EP3422123B1 - Method and assembly for the computer-assisted configuring of a technical system - Google Patents
Method and assembly for the computer-assisted configuring of a technical system Download PDFInfo
- Publication number
- EP3422123B1 EP3422123B1 EP17178708.8A EP17178708A EP3422123B1 EP 3422123 B1 EP3422123 B1 EP 3422123B1 EP 17178708 A EP17178708 A EP 17178708A EP 3422123 B1 EP3422123 B1 EP 3422123B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- technical system
- determined
- variants
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000004088 simulation Methods 0.000 claims description 66
- 238000009826 distribution Methods 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 101000616761 Homo sapiens Single-minded homolog 2 Proteins 0.000 description 19
- 102100021825 Single-minded homolog 2 Human genes 0.000 description 19
- 101000703681 Homo sapiens Single-minded homolog 1 Proteins 0.000 description 11
- 102100031980 Single-minded homolog 1 Human genes 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
Definitions
- a q-quantile is to be understood as that parameter value in which a portion of q of the parameter values is below the q-quantile and the rest of the parameter values are above the q-quantile.
- the proportional value q of a q-quantile is often referred to as the undershoot portion.
- a 50% quantile is also known as the median.
- the operating parameters specifying the operating conditions are often modeled as random variables.
- a quantile of one that is dependent on statistically distributed operating parameters technical parameters can then be determined using a Monte Carlo simulation.
- a large number of simulations with randomly distributed operating parameters are carried out, an estimated value for the resulting technical parameter being determined in each case.
- the sought quantile of the technical parameter can then be determined from the large number of resulting estimated values.
- the object of the present invention is to specify a method, an arrangement, a computer program product and a computer-readable storage medium for the computer-aided configuration of a technical system, which allow a more precise configuration of the technical system.
- a proportional value specifying the availability of a provision parameter of the technical system is read in.
- the provision parameter can in particular indicate a property of a supply item made available in the technical system.
- the proportion value can in particular specify an underflow proportion of a quantile to be determined of the provision parameter.
- a large number of value variants of an operating parameter of the technical system is generated.
- a respective first estimated value for the provision parameter is determined by a first simulator of the technical system and assigned to the respective value variant.
- the value variants are at least partially sorted according to the respectively assigned first estimated values, and a quantile of the sorted value variants corresponding to the proportional value is determined.
- a respective second estimated value for the provision parameter is determined by a second simulator of the technical system.
- a respective measured value for the provision parameter is determined for a respective selected value variant.
- a third estimated value for the provision parameter is determined and output as a configuration parameter for configuring the technical system.
- the method according to the invention and the arrangement according to the invention can be executed or implemented, for example, with the aid of one or more processors, application-specific integrated circuits (ASIC), digital signal processors (DSP) and / or so-called "Field Programmable Gate Arrays” (FPGA).
- ASIC application-specific integrated circuits
- DSP digital signal processors
- FPGA Field Programmable Gate Arrays
- the third estimated value can be used to determine a relatively precise value for the q-quantile of the provision parameter with relatively little computing effort.
- the technical system can thus be configured more precisely by means of the third estimated value and adapted to specified availability requirements.
- the invention can in particular be used for setting up, adjusting, planning, designing, laying out, constructing and / or commissioning technical systems or their components.
- a supply network with a plurality of network nodes can be configured as the technical system.
- the operating parameter can indicate an infeed, withdrawal or demand for a supply item at a network node, and the provision parameter a property or quality of the supply item made available at a network node or at a node connection.
- energy, gas, water or district heating can be provided as supply goods.
- the supply network can then accordingly be an energy network, gas distribution network, water distribution network or district heating network with power lines, gas lines, water lines or district heating lines as node connections.
- a voltage, a pressure, a level, a temperature or some other quantity that indicates how well a need is met can be specified.
- a power network can be configured as the supply network.
- the operating parameter can indicate a feed-in power or extraction power at a network node and the provision parameter a voltage, an active power, a reactive power, an apparent power or a current at a network node or at a node connection.
- the first simulator can preferably determine the first estimated values on the basis of a simulation model that is simplified compared to a simulation model of the second simulator. Because of this simplification, the simulation model of the first simulator can generally be evaluated with considerably fewer computing resources than the simulation model of the second simulator. In this way, the calculation of the first estimated values for the large number of value variants can generally be shortened considerably.
- the second estimated values can generally be calculated more precisely than by the first simulator using the simulation model of the second simulator, which is more complex to evaluate. However, insofar as the calculation of the second estimated values can be restricted to the selected value variants, the computational effort required for this generally remains acceptable. In this way, a relatively high level of accuracy can be combined with a relatively low computational effort.
- a linearized simulation model can advantageously be used as the simplified simulation model.
- the simplified simulation model can be derived by linearizing a non-linear simulation model of the second simulator.
- Such linearized simulation models can usually be evaluated particularly efficiently, quickly and stably. A large number of standard programs are available for this.
- the value variants can be generated in accordance with a predetermined frequency distribution and / or in accordance with a predetermined boundary condition.
- the frequency distribution can preferably indicate a statistical distribution of the values of the operating parameters to be expected under typical operating conditions of the technical system. In this way, the simulations can be used to simulate realistic and / or representative operating conditions.
- a fluctuation range of the second estimated values can be determined.
- a measure for the accuracy of the third estimated value can then be derived and output for configuring the technical system.
- the fluctuation range can e.g. a statistical variance, scatter or standard deviation of the second estimated values can be determined.
- the accuracy of the third estimated value can be estimated as the quantile of the provision parameter that corresponds to the proportional value without significant additional effort.
- the fluctuations can be compensated for using a compensation curve for the second estimated values.
- the third estimated value can be determined by evaluating the regression curve on the quantile of the sorted value variants.
- a compensation curve e.g. a straight line or a parabola can be used, the curve parameters of which can be determined with little effort using standard methods.
- FIG. 1 shows a power network SN as a technical system to be configured in a schematic representation.
- a power grid can include a variety of grid components, such as power generators, conventional or renewable energy sources, power plants, photovoltaic systems, wind turbines, consumer loads and power lines.
- the power network SN has a conventional power plant G and wind power plants W as network nodes, which each function as a feed point.
- the power network SN includes a consumer load L as a withdrawal point.
- the network nodes G, W and L are connected by node connections C, here in particular power lines.
- a control device CTL for example a so-called CPS (Control and Protection System), is provided to control the power network SN.
- the control device CTL is - as in Figure 1 indicated by dashed lines - coupled with the network nodes G, W and L.
- network nodes in particular feed and withdrawal points, are connected by node connections, in particular connecting or transport lines.
- a complex technical system such as the power grid SN is characterized by a large number of operating parameters.
- physical, control-related, effect-related and / or design-related operating parameters, properties, performance data, effect data, status data, system data, default values, control data, sensor data, measured values, environmental data, monitoring data, Forecast data, analysis data and / or other data occurring during the operation of the technical system and / or describing an operating state of the technical system are recorded.
- Power flows PG, PW and PL at network nodes G, W and L are shown as physical operating parameters.
- PG denotes a feed power from the power plant G
- PL denotes a withdrawal power at the consumer network node L.
- the power network SN provides the electrical power PL with a voltage U at the consumer network node L.
- the voltage U can be understood as a physical supply parameter which indicates a quality of the supplied goods, here the withdrawal rate PL.
- the voltage U with which the power PL is made available, is generally only allowed to lie outside of narrow, predetermined limits with a very low probability.
- both the feed-in power PW from the wind power plants W and the withdrawal power PL at the load network node L are sometimes subject to considerable fluctuations.
- these fluctuations usually induce certain fluctuations in the voltage U.
- the power network SN is now to be configured by means of the invention in such a way that the fluctuations in the voltage U remain within the permitted range as far as possible.
- a configuration device CONV is provided for the computer-protected configuration of the power network SN, in particular the network nodes G, W, L and / or the control device CTL.
- the configuration facility CONV is coupled to the power network SN, to the network nodes G, W, L and / or to the control device CTL.
- the configuration device CONV can be implemented as part of the power network SN or completely or partially external to the power network SN.
- the configuration device CONV is intended to configure the power network SN such that the voltage U falls below a specific value U Q with representatively fluctuating operating parameters P only with a predetermined, low probability of 0.1%, for example. For this purpose, for a first configuration of the power grid SN, the configuration device CONV determines that voltage value U Q which, with a probability of 0.1%, is undershot. The 0.1% quantile of the voltage U is determined with U Q. If the determined voltage value U Q does not meet the required boundary conditions, the first configuration is changed and the associated voltage value U Q is determined again until the required boundary conditions are met.
- Figure 2 shows a configuration device CONV according to the invention for configuring the power network SN in a schematic representation.
- the configuration device CONV comprises one or more processors PROC for carrying out all work steps of the configuration device CONV and one or more memories MEM for storing data to be processed by the configuration device CONV.
- the configuration device CONV is coupled to the control device CTL of the technical system SN.
- the infeed powers PG and PW and the withdrawal power PL are considered as physical operating parameters of the power grid SN and are combined in the vector P. Because of their often strong random fluctuations, these operating parameters are advantageously regarded as random variables.
- the voltage U at the consumer network node L is considered as a physical provision parameter.
- an active power, a reactive power, an apparent power and / or a current at one or more network nodes or node connections can also be considered as provision parameters of the power network SN.
- provision parameters are represented as components of a vector if necessary.
- the configuration device CONV reads in a statistical frequency distribution DST of the operating parameters P considered as random variables and a proportional value q.
- the proportion value q here specifies an availability of the provision parameter U, insofar as the proportion value q specifies or limits that proportion of values of the provision parameter U which is below the q-quantile to be determined.
- a proportional value of q 0.1% is read in, as a result of which the 0.1% quantile U Q of the voltage U is determined.
- the proportional value q is transmitted to a selection module SEL of the configuration device CONV.
- the frequency distribution DST is intended to realistically and representatively indicate an expected statistical distribution of the values of the operating parameters P.
- the frequency distribution DST can be measured empirically in the technical system SN or determined in some other way.
- one or more boundary conditions that are to be met by the operating parameters P can also be read in with the frequency distribution DST.
- the frequency distribution DST is transmitted together with the boundary conditions to a variant generator GEN of the configuration device CONV.
- the variant generator GEN is used for the random-based generation of a large number of possible value variants P I of the operating parameters P.
- the value variants P I are generated depending on the frequency distribution DST that has been read in and, if applicable, depending on the boundary conditions that have been read in such that they themselves have the frequency distribution DST and, if applicable, the read in boundary conditions are sufficient.
- Monte Carlo simulations are available for generating such value variants.
- the generated value variants P I are indexed by the index I.
- the value variants P I are preferably implemented by an array of operating parameters or operating parameter vectors, which is indexed by the index I.
- value P I is the one to be detected 0.1% quantile U Q voltage value of the induced by the operating parameters P I variants voltages U (P I) below, and the remainder are in the 100 above.
- the value variants P I are transmitted from the variant generator GEN to a first simulator SIM1 of the configuration device CONV, which is coupled to it.
- the configuration device CONV has a second simulator SIM2.
- the simulators SIM1 and SIM2 each simulate a behavior of the technical system SN induced thereby for different value variants P I.
- the first simulator SIM1 determines, for a respective value variant P I, in particular a respective first estimated value U1 (P I ) for the provision parameter U induced by the respective value variant P I.
- the second simulator determines accordingly SIM2 for selected value variants P I in each case a second estimated value U2 (P I ) for the provision parameter U induced by the relevant value variant P I.
- the first simulator SIM1 has a first simulation model SM1 of the technical system SN and the second simulator SIM2 has a second simulation model SM2 of the technical system SN.
- the simulations of the first simulator SIM1 and of the second simulator SIM2 are each carried out using the first simulation model SM1 and the second simulation model SIM2.
- the second simulation model SM2 is preferably a detailed, generally non-linear simulation model of the technical system SN.
- the second simulation model SM2 is a non-linear load flow model of the power network SN, which is based on a system of non-linear load flow equations of the power network SN.
- a simulation based on such a non-linear simulation model generally requires a relatively high computing effort.
- an individual simulation using the second simulator SIM2 for all 100,000 value variants P I would hardly be acceptable with regard to the computational effort required for many applications.
- the first simulation model SM1 of the power grid SN is a simplified or reduced simulation model compared to the second simulation model SM2. Such a simplification or reduction can preferably be achieved by linearizing the load flow equations on which the second simulation model SM2 is based.
- a simulation based on a linearized simulation model, here SM1 generally requires considerably fewer computing resources than a simulation based on a nonlinear simulation model, here SM2.
- the first estimated values U1 (P I ) can usually be determined for all value variants P I , that is to say here for 100,000 value variants, with acceptable effort.
- the first simulation model SM1 can function as a substitute model for the second simulation model SM2 in many cases. However, a simulation using the first simulation model SM1 is generally less accurate than a simulation using the second simulation model SM2.
- the load flow equations for the first simulation model SM1 can be linearized, for example, by neglecting higher terms of a deviation of a network voltage from a reference network voltage, setpoint network voltage or another predetermined network voltage.
- the aim is in particular that when sorting the second estimated values U2 determined using the second simulation model SM2 according to their size, the same sequence should ideally result as when sorting the estimated values U1 determined by means of the first simulation model SM1 according to their size.
- the sortings of U1 and U2 often show at least a certain tendency to match. It has been found that this tendency of agreement is already sufficient in many cases to considerably reduce the number of detailed simulations required by the second simulator SIM2.
- the first estimated values U1 (P I ) are determined by the first simulator SIM1 on the basis of the first simulation model SM1 by simulating a dynamic of the power grid SN.
- the first estimated values U1 (P I ) determined are then transmitted together with the value variants P I by the first simulator SIM1 to a sorting module SORT of the configuration device CONV that is coupled to this.
- the sorting module SORT sorts the array of the value variants P I according to the size of the first estimated values U1 (P I ). This rearrangement of the array P I results in an array of sorted value variants PS K with a sorting index K.
- the sorting index K 1, ..., 100000 indexes the value variants PS K sorted according to the first estimated values in such a way that the correspondingly sorted first estimated values U1 (PS K ) increase monotonically with increasing sorting index K.
- the sorted first estimated values U1 (PS K ) are transmitted together with the sorted value variants PS K from the sorting module SORT to a selection module SEL of the configuration device CONV that is coupled to this.
- the selection module SEL is used to select a q-quantile QP of the sorted value variants PS K and to select an area IVL of the q-quantile QP.
- the proportional value q here 0.1%, is read in by the SEL selection module.
- the q-quantile QP with regard to the sorting of the sorted value variants PS K is determined as a function of the read-in share value q, ie in such a way that a share of q of the sorting indices K is below the quantile index, the rest above.
- QP PS 100 .
- the preferably symmetrical environment IVL of the quantile QP is also selected with regard to the sorting of the sorted value variants PS K.
- a number of value variants is selected from the sorted value variants PS K which is small compared to the number of all value variants P I.
- the number of all value variants is several orders of magnitude larger.
- the number of selected value variants PS 50 , ..., PS 150 determines the number of required, complex simulations through the second simulator SIM2. In this way, in the present exemplary embodiment, the number of complex simulations by the second simulator SIM2 can be reduced to 1/1000 of the number of simulations by the simplified, first simulator SIM1.
- the q-quantile QP and its environment IVL are transmitted from the selection module SEL to the second simulator SIM2 coupled to it.
- the second estimated values U2 (PS K ) are preferably stored as an array sorted according to K or U1 (PS K ).
- the second estimated values (U2 (PS 50 ), ..., U2 (PS 150 )) are designated as U2 (IVL).
- the second estimated values U2 (PS K ) sorted according to the sorting index K can show considerable fluctuations as a function of K, since they are sort of sorted according to the size of the first estimated values U1 (PS K ), and the sorting of the first and second estimated values - as mentioned above - usually do not match exactly.
- the q-quantile QP and the second estimated values U2 (IVL) are transmitted from the second simulator SIM2 to a compensation module AM of the configuration device CONV, which is coupled to this.
- the compensation module AM is used to compensate for fluctuations in the second estimated values U2 (PS K ) sorted according to the first estimated values.
- the second estimated values U2 (PS K ) can be statistically averaged.
- a model or a model curve can be adapted to a course of the second estimated values U2 (PS K ) in such a way that a deviation between the model or model curve and the second estimated values U2 (PS K ) is as small as possible. For such an adjustment that often Also known as fitting or regression, a variety of standard methods are available.
- the fluctuations in the second estimated values U2 (PS K ) are compensated for by a compensation curve AK, for example a compensation parabola.
- the third estimated value U Q is thus a value for the q-quantile sought for the provision parameter U.
- the compensation module AM determines a fluctuation range of the second estimated values U2 (IVL), for example as the mean deviation between the compensation curve AK and the curve of the second estimated values U2 (IVL).
- a variance, scatter or standard deviation of the second estimated values U2 (IVL) can also be determined as the fluctuation range.
- the fluctuation range forms a measure DU for an accuracy of the third estimated value U Q , which can be determined within the scope of the method according to the invention without great additional effort.
- the third estimated value U Q and the degree of accuracy DU are transmitted as configuration parameters from the configuration device CONV to the control device CTL for configuring the power network SN.
- FIG. 3 shows a diagram to illustrate an accuracy of the method according to the invention.
- a compensation parabola was chosen as the best fit curve AK.
- the sorting index K is plotted on the abscissa of the diagram and the voltage U at the consumer network node L in a so-called per-unit system is plotted on the ordinate.
- a per-unit system abbreviated “pu”, specifies the voltage U in relation to a predetermined reference value.
- the fluctuations in the second estimated values U2 (PS K ) are largely compensated for by the compensation parabola AK.
- the third estimated value U Q is obtained by evaluating the compensation parabola AK at the q-quantile QP.
- FIG. 3 To illustrate the accuracy of the third estimated value U Q is in Figure 3 a course of second estimated values US2 determined by the second simulator SIM2 is also shown.
- the second estimated values US2 are shown sorted according to their own size. The sorting of the second estimated values US2 results in a monotonic course.
- the representation of the second estimated values US2 in Figure 3 serves only for comparison purposes, insofar as a complex simulation is to be carried out by the second simulator SIM2 for all 100,000 value variants to determine them, while according to the invention the complex simulation can be limited to the considerably smaller area of the environment IVL.
- the number of complex simulations by the second simulator SIM2 can be reduced to 1/1000 of the number of simplified simulations by the first simulator SIM1.
- the third estimated value U Q deviates only very slightly from the q-quantile QUS2 determined by precise simulation.
- U Q is therefore a very good estimated value that can be determined with considerably less effort than the q-quantile QUS2.
- the variable DU also provides a measure of the accuracy of the determined third estimated value U Q and can advantageously be taken into account in the configuration of the technical system SN.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
Für den Betrieb von technischen Systemen, zum Beispiel Stromnetzen, Windturbinen, Gasturbinen oder Fertigungsanlagen wird häufig gefordert, dass vorgegebene technische Parameter unter repräsentativen Betriebsbedingungen bestimmte Randbedingungen mit einer vorgegebenen Wahrscheinlichkeit erfüllen. In diesem Zusammenhang ist es für eine Konfiguration eines technischen Systems sehr nützlich, denjenigen Wert eines vorgegebenen Parameters zu ermitteln, der unter repräsentativen Betriebsbedingungen gerade mit einer vorgegebenen Wahrscheinlichkeit nicht überschritten wird. Dementsprechend kann beispielsweise für einen vorgegebenen Punkt in einem Stromnetz derjenige Spannungswert ermittelt werden, der unter repräsentativen Betriebsbedingungen mit einer Wahrscheinlichkeit von höchstens einem Prozent unterschritten wird. Ein solcher Spannungswert wird auch als 1%-Quantil bezeichnet. Das Stromnetz kann dann derart konfiguriert werden, dass der jeweils ermittelte Spannungswert bei repräsentativ variierenden Betriebsbedingungen den geforderten Randbedingungen mit der geforderten Wahrscheinlichkeit genügt.For the operation of technical systems, for example power grids, wind turbines, gas turbines or manufacturing plants, it is often required that given technical parameters meet certain boundary conditions with a given probability under representative operating conditions. In this context, it is very useful for a configuration of a technical system to determine that value of a given parameter which, under representative operating conditions, will not be exceeded with a given probability. Accordingly, for a given point in a power grid, for example, that voltage value can be determined which, under representative operating conditions, has a probability of not more than one percent. Such a stress value is also referred to as a 1% quantile. The power grid can then be configured in such a way that the voltage value determined in each case satisfies the required boundary conditions with the required probability under representatively varying operating conditions.
Allgemein ist unter einem q-Quantil derjenige Parameterwert zu verstehen, bei dem ein Anteil von q der Parameterwerte unterhalb des q-Quantils und der Rest der Parameterwerte oberhalb des q-Quantils liegen. Der Anteilswert q eines q-Quantils wird häufig auch als Unterschreitungsanteil bezeichnet. Ein 50%-Quantil wird auch als Median bezeichnet.In general, a q-quantile is to be understood as that parameter value in which a portion of q of the parameter values is below the q-quantile and the rest of the parameter values are above the q-quantile. The proportional value q of a q-quantile is often referred to as the undershoot portion. A 50% quantile is also known as the median.
Insofern die Betriebsbedingungen eines technischen Systems häufig erheblichen, insbesondere zufallsbedingten Schwankungen unterworfen sind, wie z.B. die Windverhältnisse bei einer Windturbine, werden die Betriebsbedingungen spezifizierende Betriebsparameter oft als Zufallsgrößen modelliert. Ein Quantil eines von statistisch verteilten Betriebsparametern abhängigen technischen Parameters kann dann anhand einer Monte-Carlo-Simulation ermittelt werden. Hierbei wird eine Vielzahl von Simulationen mit zufallsverteilten Betriebsparametern durchgeführt, wobei jeweils ein Schätzwert für den resultierenden technischen Parameter ermittelt wird. Aus der Vielzahl von resultierenden Schätzwerten kann dann das gesuchte Quantil des technischen Parameters ermittelt werden.Insofar as the operating conditions of a technical system are often subject to considerable, in particular random fluctuations, such as the wind conditions in a wind turbine, the operating parameters specifying the operating conditions are often modeled as random variables. A quantile of one that is dependent on statistically distributed operating parameters technical parameters can then be determined using a Monte Carlo simulation. A large number of simulations with randomly distributed operating parameters are carried out, an estimated value for the resulting technical parameter being determined in each case. The sought quantile of the technical parameter can then be determined from the large number of resulting estimated values.
Eine genaue Monte-Carlo-Simulation erweist sich jedoch bei hinreichenden komplexen technischen Systemen aufgrund der Vielzahl der erforderlichen Simulationsdurchläufe häufig als sehr aufwendig oder kaum durchführbar. Andererseits ist eine weniger genaue Simulation mit einem vereinfachten Simulationsmodell für viele Anwendungen nicht genau genug.In the case of sufficiently complex technical systems, however, an exact Monte Carlo simulation often proves to be very complex or hardly feasible due to the large number of simulation runs required. On the other hand, a less accurate simulation with a simplified simulation model is not accurate enough for many applications.
Aus dem Dokument "
Es ist Aufgabe der vorliegenden Erfindung ein Verfahren, eine Anordnung, ein Computerprogrammprodukt sowie ein computerlesbares Speichermedium zum rechnergestĂĽtzten Konfigurieren eines technischen Systems anzugeben, die eine genauere Konfiguration des technischen Systems erlauben.The object of the present invention is to specify a method, an arrangement, a computer program product and a computer-readable storage medium for the computer-aided configuration of a technical system, which allow a more precise configuration of the technical system.
Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 1, durch ein Verfahren mit den Merkmalen des Patentanspruchs 10, durch eine Anordnung mit den Merkmalen des Patentanspruchs 11, durch ein Computerprogrammprodukt mit den Merkmalen des Patentanspruchs 12 sowie ein computerlesbares Speichermedium mit den Merkmalen des Patentanspruchs 13.This object is achieved by a method with the features of patent claim 1, by a method with the features of patent claim 10, by an arrangement with the features of patent claim 11, by a computer program product with the features of patent claim 12 and a computer-readable storage medium with the features of claim 13.
Erfindungsgemäß wird zum rechnergestützten Konfigurieren eines technischen Systems ein eine Verfügbarkeit eines Bereitstellungsparameters des technischen Systems spezifizierender Anteilswert eingelesen. Der Bereitstellungsparameter kann hierbei insbesondere eine Eigenschaft eines bereitgestellten Versorgungsguts des technischen Systems angeben. Der Anteilswert kann insbesondere einen Unterschreitungsanteil eines zu ermittelnden Quantils des Bereitstellungsparameters spezifizieren. Weiterhin wird eine Vielzahl von Wertvarianten eines Betriebsparameters des technischen Systems generiert. Für eine jeweilige Wertvariante wird durch einen ersten Simulator des technischen Systems ein jeweiliger erster Schätzwert für den Bereitstellungsparameter ermittelt und der jeweiligen Wertvariante zugeordnet. Weiterhin werden die Wertvarianten zumindest teilweise nach den jeweils zugeordneten ersten Schätzwerten sortiert, und es wird ein dem Anteilswert entsprechendes Quantil der sortierten Wertvarianten ermittelt. Darüber hinaus werden mehrere hinsichtlich der Sortierung in einer Umgebung des Quantils befindliche Wertvarianten selektiert. Für eine jeweilige selektierte Wertvariante wird durch einen zweiten Simulator des technischen Systems ein jeweiliger zweiter Schätzwert für den Bereitstellungsparameter ermittelt. Alternativ oder zusätzlich wird für eine jeweilige selektierte Wertvariante ein jeweiliger Messwert für den Bereitstellungsparameter ermittelt. Erfindungsgemäß wird durch Ausgleichung von Schwankungen der zweiten Schätzwerte bzw. der Messwerte ein dritter Schätzwert für den Bereitstellungsparameter ermittelt und als Konfigurationsparameter zum Konfigurieren des technischen Systems ausgegeben.According to the invention, for the computer-aided configuration of a technical system, a proportional value specifying the availability of a provision parameter of the technical system is read in. In this case, the provision parameter can in particular indicate a property of a supply item made available in the technical system. The proportion value can in particular specify an underflow proportion of a quantile to be determined of the provision parameter. Furthermore, a large number of value variants of an operating parameter of the technical system is generated. For a respective value variant, a respective first estimated value for the provision parameter is determined by a first simulator of the technical system and assigned to the respective value variant. Furthermore, the value variants are at least partially sorted according to the respectively assigned first estimated values, and a quantile of the sorted value variants corresponding to the proportional value is determined. In addition, several value variants located in the vicinity of the quantile with regard to the sorting are selected. For a respective selected value variant, a respective second estimated value for the provision parameter is determined by a second simulator of the technical system. Alternatively or additionally, a respective measured value for the provision parameter is determined for a respective selected value variant. According to the invention, by compensating for fluctuations in the second estimated values or the measured values, a third estimated value for the provision parameter is determined and output as a configuration parameter for configuring the technical system.
Zur Durchführung des erfindungsgemäßen Verfahrens sind eine Anordnung zum rechnergestützten Konfigurieren des technischen Systems, ein Computerprogrammprodukt sowie ein computerlesbares Speichermedium vorgesehen.To carry out the method according to the invention, an arrangement for the computer-aided configuration of the technical system, a computer program product and a computer-readable storage medium are provided.
Das erfindungsgemäße Verfahren und die erfindungsgemäße Anordnung können beispielsweise mit Hilfe von einem oder mehreren Prozessoren, anwendungsspezifischen integrierten Schaltungen (ASIC), digitalen Signalprozessoren (DSP) und/oder sogenannten "Field Programmable Gate Arrays" (FPGA) ausgeführt bzw. implementiert werden.The method according to the invention and the arrangement according to the invention can be executed or implemented, for example, with the aid of one or more processors, application-specific integrated circuits (ASIC), digital signal processors (DSP) and / or so-called "Field Programmable Gate Arrays" (FPGA).
Ein Vorteil der Erfindung ist darin zu sehen, dass mit dem dritten Schätzwert ein verhältnismäßig genauer Wert für das q-Quantil des Bereitstellungsparameters mit verhältnismäßig geringem Rechenaufwand ermittelt werden kann. Somit kann das technische System mittels des dritten Schätzwerts genauer konfiguriert und an vorgegebene Verfügbarkeitsanforderungen angepasst werden.One advantage of the invention is that the third estimated value can be used to determine a relatively precise value for the q-quantile of the provision parameter with relatively little computing effort. The technical system can thus be configured more precisely by means of the third estimated value and adapted to specified availability requirements.
Die Erfindung kann insbesondere zum Einrichten, Einstellen, Planen, Designen, Auslegen, Konstruieren und/oder Inbetriebnehmen von technischen Systemen oder deren Komponenten verwendet werden.The invention can in particular be used for setting up, adjusting, planning, designing, laying out, constructing and / or commissioning technical systems or their components.
Vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.Advantageous embodiments and developments of the invention are specified in the dependent claims.
Nach einer vorteilhaften Ausführungsform der Erfindung kann als technisches System ein Versorgungsnetz mit mehreren Netzknoten konfiguriert werden. Dabei kann der Betriebsparameter eine Einspeisung, eine Entnahme oder einen Bedarf eines Versorgungsguts an einem Netzknoten angeben, und der Bereitstellungsparameter eine Eigenschaft oder Güte des an einem Netzknoten oder an einer Knotenverbindung bereitgestellten Versorgungsguts. Als Versorgungsgut kann insbesondere Energie, Gas, Wasser oder Fernwärme bereitgestellt werden. Das Versorgungsnetz kann dann entsprechend ein Energienetz, Gasverteilungsnetz, Wasserverteilungsnetz oder Fernwärmenetz mit Stromleitungen, Gasleitungen, Wasserleitungen bzw. Fernwärmeleitungen als Knotenverbindungen sein. Durch den Bereitstellungsparameter kann eine Spannung, ein Druck, ein Füllstand, eine Temperatur oder eine andere Größe, die angibt, wie gut ein Bedarf erfüllt wird, spezifiziert werden.According to an advantageous embodiment of the invention, a supply network with a plurality of network nodes can be configured as the technical system. In this case, the operating parameter can indicate an infeed, withdrawal or demand for a supply item at a network node, and the provision parameter a property or quality of the supply item made available at a network node or at a node connection. In particular, energy, gas, water or district heating can be provided as supply goods. The supply network can then accordingly be an energy network, gas distribution network, water distribution network or district heating network with power lines, gas lines, water lines or district heating lines as node connections. A voltage, a pressure, a level, a temperature or some other quantity that indicates how well a need is met can be specified.
Insbesondere kann als Versorgungsnetz ein Stromnetz konfiguriert werden. Dabei kann der Betriebsparameter eine Einspeiseleistung oder Entnahmeleistung an einem Netzknoten und der Bereitstellungsparameter eine Spannung, eine Wirkleistung, eine Blindleistung, eine Scheinleistung oder einen Strom an einem Netzknoten oder an einer Knotenverbindung angeben.In particular, a power network can be configured as the supply network. The operating parameter can indicate a feed-in power or extraction power at a network node and the provision parameter a voltage, an active power, a reactive power, an apparent power or a current at a network node or at a node connection.
Vorzugsweise kann der erste Simulator die ersten Schätzwerte anhand eines gegenüber einem Simulationsmodell des zweiten Simulators vereinfachten Simulationsmodells ermitteln. Aufgrund dieser Vereinfachung kann das Simulationsmodell des ersten Simulators in der Regel mit erheblich geringeren Rechenressourcen ausgewertet werden, als das Simulationsmodell des zweiten Simulators. Auf diese Weise kann die Berechnung der ersten Schätzwerte für die Vielzahl von Wertvarianten in der Regel wesentlich verkürzt werden. Die zweiten Schätzwerte können anhand des aufwendiger auszuwertenden Simulationsmodells des zweiten Simulators in der Regel genauer als durch den ersten Simulator berechnet werden. Insofern die Berechnung der zweiten Schätzwerte aber auf die selektierten Wertvarianten beschränkt werden kann, bleibt ein hierfür erforderlicher Rechenaufwand in der Regel akzeptabel. Auf diese Weise lässt sich eine verhältnismäßig hohe Genauigkeit mit einem verhältnismäßig geringen Rechenaufwand verbinden.The first simulator can preferably determine the first estimated values on the basis of a simulation model that is simplified compared to a simulation model of the second simulator. Because of this simplification, the simulation model of the first simulator can generally be evaluated with considerably fewer computing resources than the simulation model of the second simulator. In this way, the calculation of the first estimated values for the large number of value variants can generally be shortened considerably. The second estimated values can generally be calculated more precisely than by the first simulator using the simulation model of the second simulator, which is more complex to evaluate. However, insofar as the calculation of the second estimated values can be restricted to the selected value variants, the computational effort required for this generally remains acceptable. In this way, a relatively high level of accuracy can be combined with a relatively low computational effort.
Vorteilhafterweise kann als vereinfachtes Simulationsmodell ein linearisiertes Simulationsmodell verwendet werden. Insbesondere kann das vereinfachte Simulationsmodell durch Linearisierung eines nichtlinearen Simulationsmodells des zweiten Simulators abgeleitet werden. Derartige linearisierte Simulationsmodelle lassen sich in der Regel besonders effizient, schnell und stabil auswerten. HierfĂĽr steht eine Vielzahl von Standardprogrammen zur VerfĂĽgung.A linearized simulation model can advantageously be used as the simplified simulation model. In particular, the simplified simulation model can be derived by linearizing a non-linear simulation model of the second simulator. Such linearized simulation models can usually be evaluated particularly efficiently, quickly and stably. A large number of standard programs are available for this.
Nach einer vorteilhaften Ausführungsform der Erfindung können die Wertvarianten gemäß einer vorgegebenen Häufigkeitsverteilung und/oder gemäß einer vorgegebenen Randbedingung generiert werden. Vorzugsweise kann die Häufigkeitsverteilung eine unter typischen Betriebsbedingungen des technischen Systems zu erwartende statistische Verteilung der Werte der Betriebsparameter angeben. Auf diese Weise können durch die Simulationen realistische und/oder repräsentative Betriebsbedingungen nachgebildet werden.According to an advantageous embodiment of the invention, the value variants can be generated in accordance with a predetermined frequency distribution and / or in accordance with a predetermined boundary condition. The frequency distribution can preferably indicate a statistical distribution of the values of the operating parameters to be expected under typical operating conditions of the technical system. In this way, the simulations can be used to simulate realistic and / or representative operating conditions.
Nach einer vorteilhaften Weiterbildung der Erfindung kann eine Schwankungsbreite der zweiten Schätzwerte ermittelt werden. Anhand der Schwankungsbreite kann dann ein Maß für eine Genauigkeit des dritten Schätzwerts abgeleitet und zum Konfigurieren des technischen Systems ausgegeben werden. Als Schwankungsbreite kann z.B. eine statistische Varianz, Streuung oder Standardabweichung der zweiten Schätzwerte ermittelt werden. Auf diese Weise kann ohne wesentlichen Zusatzaufwand die Genauigkeit des dritten Schätzwerts als des dem Anteilswert entsprechenden Quantils des Bereitstellungsparameters abgeschätzt werden.According to an advantageous development of the invention, a fluctuation range of the second estimated values can be determined. On the basis of the fluctuation range, a measure for the accuracy of the third estimated value can then be derived and output for configuring the technical system. The fluctuation range can e.g. a statistical variance, scatter or standard deviation of the second estimated values can be determined. In this way, the accuracy of the third estimated value can be estimated as the quantile of the provision parameter that corresponds to the proportional value without significant additional effort.
Gemäß einer vorteilhaften Ausführungsform der Erfindung kann die Ausgleichung der Schwankungen anhand einer Ausgleichskurve für die zweiten Schätzwerte erfolgen. Insbesondere kann dabei der dritte Schätzwert durch Auswertung der Ausgleichskurve am Quantil der sortierten Wertvarianten ermittelt werden. Als Ausgleichskurve kann z.B. eine Gerade oder eine Parabel verwendet werden, deren Kurvenparameter mit geringem Aufwand mittels Standardverfahren ermittelt werden können.According to an advantageous embodiment of the invention, the fluctuations can be compensated for using a compensation curve for the second estimated values. In particular, the third estimated value can be determined by evaluating the regression curve on the quantile of the sorted value variants. As a compensation curve, e.g. a straight line or a parabola can be used, the curve parameters of which can be determined with little effort using standard methods.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Dabei zeigen jeweils in schematischer Darstellung:
- Figur 1
- ein Stromnetz mit mehreren Netzknoten,
- Figur 2
- eine erfindungsgemäße Konfigurationseinrichtung zum Konfigurieren des Stromnetzes und
- Figur 3
- ein Diagramm zur Veranschaulichung einer Genauigkeit des erfindungsgemäßen Verfahrens
- Figure 1
- a power grid with several network nodes,
- Figure 2
- a configuration device according to the invention for configuring the power grid and
- Figure 3
- a diagram to illustrate an accuracy of the method according to the invention
Im vorliegenden AusfĂĽhrungsbeispiel weist das Stromnetz SN als Netzknoten ein konventionelles Kraftwerk G sowie Windkraftwerke W auf, die jeweils als Einspeisepunkt fungieren. Als weiteren Netzknoten umfasst das Stromnetz SN eine Verbraucherlast L als Entnahmepunkt. Die Netzknoten G, W und L sind durch Knotenverbindungen C, hier insbesondere Stromleitungen verbunden. Zum Steuern des Stromnetzes SN ist eine Steuereinrichtung CTL vorgesehen, zum Beispiel ein sogenanntes CPS (Control and Protection System). Die Steuereinrichtung CTL ist - wie in
Anstelle des Stromnetzes SN können auch andere Versorgungsnetze für Versorgungsgüter wie Gas, Wasser oder Fernwärme vorgesehen sein. Auch hierbei sind Netzknoten, insbesondere Einspeise- und Entnahmepunkte durch Knotenverbindungen, insbesondere Verbindungs- oder Transportleitungen verbunden.Instead of the power network SN, other supply networks for supplies such as gas, water or district heating can also be provided. Here, too, network nodes, in particular feed and withdrawal points, are connected by node connections, in particular connecting or transport lines.
Ein komplexes technisches System wie das Stromnetz SN wird durch eine Vielzahl von Betriebsparametern charakterisiert. Im Allgemeinen können als Betriebsparameter insbesondere physikalische, regelungstechnische, wirkungstechnische und/oder bauartbedingte Betriebsgrößen, Eigenschaften, Leistungsdaten, Wirkungsdaten, Zustandsdaten, Systemdaten, Vorgabewerte, Steuerdaten, Sensordaten, Messwerte, Umgebungsdaten, Überwachungsdaten, Prognosedaten, Analysedaten und/oder andere im Betrieb des technischen Systems anfallende und/oder einen Betriebszustand des technischen Systems beschreibende Daten erfasst werden.A complex technical system such as the power grid SN is characterized by a large number of operating parameters. In general, physical, control-related, effect-related and / or design-related operating parameters, properties, performance data, effect data, status data, system data, default values, control data, sensor data, measured values, environmental data, monitoring data, Forecast data, analysis data and / or other data occurring during the operation of the technical system and / or describing an operating state of the technical system are recorded.
In
Abhängig von den physikalischen Betriebsparametern P stellt das Stromnetzt SN am Verbrauchernetzknoten L die elektrische Leistung PL mit einer Spannung U bereit. Die Spannung U kann in diesem Zusammenhang als physikalischer Bereitstellungsparameter aufgefasst werden, der eine Qualität des bereitgestellten Versorgungsguts, hier der Entnahmeleistung PL angibt.Depending on the physical operating parameters P, the power network SN provides the electrical power PL with a voltage U at the consumer network node L. In this context, the voltage U can be understood as a physical supply parameter which indicates a quality of the supplied goods, here the withdrawal rate PL.
Die Spannung U, mit der die Leistung PL bereitgestellt wird, darf in der Regel nur mit einer sehr geringen Wahrscheinlichkeit auĂźerhalb enger vorgegebener Grenzen liegen. Im Allgemeinen sind jedoch sowohl die Einspeiseleistungen PW der Windkraftwerke W sowie die Entnahmeleistung PL am Lastnetzknoten L teils erheblichen Schwankungen unterworfen. Trotz eines teilweisen Ausgleichs durch das konventionelle Kraftwerk G induzieren diese Schwankungen in der Regel auch gewisse Schwankungen der Spannung U.The voltage U, with which the power PL is made available, is generally only allowed to lie outside of narrow, predetermined limits with a very low probability. In general, however, both the feed-in power PW from the wind power plants W and the withdrawal power PL at the load network node L are sometimes subject to considerable fluctuations. Despite a partial compensation by the conventional power station G, these fluctuations usually induce certain fluctuations in the voltage U.
Das Stromnetz SN ist nun mittels der Erfindung so zu konfigurieren, dass die Schwankungen der Spannung U möglichst im erlaubten Bereich bleiben. Zu diesem Zweck ist eine Konfigurationseinrichtung CONV vorgesehen zum rechnergeschützten Konfigurieren des Stromnetzes SN, insbesondere der Netzknoten G, W, L und/oder der Steuereinrichtung CTL. Die Konfigurationseinrichtung CONV ist mit dem Stromnetz SN, mit den Netzknoten G, W, L und/oder mit der Steuereinrichtung CTL gekoppelt. Die Konfigurationseinrichtung CONV kann als Teil des Stromnetzes SN oder ganz oder teilweise extern zum Stromnetz SN implementiert sein.The power network SN is now to be configured by means of the invention in such a way that the fluctuations in the voltage U remain within the permitted range as far as possible. For this purpose, a configuration device CONV is provided for the computer-protected configuration of the power network SN, in particular the network nodes G, W, L and / or the control device CTL. The configuration facility CONV is coupled to the power network SN, to the network nodes G, W, L and / or to the control device CTL. The configuration device CONV can be implemented as part of the power network SN or completely or partially external to the power network SN.
Durch die Konfigurationseinrichtung CONV soll das Stromnetz SN so konfiguriert werden, dass die Spannung U einen bestimmten Wert UQ bei repräsentativ schwankenden Betriebsparametern P nur mit einer vorgegebenen, geringen Wahrscheinlichkeit von zum Beispiel 0,1% unterschreitet. Zu diesem Zweck wird durch die Konfigurationseinrichtung CONV für eine erste Konfiguration des Stromnetzes SN derjenige Spannungswert UQ ermittelt, der gerade mit der Wahrscheinlichkeit von 0,1% unterschritten wird. Mit UQ wird also das 0,1%-Quantil der Spannung U ermittelt. Falls der ermittelte Spannungswert UQ den geforderten Randbedingungen nicht genügt, werden die erste Konfiguration so lange geändert und der dazugehörige Spannungswert UQ neu ermittelt, bis die geforderten Randbedingungen erfüllt sind.The configuration device CONV is intended to configure the power network SN such that the voltage U falls below a specific value U Q with representatively fluctuating operating parameters P only with a predetermined, low probability of 0.1%, for example. For this purpose, for a first configuration of the power grid SN, the configuration device CONV determines that voltage value U Q which, with a probability of 0.1%, is undershot. The 0.1% quantile of the voltage U is determined with U Q. If the determined voltage value U Q does not meet the required boundary conditions, the first configuration is changed and the associated voltage value U Q is determined again until the required boundary conditions are met.
Wie oben bereits erwähnt, werden im vorliegenden Ausführungsbeispiel als physikalische Betriebsparameter des Stromnetzes SN die Einspeiseleistungen PG und PW sowie die Entnahmeleistung PL betrachtet und im Vektor P zusammengefasst. Aufgrund ihrer oft starken zufallsbedingten Schwankungen werden diese Betriebsparameter vorteilhafterweise als Zufallsgrößen betrachtet.As already mentioned above, in the present exemplary embodiment the infeed powers PG and PW and the withdrawal power PL are considered as physical operating parameters of the power grid SN and are combined in the vector P. Because of their often strong random fluctuations, these operating parameters are advantageously regarded as random variables.
Als physikalischer Bereitstellungsparameter wird beispielhaft die Spannung U am Verbrauchernetzknoten L betrachtet. Alternativ oder zusätzlich können auch eine Wirkleistung, eine Blindleistung, eine Scheinleistung und/oder ein Strom an einem oder mehreren Netzknoten oder Knotenverbindungen als Bereitstellungsparameter des Stromnetzes SN betrachtet werden. Mehrere Bereitstellungsparameter werden dabei gegebenenfalls als Komponenten eines Vektors dargestellt. Der oder die Bereitstellungsparameter, hier U, hängen jeweils deterministisch über eine Netzdynamik des Stromnetzes SN von den Betriebsparametern P ab. Mithin induzieren die Schwankungen der Betriebsparameter P in der Regel entsprechende Schwankungen der Bereitstellungsparameter, hier U.The voltage U at the consumer network node L is considered as a physical provision parameter. Alternatively or additionally, an active power, a reactive power, an apparent power and / or a current at one or more network nodes or node connections can also be considered as provision parameters of the power network SN. Several provision parameters are represented as components of a vector if necessary. The provision parameter (s), here U, each depend deterministically on the operating parameters P via a network dynamics of the power network SN. The fluctuations in the operating parameters P therefore generally induce corresponding fluctuations in the provision parameters, here U.
Durch die Konfigurationseinrichtung CONV werden eine statistische Häufigkeitsverteilung DST der als Zufallsgrößen betrachteten Betriebsparameter P sowie ein Anteilswert q eingelesen. Der Anteilswert q spezifiziert hierbei eine Verfügbarkeit des Bereitstellungsparameters U, insofern der Anteilswert q denjenigen Anteil von Werten des Bereitstellungsparameters U vorgibt bzw. begrenzt, der unterhalb des zu ermittelnden q-Quantils liegt.The configuration device CONV reads in a statistical frequency distribution DST of the operating parameters P considered as random variables and a proportional value q. The proportion value q here specifies an availability of the provision parameter U, insofar as the proportion value q specifies or limits that proportion of values of the provision parameter U which is below the q-quantile to be determined.
Im vorliegenden AusfĂĽhrungsbeispiel wird ein Anteilswert von q = 0,1% eingelesen, infolgedessen das 0,1%-Quantil UQ der Spannung U ermittelt wird. Der Anteilswert q wird zu einem Selektionsmodul SEL der Konfigurationseinrichtung CONV ĂĽbermittelt.In the present exemplary embodiment, a proportional value of q = 0.1% is read in, as a result of which the 0.1% quantile U Q of the voltage U is determined. The proportional value q is transmitted to a selection module SEL of the configuration device CONV.
Die Häufigkeitsverteilung DST soll eine zu erwartende statistische Verteilung der Werte der Betriebsparameter P realistisch und repräsentativ angeben. Die Häufigkeitsverteilung DST kann empirisch im technischen System SN gemessen oder anderweitig ermittelt werden. Vorzugsweise können mit der Häufigkeitsverteilung DST auch eine oder mehrere Randbedingungen eingelesen werden, die von den Betriebsparametern P zu erfüllen sind.The frequency distribution DST is intended to realistically and representatively indicate an expected statistical distribution of the values of the operating parameters P. The frequency distribution DST can be measured empirically in the technical system SN or determined in some other way. Preferably, one or more boundary conditions that are to be met by the operating parameters P can also be read in with the frequency distribution DST.
Die Häufigkeitsverteilung DST wird gegebenenfalls zusammen mit den Randbedingungen zu einem Variantengenerator GEN der Konfigurationseinrichtung CONV übermittelt. Der Variantengenerator GEN dient zum zufallsbasierten Generieren einer Vielzahl von möglichen Wertvarianten PI der Betriebsparameter P. Die Wertvarianten PI werden dabei abhängig von der eingelesenen Häufigkeitsverteilung DST und gegebenenfalls abhängig von den eingelesenen Randbedingungen derart generiert, dass sie selbst die Häufigkeitsverteilung DST aufweisen und gegebenenfalls den eingelesenen Randbedingungen genügen. Zur Generierung derartiger Wertvarianten ist eine Vielzahl von effizienten Standardverfahren im Kontext sogenannter Monte-Carlo-Simulationen verfügbar.The frequency distribution DST is transmitted together with the boundary conditions to a variant generator GEN of the configuration device CONV. The variant generator GEN is used for the random-based generation of a large number of possible value variants P I of the operating parameters P. The value variants P I are generated depending on the frequency distribution DST that has been read in and, if applicable, depending on the boundary conditions that have been read in such that they themselves have the frequency distribution DST and, if applicable, the read in boundary conditions are sufficient. A large number of efficient standard methods in the context of so-called Monte Carlo simulations are available for generating such value variants.
Die generierten Wertvarianten PI werden durch den Index I indiziert. Im vorliegenden AusfĂĽhrungsbeispiel wird eine Anzahl von 100000 Wertvarianten PI generiert, d.h. I=1,...,100000. Die Wertvarianten PI werden vorzugsweise durch ein Array von Betriebsparametern beziehungsweise Betriebsparameter-Vektoren implementiert, das durch den Index I indiziert wird.The generated value variants P I are indexed by the index I. In the present exemplary embodiment, a number of 100,000 value variants P I are generated, ie I = 1,..., 100,000. The value variants P I are preferably implemented by an array of operating parameters or operating parameter vectors, which is indexed by the index I.
Bei einer Anzahl von 100000 Wertvarianten PI ist das zu ermittelnde 0,1%-Quantil UQ derjenige Spannungswert, bei dem 100 der durch die Betriebsparametervarianten PI induzierten Spannungen U(PI) darunter und der Rest darĂĽber liegen. Die Wertvarianten PI werden vom Variantengenerator GEN zu einem an diesen gekoppelten ersten Simulator SIM1 der Konfigurationseinrichtung CONV ĂĽbermittelt.In a number of 100000 variants value P I is the one to be detected 0.1% quantile U Q voltage value of the induced by the operating parameters P I variants voltages U (P I) below, and the remainder are in the 100 above. The value variants P I are transmitted from the variant generator GEN to a first simulator SIM1 of the configuration device CONV, which is coupled to it.
Neben dem ersten Simulator SIM1 verfügt die Konfigurationseinrichtung CONV über einen zweiten Simulator SIM2. Die Simulatoren SIM1 und SIM2 simulieren jeweils für verschiedene Wertvarianten PI jeweils ein dadurch induziertes Verhalten des technischen Systems SN. Im Rahmen der Simulationen ermittelt der erste Simulator SIM1 für eine jeweilige Wertvariante PI insbesondere einen jeweiligen ersten Schätzwert U1(PI) für den durch die jeweilige Wertvariante PI induzierten Bereitstellungsparameter U. Entsprechend ermittelt der zweite Simulator SIM2 für ausgewählte Wertvarianten PI jeweils einen zweiten Schätzwert U2(PI) für den durch die betreffende Wertvariante PI induzierten Bereitstellungsparameter U.In addition to the first simulator SIM1, the configuration device CONV has a second simulator SIM2. The simulators SIM1 and SIM2 each simulate a behavior of the technical system SN induced thereby for different value variants P I. Within the scope of the simulations, the first simulator SIM1 determines, for a respective value variant P I, in particular a respective first estimated value U1 (P I ) for the provision parameter U induced by the respective value variant P I. The second simulator determines accordingly SIM2 for selected value variants P I in each case a second estimated value U2 (P I ) for the provision parameter U induced by the relevant value variant P I.
Der erste Simulator SIM1 verfĂĽgt ĂĽber ein erstes Simulationsmodell SM1 des technischen Systems SN und der zweite Simulator SIM2 ĂĽber ein zweites Simulationsmodell SM2 des technischen Systems SN. Die Simulationen des ersten Simulators SIM1 und des zweiten Simulators SIM2 werden jeweils anhand des ersten Simulationsmodells SM1 bzw. des zweiten Simulationsmodells SIM2 ausgefĂĽhrt.The first simulator SIM1 has a first simulation model SM1 of the technical system SN and the second simulator SIM2 has a second simulation model SM2 of the technical system SN. The simulations of the first simulator SIM1 and of the second simulator SIM2 are each carried out using the first simulation model SM1 and the second simulation model SIM2.
Das zweite Simulationsmodell SM2 ist vorzugsweise ein detailliertes, im Allgemeinen nichtlineares Simulationsmodell des technischen Systems SN. Im vorliegenden Ausführungsbeispiel ist das zweite Simulationsmodell SM2 ein nichtlineares Lastflussmodell des Stromnetzes SN, das auf einem System von nichtlinearen Lastflussgleichungen des Stromnetzes SN basiert. Eine auf einem solchen nichtlinearen Simulationsmodell basierende Simulation erfordert in der Regel einen verhältnismäßig hohen Rechenaufwand. Im vorliegenden Fall wäre eine individuelle Simulation anhand des zweiten Simulators SIM2 für alle 100000 Wertvarianten PI hinsichtlich des erforderlichen Rechenaufwandes bei vielen Anwendungen kaum akzeptabel.The second simulation model SM2 is preferably a detailed, generally non-linear simulation model of the technical system SN. In the present exemplary embodiment, the second simulation model SM2 is a non-linear load flow model of the power network SN, which is based on a system of non-linear load flow equations of the power network SN. A simulation based on such a non-linear simulation model generally requires a relatively high computing effort. In the present case, an individual simulation using the second simulator SIM2 for all 100,000 value variants P I would hardly be acceptable with regard to the computational effort required for many applications.
Das erste Simulationsmodell SM1 des Stromnetzes SN ist ein gegenüber dem zweiten Simulationsmodell SM2 vereinfachtes oder reduziertes Simulationsmodell. Eine solche Vereinfachung oder Reduktion kann vorzugsweise durch eine Linearisierung der Lastflussgleichungen, auf denen das zweite Simulationsmodell SM2 basiert, erzielt werden. Eine Simulation anhand eines linearisierten Simulationsmodells, hier SM1, erfordert in der Regel erheblich weniger Rechenressourcen als eine Simulation anhand eines nichtlinearen Simulationsmodells, hier SM2. Insbesondere lassen sich anhand des ersten Simulationsmodells SM1 die ersten Schätzwerte U1(PI) in der Regel für alle Wertvarianten PI, das heißt hier für 100000 Wertvarianten, mit akzeptablem Aufwand ermitteln.The first simulation model SM1 of the power grid SN is a simplified or reduced simulation model compared to the second simulation model SM2. Such a simplification or reduction can preferably be achieved by linearizing the load flow equations on which the second simulation model SM2 is based. A simulation based on a linearized simulation model, here SM1, generally requires considerably fewer computing resources than a simulation based on a nonlinear simulation model, here SM2. In particular, using the first simulation model SM1, the first estimated values U1 (P I ) can usually be determined for all value variants P I , that is to say here for 100,000 value variants, with acceptable effort.
Das erste Simulationsmodell SM1 kann in vielen Fällen als Ersatzmodell für das zweite Simulationsmodell SM2 fungieren. Eine Simulation mittels des ersten Simulationsmodells SM1 ist allerdings im Allgemeinen weniger genau als eine Simulation mittels des zweiten Simulationsmodells SM2.The first simulation model SM1 can function as a substitute model for the second simulation model SM2 in many cases. However, a simulation using the first simulation model SM1 is generally less accurate than a simulation using the second simulation model SM2.
Eine Linearisierung der Lastflussgleichungen für das erste Simulationsmodell SM1 kann zum Beispiel dadurch erfolgen, dass höhere Terme einer Abweichung einer Netzspannung von einer Referenz-Netzspannung, Soll-Netzspannung oder einer anderen vorgegebenen Netzspannung vernachlässigt werden.The load flow equations for the first simulation model SM1 can be linearized, for example, by neglecting higher terms of a deviation of a network voltage from a reference network voltage, setpoint network voltage or another predetermined network voltage.
Beim Erstellen des ersten Simulationsmodells SM1 beziehungsweise beim Ableiten des ersten Simulationsmodells SM1 aus dem zweiten Simulationsmodell SM2 wird insbesondere angestrebt, dass sich beim Sortieren der anhand des zweiten Simulationsmodells SM2 ermittelten zweiten Schätzwerte U2 nach ihrer Größe idealerweise die gleiche Reihenfolge ergeben soll, wie beim Sortieren der anhand des ersten Simulationsmodells SM1 ermittelten Schätzwerte U1 nach deren Größe. Obwohl die vorstehende Sortierungsbedingung zwar in der Regel nicht exakt erfüllbar ist, zeigen die Sortierungen von U1 und U2 häufig zumindest eine gewisse tendenzielle Übereinstimmung. Es erweist sich, dass diese tendenzielle Übereinstimmung in vielen Fällen bereits ausreicht, um die Anzahl der erforderlichen detaillierten Simulationen durch den zweiten Simulator SIM2 erheblich zu verringern.When creating the first simulation model SM1 or when deriving the first simulation model SM1 from the second simulation model SM2, the aim is in particular that when sorting the second estimated values U2 determined using the second simulation model SM2 according to their size, the same sequence should ideally result as when sorting the estimated values U1 determined by means of the first simulation model SM1 according to their size. Although the above sorting condition cannot usually be met exactly, the sortings of U1 and U2 often show at least a certain tendency to match. It has been found that this tendency of agreement is already sufficient in many cases to considerably reduce the number of detailed simulations required by the second simulator SIM2.
Wie oben bereits erwähnt, werden die ersten Schätzwerte U1(PI) durch den ersten Simulator SIM1 anhand des ersten Simulationsmodells SM1 durch Simulation einer Dynamik des Stromnetzes SN ermittelt. Die ermittelten ersten Schätzwerte U1(PI) werden dann zusammen mit den Wertvarianten PI durch den ersten Simulator SIM1 zu einem mit diesem gekoppelten Sortiermodul SORT der Konfigurationseinrichtung CONV übermittelt.As already mentioned above, the first estimated values U1 (P I ) are determined by the first simulator SIM1 on the basis of the first simulation model SM1 by simulating a dynamic of the power grid SN. The first estimated values U1 (P I ) determined are then transmitted together with the value variants P I by the first simulator SIM1 to a sorting module SORT of the configuration device CONV that is coupled to this.
Anhand der ersten Schätzwerte U1(PI) sortiert das Sortiermodul SORT das Array der Wertvarianten PI nach der Größe der ersten Schätzwerte U1(PI). Durch diese Umsortierung des Arrays PI ergibt sich ein Array von sortierten Wertvarianten PSK mit einem Sortierungsindex K. Der Sortierungsindex K=1,...,100000 indiziert die nach den ersten Schätzwerten sortierten Wertvarianten PSK derart, dass die entsprechend sortierten ersten Schätzwerte U1(PSK) mit steigendem Sortierungsindex K monoton ansteigen.Using the first estimated values U1 (P I ), the sorting module SORT sorts the array of the value variants P I according to the size of the first estimated values U1 (P I ). This rearrangement of the array P I results in an array of sorted value variants PS K with a sorting index K. The sorting index K = 1, ..., 100000 indexes the value variants PS K sorted according to the first estimated values in such a way that the correspondingly sorted first estimated values U1 (PS K ) increase monotonically with increasing sorting index K.
Die sortierten ersten Schätzwerte U1(PSK) werden zusammen mit den sortierten Wertvarianten PSK vom Sortiermodul SORT zu einem an dieses gekoppelten Selektionsmodul SEL der Konfigurationseinrichtung CONV übermittelt. Das Selektionsmodul SEL dient zum Selektieren eines q-Quantils QP der sortierten Wertvarianten PSK sowie zum Selektieren einer Umgebung IVL des q-Quantils QP. Der Anteilswert q, hier 0,1%, wird durch das Selektionsmodul SEL eingelesen.The sorted first estimated values U1 (PS K ) are transmitted together with the sorted value variants PS K from the sorting module SORT to a selection module SEL of the configuration device CONV that is coupled to this. The selection module SEL is used to select a q-quantile QP of the sorted value variants PS K and to select an area IVL of the q-quantile QP. The proportional value q, here 0.1%, is read in by the SEL selection module.
Abhängig vom eingelesenen Anteilswert q wird das q-Quantil QP hinsichtlich der Sortierung der sortierten Wertvarianten PSK ermittelt, d.h. derart, dass ein Anteil von q der Sortierungsindizes K unterhalb des Quantil-Index liegt, der Rest oberhalb. Bei 100000 sortierten Wertvarianten PSK und einem Anteilswert von q=0,1% ist folglich QP=PS100.The q-quantile QP with regard to the sorting of the sorted value variants PS K is determined as a function of the read-in share value q, ie in such a way that a share of q of the sorting indices K is below the quantile index, the rest above. With 100,000 sorted value variants PS K and a proportional value of q = 0.1%, QP = PS 100 .
Die vorzugsweise symmetrische Umgebung IVL des Quantils QP wird ebenfalls hinsichtlich der Sortierung der sortierten Wertvarianten PSK selektiert. Erfindungsgemäß wird aus den sortierten Wertvarianten PSK eine Anzahl von Wertvarianten selektiert, die klein gegenüber der Anzahl aller Wertvarianten PI ist. Im vorliegenden Ausführungsbeispiel wird eine Umgebung IVL mit 101 sortierten Wertvarianten PSK selektiert, so dass IVL= (PS50,..., PS150) . Demgegenüber ist die Anzahl aller Wertvarianten um mehrere Größenordnungen größer.The preferably symmetrical environment IVL of the quantile QP is also selected with regard to the sorting of the sorted value variants PS K. According to the invention, a number of value variants is selected from the sorted value variants PS K which is small compared to the number of all value variants P I. In the present exemplary embodiment, an environment IVL with 101 sorted value variants PS K is selected, so that IVL = (PS 50 , ..., PS 150 ). In contrast, the number of all value variants is several orders of magnitude larger.
Die Anzahl der selektierten Wertvarianten PS50,...,PS150 bestimmt die Anzahl der erforderlichen, aufwendigen Simulationen durch den zweiten Simulator SIM2. Auf diese Weise kann im vorliegenden AusfĂĽhrungsbeispiel die Anzahl der aufwendigen Simulationen durch den zweiten Simulator SIM2 auf 1/1000 der Anzahl der Simulationen durch den vereinfachten, ersten Simulator SIM1 reduziert werden.The number of selected value variants PS 50 , ..., PS 150 determines the number of required, complex simulations through the second simulator SIM2. In this way, in the present exemplary embodiment, the number of complex simulations by the second simulator SIM2 can be reduced to 1/1000 of the number of simulations by the simplified, first simulator SIM1.
Das q-Quantil QP sowie dessen Umgebung IVL werden vom Selektionsmodul SEL zu dem an dieses gekoppelten zweiten Simulator SIM2 übermittelt. Der zweite Simulator SIM2 ermittelt für die selektierten Wertvarianten PS50,...,PS150 der Umgebung IVL jeweils zweite Schätzwerte U2 (PSK) für K=50,...,150. Für Wertvarianten außerhalb der Umgebung IVL wird keine aufwendige Simulation durch den zweiten Simulator SIM2 durchgeführt.The q-quantile QP and its environment IVL are transmitted from the selection module SEL to the second simulator SIM2 coupled to it. The second simulator SIM2 determines second estimated values U2 (PS K ) for K = 50, ..., 150 for the selected value variants PS 50 , ..., PS 150 of the environment IVL. No complex simulation is carried out by the second simulator SIM2 for value variants outside the environment IVL.
Die zweiten Schätzwerte U2(PSK) werden vorzugsweise als nach K bzw. U1(PSK) sortiertes Array gespeichert. In
Die nach dem Sortierungsindex K sortierten zweiten Schätzwerte U2(PSK) können als Funktion von K erhebliche Schwankungen aufweisen, da sie gewissermaßen nach der Größe der ersten Schätzwerte U1(PSK) sortiert sind, und die Sortierungen der ersten und der zweiten Schätzwerte - wie oben bereits erwähnt - in der Regel nicht exakt übereinstimmen.The second estimated values U2 (PS K ) sorted according to the sorting index K can show considerable fluctuations as a function of K, since they are sort of sorted according to the size of the first estimated values U1 (PS K ), and the sorting of the first and second estimated values - as mentioned above - usually do not match exactly.
Das q-Quantil QP sowie die zweiten Schätzwerte U2(IVL) werden vom zweiten Simulator SIM2 zu einem an diesen gekoppelten Ausgleichsmodul AM der Konfigurationseinrichtung CONV übermittelt. Das Ausgleichsmodul AM dient zur Ausgleichung von Schwankungen der nach den ersten Schätzwerten sortierten zweiten Schätzwerte U2(PSK). Zu diesem Zweck können die zweiten Schätzwerte U2(PSK) statistisch gemittelt werden. Alternativ oder zusätzlich kann ein Modell oder eine Modellkurve an einen Verlauf der zweiten Schätzwerte U2(PSK) derart angepasst werden, dass eine Abweichung zwischen Modell beziehungsweise Modellkurve und den zweiten Schätzwerten U2(PSK) möglichst gering ist. Für eine solche Anpassung, die häufig auch als Fitting oder Regression bezeichnet wird, stehen eine Vielzahl von Standardverfahren zur Verfügung.The q-quantile QP and the second estimated values U2 (IVL) are transmitted from the second simulator SIM2 to a compensation module AM of the configuration device CONV, which is coupled to this. The compensation module AM is used to compensate for fluctuations in the second estimated values U2 (PS K ) sorted according to the first estimated values. For this purpose, the second estimated values U2 (PS K ) can be statistically averaged. Alternatively or additionally, a model or a model curve can be adapted to a course of the second estimated values U2 (PS K ) in such a way that a deviation between the model or model curve and the second estimated values U2 (PS K ) is as small as possible. For such an adjustment that often Also known as fitting or regression, a variety of standard methods are available.
Im vorliegenden Ausführungsbeispiel werden die Schwankungen der zweiten Schätzwerte U2(PSK) durch eine Ausgleichskurve AK, zum Beispiel eine Ausgleichsparabel ausgeglichen. Die Kurvenparameter der Ausgleichskurve AK werden so bestimmt, dass Abweichungen zwischen der Ausgleichskurve AK und den zweiten Schätzwerten U2 (PSK) für K=50,..., 150 minimal sind. Die Ausgleichskurve AK wird durch das Ausgleichsmodul AM am Quantil QP der selektierten Wertvarianten, das heißt bei K=100 ausgewertet. Als Resultat dieser Auswertung ergibt sich ein dritter Schätzwert UQ=AK(PS100). Der dritte Schätzwert UQ ist damit ein Wert für das gesuchte q-Quantil des Bereitstellungsparameters U.In the present exemplary embodiment, the fluctuations in the second estimated values U2 (PS K ) are compensated for by a compensation curve AK, for example a compensation parabola. The curve parameters of the compensation curve AK are determined in such a way that deviations between the compensation curve AK and the second estimated values U2 (PS K ) for K = 50,..., 150 are minimal. The compensation curve AK is evaluated by the compensation module AM at the quantile QP of the selected value variants, that is, when K = 100. The result of this evaluation is a third estimated value U Q = AK (PS 100 ). The third estimated value U Q is thus a value for the q-quantile sought for the provision parameter U.
Es erweist sich, dass ein Großteil der Fehler, die durch das Nichterfüllen der oben erwähnten Sortierungsbedingung entstanden ist, durch die Ausgleichskurve AK kompensiert werden kann. Durch den erfindungsgemäßen Schwankungsausgleich lässt sich daher das q-Quantil UQ in der Regel sehr genau ermitteln.It has been found that the majority of the errors that have arisen as a result of the above-mentioned sorting condition not being met can be compensated for by the compensation curve AK. The q-quantile U Q can therefore usually be determined very precisely by means of the fluctuation compensation according to the invention.
Weiterhin wird durch das Ausgleichsmodul AM eine Schwankungsbreite der zweiten Schätzwerte U2(IVL) bestimmt, zum Beispiel als mittlere Abweichung zwischen der Ausgleichskurve AK und der Kurve der zweiten Schätzwerte U2(IVL). Alternativ oder zusätzlich kann auch eine Varianz, Streuung oder Standardabweichung der zweiten Schätzwerte U2(IVL) als Schwankungsbreite bestimmt werden. Die Schwankungsbreite bildet ein Maß DU für eine Genauigkeit des dritten Schätzwertes UQ, das ohne großen Zusatzaufwand im Rahmen des erfindungsgemäßen Verfahrens ermittelt werden kann.Furthermore, the compensation module AM determines a fluctuation range of the second estimated values U2 (IVL), for example as the mean deviation between the compensation curve AK and the curve of the second estimated values U2 (IVL). As an alternative or in addition, a variance, scatter or standard deviation of the second estimated values U2 (IVL) can also be determined as the fluctuation range. The fluctuation range forms a measure DU for an accuracy of the third estimated value U Q , which can be determined within the scope of the method according to the invention without great additional effort.
Der dritte Schätzwert UQ sowie das Genauigkeitsmaß DU werden als Konfigurationsparameter von der Konfigurationseinrichtung CONV an die Steuereinrichtung CTL zur Konfiguration des Stromnetzes SN übermittelt.The third estimated value U Q and the degree of accuracy DU are transmitted as configuration parameters from the configuration device CONV to the control device CTL for configuring the power network SN.
Auf der Abszisse des Diagramms ist der Sortierungsindex K aufgetragen und auf der Ordinate die Spannung U am Verbrauchernetzknoten L in einem sogenannten Per-Unit-System. Ein solches Per-Unit-System, abgekürzt "pu", gibt die Spannung U bezogen auf einen vorgegebenen Bezugswert an.The sorting index K is plotted on the abscissa of the diagram and the voltage U at the consumer network node L in a so-called per-unit system is plotted on the ordinate. Such a per-unit system, abbreviated “pu”, specifies the voltage U in relation to a predetermined reference value.
Da die sortierten Wertvarianten PSK nach der Größe der ersten Schätzwerte U1 sortiert sind, ist U1(PSK) als Funktion von K - wie in
Die Schwankungen der zweiten Schätzwerte U2(PSK) werden durch die Ausgleichsparabel AK weitgehend kompensiert. Durch Auswertung der Ausgleichsparabel AK am q-Quantil QP ergibt sich der dritte Schätzwert UQ.The fluctuations in the second estimated values U2 (PS K ) are largely compensated for by the compensation parabola AK. The third estimated value U Q is obtained by evaluating the compensation parabola AK at the q-quantile QP.
Zur Veranschaulichung der Genauigkeit des dritten Schätzwertes UQ ist in
Eine Auswertung des Verlaufs der zweiten Schätzwerte US2 am Anteilswert q resultiert in einem q-Quantil QUS2, hier einem 0,1%-Quantil, der zweiten Schätzwerte US2. Insofern die zweiten Schätzwerte US2 durch den genaueren zweiten Simulator SIM2 ermittelt wurden, kann das q-Quantil QUS2 als verhältnismäßig genauer Referenzwert für das gesuchte q-Quantil der Spannung U aufgefasst werden.An evaluation of the course of the second estimated values US2 on the proportional value q results in a q-quantile QUS2, here a 0.1% quantile, of the second estimated values US2. Insofar as the second estimated values US2 were determined by the more precise second simulator SIM2, the q-quantile QUS2 can be understood as a relatively precise reference value for the q-quantile of the voltage U sought.
Es sei darauf hingewiesen, dass die Darstellung der zweiten Schätzwerte US2 in
Es zeigt sich, dass der dritte Schätzwert UQ nur eine sehr geringe Abweichung von dem durch genaue Simulation ermittelten q-Quantil QUS2 hat. UQ ist somit ein sehr guter Schätzwert, der mit erheblich geringerem Aufwand ermittelt werden kann als das q-Quantil QUS2. Mittels der Erfindung kann also eine hohe Genauigkeit mit einem verhältnismäßig geringen Rechenaufwand erzielt werden. Darüber hinaus steht mit der Größe DU auch ein Maß für die Genauigkeit des ermittelten dritten Schätzwertes UQ zur Verfügung und kann bei der Konfiguration des technischen Systems SN in vorteilhafter Weise berücksichtigt werden.It can be seen that the third estimated value U Q deviates only very slightly from the q-quantile QUS2 determined by precise simulation. U Q is therefore a very good estimated value that can be determined with considerably less effort than the q-quantile QUS2. By means of the invention, a high degree of accuracy can be achieved with a relatively low computational effort. In addition, the variable DU also provides a measure of the accuracy of the determined third estimated value U Q and can advantageously be taken into account in the configuration of the technical system SN.
Claims (13)
- Method for the computer-aided configuration of a technical system (SN), whereina) a proportion value (q) specifying an availability of a provision parameter (U) of the technical system (SN) is read in,b) a multiplicity of value variants (PI) of an operating parameter (PG, PW, PL) of the technical system (SN) are generated,c) a respective first estimate (U1) for the provision parameter (U) is determined for a respective value variant (PI) by a first simulator (SIM1) of the technical system (SN) and is assigned to the respective value variant (PI),d) at least some of the value variants (PI) are sorted according to the respectively assigned first estimates (U1),e) a quantile (QP) for the sorted value variants (PSK) that corresponds to the proportion value (q) is determined,f) multiple value variants (PS50,...,PS150) that are in a vicinity (IVL) of the quantile (QP) in respect of the sorting are selected,g) a respective second estimate (U2) for the provision parameter (U) is determined for a respective selected value variant (PS50,...,PS150) by a second simulator (SIM2) of the technical system (SN),h) a third estimate (UQ) for the provision parameter (U) is determined by equalizing variations in the second estimates (U2), andi) the third estimate (UQ) is output as a configuration parameter for configuring the technical system (SN).
- Method according to Claim 1, characterized
in that the technical system (SN) configured is a supply network having multiple network nodes,
in that the operating parameter specifies a feed of, an extraction of or a need for a supply item at a network node, and
in that the provision parameter specifies a property or quality level of the supply item provided at a network node or at a node connection. - Method according to Claim 2, characterized
in that the supply network configured is a power grid (SN),
in that the operating parameter specifies a feed power (PG, PW) or extraction power (PL) at a network node (G, W, L), and in that the provision parameter specifies a voltage (U), a real power, a reactive power, an apparent power or a current at a network node (G, W, L) or at a node connection (C). - Method according to one of the preceding claims, characterized in that
the first simulator (SIM1) determines the first estimates (U1) on the basis of a simulation model (SM1) that is simplified in comparison with a simulation model (SM2) of the second simulator (SIM2). - Method according to Claim 4, characterized in that
the simplified simulation model (SM1) used is a linearized simulation model. - Method according to one of the preceding claims, characterized in that
the value variants (PI) are generated in accordance with a prescribed frequency distribution (DST) and/or in accordance with a prescribed constraint. - Method according to one of the preceding claims, characterized
in that a variability of the second estimates (U2) is determined and
in that the variability is taken as a basis for deriving a measure (DU) of an accuracy of the third estimate (UQ) and outputting it for configuring the technical system (SN). - Method according to one of the preceding claims, characterized
in that the variations are equalized on the basis of an equalization curve (AK) for the second estimates (U2). - Method according to Claim 8, characterized
in that the third estimate (UQ) is determined by evaluating the equalization curve (AK) using the quantile (QP) of the sorted value variants (PSK). - Method for the computer-aided configuration of a technical system (SN), whereina) a proportion value (q) specifying an availability of a provision parameter (U) of the technical system (SN) is read in,b) a multiplicity of value variants (PI) of an operating parameter (PG, PW, PL) of the technical system (SN) are generated,c) a respective first estimate (U1) for the provision parameter (U) is determined for a respective value variant (PI) by a first simulator (SIM1) of the technical system (SN) and is assigned to the respective value variant (PI),d) at least some of the value variants (PI) are sorted according to the respectively assigned first estimates (U1),e) a quantile (QP) for the sorted value variants (PSK) that corresponds to the proportion value (q) is determined,f) multiple value variants (PS50,...,PS150) that are in a vicinity (IVL) of the quantile (QP) in respect of the sorting are selected,g) a respective measured value for the provision parameter (U) of the technical system (SN) is determined for a respective selected value variant (PS50,...,PS150),h) a third estimate (UQ) for the provision parameter (U) is determined by equalizing variations in the measured values, andi) the third estimate (UQ) is output as a configuration parameter for configuring the technical system (SN).
- Arrangement for the computer-aided configuration of a technical system, designed to carry out a method according to one of the preceding claims.
- Computer program product designed to carry out a method according to one of Claims 1 to 10.
- Computer-readable storage medium having a computer program product according to Claim 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17178708.8A EP3422123B1 (en) | 2017-06-29 | 2017-06-29 | Method and assembly for the computer-assisted configuring of a technical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17178708.8A EP3422123B1 (en) | 2017-06-29 | 2017-06-29 | Method and assembly for the computer-assisted configuring of a technical system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3422123A1 EP3422123A1 (en) | 2019-01-02 |
EP3422123B1 true EP3422123B1 (en) | 2020-09-23 |
Family
ID=59325119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17178708.8A Active EP3422123B1 (en) | 2017-06-29 | 2017-06-29 | Method and assembly for the computer-assisted configuring of a technical system |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3422123B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001084468A1 (en) * | 2000-05-04 | 2001-11-08 | The Regents Of The University Of California | Optimizing the availability of a buffered industrial process |
EP3002649B1 (en) * | 2014-10-01 | 2018-09-26 | Rockwell Automation Technologies, Inc. | Industrial simulation using redirected i/o module configurations |
-
2017
- 2017-06-29 EP EP17178708.8A patent/EP3422123B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3422123A1 (en) | 2019-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3154147B1 (en) | Method and control device for controlling a power grid | |
Chen et al. | Reliable control design of fuzzy dynamic systems with time-varying delay | |
DE102019125577B3 (en) | Method and device for controlling a modular multilevel converter by means of neural networks | |
EP3125397B1 (en) | Method, data processing assembly and computer program product for retrofitting an electrical energy network | |
DE102016118613A1 (en) | System and method for determining or monitoring a process variable in a plant of automation technology | |
DE112014002933T5 (en) | Converter station power setpoint analysis system and method | |
DE102011002842B4 (en) | Simulation model for a wind turbine as well as production and use | |
EP3429050B1 (en) | Method for controlling the power output of a wind farm and corresponding wind farm | |
EP3075053B1 (en) | Method for computer-assisted configuration of an electrical power grid | |
EP2867971B1 (en) | Control of a plurality of inverters connected to a common network interconnection point | |
DE112012006178T5 (en) | parameter setting | |
EP2628224B1 (en) | Method and apparatus for status signal generation | |
DE112018005230T5 (en) | TREND FUNCTIONS TO PREDICT THE INTAKITY OF ELECTRICAL POWER PLANTS | |
DE102013211840A1 (en) | Method and device for controlling power generators of a subnetwork within a network network | |
EP3376026B1 (en) | Method for controlling the power output of a wind farm and corresponding wind farm | |
EP3422123B1 (en) | Method and assembly for the computer-assisted configuring of a technical system | |
DE102011007434A1 (en) | Method for creating software-simulation module for simulating correlation between input and output variables and/or behavior of wind energy plant in energy supply network, involves forming model from transfer and combination functions | |
EP3418924A1 (en) | Computer-implemented method for simulation of an entire electronic circuit | |
AT511910B1 (en) | METHOD FOR DETERMINING CHARACTERISTICS FOR POWER SUPPLY NETWORKS AND SYSTEM FOR CARRYING OUT SAID METHOD | |
DE102016207740A1 (en) | Method for determining a model | |
EP3226374B1 (en) | Method and control device for controlling a power grid | |
EP3667851B1 (en) | Creation of dynamic models of network nodes in a low and / or medium voltage distribution network by use of a self learning algorithm | |
EP3528063B1 (en) | Method for the computer-aided creation of a forecast model for forecasting one or more target variables | |
EP4060559B1 (en) | Training data set, training and artificial neural network for estimating the condition of a power network | |
DE102015208466A1 (en) | Simulation device and control device for a power network and method for operating the simulation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190701 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200520 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017007371 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1317016 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210125 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017007371 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
26N | No opposition filed |
Effective date: 20210624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210629 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200923 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170629 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1317016 Country of ref document: AT Kind code of ref document: T Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240617 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200923 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240625 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240819 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240704 Year of fee payment: 8 |