or equal to 900 ° C.
- SPS sintering is carried out at a pressure greater than or equal to 10 MPa, preferably greater than or equal to 20 MPa, even more preferably greater than or equal to 30M Pa.
- the mold can be made of tungsten carbide and the SPS sintering can be carried out at a temperature greater than or equal to 500 ° C, preferably greater than or equal to 600 ° C.
- SPS sintering can be carried out at a pressure greater than or equal to 100 MPa, preferably greater than or equal to 200 MPa, even more preferably greater than or equal to 300 MPa.
- the present disclosure also relates to a method of repairing a turbine ring for a turbomachine, comprising the steps as defined in claim 7 attached.
- the fluxing element included in the mixture of powders used to form the abradable plate also makes it possible to facilitate the process of brazing the abradable plate on the turbine ring.
- the brazing of the abradable plate on the turbine ring makes it possible to avoid the direct deposition of a new abradable coating on the ring or the ring sector.
- the abradable plate which has just been brazed to the turbine ring may have a free surface which may not be in the extension of the free surface of the adjacent undamaged abradable coating.
- the free surfaces of the abradable plate and of the abradable coating are machined so as to present a surface intended to face the turbine wheel which has the least amount of discontinuity possible. Indeed, if such discontinuities are present, the blade wheel could come up against these discontinuities and thus cause shocks in the turbine, which is not desirable.
- the figure 1 shows, in section along a vertical plane passing through its main axis A, a bypass turbojet 10.
- the bypass turbojet 10 comprises, from upstream to downstream according to the circulation of the air flow, a fan 12, a compressor low pressure 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.
- the high pressure turbine 20 comprises a plurality of mobile blades 20A rotating with the rotor and rectifiers 20B mounted on the stator.
- the stator of the turbine 20 comprises a plurality of stator rings 24 arranged vis-à-vis the mobile blades 20A of the turbine 20.
- each stator ring 24 is made in several ring sectors 26.
- Each ring sector 26 has an internal surface 28, an external surface 30 and an abradable plate 32 on which the mobile blades 20A of the rotor can rub.
- the abradable plate 32 is brazed to the ring sector 26.
- the abradable plate 32 comprises a free surface 34 and a surface 36 intended to be brazed on the ring sector 26.
- the ring sector 26 is made from a cobalt or nickel based superalloy, such as AM1 superalloy or N5 superalloy, and the abradable plate 32 is made from a cobalt or nickel based metal powder. nickel.
- the ring 24 is composed of a plurality of ring sectors 26 assembled together to form a ring 24.
- the ring 24 can also be made in one piece.
- a mixture comprising a metal powder based on cobalt or nickel and a powder based on a flux.
- the powder based on cobalt or on nickel may be a powder of the CoNiCrAIY family and the fluxing element is boron or silicon.
- the mixture of powders can for example comprise 2% by weight of boron.
- the mixture of powders is deposited in the form of layers in an SPS sintering mold 42.
- the mold 42 is for example made of graphite.
- the mold 42 comprises an outer mold 44 forming a chamber in which the mixture of powders is deposited.
- the mold 42 also has an upper piston 46 and a lower piston 48 which allow axial pressure to be applied to the powder mixture layers during the SPS sintering step.
- the figure 3 shows a stack 38 comprising two abradable plates 32 between which is inserted a first chemically inert insert 40.
- a second chemically inert insert 40 and a third chemically inert insert 40 are also arranged on either side of the stack 38 so that each powder mixture layer is sandwiched between two chemically inert inserts 40.
- the chemically inert inserts 40 can for example be formed from plates of sintered boron nitride.
- each abradable plate 32 is obtained by depositing a layer of mixture of powders between two chemically inert inserts 40 and by carrying out an SPS sintering step.
- boron nitride Before depositing the layer of powder mixture, it is also possible to deposit a layer of boron nitride using a spray on the mold 42, in particular on the surfaces of the mold 42 which will come into contact with the mixture of powders during SPS sintering. This layer of boron nitride also forms a chemically inert insert between the mixture of powders and the mold 42.
- the chemically inert inserts 40 can also be made from a material other than boron nitride.
- the chemically inert inserts 40 may or may not be covered with a layer of boron nitride.
- the chemically inert inserts 40 make it possible to reduce the chemical reactions between the powder mixture layer and the mold 42 during SPS sintering.
- the chemically inert inserts 40 make it possible in particular to reduce, or even avoid, the bonding of the powder mixture layer with the parts of the mold before SPS sintering and the bonding of the abradable plate 32 with the parts of the mold 42 after SPS sintering.
- the chemically inert inserts 40 also make it possible to reduce, or even avoid, the formation of a layer of carbide on the surface of the abradable plate 32.
- the thickness of the abradable plate 32 obtained after SPS sintering depends in particular on the thickness of each powder mixture layer deposited in the mold 42 as well as on the SPS sintering parameters.
- the thickness of the abradable plate 32 obtained after SPS sintering can also depend on the particle size and on the morphology of the powder used. In particular, the morphology of the powder may depend on the method of manufacturing the powder. Thus, a powder produced by gas atomization or a rotating electrode will have grains of substantially spherical shape whereas a powder produced by liquid atomization will have grains of less regular shape.
- the figures 5A-5D represent different microstructures of abradable plates 32, the open porosity of which is respectively about 10%, about 7%, about 3% and almost zero.
- the figure 7A shows an abradable plate 32 obtained during an SPS sintering step at 925 ° C. for 10 minutes by applying a pressure of 20 MPa.
- FIG. 7D represents an abradable plate 32 obtained during an SPS sintering step at 950 ° C. for 30 minutes by applying a pressure of 40 MPa.
- the figure 6 shows a top view of a ring sector 26 comprising a damaged abradable coating 50.
- the abradable coating 50 can be obtained by the method described above.
- the abradable coating 50 may also have been deposited directly on the ring sector 26 by a known method.
- the abradable coating 50 comprises a zone 52 of damage due to the friction for example of a blade with the abradable coating 50 and a zone 54 of damage due to thermal degradation of the abradable coating 50 under the effect of hot gases.
- the abradable coating 50 is damaged, i.e. its thickness is reduced compared to the original thickness of the abradable coating 50.
- the abradable coating 50 may have been completely removed and the ring 24 is then exposed.
- the abradable coating 50 is removed, for example by machining, and an abradable plate 32 is brazed, for example at 1205 ° C and under vacuum, on the internal surface. 28 of ring sector 26.
- FIG. figure 7A a ring sector 26 comprising a brazed abradable plate 32 disposed between two ring sectors 26 comprising an abradable coating 50.
- the abradable plate 32 has a free surface 34 which cannot be not be in the extension of the free surfaces 56 of the abradable coatings 50 of the adjacent ring sectors 26.
- the free surfaces 34, 56 of the different ring sectors 26 are machined so as to present a machined surface 58 intended to face the turbine wheel.
- this machined surface 58 has the least possible discontinuity. Indeed, if such discontinuities are present, the blade wheel could come up against these discontinuities and thus cause shocks in the turbine, which is not desirable.
- part of the abradable coating 50 can be removed from the ring corresponding to an abradable plate 32 and the abradable plate 32 can be soldered to the internal surface 28 of the ring 24
- the inner surface 28 of the ring and the vanes are again effectively protected by an abradable coating 50 and an abradable plate 32 brazed to the ring.
- the ring 24 is therefore repaired.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Powder Metallurgy (AREA)
Description
Le présent exposé concerne un procédé de fabrication d'un anneau de turbine pour turbomachine.This disclosure relates to a method of manufacturing a turbine ring for a turbomachine.
Dans de nombreuses machines tournantes, il est désormais connu de munir l'anneau du stator de pistes abradables en regard du sommet des aubes du rotor. De telles pistes sont réalisées à l'aide de matériaux dit « abradables » qui, lorsqu'ils entrent en contact avec les aubes tournantes, s'usent plus facilement que ces dernières. On assure ainsi un jeu minimal entre le rotor et le stator, améliorant les performances de la machine tournante, sans risquer de détériorer les aubes en cas de frottement de ces dernières sur le stator. Au contraire, un tel frottement érode la piste abradable, ce qui permet d'ajuster automatiquement le diamètre de l'anneau du stator au plus proche du rotor. Ainsi, de telles pistes abradables sont souvent mises en place dans les compresseurs de turbomachines.In many rotating machines, it is now known to provide the stator ring with abradable tracks facing the top of the rotor blades. Such tracks are made using so-called “abradable” materials which, when they come into contact with the rotating blades, wear out more easily than the latter. A minimum clearance is thus ensured between the rotor and the stator, improving the performance of the rotating machine, without running the risk of damaging the vanes in the event of friction of the latter on the stator. On the contrary, such friction erodes the abradable track, which makes it possible to automatically adjust the diameter of the stator ring as close as possible to the rotor. Thus, such abradable tracks are often installed in turbomachine compressors.
En revanche, leur emploi est plus rare dans les turbines de telles turbomachines, et surtout dans les turbines haute pression dans lesquelles règnent des conditions physico-chimiques extrêmes.On the other hand, their use is rarer in the turbines of such turbomachines, and especially in high pressure turbines in which extreme physicochemical conditions prevail.
En effet, les gaz brûlés issus de la chambre de combustion débouchent dans la turbine haute pression à des niveaux de température et de pression très élevés, ce qui entraîne l'érosion prématurée des pistes abradables conventionnelles.In fact, the burnt gases from the combustion chamber open into the high pressure turbine at very high temperature and pressure levels, which leads to the premature erosion of the conventional abradable tracks.
Dès lors, afin de protéger l'anneau de turbine, il est souvent préféré de munir ce dernier d'un revêtement du type barrière thermique dont les matériaux et la densité élevée, trop importante pour que le revêtement soit efficacement abradable, permettent de protéger l'anneau contre l'érosion et la corrosion.Therefore, in order to protect the turbine ring, it is often preferred to provide the latter with a coating of the thermal barrier type, the materials and high density of which, too high for the coating to be effectively abradable, make it possible to protect the turbine ring. ring against erosion and corrosion.
Toutefois, on comprend naturellement que dans un tel cas l'intégrité des aubes n'est plus assurée en cas de contact avec le stator, ce qui nécessite de prévoir un jeu plus important entre le rotor et le stator et augmente donc le débit de fuite en sommet d'aubes et réduit ainsi les performances de la turbine.However, it will naturally be understood that in such a case the integrity of the vanes is no longer ensured in the event of contact with the stator, which necessitates providing a greater clearance between the rotor and the stator and therefore increases the leakage rate at the top of the blades and thus reduces the performance of the turbine.
Par ailleurs, du fait du frottement ponctuel avec les aubes et la chaleur des gaz brûlés, le revêtement peut être endommagé et moins bien protéger le stator.
Le présent exposé vise à remédier au moins en partie à ces inconvénients.The present disclosure aims to remedy at least in part these drawbacks.
A cet effet, le présent exposé concerne un procédé de fabrication d'au moins deux plaques abradables pour un anneau de turbine de turbomachine, selon la revendication 1 annexée.To this end, the present disclosure relates to a method of manufacturing at least two abradable plates for a turbomachine turbine ring, according to claim 1 attached.
Par « à base de cobalt », on entend une poudre métallique dont le cobalt présente le pourcentage massique le plus important. De même, par « à base de nickel », on entend une poudre métallique dont le nickel présente le pourcentage massique le plus important. Ainsi, par exemple, une poudre métallique comportant 38% en masse de cobalt et 32% en masse de nickel sera désignée comme une poudre à base de cobalt, le cobalt étant l'élément chimique dont le pourcentage massique est le plus important dans la poudre métallique.By “cobalt-based” is meant a metal powder in which the cobalt has the highest percentage by mass. Likewise, the term “nickel-based” is understood to mean a metal powder in which the nickel has the highest percentage by mass. Thus, for example, a metal powder comprising 38% by mass of cobalt and 32% by mass of nickel will be designated as a cobalt-based powder, the cobalt being the chemical element whose percentage by mass is the greatest in the powder. metallic.
Les poudres métalliques à base de cobalt ou de nickel sont des poudres qui, une fois frittées, présentent une bonne résistance à haute température. Elles peuvent ainsi remplir la double fonction d'abradable et de bouclier thermique. Par exemple, on peut citer les superalliages CoNiCrAlY. Ces poudres métalliques ont également l'avantage de présenter une composition chimique similaire à la composition chimique du matériau formant l'anneau de turbine, par exemple les superalliages AM1 ou N5.Metal powders based on cobalt or nickel are powders which, once sintered, exhibit good resistance at high temperature. They can thus fulfill the dual function of abradable and thermal shield. For example, mention may be made of the CoNiCrAlY superalloys. These metal powders also have the advantage of having a chemical composition similar to the chemical composition of the material forming the turbine ring, for example the AM1 or N5 superalloys.
La poudre à base d'un élément fondant permet de réduire la température de frittage du mélange de poudres.The powder based on a flux makes it possible to reduce the sintering temperature of the mixture of powders.
Le procédé de frittage SPS, conformément au sigle anglais pour « Spark Plasma Sintering », aussi connu sous le nom de frittage FAST, conformément au sigle anglais pour « Field Assisted Sintering Technology », ou frittage flash, est un procédé de frittage au cours duquel, une poudre est soumise simultanément à un courant pulsé de forte intensité et à une pression uniaxiale afin de former un matériau fritté. Le frittage SPS est généralement réalisé sous atmosphère contrôlée et peut être assisté par un traitement thermique.The SPS sintering process, in accordance with the English acronym for “Spark Plasma Sintering”, also known under the name FAST sintering, in accordance with the English acronym for “Field Assisted Sintering Technology”, or flash sintering, is a sintering process during which , a powder is subjected simultaneously to a pulsating current of high intensity and to a uniaxial pressure in order to form a sintered material. SPS sintering is generally carried out in a controlled atmosphere and can be assisted by heat treatment.
La durée de frittage SPS est relativement courte et le frittage SPS permet un choix des poudres de départ qui est relativement peu limité. En effet, le frittage SPS permet notamment de fritter, c'est-à-dire de densifier, des matériaux dont le soudage est relativement compliqué à réaliser, voire impossible, du fait que ces matériaux se fissurent facilement lorsqu'ils sont chauffés. Du fait du choix du frittage SPS et de la courte durée de ce frittage, il est donc possible de réaliser une couche d'abradable avec une très grande variété de matériaux.The SPS sintering time is relatively short and SPS sintering allows a choice of starting powders which is relatively limited. In fact, SPS sintering makes it possible in particular to sinter, that is to say to densify, materials whose welding is relatively complicated to achieve, or even impossible, because these materials crack easily when they are heated. Due to the choice of SPS sintering and the short duration of this sintering, it is therefore possible to produce an abradable layer with a very wide variety of materials.
Par ailleurs, le frittage SPS étant réalisé sous pression uniaxiale exercée par le moule sur la couche de poudre, le retrait dû au frittage de la couche de poudre pour donner la plaque abradable est limité à la direction d'application de la pression. On ne constate donc pas de retrait de la couche de poudre dans des directions perpendiculaires à la direction d'application de la pression. Aussi, le contrôle des dimensions de la plaque abradable est relativement simple.Moreover, the SPS sintering being carried out under uniaxial pressure exerted by the mold on the powder layer, the shrinkage due to the sintering of the powder layer to give the abradable plate is limited to the direction of application of the pressure. No shrinkage of the powder layer is therefore observed in directions perpendicular to the direction of application of the pressure. Also, controlling the dimensions of the abradable plate is relatively simple.
On dépose au moins deux couches du mélange de poudres dans le moule, les deux couches étant espacées l'une de l'autre par un insert chimiquement inerte.At least two layers of the powder mixture are placed in the mold, the two layers being spaced apart from each other by a chemically inert insert.
On peut ainsi réaliser plusieurs plaques abradables en une seule étape de frittage SPS. Par exemple, on peut déposer ainsi dix couches du mélange de poudres, chaque couche étant séparée de la couche adjacente par un insert chimiquement inerte. On peut ainsi former dix plaques abradables ayant chacune une épaisseur pouvant varier de 1 à 5 mm, chacune des plaques abradables étant séparées d'une plaque abradable adjacente par un insert chimiquement inerte.It is thus possible to produce several abradable plates in a single SPS sintering step. For example, ten layers of the mixture of powders can thus be deposited, each layer being separated from the adjacent layer by a chemically inert insert. Ten abradable plates can thus be formed, each having a thickness which may vary from 1 to 5 mm, each of the abradable plates being separated from an adjacent abradable plate by a chemically inert insert.
L'insert chimiquement inerte permet de réduire, voire de supprimer, les réactions chimiques entre les couches de mélange de poudres pendant le frittage SPS.The chemically inert insert helps to reduce or even eliminate chemical reactions between the powder mixture layers during SPS sintering.
Chaque couche de mélange de poudres étant séparée de la couche adjacente par un insert chimiquement inerte, les couches de mélange de poudres ne frittent pas l'une sur l'autre et on peut donc facilement réaliser plusieurs plaques abradables qui ne collent pas l'une à l'autre.Each powder mixture layer being separated from the adjacent layer by a chemically inert insert, the powder mixture layers do not sinter on each other and it is therefore easy to make several abradable plates which do not stick together. to the other.
L'insert chimiquement inerte peut également être disposé entre la couche de mélange de poudres et le moule.The chemically inert insert can also be placed between the powder mixture layer and the mold.
L'insert chimiquement inerte permet de réduire, voire de supprimer, les réactions chimiques entre la couche de mélange de poudres et le moule pendant le frittage SPS et donc de réduire, voire d'éviter, le collage de la plaque abradable avec les parties du moule.The chemically inert insert makes it possible to reduce, or even eliminate, the chemical reactions between the powder mixture layer and the mold during SPS sintering and therefore reduce, or even avoid, the sticking of the abradable plate with the parts of the mold.
L'insert chimiquement inerte permet également de réduire, voire d'éviter, la formation d'une couche de carbure en surface de la plaque abradable en contact avec le moule. On cherche à éviter la formation de cette couche de carbure qui, si elle se forme, doit être retirée de la plaque abradable avant son utilisation.The chemically inert insert also makes it possible to reduce, or even avoid, the formation of a layer of carbide on the surface of the abradable plate in contact with the mold. It is sought to avoid the formation of this layer of carbide which, if it does form, must be removed from the abradable plate before its use.
L'insert chimiquement inerte peut comprendre du nitrure de bore ou du corindon.The chemically inert insert can comprise boron nitride or corundum.
On entend par insert chimiquement inerte comprenant du nitrure de bore un insert qui comprend au moins 95% en masse de nitrure de bore. De même, on entend par insert chimiquement inerte comprenant du corindon un insert qui comprend au moins 95% en masse de corindon.The term “chemically inert insert comprising boron nitride” is understood to mean an insert which comprises at least 95% by mass of boron nitride. Likewise, the term “chemically inert insert comprising corundum” is understood to mean an insert which comprises at least 95% by mass of corundum.
L'insert chimiquement inerte peut prendre la forme d'une couche de nitrure de bore déposée à l'aide d'un spray sur le moule. L'insert chimiquement inerte peut également prendre la forme d'une plaque reproduisant la forme de la plaque abradable. Ainsi, l'insert chimiquement inerte permet, lors de l'étape de frittage SPS, de donner sa forme à la plaque abradable.The chemically inert insert can take the form of a layer of boron nitride deposited using a spray on the mold. The chemically inert insert can also take the form of a plate reproducing the shape of the abradable plate. Thus, the chemically inert insert makes it possible, during the SPS sintering step, to give its shape to the abradable plate.
Le nitrure de bore peut former une couche externe de l'insert chimiquement inerte.Boron nitride can form an outer layer of the chemically inert insert.
L'insert chimiquement inerte peut être une plaque en matériau dense recouverte d'une couche de nitrure de bore déposée à l'aide d'un spray sur la plaque.The chemically inert insert may be a plate of dense material covered with a layer of boron nitride deposited using a spray on the plate.
L'élément fondant est du silicium ou du bore.The fluxing element is silicon or boron.
Le mélange de poudres peut comprendre un pourcentage massique de l'élément fondant inférieur ou égal à 5% en masse, de préférence inférieur ou égal à 3% en masse.The mixture of powders may comprise a percentage by mass of the fluxing element less than or equal to 5% by mass, preferably less than or equal to 3% by mass.
Le moule peut être en graphite et le frittage SPS peut être réalisé à une température supérieure ou égale à 800°C, de préférence supérieure ou égale à 900°C.The mold can be made of graphite and the SPS sintering can be carried out at a temperature greater than or equal to 800 ° C, preferably greater than or equal to 900 ° C.
Le frittage SPS est réalisé à une pression supérieure ou égale à 10 MPa, de préférence supérieure ou égale à 20 MPa, encore plus de préférence supérieure ou égale à 30M Pa.SPS sintering is carried out at a pressure greater than or equal to 10 MPa, preferably greater than or equal to 20 MPa, even more preferably greater than or equal to 30M Pa.
Le moule peut être en carbure de tungstène et le frittage SPS peut être réalisé à une température supérieure ou égale à 500°C, de préférence supérieure ou égale à 600°C.The mold can be made of tungsten carbide and the SPS sintering can be carried out at a temperature greater than or equal to 500 ° C, preferably greater than or equal to 600 ° C.
Le frittage SPS peut être réalisé à une pression supérieure ou égale à 100 MPa, de préférence supérieure ou égale à 200 MPa, encore plus de préférence supérieure ou égale à 300 MPa.SPS sintering can be carried out at a pressure greater than or equal to 100 MPa, preferably greater than or equal to 200 MPa, even more preferably greater than or equal to 300 MPa.
Le présent exposé concerne également un procédé de réparation d'un anneau de turbine pour turbomachine, comprenant les étapes comme définies dans la revendication 7 annexée.The present disclosure also relates to a method of repairing a turbine ring for a turbomachine, comprising the steps as defined in claim 7 attached.
L'élément fondant compris dans le mélange de poudres utilisé pour former la plaque abradable permet également de faciliter le procédé de brasage de la plaque abradable sur l'anneau de turbine.The fluxing element included in the mixture of powders used to form the abradable plate also makes it possible to facilitate the process of brazing the abradable plate on the turbine ring.
Le brasage de la plaque abradable sur l'anneau de turbine permet d'éviter le dépôt direct d'un nouveau revêtement abradable sur l'anneau ou le secteur d'anneau. En effet,The brazing of the abradable plate on the turbine ring makes it possible to avoid the direct deposition of a new abradable coating on the ring or the ring sector. Indeed,
Après brasage de la plaque d'abradable sur l'anneau de turbine, une surface libre de la plaque abradable brasée peut être usinée.After brazing the abradable plate to the turbine ring, a free surface of the brazed abradable plate can be machined.
La plaque abradable qui vient d'être brasée sur l'anneau de turbine peut présenter une surface libre qui peut ne pas être dans le prolongement de la surface libre du revêtement abradable non endommagé adjacent. Aussi, les surfaces libres de la plaque abradable et du revêtement abradable sont usinées de sorte à présenter une surface destinée à faire face à la roue de turbine qui présente le moins de discontinuité possible. En effet, si de telles discontinuités sont présentes, la roue d'aube pourrait venir butter contre ces discontinuités et ainsi provoquer des chocs dans la turbine, ce qui n'est pas désirable.The abradable plate which has just been brazed to the turbine ring may have a free surface which may not be in the extension of the free surface of the adjacent undamaged abradable coating. Also, the free surfaces of the abradable plate and of the abradable coating are machined so as to present a surface intended to face the turbine wheel which has the least amount of discontinuity possible. Indeed, if such discontinuities are present, the blade wheel could come up against these discontinuities and thus cause shocks in the turbine, which is not desirable.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux figures annexées, sur lesquelles :
- la
figure 1 est une vue schématique en coupe longitudinale d'une turbomachine ; - la
figure 2 est une vue schématique en perspective d'un secteur d'anneau de turbine comportant une plaque abradable ; - la
figure 3 est une vue schématique en perspective d'un empilement de plaques abradables et d'inserts chimiquement inerte ; - la
figure 4 est une vue schématique en coupe d'un empilement dans le moule pour frittage SPS, selon un plan de coupe similaire au plan de coupe IV-IV de lafigure 3 ; - les
figures 5A-5D sont des images réalisées au microscope électronique à balayage de la microstructure de différentes plaques abradables ; - la
figure 6 est une vue schématique d'un secteur d'anneau comprenant un revêtement abradable endommagé ; - les
figures 7A et 7B sont des vues schématiques latérales d'un anneau de turbine dont une partie du revêtement abradable a été remplacé par une plaque abradable, respectivement avant et après usinage d'une surface libre de la plaque d'abradable.
- the
figure 1 is a schematic longitudinal sectional view of a turbomachine; - the
figure 2 is a schematic perspective view of a turbine ring sector comprising an abradable plate; - the
figure 3 is a schematic perspective view of a stack of abradable plates and chemically inert inserts; - the
figure 4 is a schematic sectional view of a stack in the SPS sintering mold, along a sectional plane similar to the sectional plane IV-IV of thefigure 3 ; - the
figures 5A-5D are images produced with a scanning electron microscope of the microstructure of various abradable plates; - the
figure 6 is a schematic view of a ring sector comprising a damaged abradable coating; - the
figures 7A and 7B are schematic side views of a turbine ring, part of the abradable coating of which has been replaced by an abradable plate, respectively before and after machining of a free surface of the abradable plate.
La
La turbine haute pression 20 comprend une pluralité d'aubes mobiles 20A tournant avec le rotor et de redresseurs 20B montés sur le stator. Le stator de la turbine 20 comprend une pluralité d'anneaux 24 de stator disposés en vis-à-vis des aubes mobiles 20A de la turbine 20.The
Comme cela est visible sur la
La plaque abradable 32 est brasée sur le secteur 26 d'anneau. La plaque abradable 32 comprend une surface libre 34 et une surface 36 destinée à être brasée sur le secteur 26 d'anneau.The
Par exemple, le secteur 26 d'anneau est fabriqué en superalliage à base de cobalt ou de nickel, tel que le superalliage AM1 ou le superalliage N5 et la plaque abradable 32 est obtenue à partir d'une poudre métallique à base de cobalt ou de nickel.For example, the
Dans le mode de réalisation décrit, l'anneau 24 est composé d'une pluralité de secteurs 26 d'anneau assemblés les uns aux autres pour former un anneau 24. L'anneau 24 peut également être réalisé d'un seul tenant.In the embodiment described, the
Pour fabriquer une plaque abradable 32, on prépare un mélange comprenant une poudre métallique à base de cobalt ou de nickel et une poudre à base d'un élément fondant. Par exemple la poudre à base de cobalt ou de nickel peut être une poudre de la famille des CoNiCrAIY et l'élément fondant est du bore ou du silicium. Le mélange de poudres peut par exemple comprendre 2% en masse de bore.To manufacture an
Comme représenté sur les
La
Dans le mode de réalisation des
On a représenté sur les
Avant le dépôt de la couche de mélange de poudres, on peut également déposer une couche de nitrure de bore à l'aide d'un spray sur le moule 42, notamment sur les surfaces du moule 42 qui vont venir en contact avec le mélange de poudres pendant le frittage SPS. Cette couche de nitrure de bore forme également insert chimiquement inerte entre le mélange de poudres et le moule 42.Before depositing the layer of powder mixture, it is also possible to deposit a layer of boron nitride using a spray on the
Les inserts chimiquement inertes 40 peuvent également être fabriqués dans un autre matériau que le nitrure de bore. Les inserts chimiquement inertes 40 peuvent ou non être recouverts d'une couche de nitrure de bore.The chemically
Les inserts chimiquement inertes 40, sous forme de plaque ou sous de forme de couche, permettent de réduire les réactions chimiques entre la couche de mélange de poudres et le moule 42 pendant le frittage SPS. Les inserts chimiquement inertes 40 permettent notamment de réduire, voire d'éviter, le collage de la couche de mélange de poudres avec les parties du moule avant frittage SPS et le collage de la plaque abradable 32 avec les parties du moule 42 après frittage SPS.The chemically
Les inserts chimiquement inertes 40 permettent également de réduire, voire d'éviter, la formation d'une couche de carbure en surface de la plaque abradable 32.The chemically
On comprend que l'épaisseur de la plaque abradable 32 obtenue après frittage SPS dépend notamment de l'épaisseur de chaque couche de mélange de poudres déposée dans le moule 42 ainsi que des paramètres de frittage SPS. L'épaisseur de la plaque abradable 32 obtenue après frittage SPS peut également dépendre de la granulométrie et de la morphologie de la poudre utilisée. Notamment, la morphologie de la poudre peut dépendre de la méthode de fabrication de la poudre. Ainsi une poudre fabriquée par atomisation gazeuse ou électrode tournante aura des grains de forme sensiblement sphérique alors qu'une poudre fabriquée par atomisation liquide aura des grains de forme moins régulière.It is understood that the thickness of the
Les
On voit donc qu'en modifiant les paramètres de frittage SPS, tels que la température, la pression et le temps de palier, on peut obtenir des plaques abradable 32 présentant une structure différente. Par exemple, la
La
Dans l'exemple de la
Pour réparer le secteur 26 d'anneau dont le revêtement abradable 50 est endommagé, on retire le revêtement abradable 50, par exemple par usinage et on vient braser, par exemple à 1205°C et sous vide, une plaque abradable 32 sur la surface interne 28 du secteur 26 d'anneau.To repair the
Comme représenté sur la
On a représenté sur les
Lorsque l'anneau 24 n'est pas divisé ou divisible en secteurs, on peut retirer une partie du revêtement abradable 50 de l'anneau correspondant à une plaque abradable 32 et braser la plaque abradable 32 sur la surface interne 28 de l'anneau 24. On peut également retirer la partie du revêtement abradable 50 endommagée et découper ou assembler plusieurs plaques abradables 32 pour recouvrir la surface interne 28 de l'anneau ainsi mise à nu.When the
La surface interne 28 de l'anneau et les aubes sont à nouveau efficacement protégées par un revêtement abradable 50 et une plaque abradable 32 brasée sur l'anneau. L'anneau 24 est donc réparé.The
Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications.Although the present disclosure has been described with reference to a specific exemplary embodiment, it is obvious that various modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the claims.
Claims (8)
- A method for manufacturing at least two abradable plates (32) for a turbomachine turbine shroud (24, 26), the method comprising the following steps:- preparing a mixture comprising a cobalt- or nickel-based metal powder and a powder based on a fluxing element;- depositing a layer of the powder mixture in a mold (42); and- making the abradable plate (32) by subjecting the powder mixture layer to a method of SPS sintering; andwherein at least two layers of the powder mixture are deposited in the mold (42), the two layers being spaced apart from each other by a chemically inert insert (40), so that the layers of powder mixture do not sinter to one another and are forming abradable plates that do not stick together,
wherein the fluxing element is silicon or boron. - A method according to claim 1, wherein the chemically inert insert (40) comprises boron nitride or corundum.
- A method according to claim 2, wherein boron nitride forms an outer layer of the chemically inert insert (40).
- A method according to any preceding claim, wherein the powder mixture comprises a percentage by weight of the fluxing element that is less than or equal to 5% by weight, preferably less than or equal to 3% by weight.
- A method according to any one of claims 1 to 4, wherein the mold (42) is made of graphite, and wherein the SPS sintering is performed at a temperature higher than or equal to 800°C, preferably higher than or equal to 900°C.
- A method according to any one of claims 1 to 4, wherein the mold (42) is made of tungsten carbide, and wherein the SPS sintering is performed at a temperature higher than or equal to 500°C, preferably higher than or equal to 600°C.
- A repairing method for repairing a turbine shroud (24) for a turbomachine, the method comprising the following steps:- removing a damaged abradable coating (50); and- brazing onto the turbine shroud (24, 26) an abradable plate (32) obtained in accordance with any preceding claim.
- A repairing method according to claim 7, wherein after the abradable plate (32) has been brazed onto the turbine shroud (24, 26), a free surface (34) of the brazed abradable plate (32) is machined.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1652104A FR3048630B1 (en) | 2016-03-14 | 2016-03-14 | PROCESS FOR MANUFACTURING AN ABRADABLE PLATE AND FOR REPAIRING A TURBINE RING |
PCT/FR2017/050548 WO2017158265A1 (en) | 2016-03-14 | 2017-03-10 | Method for manufacturing an abradable plate and repairing a turbine shroud |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3429787A1 EP3429787A1 (en) | 2019-01-23 |
EP3429787B1 true EP3429787B1 (en) | 2020-11-11 |
Family
ID=56511659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17713747.8A Active EP3429787B1 (en) | 2016-03-14 | 2017-03-10 | Process to produde and repair an abradable layer of a turbine ring |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190076930A1 (en) |
EP (1) | EP3429787B1 (en) |
CN (1) | CN109070228A (en) |
FR (1) | FR3048630B1 (en) |
WO (1) | WO2017158265A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3082765B1 (en) * | 2018-06-25 | 2021-04-30 | Safran Aircraft Engines | PROCESS FOR MANUFACTURING AN ABRADABLE LAYER |
CN110497117B (en) * | 2019-08-30 | 2021-05-07 | 长春工程学院 | High-temperature cobalt-based brazing filler metal and application thereof |
FR3105039B1 (en) * | 2019-12-20 | 2021-12-10 | Safran | A method of manufacturing a ceramic-reinforced composite turbomachine bladed wheel |
FR3105048B1 (en) | 2019-12-20 | 2022-08-05 | Safran | MANUFACTURING SOLUTION FOR A MONOBLOC BLADE DISC |
US12055056B2 (en) | 2021-06-18 | 2024-08-06 | Rtx Corporation | Hybrid superalloy article and method of manufacture thereof |
EP4105450A1 (en) | 2021-06-18 | 2022-12-21 | Raytheon Technologies Corporation | Passive clearance control (apcc) system produced by field assisted sintering technology (fast) |
EP4105444A1 (en) * | 2021-06-18 | 2022-12-21 | Raytheon Technologies Corporation | Joining individual turbine vanes with field assisted sintering technology (fast) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883314A (en) * | 1996-06-11 | 1999-03-16 | Sievers; George K. | Coating methods, coating products and coated articles |
US7335427B2 (en) * | 2004-12-17 | 2008-02-26 | General Electric Company | Preform and method of repairing nickel-base superalloys and components repaired thereby |
EP1837103B1 (en) * | 2004-12-28 | 2012-12-19 | Nippon Light Metal Company, Ltd. | Method for producing aluminum composite material |
JP4879843B2 (en) * | 2007-08-20 | 2012-02-22 | インターメタリックス株式会社 | Method for producing NdFeB-based sintered magnet and mold for producing NdFeB sintered magnet |
FR2972379B1 (en) * | 2011-03-07 | 2014-01-17 | Snecma | METHOD FOR LOCALLY RECHARGING DAMAGED THERMOMECHANICAL PIECE AND PART THEREFORE PRODUCED, IN PARTICULAR TURBINE PIECE |
FR2972449B1 (en) * | 2011-03-07 | 2013-03-29 | Snecma | METHOD FOR PRODUCING A THERMAL BARRIER IN A MULTILAYER SYSTEM FOR PROTECTING A METAL PIECE AND PIECE EQUIPPED WITH SUCH A PROTECTION SYSTEM |
GB201206965D0 (en) * | 2012-04-20 | 2012-06-06 | Element Six Abrasives Sa | Super-hard constructions and mathod for making same |
US9102015B2 (en) * | 2013-03-14 | 2015-08-11 | Siemens Energy, Inc | Method and apparatus for fabrication and repair of thermal barriers |
US20150183691A1 (en) * | 2014-01-02 | 2015-07-02 | Steffen Walter | Manufacturing method and repairing method |
US20150224607A1 (en) * | 2014-02-07 | 2015-08-13 | Siemens Energy, Inc. | Superalloy solid freeform fabrication and repair with preforms of metal and flux |
CN104674038B (en) * | 2015-02-13 | 2017-01-25 | 华南理工大学 | Alloy material with high strength as well as ductility and semi-solid state sintering preparation method and application of alloy material |
-
2016
- 2016-03-14 FR FR1652104A patent/FR3048630B1/en active Active
-
2017
- 2017-03-10 WO PCT/FR2017/050548 patent/WO2017158265A1/en active Application Filing
- 2017-03-10 US US16/084,583 patent/US20190076930A1/en not_active Abandoned
- 2017-03-10 EP EP17713747.8A patent/EP3429787B1/en active Active
- 2017-03-10 CN CN201780023919.4A patent/CN109070228A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
FR3048630B1 (en) | 2020-02-21 |
EP3429787A1 (en) | 2019-01-23 |
CN109070228A (en) | 2018-12-21 |
US20190076930A1 (en) | 2019-03-14 |
WO2017158265A1 (en) | 2017-09-21 |
FR3048630A1 (en) | 2017-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3429787B1 (en) | Process to produde and repair an abradable layer of a turbine ring | |
EP3429784B1 (en) | Method for manufacturing a turbine shroud for a turbomachine | |
EP1911549B1 (en) | Protective mask for surface treatment of turbomachine vanes | |
EP3416930B1 (en) | Turbine shroud sector with environmental barrier doped by an electrically conductive element | |
EP1312761B1 (en) | Abradable layer for gas turbine shrouds | |
EP0795377B1 (en) | Process for producing deposits on localized areas of superalloy workpieces | |
CA3008316C (en) | Abradable coating having variable densities | |
FR3059323A1 (en) | ASSEMBLY OF A CMC PIECE ASSEMBLED ON A METALLIC ELEMENT, METHOD OF MANUFACTURING SUCH AN ASSEMBLY | |
EP3389903B1 (en) | Method of making an abradable coating having variable densities | |
WO2010026181A1 (en) | Method for making a circular revolution thermomechanical part comprising a carrier substrate containing titanium coated with steel or a superalloy, and titanium fire-resistant compressor casing for a turbine engine obtained by said method | |
EP2326845B1 (en) | Compressor casing resistant to titanium fire, high pressure compressor including such a casing, and aircraft engine including such a compressor | |
FR2935625A1 (en) | METHOD FOR MANUFACTURING A CIRCULAR REVOLUTION THERMAMECHANICAL PART COMPRISING A STEEL-COATED OR SUPERALLIATION TITANIUM-BASED CARRIER SUBSTRATE, TITANIUM-FIRE RESISTANT TURBOMACHINE COMPRESSOR CASE | |
EP3707297B1 (en) | Method for producing a thermal barrier on a part of a turbomachine | |
EP1291494B1 (en) | Method for producing labyrinth seal tongues for movable parts in turbines | |
EP3601634B1 (en) | Turbine component made from superalloy and associated manufacturing method | |
EP4076794B1 (en) | Method of manufacturing a ceramic-reinforced composite turbomachine blisk | |
FR3055820A1 (en) | METHOD OF ASSEMBLING METAL SHELLS ONE OF WHICH IS REALIZED BY LASER DEPOT | |
CA2886926C (en) | Method of manufacturing a component covered with an abradable coating | |
FR2896176A1 (en) | Manufacturing procedure for article such as turbine blade from laserprojected metal powder uses stacked peripheral and internal layers | |
WO2017072431A1 (en) | Method for producing a sealing component with a body made of boron-containing superalloy and coated |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191213 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 11/12 20060101ALI20200608BHEP Ipc: B22F 5/00 20060101ALN20200608BHEP Ipc: B22F 7/02 20060101ALI20200608BHEP Ipc: B22F 3/105 20060101ALI20200608BHEP Ipc: B22F 7/00 20060101AFI20200608BHEP Ipc: B22F 5/10 20060101ALN20200608BHEP Ipc: B22F 7/06 20060101ALN20200608BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200717 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1332973 Country of ref document: AT Kind code of ref document: T Effective date: 20201115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017027332 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201111 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1332973 Country of ref document: AT Kind code of ref document: T Effective date: 20201111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210311 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210211 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210211 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210311 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017027332 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210310 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 8 Ref country code: GB Payment date: 20240220 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240220 Year of fee payment: 8 Ref country code: IT Payment date: 20240220 Year of fee payment: 8 Ref country code: FR Payment date: 20240220 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201111 |