EP3422887A1 - Protective liner for helmets and other articles - Google Patents

Protective liner for helmets and other articles

Info

Publication number
EP3422887A1
EP3422887A1 EP17760965.8A EP17760965A EP3422887A1 EP 3422887 A1 EP3422887 A1 EP 3422887A1 EP 17760965 A EP17760965 A EP 17760965A EP 3422887 A1 EP3422887 A1 EP 3422887A1
Authority
EP
European Patent Office
Prior art keywords
liner
cellular
anisotropic
layer
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17760965.8A
Other languages
German (de)
French (fr)
Other versions
EP3422887A4 (en
EP3422887B1 (en
Inventor
Stanley Tsai
Kevin Knowles
Michael Bottlang
Jeffrey Bennett
Steven Madey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wavecel LLC
Original Assignee
Apex Biomedical Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59743275&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3422887(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Apex Biomedical Co LLC filed Critical Apex Biomedical Co LLC
Publication of EP3422887A1 publication Critical patent/EP3422887A1/en
Publication of EP3422887A4 publication Critical patent/EP3422887A4/en
Application granted granted Critical
Publication of EP3422887B1 publication Critical patent/EP3422887B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/124Cushioning devices with at least one corrugated or ribbed layer
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • A42B3/064Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers

Definitions

  • Embodiments herein relate to a protective liner, such as for use in helmets and other articles.
  • Contemporary helmets are primarily designed to protect a skull from fracture during impact.
  • the brain is however most sensitive to rapid head rotation, or rotational acceleration, which is readily caused by an oblique impact to the head.
  • FIG. 1 A illustrates a cross-sectional view of an example of a liner configuration, in accordance with various embodiments
  • FIG. 1 B illustrates the cross-sectional view of Fig. 1 A, but during impact with a spherical object that subjects the cellular liner to in-plane and out-of-plane compression, in accordance with various embodiments;
  • Fig. 2A illustrates a cross-sectional view of an example of a helmet, shown in unloaded, non-deformed configuration, in accordance with various embodiments;
  • FIG. 2B illustrates the cross-sectional view of Fig. 2A, shown during impact in a loaded, partially deformed configuration, and depicting relative translation of a portion of the cellular liner, and depicting in-plane compression of another portion of the cellular liner, in accordance with various embodiments;
  • FIG. 3 illustrates a cross-sectional view of an alternative example of a helmet, wherein the cellular liner comprises two or more cellular liner segments that are recessed inside the polymer foam liner;
  • Fig. 4 illustrates a cross-sectional view of a helmet in conjunction with an inner liner used for comfort and fit to the user's head;
  • FIG. 5 illustrates a cross-sectional view of an alternative example of a helmet, wherein the cellular liner is recessed in the outside surface of the polymer foam liner and covered by an outside shell;
  • Fig. 6 depicts helmet impact test results, illustrating the efficacy by which embodiments herein mitigate rotational head acceleration compared to standard polymer foam helmets, and compared to helmets that employ alternative strategies for mitigation of rotational head acceleration.
  • the description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
  • Coupled may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
  • a phrase in the form "A/B” or in the form “A and/or B” means (A), (B), or (A and B).
  • a phrase in the form "at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
  • a phrase in the form "(A)B” means (B) or (AB) that is, A is an optional element.
  • Embodiments herein employ a novel strategy based on a floating cellular liner that acts as a torsional suspension system to dampen rotational acceleration, such as head acceleration in a helmet, in response to an oblique impact.
  • the torsional suspension consists of an anisotropic cellular liner that is at least partially recessed inside a rigid polymer foam shell, relative to which the cellular liner can simultaneously undergo translation and in-plane compression.
  • Previous attempts have employed other strategies for mitigation of rotational head acceleration to reduce the risk of brain injury that are considerably less effective. For example, intermediate layers have been used that are not permitted to slide relative to adjacent layers.
  • Embodiments herein provide an impact absorption system that acts as a torsional suspension system for use in protective helmets to shield the head from linear and rotational accelerations.
  • a brain is particularly vulnerable to rotational head accelerations, but contemporary helmets lack an effective mechanism to dampen rotational head accelerations in oblique impacts.
  • the helmets disclosed herein include a torsional suspension consisting of an anisotropic cellular liner that is at least partially recessed in an adjacent shell made of rigid expanded polymer foam. The cellular liner is separated from the polymer shell by polymer film, or another barrier layer, to create a floating cellular liner that can translate relative to the adjacent polymer shell.
  • an oblique impact to the helmet will cause relative sliding between the cellular liner and the polymer shell, simultaneously to in-plane compression of the cellular liner.
  • this simultaneous in-plane compression and sliding will absorb torsional energy to reduce rotational head acceleration.
  • Embodiments herein provide protective helmets designed to lessen the amount of harmful acceleration (both straight linear and rotational) that reaches the brain of a wearer during an impact to the helmet.
  • the helmets may include the torsional suspension system for both cushioning and absorbing linear and rotational energy, thus reducing peak acceleration or
  • this reduction in head acceleration and deceleration may result in a corresponding reduction in the magnitude of acceleration or deceleration experienced by the brain, reducing the risk and/or severity of traumatic brain injury (TBI).
  • TBI traumatic brain injury
  • the helmets disclosed herein may include a torsional suspension consisting of an anisotropic cellular liner that is at least partially recessed in an adjacent shell made of expanded polymer foam.
  • the cellular liner is separated from the polymer shell, such as by a polymer film, to facilitate relative sliding.
  • an oblique impact to the helmet will cause relative sliding between the cellular liner and the polymer shell, simultaneously to in-plane compression of a portion of the cellular liner.
  • this simultaneous in- plane compression and sliding will absorb torsional energy to reduce rotational head acceleration.
  • the cellular liner is retained within the recess of the polymer shell without the necessity of using additional fasteners, adhesive etc.
  • the cellular liner is sized to fit snug within the recess and to be retained within the recess as a friction fit with the shell or foam.
  • only a minor amount of pressure is used to reduce the size of the cellular liner, temporarily, to place it within the recess. Once the pressure is released, the cellular liner presses against the side walls of the recess and remains in place. By eliminating additional fasteners, adhesive, etc., translation of the cellular liner within the recess is not encumbered.
  • the cellular liner in addition to providing a torsional suspension system, may also compress in a direction normal to its surface to deplete impact energy directed normal to the helmet surface.
  • the cellular liner may also shear in part by folding or sideways collapse of its cellular structure to further mitigate torsional and normal impact loads.
  • the cellular liner may be comprised of a lightweight aluminum structure.
  • a lightweight aluminum structure such as cardboard or paper pulp, various synthetic or natural foams, plastic, polymers, and the like.
  • the cellular liner may be comprised of a cell geometry with auxetic properties to allow for spherical deformation of the cellular liner without distorting the regular cell geometry.
  • the cellular liner may be shaped to fit into curved recesses, as would be typical of many helmets and other articles.
  • the torsional suspension system of the helmets disclosed herein may be used to construct any type of protective headgear, such as safety helmets, motorcycle helmets, bicycle helmets, ski helmets, lacrosse helmets, hockey helmets, football helmets, batting helmets for baseball and softball, headgear for rock and mountain climbers, headgear for boxers, construction helmets, helmets for defense and military applications, and headgear for underground activities.
  • protective headgear such as safety helmets, motorcycle helmets, bicycle helmets, ski helmets, lacrosse helmets, hockey helmets, football helmets, batting helmets for baseball and softball, headgear for rock and mountain climbers, headgear for boxers, construction helmets, helmets for defense and military applications, and headgear for underground activities.
  • helmets are described with respect to particular embodiments herein, various features herein are applicable to other articles, such as other types of protective gear, such as face masks, elbow pads, knee pads, shoulder pads, shin guards, and the like, potential impact surfaces such as various surfaces (internal or external) of a vehicle, including a dashboard and crushable surfaces on automotive brake pedals.
  • embodiments described herein may also be used in association with soles of safety shoes that would dampen the impact in case of a fall from height.
  • FIG. 1 A illustrates a cross-sectional view of an example of the impact damping system shown in a simplified manner (flat) without the spherical curvature of helmets or shapes of other articles to illustrate certain basic concepts.
  • the impact damping system 100 is comprised of an anisotropic cellular liner 101 that is partially recessed inside an adjacent liner 102 made of rigid polymer foam.
  • a barrier layer 103 is located at the interface between cellular liner 101 and rigid foam liner 102 to facilitate gliding of the cellular liner 101 parallel to rigid foam liner 102. This layer 103 also prevents cells 104 of cellular liner 101 from penetrating into the surface of foam liner 102, which would restrict relative sliding between cellular liner 101 and the foam liner 102.
  • Recess 105 provides a geometric constraint of at least a part of the periphery of the cellular liner, with recess 105 having both a base surface and side walls defining the recess or pocket in which the cellular liner fits and is constrained.
  • layer 103 may be constrained within the pocket by interaction with recess 105 or by affixation, such as adhesive, or it may be a coating, or, in other embodiments, layer 103 may essentially be free to move, but be constrained within recess 105 by the presence of cellular liner 101 in recess 105.
  • FIG. 1 B illustrates the same cross-sectional view of Fig. 1A, but during impact with a spherical object 106 in an oblique direction 108 that subjects the cellular liner 101 to in-plane compression, out-of-plane compression, and shear.
  • In- plane compression of cellular liner 101 is evident by cell densification in section 109 between the impact location and the geometric constraint 110. This densification is caused by the recess in the rigid foam liner 102, which prevents translation of the boundary of cellular liner 101.
  • section 111 of cellular liner 101 does not exhibit in-plane compression, since it translates relative to the rigid foam liner 102, in a direction away from geometric constraint 105.
  • the gliding interface provided by layer 103 in combination with the geometric constraints 105 and 110 of the recessed cellular liner enables partial in-plane compression of only a section 109 of the cellular liner 101 in response to an oblique impact 108.
  • Out-of-plane compression and shear deformation of cellular liner 101 primarily occurs at the impact site between sections 109 and 111 , and contributes to impact energy dissipation by crumpling and shear folding of cells 107 similar to a traditional crumple zone.
  • this impact damping system delivers a unique combination of impact damping strategies to absorb normal and tangential impact forces during an oblique impact. It dampens the impact load component that acts parallel to cellular liner 101 by in-plane compression of a section 109 of cellular liner 101. It dampens the impact load component that acts perpendicular to cellular liner 101 by out-of-plane compression of cellular liner 101 at the vicinity of the impact location 107. It furthermore supports shear deformation of cellular liner 101 in the vicinity of impact location 107.
  • Cellular liner 101 has anisotropic properties with a compressive stiffness that is lower in-plane than out-of-plane. Consequently, the in-plane compression caused by considerable gliding and densification of cellular liner 101 is considerably greater than the out-of-plane compression of cellular liner 101 at impact location 107.
  • a barrier layer may be a film, sheet, or coating, such as polymer film.
  • FIG. 2A illustrates a cross-sectional view of a helmet with an example of the impact damping system.
  • the impact damping system 200 is comprised of an anisotropic cellular liner 201 that is partially recessed inside an adjacent liner 202 made of rigid polymer foam.
  • a barrier layer 203 is located at the interface between cellular liner 201 and rigid foam liner 202 to facilitate gliding of the cellular liner 201 parallel to rigid foam liner 202.
  • Recess 204 provides a geometric constraint along at least a part of the periphery of cellular liner 201.
  • cellular liner 201 may have a hexagonal cell geometry, or an auxetic cell geometry which allows for spherical deformation of the cellular liner while retaining a regular cell geometry.
  • outer helmet layer 106 may be sufficiently stable, rigid, and/or non-compressible to distribute impact forces over an extended area.
  • helmets in accordance with the present disclosure may include additional features, such as a cage for a hockey helmet, a face mask for a football helmet, a visor for a motorcycle helmet, and/or retention straps, chin straps, and the like.
  • cellular liner 201 , foam liner 202, and plastic film may include one or more ventilation openings to permit air flow for cooling the wearer's head.
  • the cell walls of cellular liner 201 may have geometric perturbations that facilitate shear deformation and in-plane compression of cellular liner 201.
  • FIG. 2B illustrates the same cross-sectional view of Fig. 2A, but during an external oblique impact 209.
  • This impact compresses the helmet onto the wearer's head 205 and subjects the cellular liner 201 to oblique loading 207 that is absorbed by in-plane compression, out-of-plane compression, and localized shear of cellular liner 201.
  • In-plane compression of cellular liner 201 occurs to the left side of the impact location, as depicted by cell densification of cellular liner 201 that is pushed against geometric constraint 204.
  • cellular liner 201 translates relative to the rigid polymer foam liner 202, creating an area 208 in the recessed foam liner 202 that is void of the cellular liner 201.
  • the tangential component of impact 209 is absorbed by in-plane compression of cellular liner 202, whereby in-plane compression is distributed over a large area of cellular liner 202, extending considerably beyond the zone of impact.
  • the radial component of the impact 209 is absorbed by out-of-plane compression and shear in the vicinity of the impact location, albeit the resulting deformation of the cellular liner is not shown in the illustrated embodiment.
  • FIG. 3 illustrates an alternative embodiment, whereby two or more cellular liners 301 are placed in corresponding recess areas in the rigid polymer foam liner 302.
  • Each individual cellular liner 301 is separated from foam liner 302 by a barrier layer 303 located at the interface between cellular liners 301 and rigid foam liner 302 to facilitate gliding of the cellular liners 301 relative to rigid foam liner 302.
  • FIG. 3 illustrates multiple, separate cellular liners placed into separate recesses
  • FIGS. 2A and 2B illustrate a single/unitary cellular liner.
  • the unitary cellular liner extends across a substantial portion of the underlying surface area, such as at least 50%, at least 60%, or at least 70% of the surface.
  • the underlying surface area can be defined as the inward facing surface of the foam liner, wherein the foam liner has an inward facing surface (facing toward the wearer) and an outward facing surface (facing away from the wearer).
  • the underlying surface area can be defined as the outward facing surface of the foam liner.
  • the cellular liner may be present between the foam liner and an outer hard shell.
  • FIG. 4 illustrates the same cross-sectional view of Fig. 2A, but with the addition of a inner liner 405 made of a softer foam or textile material to provide improved fit and comfort for the helmet wearer.
  • Inner liner 505 may also serve to prevent skin abrasion that otherwise could be caused during impact by direct compression of cellular liner 401 onto the wearer's head.
  • FIG. 5 illustrates an alternative embodiment, whereby cellular liner 501 is recessed in the outside of rigid polymer foam liner 502.
  • a barrier layer 503 is located at the interface between cellular liner 501 and rigid foam liner 502 to facilitate gliding of the cellular liner 501 parallel to rigid foam liner 502.
  • Recess 504 provides a geometric constraint along at least a part of the periphery of the cellular liner 501.
  • An out shell 505 may be used to cover cellular liner 501 for added impact protection or for aesthetic reasons.
  • FIG. 6 depicts helmet impact test results, illustrating the efficacy by which various embodiments herein mitigate rotational head acceleration compared to standard polymer foam helmets, and compared to helmets that employ alternative strategies for mitigation of rotational head acceleration.
  • a slip liner commercialized under the trademark "MIPS”, and disclosed by US patent 6,758,671 , reduces rotational head acceleration in response to an oblique impact by 27% compared to a standard bicycle helmet consisting of expanded polymer foam (EPS).
  • EPS expanded polymer foam
  • EPS expanded polymer foam

Abstract

Embodiments herein employ a novel strategy based on a floating cellular liner that acts as a torsional suspension system to dampen rotational acceleration, such as head acceleration in a helmet, in response to an oblique impact. Specifically, the torsional suspension consists of an anisotropic cellular liner that is at least partially recessed inside a more rigid adjacent shell, relative to which the cellular liner can simultaneously undergo translation and in-plane compression.

Description

PROTECTIVE LINER FOR HELMETS AND OTHER ARTICLES
Cross Reference to Related Applications
[0001] The present application claims priority to U.S. Provisional Patent Application No. 62/303,884, filed March 4, 2016, entitled "Protective Liner for Helmets and Other Articles," the entire disclosure of which is hereby incorporated by reference in its entirety. The present application is also a Continuation-in-Part of and claims priority to U.S. Patent Application No. 13/803,962, filed March 14, 2013, entitled "Protective Helmet for Mitigation of Linear and Rotational Acceleration," which claims priority to U.S. Provisional Patent Application No. 61/670,258, filed July 1 1 , 2012, entitled "Protective Helmet for Mitigation of Linear and Rotational
Acceleration," the entire disclosures of which are hereby incorporated by reference in their entirety.
Technical Field
[0002] Embodiments herein relate to a protective liner, such as for use in helmets and other articles.
Background
[0003] Contemporary helmets are primarily designed to protect a skull from fracture during impact. The brain is however most sensitive to rapid head rotation, or rotational acceleration, which is readily caused by an oblique impact to the head.
Brief Description of the Drawings
[0004] Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings and the appended claims. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
[0005] Fig. 1 A illustrates a cross-sectional view of an example of a liner configuration, in accordance with various embodiments;
[0006] Fig. 1 B illustrates the cross-sectional view of Fig. 1 A, but during impact with a spherical object that subjects the cellular liner to in-plane and out-of-plane compression, in accordance with various embodiments; [0007] Fig. 2A illustrates a cross-sectional view of an example of a helmet, shown in unloaded, non-deformed configuration, in accordance with various embodiments;
[0008] Fig. 2B illustrates the cross-sectional view of Fig. 2A, shown during impact in a loaded, partially deformed configuration, and depicting relative translation of a portion of the cellular liner, and depicting in-plane compression of another portion of the cellular liner, in accordance with various embodiments;
[0009] Fig. 3 illustrates a cross-sectional view of an alternative example of a helmet, wherein the cellular liner comprises two or more cellular liner segments that are recessed inside the polymer foam liner;
[0010] Fig. 4 illustrates a cross-sectional view of a helmet in conjunction with an inner liner used for comfort and fit to the user's head;
[0011] Fig. 5 illustrates a cross-sectional view of an alternative example of a helmet, wherein the cellular liner is recessed in the outside surface of the polymer foam liner and covered by an outside shell; and
[0012] Fig. 6 depicts helmet impact test results, illustrating the efficacy by which embodiments herein mitigate rotational head acceleration compared to standard polymer foam helmets, and compared to helmets that employ alternative strategies for mitigation of rotational head acceleration.
Detailed Description of Disclosed Embodiments
[0013] In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense.
[0014] Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order-dependent.
[0015] The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
[0016] The terms "coupled" and "connected," along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, "connected" may be used to indicate that two or more elements are in direct physical contact with each other. "Coupled" may mean that two or more elements are in direct physical contact. However, "coupled" may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
[0017] For the purposes of the description, a phrase in the form "A/B" or in the form "A and/or B" means (A), (B), or (A and B). For the purposes of the description, a phrase in the form "at least one of A, B, and C" means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form "(A)B" means (B) or (AB) that is, A is an optional element.
[0018] The description may use the terms "embodiment" or "embodiments," which may each refer to one or more of the same or different embodiments.
Furthermore, the terms "comprising," "including," "having," and the like, as used with respect to embodiments, are synonymous, and are generally intended as "open" terms (e.g., the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as "includes but is not limited to," etc.).
[0019] With respect to the use of any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
[0020] In various embodiments, methods, apparatuses, and systems for mitigation of rotational acceleration are provided. Embodiments herein employ a novel strategy based on a floating cellular liner that acts as a torsional suspension system to dampen rotational acceleration, such as head acceleration in a helmet, in response to an oblique impact. Specifically, the torsional suspension consists of an anisotropic cellular liner that is at least partially recessed inside a rigid polymer foam shell, relative to which the cellular liner can simultaneously undergo translation and in-plane compression. [0021] Previous attempts have employed other strategies for mitigation of rotational head acceleration to reduce the risk of brain injury that are considerably less effective. For example, intermediate layers have been used that are not permitted to slide relative to adjacent layers. Such solutions rely only on shear deformation within the layer. Other attempts use a sliding layer disposed between an inner and outer helmet shell to facilitate displacement of the outer shell relative to the inner shell. However, the intermediate layer is not capable of absorbing rotational energy by in-plane compression.
[0022] Embodiments herein provide an impact absorption system that acts as a torsional suspension system for use in protective helmets to shield the head from linear and rotational accelerations. A brain is particularly vulnerable to rotational head accelerations, but contemporary helmets lack an effective mechanism to dampen rotational head accelerations in oblique impacts. In various embodiments, the helmets disclosed herein include a torsional suspension consisting of an anisotropic cellular liner that is at least partially recessed in an adjacent shell made of rigid expanded polymer foam. The cellular liner is separated from the polymer shell by polymer film, or another barrier layer, to create a floating cellular liner that can translate relative to the adjacent polymer shell. Thus, an oblique impact to the helmet will cause relative sliding between the cellular liner and the polymer shell, simultaneously to in-plane compression of the cellular liner. In combination, this simultaneous in-plane compression and sliding will absorb torsional energy to reduce rotational head acceleration.
[0023] Embodiments herein provide protective helmets designed to lessen the amount of harmful acceleration (both straight linear and rotational) that reaches the brain of a wearer during an impact to the helmet. In various embodiments, the helmets may include the torsional suspension system for both cushioning and absorbing linear and rotational energy, thus reducing peak acceleration or
deceleration of a wearer's head in an impact. In various embodiments, this reduction in head acceleration and deceleration may result in a corresponding reduction in the magnitude of acceleration or deceleration experienced by the brain, reducing the risk and/or severity of traumatic brain injury (TBI).
[0024] In various embodiments, the helmets disclosed herein may include a torsional suspension consisting of an anisotropic cellular liner that is at least partially recessed in an adjacent shell made of expanded polymer foam. In embodiments, the cellular liner is separated from the polymer shell, such as by a polymer film, to facilitate relative sliding. Thus, an oblique impact to the helmet will cause relative sliding between the cellular liner and the polymer shell, simultaneously to in-plane compression of a portion of the cellular liner. In combination, this simultaneous in- plane compression and sliding will absorb torsional energy to reduce rotational head acceleration. The cellular liner is retained within the recess of the polymer shell without the necessity of using additional fasteners, adhesive etc. Rather, the cellular liner is sized to fit snug within the recess and to be retained within the recess as a friction fit with the shell or foam. In embodiments, only a minor amount of pressure is used to reduce the size of the cellular liner, temporarily, to place it within the recess. Once the pressure is released, the cellular liner presses against the side walls of the recess and remains in place. By eliminating additional fasteners, adhesive, etc., translation of the cellular liner within the recess is not encumbered.
[0025] In various embodiments, in addition to providing a torsional suspension system, the cellular liner may also compress in a direction normal to its surface to deplete impact energy directed normal to the helmet surface.
[0026] In various embodiments, the cellular liner may also shear in part by folding or sideways collapse of its cellular structure to further mitigate torsional and normal impact loads.
[0027] In various embodiments, the cellular liner may be comprised of a lightweight aluminum structure. One of skill in the art will appreciate that other lightweight, compressible materials may be employed, such as cardboard or paper pulp, various synthetic or natural foams, plastic, polymers, and the like.
[0028] In various embodiments, the cellular liner may be comprised of a cell geometry with auxetic properties to allow for spherical deformation of the cellular liner without distorting the regular cell geometry. By using a cellular liner with auxetic properties, the cellular liner may be shaped to fit into curved recesses, as would be typical of many helmets and other articles.
[0029] In various embodiments, the torsional suspension system of the helmets disclosed herein may be used to construct any type of protective headgear, such as safety helmets, motorcycle helmets, bicycle helmets, ski helmets, lacrosse helmets, hockey helmets, football helmets, batting helmets for baseball and softball, headgear for rock and mountain climbers, headgear for boxers, construction helmets, helmets for defense and military applications, and headgear for underground activities. While helmets are described with respect to particular embodiments herein, various features herein are applicable to other articles, such as other types of protective gear, such as face masks, elbow pads, knee pads, shoulder pads, shin guards, and the like, potential impact surfaces such as various surfaces (internal or external) of a vehicle, including a dashboard and crushable surfaces on automotive brake pedals. Alternatively, embodiments described herein may also be used in association with soles of safety shoes that would dampen the impact in case of a fall from height.
[0030] FIG. 1 A illustrates a cross-sectional view of an example of the impact damping system shown in a simplified manner (flat) without the spherical curvature of helmets or shapes of other articles to illustrate certain basic concepts.
[0031] The impact damping system 100 is comprised of an anisotropic cellular liner 101 that is partially recessed inside an adjacent liner 102 made of rigid polymer foam. A barrier layer 103 is located at the interface between cellular liner 101 and rigid foam liner 102 to facilitate gliding of the cellular liner 101 parallel to rigid foam liner 102. This layer 103 also prevents cells 104 of cellular liner 101 from penetrating into the surface of foam liner 102, which would restrict relative sliding between cellular liner 101 and the foam liner 102. Recess 105 provides a geometric constraint of at least a part of the periphery of the cellular liner, with recess 105 having both a base surface and side walls defining the recess or pocket in which the cellular liner fits and is constrained.
[0032] In embodiments, layer 103 may be constrained within the pocket by interaction with recess 105 or by affixation, such as adhesive, or it may be a coating, or, in other embodiments, layer 103 may essentially be free to move, but be constrained within recess 105 by the presence of cellular liner 101 in recess 105.
[0033] FIG. 1 B illustrates the same cross-sectional view of Fig. 1A, but during impact with a spherical object 106 in an oblique direction 108 that subjects the cellular liner 101 to in-plane compression, out-of-plane compression, and shear. In- plane compression of cellular liner 101 is evident by cell densification in section 109 between the impact location and the geometric constraint 110. This densification is caused by the recess in the rigid foam liner 102, which prevents translation of the boundary of cellular liner 101. In contrast, section 111 of cellular liner 101 does not exhibit in-plane compression, since it translates relative to the rigid foam liner 102, in a direction away from geometric constraint 105. Therefore, the gliding interface provided by layer 103, in combination with the geometric constraints 105 and 110 of the recessed cellular liner enables partial in-plane compression of only a section 109 of the cellular liner 101 in response to an oblique impact 108.
[0034] Out-of-plane compression and shear deformation of cellular liner 101 primarily occurs at the impact site between sections 109 and 111 , and contributes to impact energy dissipation by crumpling and shear folding of cells 107 similar to a traditional crumple zone. In summary, this impact damping system delivers a unique combination of impact damping strategies to absorb normal and tangential impact forces during an oblique impact. It dampens the impact load component that acts parallel to cellular liner 101 by in-plane compression of a section 109 of cellular liner 101. It dampens the impact load component that acts perpendicular to cellular liner 101 by out-of-plane compression of cellular liner 101 at the vicinity of the impact location 107. It furthermore supports shear deformation of cellular liner 101 in the vicinity of impact location 107.
[0035] Cellular liner 101 has anisotropic properties with a compressive stiffness that is lower in-plane than out-of-plane. Consequently, the in-plane compression caused by considerable gliding and densification of cellular liner 101 is considerably greater than the out-of-plane compression of cellular liner 101 at impact location 107.
[0036] In embodiments, a barrier layer may be a film, sheet, or coating, such as polymer film.
[0037] FIG. 2A illustrates a cross-sectional view of a helmet with an example of the impact damping system. In the illustrated embodiment, the impact damping system 200 is comprised of an anisotropic cellular liner 201 that is partially recessed inside an adjacent liner 202 made of rigid polymer foam. A barrier layer 203 is located at the interface between cellular liner 201 and rigid foam liner 202 to facilitate gliding of the cellular liner 201 parallel to rigid foam liner 202. Recess 204 provides a geometric constraint along at least a part of the periphery of cellular liner 201. In various embodiments, cellular liner 201 may have a hexagonal cell geometry, or an auxetic cell geometry which allows for spherical deformation of the cellular liner while retaining a regular cell geometry.
[0038] In various embodiments, outer helmet layer 106 may be sufficiently stable, rigid, and/or non-compressible to distribute impact forces over an extended area. One of skill in the art will appreciate that the shapes depicted in the figures are merely exemplary, and that the helmet shape can vary depending on the particular sporting event or activity for which the helmet is designed. Furthermore, helmets in accordance with the present disclosure may include additional features, such as a cage for a hockey helmet, a face mask for a football helmet, a visor for a motorcycle helmet, and/or retention straps, chin straps, and the like. Although not shown in the illustrated embodiment, cellular liner 201 , foam liner 202, and plastic film may include one or more ventilation openings to permit air flow for cooling the wearer's head. Although not shown in the illustrated embodiment, the cell walls of cellular liner 201 may have geometric perturbations that facilitate shear deformation and in-plane compression of cellular liner 201.
[0039] FIG. 2B illustrates the same cross-sectional view of Fig. 2A, but during an external oblique impact 209. This impact compresses the helmet onto the wearer's head 205 and subjects the cellular liner 201 to oblique loading 207 that is absorbed by in-plane compression, out-of-plane compression, and localized shear of cellular liner 201. In-plane compression of cellular liner 201 occurs to the left side of the impact location, as depicted by cell densification of cellular liner 201 that is pushed against geometric constraint 204. The opposite side of cellular liner 201 translates relative to the rigid polymer foam liner 202, creating an area 208 in the recessed foam liner 202 that is void of the cellular liner 201. In summary, the tangential component of impact 209 is absorbed by in-plane compression of cellular liner 202, whereby in-plane compression is distributed over a large area of cellular liner 202, extending considerably beyond the zone of impact. In contrast, the radial component of the impact 209 is absorbed by out-of-plane compression and shear in the vicinity of the impact location, albeit the resulting deformation of the cellular liner is not shown in the illustrated embodiment.
[0040] FIG. 3 illustrates an alternative embodiment, whereby two or more cellular liners 301 are placed in corresponding recess areas in the rigid polymer foam liner 302. Each individual cellular liner 301 is separated from foam liner 302 by a barrier layer 303 located at the interface between cellular liners 301 and rigid foam liner 302 to facilitate gliding of the cellular liners 301 relative to rigid foam liner 302.
[0041] While FIG. 3 illustrates multiple, separate cellular liners placed into separate recesses, FIGS. 2A and 2B, for example, illustrate a single/unitary cellular liner. As shown in FIGS. 2A and 2B, the unitary cellular liner extends across a substantial portion of the underlying surface area, such as at least 50%, at least 60%, or at least 70% of the surface. The underlying surface area can be defined as the inward facing surface of the foam liner, wherein the foam liner has an inward facing surface (facing toward the wearer) and an outward facing surface (facing away from the wearer). Alternatively, the underlying surface area can be defined as the outward facing surface of the foam liner. In such an embodiment, the cellular liner may be present between the foam liner and an outer hard shell.
[0042] FIG. 4 illustrates the same cross-sectional view of Fig. 2A, but with the addition of a inner liner 405 made of a softer foam or textile material to provide improved fit and comfort for the helmet wearer. Inner liner 505 may also serve to prevent skin abrasion that otherwise could be caused during impact by direct compression of cellular liner 401 onto the wearer's head.
[0043] FIG. 5 illustrates an alternative embodiment, whereby cellular liner 501 is recessed in the outside of rigid polymer foam liner 502. A barrier layer 503 is located at the interface between cellular liner 501 and rigid foam liner 502 to facilitate gliding of the cellular liner 501 parallel to rigid foam liner 502. Recess 504 provides a geometric constraint along at least a part of the periphery of the cellular liner 501. An out shell 505 may be used to cover cellular liner 501 for added impact protection or for aesthetic reasons.
[0044] FIG. 6 depicts helmet impact test results, illustrating the efficacy by which various embodiments herein mitigate rotational head acceleration compared to standard polymer foam helmets, and compared to helmets that employ alternative strategies for mitigation of rotational head acceleration. Adding a slip liner, commercialized under the trademark "MIPS", and disclosed by US patent 6,758,671 , reduces rotational head acceleration in response to an oblique impact by 27% compared to a standard bicycle helmet consisting of expanded polymer foam (EPS). Adding a honeycomb liner, commercialized under the trademark "Koroyd", into air vents of an EPS helmet shell will increase the rotational head acceleration in response to an oblique impact by 3% compared to a standard bicycle helmet consisting of expanded polymer foam (EPS). Combining both the "MIPS" slip liner and the "Koroyd" honeycomb-filled air vents will decrease the rotational head acceleration in response to an oblique impact by 19% compared to a standard bicycle helmet consisting of expanded polymer foam (EPS). In contrast, recessing the floating cellular liner as described herein in an EPS shell will decrease the rotational head acceleration in response to an oblique impact by 71 % compared to a standard bicycle helmet consisting of expanded polymer foam (EPS). This direct comparison of technologies demonstrates that embodiments herein achieve an unprecedented level of impact absorption that cannot be achieved or replicated by merely combining existing technologies of slip layers and cellular liners.
[0045] Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.

Claims

Claims What is claimed is:
1 . A protective helmet, comprising:
an anisotropic cellular liner with a compressive stiffness that is lower in-plane than out-of-plane;
an adjacent liner made of rigid foam; and
and a barrier layer between said anisotropic liner and adjacent foam liner, wherein the anisotropic liner is at least partially recessed and confined in the rigid foam liner to prevent global translation of the anisotropic liner relative to the rigid foam liner.
2. The protective helmet of claim 1 , wherein the anisotropic cellular liner is comprised of an open cell structure with auxetic properties to allow for spherical deformation of the liner without irregular distortion of the cell geometry.
3. The protective helmet of claim 1 , wherein the anisotropic cellular liner has an in-plane compressive stiffness that is at least 50% lower than its out-of-plane compressive stiffness when compressed in a direction normal to the liner surface.
4. The protective helmet of claim 1 , wherein the barrier layer comprises a coating or discrete sheet element that prevents penetration of the anisotropic cellular liner into the surface of the rigid foam liner.
5. The protective helmet of claim 1 , wherein the barrier layer comprises a polymer film.
6. The protective helmet of claim 1 , wherein the rigid foam liner is made of expanded foam.
7. The protective helmet of claim 1 , wherein the anisotropic cellular liner is recessed in the inside or outside of the rigid foam liner.
8. The protective helmet of claim 1 , wherein shear-loading in response to an oblique impact to the helmet surface is at least partially absorbed by in-plane compression of a portion of the anisotropic liner, caused by tangential translation of a portion of the anisotropic liner within the confines of the recessed area of the rigid foam liner.
9. The protective helmet of claim 1 , wherein the adjacent liner made of rigid foam has an inward facing surface and an outward facing surface, and the anisotropic cellular liner is a unitary structure that covers at least 50% of the inward facing surface or outward facing surface of the adjacent liner made of rigid foam.
10. An impact protection system, comprising:
a first layer comprising a polymer foam; and
a second layer made of an open cellular structure, wherein the first layer is separated from the second layer by a barrier layer to prevent penetration of the open cellular structure into the polymer foam layer.
1 1. The impact protection system of claim 10, wherein the second layer is geometrically constrained along at least part of the periphery within a recess of the first layer.
12. The impact protection system of claim 10, wherein the barrier layer is integral to either the first or second layer.
13. The impact protection system of claim 10, wherein the open cellular structure exhibits auxetic properties.
14. The impact protection system of claim 10, wherein the open cellular structure exhibits anisotropic properties.
15. The impact protection system of claim 10, wherein the barrier layer further facilitates relative sliding between the layers. 16 The impact protection system of claim 10, wherein the barrier layer comprises a polymer film.
EP17760965.8A 2016-03-04 2017-03-03 Helmet with a protective liner Active EP3422887B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662303884P 2016-03-04 2016-03-04
PCT/US2017/020830 WO2017152151A1 (en) 2016-03-04 2017-03-03 Protective liner for helmets and other articles

Publications (3)

Publication Number Publication Date
EP3422887A1 true EP3422887A1 (en) 2019-01-09
EP3422887A4 EP3422887A4 (en) 2020-01-15
EP3422887B1 EP3422887B1 (en) 2020-11-18

Family

ID=59743275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17760965.8A Active EP3422887B1 (en) 2016-03-04 2017-03-03 Helmet with a protective liner

Country Status (4)

Country Link
EP (1) EP3422887B1 (en)
CN (1) CN109068783B (en)
AU (1) AU2017228415B2 (en)
WO (1) WO2017152151A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3785558A1 (en) * 2019-08-29 2021-03-03 SQlab GmbH Bicycle helmet with damping element
EP3838042A1 (en) 2019-12-18 2021-06-23 George TFE SCP Helmet
EP3838043A1 (en) 2019-12-18 2021-06-23 George TFE SCP Helmet
EP4082372A1 (en) * 2021-04-29 2022-11-02 George TFE SCP Cellular energy-absorbing structure fastening device
WO2022229875A1 (en) * 2021-04-29 2022-11-03 George Tfe Scp Cellular energy-absorbing structure fastening device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3473122T3 (en) 2017-10-19 2021-11-22 Trek Bicycle Corporation Cycling helmet
EP3530134A1 (en) * 2018-02-23 2019-08-28 Gerhard Karall Protective helmet with a shell
EP3566600B1 (en) * 2018-05-11 2023-11-22 Specialized Bicycle Components, Inc. Helmet with foam layer having an array of holes
EP4082373A1 (en) * 2021-04-29 2022-11-02 George TFE SCP Cellular energy-absorbing structure fastening device
US20230232935A1 (en) * 2022-01-21 2023-07-27 Joon Bu Park Negative poisson`s ratio materials for winter sports equipment

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2505906A1 (en) * 1973-10-08 1976-08-26 Nierhaus & Co Friedr Protective knee pad with resilient shell extending down leg - has spacer strip with indentations allowing bending movement but firm fit
CH649450A5 (en) * 1982-04-26 1985-05-31 Hanspeter Hoffmann PROTECTIVE HELMET WITH RETENTION COLLAR AT THE HEAD OF THE USER.
DE8409316U1 (en) * 1984-03-27 1984-07-12 Miki S.p.A., Erba, Como Crash helmet, especially for sports
CH657760A5 (en) * 1984-06-18 1986-09-30 Battelle Memorial Institute IMPACT PROTECTIVE HELMET AND MANUFACTURING METHOD THEREOF.
US5025504A (en) * 1988-12-16 1991-06-25 Weyerhaeuser Company Liner for a helmet, hat, cap or other head covering
JP3394399B2 (en) * 1996-10-18 2003-04-07 昭和飛行機工業株式会社 Cushioning material
DE29917109U1 (en) 1999-09-29 2000-01-27 Schuberth Werk Kg Hard hat
JP4059729B2 (en) * 2002-08-09 2008-03-12 株式会社Shoei Head protector for safety helmet
US20040117896A1 (en) 2002-10-04 2004-06-24 Madey Steven M. Load diversion method and apparatus for head protective devices
GB0314934D0 (en) * 2003-06-26 2003-07-30 Qinetiq Ltd Safety helmets
US7654260B2 (en) * 2003-09-12 2010-02-02 Ogilvie Scott A Protective helmet for air extraction from snow
FR2865356B1 (en) * 2004-01-28 2007-01-12 Des Ouches Pascal Joubert SEMI-RIGID PROTECTION HELMET
US20060059606A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Multilayer air-cushion shell with energy-absorbing layer for use in the construction of protective headgear
GB0415629D0 (en) * 2004-07-13 2004-08-18 Leuven K U Res & Dev Novel protective helmet
US20060059605A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Layered construction of protective headgear with one or more compressible layers of thermoplastic elastomer material
GB2431859A (en) 2005-10-31 2007-05-09 Lloyd A body protecting device comprising an array of energy absorbing cells
US8533869B1 (en) * 2008-02-19 2013-09-17 Noggin Group LLC Energy absorbing helmet underwear
SE534868C2 (en) * 2010-05-07 2012-01-24 Mips Ab Helmet with sliding promoter provided at an energy absorbing bearing
WO2012020066A1 (en) * 2010-08-13 2012-02-16 Tiax Llc Energy absorption system
DE112011104130A5 (en) 2010-09-09 2013-09-12 Oliver Schimpf Helmet; Method for reducing or preventing head injury
US20150272258A1 (en) * 2012-01-18 2015-10-01 Darius J. Preisler Sports helmet and pad kit for use therein
US9573422B2 (en) * 2012-03-15 2017-02-21 Polaris Industries Inc. Non-pneumatic tire
US20140013492A1 (en) * 2012-07-11 2014-01-16 Apex Biomedical Company Llc Protective helmet for mitigation of linear and rotational acceleration
US20140223641A1 (en) * 2013-02-10 2014-08-14 Blake Henderson Helmet with custom foam liner and removable / replaceable layers of crushable energy absorption material
SE1351032A1 (en) 2013-04-19 2014-10-20 Mips Ab Connecting arrangements and helmets including such connecting arrangements
US10736373B2 (en) * 2013-08-13 2020-08-11 Smith Optics, Inc. Helmet with shock absorbing inserts
GB2518668B (en) 2013-09-28 2017-07-12 Design Blue Ltd Flexible pads and shield systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3785558A1 (en) * 2019-08-29 2021-03-03 SQlab GmbH Bicycle helmet with damping element
EP3838042A1 (en) 2019-12-18 2021-06-23 George TFE SCP Helmet
EP3838043A1 (en) 2019-12-18 2021-06-23 George TFE SCP Helmet
WO2021122564A1 (en) 2019-12-18 2021-06-24 George Tfe Scp Helmet
WO2021122546A1 (en) 2019-12-18 2021-06-24 George Tfe Scp Helmet
EP4082372A1 (en) * 2021-04-29 2022-11-02 George TFE SCP Cellular energy-absorbing structure fastening device
WO2022229875A1 (en) * 2021-04-29 2022-11-03 George Tfe Scp Cellular energy-absorbing structure fastening device
WO2022229874A1 (en) * 2021-04-29 2022-11-03 George Tfe Scp Cellular energy-absorbing structure fastening device
WO2022229876A1 (en) * 2021-04-29 2022-11-03 George Tfe Scp Cellular energy-absorbing structure fastening device

Also Published As

Publication number Publication date
AU2017228415A1 (en) 2018-10-11
EP3422887A4 (en) 2020-01-15
EP3422887B1 (en) 2020-11-18
CN109068783B (en) 2022-10-21
WO2017152151A1 (en) 2017-09-08
CN109068783A (en) 2018-12-21
AU2017228415B2 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
AU2017228415B2 (en) Protective liner for helmets and other articles
US10834987B1 (en) Protective liner for helmets and other articles
US20140013492A1 (en) Protective helmet for mitigation of linear and rotational acceleration
US7832023B2 (en) Protective headgear with improved shell construction
US20140373257A1 (en) Layered protective structures
US20120324634A1 (en) Natural Fiber Impact Attenuation System
US20190274389A1 (en) Helmet with varying shock absorption
US11109633B2 (en) Helmet
US11324273B2 (en) Omnidirectional energy management systems and methods
US10172407B2 (en) Ecostructural bicycle/activity safety helmet
US20160219964A1 (en) Multi-Layered Protective Helmet with Enhanced Absorption of Torsional Impact
US20160278467A1 (en) Safety Helmet
US11766085B2 (en) Omnidirectional energy management systems and methods
TW201922128A (en) helmet
TWI725601B (en) Cheek pad and helmet
EP3541221B1 (en) Protective device
CA2260549A1 (en) Protective helmet
US20180242675A1 (en) Helmet
EP3787431A1 (en) Omnidirectional energy management systems and methods
TWI828164B (en) Shell, kit, helmet and methods of manufacture of a shell
WO2019170179A1 (en) Helmet damping system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: A42B 3/12 20060101AFI20190906BHEP

Ipc: A42B 3/06 20060101ALI20190906BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20191213

RIC1 Information provided on ipc code assigned before grant

Ipc: A42B 3/12 20060101AFI20191209BHEP

Ipc: A42B 3/06 20060101ALI20191209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200923

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017027846

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1334781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1334781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201118

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017027846

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017027846

Country of ref document: DE

Owner name: WAVECEL, LLC., WILSONVILLE, US

Free format text: FORMER OWNER: APEX BIOMEDICAL CO. LLC, PORTLAND, OR, US

26 Opposition filed

Opponent name: STUDIO TORTA S.P.A.

Effective date: 20210729

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WAVECEL, LLC

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210923 AND 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230313

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230313

Year of fee payment: 7

Ref country code: DE

Payment date: 20230328

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

P03 Opt-out of the competence of the unified patent court (upc) deleted
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170303

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: STUDIO TORTA S.P.A.

Effective date: 20210729