EP3419122B1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
EP3419122B1
EP3419122B1 EP18178817.5A EP18178817A EP3419122B1 EP 3419122 B1 EP3419122 B1 EP 3419122B1 EP 18178817 A EP18178817 A EP 18178817A EP 3419122 B1 EP3419122 B1 EP 3419122B1
Authority
EP
European Patent Office
Prior art keywords
optical
cavity
mirror
optical device
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18178817.5A
Other languages
German (de)
French (fr)
Other versions
EP3419122A1 (en
Inventor
Dmitri Permogorov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Redwave Labs Ltd
Original Assignee
Redwave Labs Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Redwave Labs Ltd filed Critical Redwave Labs Ltd
Publication of EP3419122A1 publication Critical patent/EP3419122A1/en
Application granted granted Critical
Publication of EP3419122B1 publication Critical patent/EP3419122B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0656Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips

Definitions

  • the invention relates an optical device for generating a narrow linewidth laser beam.
  • the invention relates to an optical device in which an all-optical feedback technique is used to narrow the linewidth output from a laser diode.
  • DBR distributed Bragg
  • CMOS complementary metal-oxide-semiconductor
  • DBR distributed Bragg
  • These lasers may operate at wavelength from 400 to 1600 nm, and typically having a linewidth of the order of MHz.
  • the linewidths that can be achieved in such device is typically limited by the grating.
  • Narrow linewidth laser find application in a variety of fields, such as sensors, metrology and communications.
  • US 4,907,237 discloses apparatus for stabilising the frequency of a semiconductor laser by feeding back to the laser an output from an external resonator.
  • US 2011/0216311 A1 discloses an apparatus for photo-acoustic identification in which a laser source is modulated to introduce a periodic optical power variation in an optical cavity. A signal from the optical cavity is fed back to the laser improve injection efficiency into the cavity.
  • US 2005/0073687 A1 discloses a gas detector in which a semiconductor laser is coupled to an optical cavity to operate in a cavity mode.
  • the present invention provides a narrow linewidth laser in which an all-optical feedback line-up is used to improve the linewidth from a conventional laser source, such as a laser diode.
  • the optical device comprises: a laser source; a passive optical cavity in optical communication with the laser source along a cavity input path; and an unbalanced optical coupler on the cavity input path, wherein the unbalanced optical coupler is arranged to couple a source signal from the laser source into the optical cavity, and to couple a seed signal received back from the optical cavity into the laser source, and wherein the seed signal has a lower power than the source signal.
  • the optical cavity is a resonant structure that acts to filter the source signal to yield the seed signal.
  • the seed signal may thus have a narrower linewidth than the source signal.
  • the seed signal is used as a feedback mechanism, and is injected directly into the lasing cavity.
  • Providing a narrower linewidth seed signal within the cavity acts to promote preferential stimulated emission within the narrower linewidth.
  • the feedback may thus act to cause the source signal itself to have a narrow linewidth.
  • these effects enable the optical device to provide a narrow linewidth laser in which the laser linewidth is substantially narrower than can be obtained from the laser source alone.
  • the linewidth of radiation from the optical device of the invention may be equal to or less than 600 kHz. It may lie in the range 300-500 kHz.
  • the unbalanced optical coupler is an optical isolator.
  • the unbalanced optical coupler may be arranged to couple the seed signal into the laser source at a power level selected to promote preferential stimulated emission within a narrower linewidth.
  • the power level may be selected in conjunction with information about losses associated with a lasing cavity of the laser source. This is to ensure that the seed signal is not lost in the cavity, and to ensure that it does not dominate the lasing process.
  • the laser emission may still be adjustable over a useful range, e.g. to permit fine tuning of the laser emission to coincide exactly with cavity resonances. Having smaller feedback signal allows wider fine tuning (by laser current or temperature) to get exactly to the required wavelength.
  • the narrowing effect of the preferential stimulated emission can be enhanced.
  • Different types of laser may require different amount of feedback for optimal operation.
  • the control provided by an optical isolator placed between cavity and the laser source enables the feedback to be varied so that the device is operable with a variety of laser sources.
  • the seed signal may have an optical power than is 20 dB or more less than the optical power of the source signal, preferably 30 dB less, i.e. 1000 times less.
  • the optical isolator may allow the seed signal optical power to vary from 0.1% to about 10% of the source signal optical power.
  • the unbalanced optical coupler is arranged to ensure that the source signal has a first power that is equal to or greater than three orders of magnitude higher than the seed signal.
  • reference to a passive optical cavity may means that the optical cavity is not optically active, i.e. does not support stimulated emission at optical frequencies.
  • the optical device may be provided or packaged as a single unit or module.
  • the optical device may comprise a substrate on which the components are disposed.
  • the substrate may be encased in a suitable housing to protect the components.
  • the housing may have suitable input and output ports for connecting energy supply and for outputting an optical signal.
  • the laser source may be mounted on the substrate.
  • the laser source may comprise a laser diode, e.g. a distributed feedback laser diode or the like.
  • the laser source may be an off the shelf laser diode module, e.g. in TO-5 packaging or the like.
  • the optical cavity may be mounted on the substrate.
  • the substrate may be made from any suitable material. However, it may be advantageous to form the substrate from fused silica (quartz).
  • the optical cavity may be formed integrally with the substrate, e.g. as a dielectric body that is part of the substrate.
  • the optical device may be compact.
  • the substrate may have a mounting area for receiving the laser and optical cavity, the mounting area having a size equal to or less than 50 mm ⁇ 40 mm. The whole footprint of the device may fall within this size.
  • the optical cavity may comprise an output coupler arranged to transmit an output signal.
  • the output signal may have the narrow linewidth discussed above.
  • the optical cavity may have any suitable configuration.
  • it may be configured as a Fabry-Perot cavity, e.g. with an optical path defined between one or more planar reflectors.
  • Any suitable reflector may be used, provided it has the required reflectivity. It is desirable for reflectivity to be very high, i.e. equal to or greater than 99.95%.
  • Each reflector may be a mirror, e.g. an optical element having a reflective coating formed on a surface (e.g. a planar and/or curved surface) thereof.
  • the optical cavity may comprise an optical path between a first cavity mirror and a second cavity mirror via an intermediate mirror.
  • the first cavity mirror may be transmissive through is back surface to permit the source signal to enter into the optical cavity.
  • the first cavity mirror, second cavity mirror, and the intermediate mirror may be transmissive through is back surface to permit the source signal to enter into the optical cavity.
  • the optical path may be in free space, or may be defined by a waveguide in order to minimise losses.
  • the waveguide may comprise a hole formed in a dielectric body.
  • the dielectric body may be an integral part of the substrate, as mentioned above.
  • the first cavity mirror, second cavity mirror, and the intermediate mirror may be mounted on, e.g. secured or bonded to, the dielectric body.
  • the optical path may comprise a first path portion extending between the first cavity mirror and the intermediate mirror, and a second path portion extending between the intermediate mirror and the second cavity mirror, wherein the first path portion is disposed at an acute angle relative to the second path portion.
  • the optical path may thus have a V-shape. This may be advantageous for provided a compact structure.
  • the optical cavity may have a resonant optical frequency that is within an output bandwidth of the laser source, and preferably matched to the laser frequency itself. This may maximise the effectiveness of the feedback.
  • the optical device may comprise other optical elements.
  • the optical device may include beam shaping optics mounted on the cavity input path between the laser source and the optical cavity.
  • the beam shaping optics may include a first lens and a second lens, mounted before and after the unbalanced optical coupler along the cavity input path.
  • the beam shaping optics may be arranged to ensure that the source signal is a light beam with the correct shape (e.g. beam width) to be received by the optical cavity.
  • the optical device may include a phase adjuster mounted on the cavity input path, wherein the phase adjuster includes an adjustable optical element for varying an optical length of the cavity input path.
  • the adjustable optical element may be mounted on a piezoelectric adjuster, whose position on the substrate can be finely controlled through application of a voltage.
  • the phase adjuster can be controller in real time both during initial set up and to perform adjustments to compensate for changes in temperature or the like.
  • the optical device may comprise a controller arranged to monitor and adjust operation of the laser and other components.
  • the controller may be arranged to control the phase adjuster.
  • the device may have a power port for receiving electrical power from an external supply.
  • the controller may be arranged to control the power supply to the laser to control an intensity of the source signal.
  • One or more photodetectors may be mounted in the device to measure the source signal and/or the optical radiation within the optical cavity.
  • the optical device may find use in any context where a very narrow linewidth is desirable.
  • the device may be used in a gas sensor, e.g. a trace gas sensor, where the waveguide path is open to the environment to be sensed.
  • the device may also find use in distance sensing applications, or gravimetry, or in quantum computing.
  • the present invention relates to an optical device configured to output a narrow linewidth laser beam using an all-optical technique.
  • the optical device may be provided in a compact package, in which the linewidth narrowing optics are provided or integrated on the same substrate as a laser source, such as a diode laser.
  • Fig. 1 is a schematic plan view of a narrow linewidth laser optical source 100 that is an embodiment of the invention.
  • the optical source 100 comprises a substrate 102, e.g. made from fused silica. Components of the optical source 100 are either mounted or integrally formed on the substrate 102, as explained below.
  • a laser 106 is mounted on the substrate 102.
  • the laser 106 may be a laser diode, such as a distributed feedback (DFB) laser diode, although other types of laser may be used, in which the gain of the laser is spectrally wider than the feedback (seed) signal.
  • the laser 106 can be an off-the-shelf component that is bonded to the substrate.
  • the laser 106 may be a TO-5 laser diode package mounted on the substrate 102 and connected to an input power port 104 to receive electrical power for operation.
  • the laser may be fabricated directly on the substrate.
  • the laser may operate at any suitable wavelength, e.g. 760 nm, 1064 nm, 1310 nm, 1550 nm, or any other wavelength used in fibre optic communication or for optical sensing purposes.
  • the laser 106 In operation, the laser 106 generates and emits a source signal, which is a laser light beam that is directed through an optical feedback line-up that is arranged to return a seed signal to the laser 106 in order to narrow the linewidth of the source signal.
  • a source signal which is a laser light beam that is directed through an optical feedback line-up that is arranged to return a seed signal to the laser 106 in order to narrow the linewidth of the source signal.
  • the source signal from the laser 106 is directed into a first lens 108 which is a mode matching lens for beam shaping.
  • the output from the first lens 108 is directed into a second lens 112.
  • first lens 108 and second lens 112 ensure that the source signal forms a laser beam having the correct size for entering an optical cavity 124, as discussed below.
  • An optical isolator 110 is mounted between the first lens 108 and the second lens 112. Mounting the optical isolator in this location means that it can have a small size because the waist size of the optical beam may be at a minimum (e.g. around 0.3 mm) between the first lens 108 and second lens 112. In other examples. the optical isolator may be inserted in other positions, e.g. close to the cavity. But in these examples, the physical size of the optical isolator will be larger.
  • the optical isolator 110 is arranged to inhibit propagation of optical radiation back towards the laser 106. As discussed below, the optical isolator 110 acts to limit an intensity of the seed signal returned from the optical feedback line-up.
  • the optical isolator 110 may be designed to block a certain wavelength that is at or closely adjacent to the wavelength of the laser, whereby the degree of isolation at the wavelength of the laser is appropriate to allow sufficient optical isolation and good fine tuning range for the wavelength.
  • the seed signal may have a power that is more than three orders of magnitude smaller than the source signal.
  • the source signal transmitted by the optical isolator 110 may have a power of 10 mW, and the seed signal that is returned through the optical isolator 110 may have a power of 1 ⁇ W.
  • the optical isolator 110 thus acts as an unbalanced optical coupler in which reflected optical power returning to the laser is attenuated or limited to a greater extent than transmitted optical power from the laser.
  • the source signal form the second lens 112 is directed into a phase adjuster unit 114.
  • the phase adjuster unit 114 comprises a static mirror 116 and an adjustable mirror 118.
  • the adjustable mirror 118 is mounted on a movable platform, so that its position relative to the static mirror 116 can be adjusted.
  • the movable platform may be controlled by a piezoelectric adjuster, in a conventional manner.
  • the source signal transmitted by the phase adjuster unit 114 is directed into an optical cavity 124 through a first cavity mirror 120.
  • the optical cavity 124 is a passive Fabry-Perot cavity formed between a pair of cavity mirrors having very high reflectivity.
  • the Fabry-Perot cavity is formed between the first cavity mirror 120 and a second cavity mirror 122, which may be curved to provide a narrow resonance condition for the cavity.
  • the optical path between the first cavity mirror 120 and the second cavity mirror 122 includes a reflection at an intermediate mirror 128.
  • the optical path between the first cavity mirror 120 and the second cavity mirror 122 is V-shaped, i.e. has two path portions extending at an acute angle relative to each other. All of the mirrors in the optical cavity 124 have a very high reflectivity, e.g. equal to or greater than 99.995%.
  • the optical cavity 124 in the example shown in Fig. 1 comprises an optical path between the first cavity mirror 120 and second cavity mirror 122 provided by a waveguide 126.
  • the waveguide 126 in this example is a hole (e.g. filled with air) formed in (e.g. drilled in) a block of dielectric material.
  • the dielectric material is fused silica (and indeed may be an integral part of the substrate 102), but other materials may be used.
  • the mirrors may be fabricated directed on to the waveguide or substrate. However, in a preferred arrangement, the mirrors area attached to the substrate via three independent mounts, which may be adjustable to compensate for manufacturing tolerances.
  • a distance between the second lens 112 and the first cavity mirror 120 is set to be equal to the length of the optical cavity (i.e. the distance between the first cavity mirror 120 and the second cavity mirror 122 along the waveguide 126).
  • Fig. 1 is a schematic drawing and does not show this distance to scale.
  • the distance between the second lens 112 and the first cavity mirror 120 can be set at a coarse level during assembly of the components on the substrate 102. Fine adjustment can be done during laser operations, e.g. by adjusting the position of adjustable mirror 118 by applying a suitable voltage to the piezoelectric adjuster. In this way, the distance between the second lens 112 and the first cavity mirror 120 can be precisely matched to the length of the optical cavity.
  • the intermediate mirror 128 also acts as an output coupler for transmitting an output signal from the waveguide.
  • the passive Fabry-Perot cavity with virtually loss-free mirrors possesses a comb-type transmission function with very narrow and sharp peaks.
  • the cavity acts as a filter to reduce the background amplified spontaneous emission (ASE) associated with the source signal.
  • ASE background amplified spontaneous emission
  • This filtered signal is used as the seed signal that is feed back to the laser 106.
  • the seed signal acts to enhance the natural loss mechanism within the lasing cavity itself, which has the effect of narrowing the linewidth of the source signal that is emitted from the laser 106.
  • the effect of the feedback seed signal in the laser and the filtering function of the optical cavity act to narrow the linewidth of the output signal using only optical techniques.
  • Fig. 2 is a graph of output intensity against frequency that illustrates the effects described above.
  • operation above lasing threshold yields a band of frequencies associated with the stimulated emission and amplified spontaneous emission (ASE).
  • lasers include means for restricting the band 202 by absorbing or filtering the unwanted background ASE radiation.
  • a distributed feedback laser diode this is done using a grating, which operates as a narrow band reflector.
  • a typical transmission function 204 for such a grating is shown in Fig. 2 .
  • Using such a grating has the effect of narrowing the output linewidth, as shown by the typical laser diode output 206 shown in Fig. 2 .
  • Laser diode output 206 has a linewidth of w 1 , which in practice may be about 1 MHz.
  • the filtering function of the passive Fabry-Perot cavity discussed above will have a linewidth of about 30 kHz. This is shown schematically (i.e. not to scale) in Fig. 2 as a seed signal 208 having linewidth of w 2 .
  • the optical source of the invention may thus be used to generate a laser beam having a linewidth in the range 0.3 to 0.6 kHz (i.e. 300-600 Hz) using a conventional laser diode.
  • the narrowing effect may be achieved by selecting an optical isolator that provides the desired response at the wavelength of the laser. This may be an optical isolator designed to inhibit transmission of a different wavelength (e.g. within 1 to 5 nm of the laser wavelength).
  • Laser operation may be controlled in real time by providing a pair of photodiodes 130, 132.
  • a first photodiode 130 is mounted to monitor optical radiation in the cavity.
  • the first photodiode may be mounted at the second cavity mirror 122, where it can receive the tiny loss signal as an input.
  • a second photodiode 132 may be mounted to monitor operation of the laser 106 itself.
  • the photodiodes 130, 132 provide measurements of intensity that allow control of the intensity and stability of the laser.
  • the device As discussed above, all the components of the device are mounted on the fused silica substrate 102. Furthermore, all supporting elements for lenses, mirrors, photodiodes and laser are preferably made of fused silica as well.
  • the device is thus constructed as far as possible using a common material, which means that it has a uniform temperature expansion coefficient.
  • the device may be arranged to adjust for variations in temperature in a conventional manner.
  • the device can be provided in a compact package.
  • the substrate may have a length L of equal to or less than 50 mm and a width W equal to or less than 40 mm.
  • the device may find use in any context where a narrow linewidth is desirable.
  • the device may be used as or in an optical sensor, e.g. for detecting the presence of one or more chemical materials, particularly gaseous materials. Changes in the dielectric constant of the material through which the optical radiation propagates in the optical cavity can be detected as shifts in the output frequency. Providing a narrower linewidth permits detection to be achieved with greater sensitivity.
  • Another possible application of the invention lies in acousto-optic sensing, where laser light is launched into an optical fibre and reflection back from the same fibre is measured. Interrogation of the reflected signal can permit one to 'listen' to what is happening along the fibre length.
  • This technique can be used with fibre lengths up to 50 km, where areas of potential problem can be located within a resolution of 1-2 metres, and acoustic frequencies of up to 2 kHz can be resolved.
  • the present invention can provide a purer input signal when applied in this field, e.g. because the cavity ensures that the signal has a very high side mode suppression ratio as well as providing very high filtering of Amplified Spontaneous Emission (ASE).
  • ASE Amplified Spontaneous Emission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Lasers (AREA)

Description

    FIELD OF THE INVENTION
  • The invention relates an optical device for generating a narrow linewidth laser beam. In particular, the invention relates to an optical device in which an all-optical feedback technique is used to narrow the linewidth output from a laser diode.
  • BACKGROUND TO THE INVENTION
  • The use of laser light in modern technology is ubiquitous. Some uses require the light output from the laser to occupy a very limited optical spectrum, i.e. to have a very small frequency bandwidth (referred to herein as a linewidth). Such lasers are typically known as "narrow linewidth" lasers.
  • Known types of semiconductor-based narrow linewidth lasers include distributed feedback (DFB) laser diodes and distributed Bragg (DBR) reflector lasers. These lasers may operate at wavelength from 400 to 1600 nm, and typically having a linewidth of the order of MHz. The linewidths that can be achieved in such device is typically limited by the grating.
  • Even narrower linewidth can be achieved using electro-optical modulation techniques, although this typically requires large cavities to be used together with additional high frequency modulation electronics.
  • Narrow linewidth laser find application in a variety of fields, such as sensors, metrology and communications.
  • US 4,907,237 discloses apparatus for stabilising the frequency of a semiconductor laser by feeding back to the laser an output from an external resonator.
  • US 2011/0216311 A1 discloses an apparatus for photo-acoustic identification in which a laser source is modulated to introduce a periodic optical power variation in an optical cavity. A signal from the optical cavity is fed back to the laser improve injection efficiency into the cavity.
  • US 2005/0073687 A1 discloses a gas detector in which a semiconductor laser is coupled to an optical cavity to operate in a cavity mode.
  • SUMMARY OF THE INVENTION
  • At its most general, the present invention provides a narrow linewidth laser in which an all-optical feedback line-up is used to improve the linewidth from a conventional laser source, such as a laser diode.
  • According to the invention there is provided an optical device as set out in claim 1. Preferred embodiments are defined in the dependent claims.
  • The optical device comprises: a laser source; a passive optical cavity in optical communication with the laser source along a cavity input path; and an unbalanced optical coupler on the cavity input path, wherein the unbalanced optical coupler is arranged to couple a source signal from the laser source into the optical cavity, and to couple a seed signal received back from the optical cavity into the laser source, and wherein the seed signal has a lower power than the source signal. The optical cavity is a resonant structure that acts to filter the source signal to yield the seed signal. The seed signal may thus have a narrower linewidth than the source signal. The seed signal is used as a feedback mechanism, and is injected directly into the lasing cavity. Providing a narrower linewidth seed signal within the cavity acts to promote preferential stimulated emission within the narrower linewidth. The feedback may thus act to cause the source signal itself to have a narrow linewidth. In combination, these effects enable the optical device to provide a narrow linewidth laser in which the laser linewidth is substantially narrower than can be obtained from the laser source alone. For example, the linewidth of radiation from the optical device of the invention may be equal to or less than 600 kHz. It may lie in the range 300-500 kHz.
  • The unbalanced optical coupler is an optical isolator. The unbalanced optical coupler may be arranged to couple the seed signal into the laser source at a power level selected to promote preferential stimulated emission within a narrower linewidth. The power level may be selected in conjunction with information about losses associated with a lasing cavity of the laser source. This is to ensure that the seed signal is not lost in the cavity, and to ensure that it does not dominate the lasing process. Moreover, by limiting the power of the signal returned back to the lasing element, the laser emission may still be adjustable over a useful range, e.g. to permit fine tuning of the laser emission to coincide exactly with cavity resonances. Having smaller feedback signal allows wider fine tuning (by laser current or temperature) to get exactly to the required wavelength.
  • By controlling the power of seed signal such that only a small portion thereof influences the lasing cavity, the narrowing effect of the preferential stimulated emission can be enhanced. Different types of laser may require different amount of feedback for optimal operation. The control provided by an optical isolator placed between cavity and the laser source enables the feedback to be varied so that the device is operable with a variety of laser sources. The seed signal may have an optical power than is 20 dB or more less than the optical power of the source signal, preferably 30 dB less, i.e. 1000 times less. For example, the optical isolator may allow the seed signal optical power to vary from 0.1% to about 10% of the source signal optical power.
  • In one example, the unbalanced optical coupler is arranged to ensure that the source signal has a first power that is equal to or greater than three orders of magnitude higher than the seed signal.
  • In this application, reference to a passive optical cavity may means that the optical cavity is not optically active, i.e. does not support stimulated emission at optical frequencies.
  • The optical device may be provided or packaged as a single unit or module. For example, the optical device may comprise a substrate on which the components are disposed. The substrate may be encased in a suitable housing to protect the components. The housing may have suitable input and output ports for connecting energy supply and for outputting an optical signal.
  • The laser source may be mounted on the substrate. The laser source may comprise a laser diode, e.g. a distributed feedback laser diode or the like. The laser source may be an off the shelf laser diode module, e.g. in TO-5 packaging or the like.
  • The optical cavity may be mounted on the substrate.
  • The substrate may be made from any suitable material. However, it may be advantageous to form the substrate from fused silica (quartz). The optical cavity may be formed integrally with the substrate, e.g. as a dielectric body that is part of the substrate.
  • It may be particularly advantageous to fabricate as much of the device as possible from the same material as the substrate. This can enable errors caused by temperature changes to be compensated in a straightforward manner.
  • The optical device may be compact. For example, the substrate may have a mounting area for receiving the laser and optical cavity, the mounting area having a size equal to or less than 50 mm × 40 mm. The whole footprint of the device may fall within this size.
  • The optical cavity may comprise an output coupler arranged to transmit an output signal. The output signal may have the narrow linewidth discussed above.
  • The optical cavity may have any suitable configuration. In one example, it may be configured as a Fabry-Perot cavity, e.g. with an optical path defined between one or more planar reflectors. Any suitable reflector may be used, provided it has the required reflectivity. It is desirable for reflectivity to be very high, i.e. equal to or greater than 99.95%. Each reflector may be a mirror, e.g. an optical element having a reflective coating formed on a surface (e.g. a planar and/or curved surface) thereof.
  • In one example, the optical cavity may comprise an optical path between a first cavity mirror and a second cavity mirror via an intermediate mirror. The first cavity mirror may be transmissive through is back surface to permit the source signal to enter into the optical cavity. The first cavity mirror, second cavity mirror, and the intermediate mirror
  • The optical path may be in free space, or may be defined by a waveguide in order to minimise losses. In one example, the waveguide may comprise a hole formed in a dielectric body. The dielectric body may be an integral part of the substrate, as mentioned above. The first cavity mirror, second cavity mirror, and the intermediate mirror may be mounted on, e.g. secured or bonded to, the dielectric body.
  • The optical path may comprise a first path portion extending between the first cavity mirror and the intermediate mirror, and a second path portion extending between the intermediate mirror and the second cavity mirror, wherein the first path portion is disposed at an acute angle relative to the second path portion. The optical path may thus have a V-shape. This may be advantageous for provided a compact structure.
  • The optical cavity may have a resonant optical frequency that is within an output bandwidth of the laser source, and preferably matched to the laser frequency itself. This may maximise the effectiveness of the feedback.
  • The optical device may comprise other optical elements. For example, the optical device may include beam shaping optics mounted on the cavity input path between the laser source and the optical cavity. The beam shaping optics may include a first lens and a second lens, mounted before and after the unbalanced optical coupler along the cavity input path. The beam shaping optics may be arranged to ensure that the source signal is a light beam with the correct shape (e.g. beam width) to be received by the optical cavity.
  • The optical device may include a phase adjuster mounted on the cavity input path, wherein the phase adjuster includes an adjustable optical element for varying an optical length of the cavity input path. The adjustable optical element may be mounted on a piezoelectric adjuster, whose position on the substrate can be finely controlled through application of a voltage. The phase adjuster can be controller in real time both during initial set up and to perform adjustments to compensate for changes in temperature or the like.
  • The optical device may comprise a controller arranged to monitor and adjust operation of the laser and other components. For example, the controller may be arranged to control the phase adjuster. The device may have a power port for receiving electrical power from an external supply. The controller may be arranged to control the power supply to the laser to control an intensity of the source signal. One or more photodetectors may be mounted in the device to measure the source signal and/or the optical radiation within the optical cavity.
  • The optical device may find use in any context where a very narrow linewidth is desirable. For example, the device may be used in a gas sensor, e.g. a trace gas sensor, where the waveguide path is open to the environment to be sensed. The device may also find use in distance sensing applications, or gravimetry, or in quantum computing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention are described in detail below with reference to the accompanying drawings, in which:
    • Fig. 1 is a schematic plan view of a narrow linewidth laser optical source that is an embodiment of the invention; and
    • Fig. 2 is a graph illustrating the operating principles of the invention.
    DETAILED DESCRIPTION; FURTHER OPTIONS AND PREFERENCES
  • The present invention relates to an optical device configured to output a narrow linewidth laser beam using an all-optical technique. The optical device may be provided in a compact package, in which the linewidth narrowing optics are provided or integrated on the same substrate as a laser source, such as a diode laser.
  • Fig. 1 is a schematic plan view of a narrow linewidth laser optical source 100 that is an embodiment of the invention. The optical source 100 comprises a substrate 102, e.g. made from fused silica. Components of the optical source 100 are either mounted or integrally formed on the substrate 102, as explained below.
  • A laser 106 is mounted on the substrate 102. The laser 106 may be a laser diode, such as a distributed feedback (DFB) laser diode, although other types of laser may be used, in which the gain of the laser is spectrally wider than the feedback (seed) signal. The laser 106 can be an off-the-shelf component that is bonded to the substrate. For example, the laser 106 may be a TO-5 laser diode package mounted on the substrate 102 and connected to an input power port 104 to receive electrical power for operation. In other examples, the laser may be fabricated directly on the substrate. The laser may operate at any suitable wavelength, e.g. 760 nm, 1064 nm, 1310 nm, 1550 nm, or any other wavelength used in fibre optic communication or for optical sensing purposes.
  • In operation, the laser 106 generates and emits a source signal, which is a laser light beam that is directed through an optical feedback line-up that is arranged to return a seed signal to the laser 106 in order to narrow the linewidth of the source signal.
  • The source signal from the laser 106 is directed into a first lens 108 which is a mode matching lens for beam shaping. The output from the first lens 108 is directed into a second lens 112. Together the first lens 108 and second lens 112 ensure that the source signal forms a laser beam having the correct size for entering an optical cavity 124, as discussed below.
  • An optical isolator 110 is mounted between the first lens 108 and the second lens 112. Mounting the optical isolator in this location means that it can have a small size because the waist size of the optical beam may be at a minimum (e.g. around 0.3 mm) between the first lens 108 and second lens 112. In other examples. the optical isolator may be inserted in other positions, e.g. close to the cavity. But in these examples, the physical size of the optical isolator will be larger.
  • The optical isolator 110 is arranged to inhibit propagation of optical radiation back towards the laser 106. As discussed below, the optical isolator 110 acts to limit an intensity of the seed signal returned from the optical feedback line-up. In practice, the optical isolator 110 may be designed to block a certain wavelength that is at or closely adjacent to the wavelength of the laser, whereby the degree of isolation at the wavelength of the laser is appropriate to allow sufficient optical isolation and good fine tuning range for the wavelength. For example, the seed signal may have a power that is more than three orders of magnitude smaller than the source signal. In one example, the source signal transmitted by the optical isolator 110 may have a power of 10 mW, and the seed signal that is returned through the optical isolator 110 may have a power of 1 µW. The optical isolator 110 thus acts as an unbalanced optical coupler in which reflected optical power returning to the laser is attenuated or limited to a greater extent than transmitted optical power from the laser.
  • The source signal form the second lens 112 is directed into a phase adjuster unit 114. In this example, the phase adjuster unit 114 comprises a static mirror 116 and an adjustable mirror 118. The adjustable mirror 118 is mounted on a movable platform, so that its position relative to the static mirror 116 can be adjusted. The movable platform may be controlled by a piezoelectric adjuster, in a conventional manner.
  • The source signal transmitted by the phase adjuster unit 114 is directed into an optical cavity 124 through a first cavity mirror 120. The optical cavity 124 is a passive Fabry-Perot cavity formed between a pair of cavity mirrors having very high reflectivity. In the example shown in Fig. 1, the Fabry-Perot cavity is formed between the first cavity mirror 120 and a second cavity mirror 122, which may be curved to provide a narrow resonance condition for the cavity. To provide a compact cavity, the optical path between the first cavity mirror 120 and the second cavity mirror 122 includes a reflection at an intermediate mirror 128. The optical path between the first cavity mirror 120 and the second cavity mirror 122 is V-shaped, i.e. has two path portions extending at an acute angle relative to each other. All of the mirrors in the optical cavity 124 have a very high reflectivity, e.g. equal to or greater than 99.995%.
  • The optical cavity 124 in the example shown in Fig. 1 comprises an optical path between the first cavity mirror 120 and second cavity mirror 122 provided by a waveguide 126. The waveguide 126 in this example is a hole (e.g. filled with air) formed in (e.g. drilled in) a block of dielectric material. In this example, the dielectric material is fused silica (and indeed may be an integral part of the substrate 102), but other materials may be used. The mirrors may be fabricated directed on to the waveguide or substrate. However, in a preferred arrangement, the mirrors area attached to the substrate via three independent mounts, which may be adjustable to compensate for manufacturing tolerances.
  • To ensure that the seed signal is received correctly at the laser, a distance between the second lens 112 and the first cavity mirror 120 is set to be equal to the length of the optical cavity (i.e. the distance between the first cavity mirror 120 and the second cavity mirror 122 along the waveguide 126). Fig. 1 is a schematic drawing and does not show this distance to scale.
  • The distance between the second lens 112 and the first cavity mirror 120 can be set at a coarse level during assembly of the components on the substrate 102. Fine adjustment can be done during laser operations, e.g. by adjusting the position of adjustable mirror 118 by applying a suitable voltage to the piezoelectric adjuster. In this way, the distance between the second lens 112 and the first cavity mirror 120 can be precisely matched to the length of the optical cavity.
  • In the arrangement of Fig. 1, the intermediate mirror 128 also acts as an output coupler for transmitting an output signal from the waveguide.
  • The operation principles of the optical source 100 are now discussed. The passive Fabry-Perot cavity with virtually loss-free mirrors possesses a comb-type transmission function with very narrow and sharp peaks. The cavity acts as a filter to reduce the background amplified spontaneous emission (ASE) associated with the source signal. This filtered signal is used as the seed signal that is feed back to the laser 106. The seed signal acts to enhance the natural loss mechanism within the lasing cavity itself, which has the effect of narrowing the linewidth of the source signal that is emitted from the laser 106. In combination, the effect of the feedback seed signal in the laser and the filtering function of the optical cavity act to narrow the linewidth of the output signal using only optical techniques.
  • Fig. 2 is a graph of output intensity against frequency that illustrates the effects described above. For any given gain medium in a laser, operation above lasing threshold yields a band of frequencies associated with the stimulated emission and amplified spontaneous emission (ASE). Typically, lasers include means for restricting the band 202 by absorbing or filtering the unwanted background ASE radiation. In a distributed feedback laser diode this is done using a grating, which operates as a narrow band reflector. A typical transmission function 204 for such a grating is shown in Fig. 2. Using such a grating has the effect of narrowing the output linewidth, as shown by the typical laser diode output 206 shown in Fig. 2. Laser diode output 206 has a linewidth of w1, which in practice may be about 1 MHz.
  • The filtering function of the passive Fabry-Perot cavity discussed above will have a linewidth of about 30 kHz. This is shown schematically (i.e. not to scale) in Fig. 2 as a seed signal 208 having linewidth of w2.
  • By balancing the losses in the lasing cavity of the laser 106 with the power level of the seed signal that is returned to the lasing cavity, it is possible to ensure that only the top 1-2% of the seed signal actively contributes to feedback within the lasing cavity. This provides a narrowing effect that enables linewidths of equal to or less 0.6 kHz to be achieved, as illustrated by the narrowed source signal 210 in Fig. 2. The optical source of the invention may thus be used to generate a laser beam having a linewidth in the range 0.3 to 0.6 kHz (i.e. 300-600 Hz) using a conventional laser diode. In practice, the narrowing effect may be achieved by selecting an optical isolator that provides the desired response at the wavelength of the laser. This may be an optical isolator designed to inhibit transmission of a different wavelength (e.g. within 1 to 5 nm of the laser wavelength).
  • Laser operation may be controlled in real time by providing a pair of photodiodes 130, 132. A first photodiode 130 is mounted to monitor optical radiation in the cavity. For example, the first photodiode may be mounted at the second cavity mirror 122, where it can receive the tiny loss signal as an input. A second photodiode 132 may be mounted to monitor operation of the laser 106 itself. The photodiodes 130, 132 provide measurements of intensity that allow control of the intensity and stability of the laser.
  • As discussed above, all the components of the device are mounted on the fused silica substrate 102. Furthermore, all supporting elements for lenses, mirrors, photodiodes and laser are preferably made of fused silica as well. The device is thus constructed as far as possible using a common material, which means that it has a uniform temperature expansion coefficient. The device may be arranged to adjust for variations in temperature in a conventional manner.
  • One advantage of the all-optical feedback technique discussed above is that the device can be provided in a compact package. For example, in one arrangement the substrate may have a length L of equal to or less than 50 mm and a width W equal to or less than 40 mm.
  • The device may find use in any context where a narrow linewidth is desirable. In one example, the device may be used as or in an optical sensor, e.g. for detecting the presence of one or more chemical materials, particularly gaseous materials. Changes in the dielectric constant of the material through which the optical radiation propagates in the optical cavity can be detected as shifts in the output frequency. Providing a narrower linewidth permits detection to be achieved with greater sensitivity.
  • Another possible application of the invention lies in acousto-optic sensing, where laser light is launched into an optical fibre and reflection back from the same fibre is measured. Interrogation of the reflected signal can permit one to 'listen' to what is happening along the fibre length. This technique can be used with fibre lengths up to 50 km, where areas of potential problem can be located within a resolution of 1-2 metres, and acoustic frequencies of up to 2 kHz can be resolved. The present invention can provide a purer input signal when applied in this field, e.g. because the cavity ensures that the signal has a very high side mode suppression ratio as well as providing very high filtering of Amplified Spontaneous Emission (ASE).

Claims (15)

  1. An optical device (100) comprising:
    a laser source (106) emitting a source signal;
    a passive optical cavity (124) in optical communication with the laser source along a cavity input path and configured as a filter to reduce background amplified spontaneous emission associated with the source signal; and
    an optical isolator (110) on the cavity input path,
    wherein the optical isolator (100) is arranged to couple the source signal from the laser source (106) into the optical cavity (124), and to couple a seed signal received back from the optical cavity (124) into a lasing cavity of the laser source,
    wherein the optical isolator (110) is configured to attenuate the seed signal returned from the optical cavity (124) so that an optical power of the seed signal is lower than an optical power of the source signal,
    characterised in that:
    the optical device is configured to balance losses of the lasing cavity with the optical power of the seed signal to cause only the top 1-2% of the seed signal output from the optical isolator to actively contribute to feedback within the lasing cavity, thereby to cause a narrowing effect that results in a linewidth of the source signal equal to or less than 0.6 kHz.
  2. An optical device according to claim 1, wherein the optical isolator is configured to block transmission of a wavelength within 1 to 5 nm of a wavelength of the laser source.
  3. An optical device according to claim 1 or 2, wherein the source signal has a first power that is equal to or greater than three orders of magnitude higher than the seed signal.
  4. An optical device (100) according to claim 1 comprising a substrate (102), wherein the laser source (106) and optical cavity (124) are mounted on or formed integrally with the substrate (102).
  5. An optical device (100) according to claim 4, wherein the substrate (102) is made from fused silica.
  6. An optical device (100) according to claim 4 or 5, wherein the substrate (102) has a mounting area for receiving the laser source (106) and optical cavity (124), the mounting area having a size equal to or less than 50 mm × 40 mm.
  7. An optical device (100) according to any preceding claim, wherein the laser source (106) comprises a laser diode module.
  8. An optical device (100) according to any preceding claim, wherein the optical cavity (124) comprises an output coupler (128) arranged to transmit an output signal.
  9. An optical device (100) according to any preceding claim, wherein the optical cavity (124) is configured as a Fabry-Perot cavity.
  10. An optical device (100) according to claim 9, wherein the optical cavity (124) comprises an optical path between a first cavity mirror (120) and a second cavity mirror (122) via an intermediate mirror (128).
  11. An optical device (100) according to claim 10, wherein the first cavity mirror (120), second cavity mirror (122), and the intermediate mirror (128) have a reflectivity equal to or greater than 99.95%.
  12. An optical device (100) according to claim 10 or 11, wherein the optical path is a waveguide (126) comprising a hole formed in a dielectric body, and wherein the first cavity mirror (120), second cavity mirror (122), and the intermediate mirror (128) are mounted on the dielectric body.
  13. An optical device (100) according to any one of claims 10 to 12, wherein the optical path comprises a first path portion extending between the first cavity mirror and the intermediate mirror, and a second path portion extending between the intermediate mirror and the second cavity mirror, wherein the first path portion is disposed at an acute angle relative to the second path portion.
  14. An optical device (100) according to any preceding claim comprising beam shaping optics (108, 112) mounted on the cavity input path between the laser source (106) and the optical cavity (124).
  15. An optical device (100) according to any preceding claim comprising a phase adjuster (114) mounted on the cavity input path, wherein the phase adjuster includes an adjustable optical element (118) for varying an optical length of the cavity input path.
EP18178817.5A 2017-06-21 2018-06-20 Optical device Active EP3419122B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB1709922.7A GB201709922D0 (en) 2017-06-21 2017-06-21 Optical device

Publications (2)

Publication Number Publication Date
EP3419122A1 EP3419122A1 (en) 2018-12-26
EP3419122B1 true EP3419122B1 (en) 2022-12-14

Family

ID=59462518

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18178817.5A Active EP3419122B1 (en) 2017-06-21 2018-06-20 Optical device

Country Status (3)

Country Link
US (1) US11258226B2 (en)
EP (1) EP3419122B1 (en)
GB (1) GB201709922D0 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10925515B2 (en) 2014-05-22 2021-02-23 Picomole Inc. Alveolar breath collection apparatus
CA2998026A1 (en) 2017-03-13 2018-09-13 Picomole Inc. Apparatus and method of optimizing laser system
US11035789B2 (en) 2019-04-03 2021-06-15 Picomole Inc. Cavity ring-down spectroscopy system and method of modulating a light beam therein
US11500077B2 (en) * 2019-10-22 2022-11-15 Silc Technologies, Inc. Perturbations external to a laser cavity
US11782049B2 (en) 2020-02-28 2023-10-10 Picomole Inc. Apparatus and method for collecting a breath sample using a container with controllable volume
US11957450B2 (en) 2020-02-28 2024-04-16 Picomole Inc. Apparatus and method for collecting a breath sample using an air circulation system
CN112525257B (en) * 2020-11-19 2021-09-07 哈尔滨理工大学 Double-parameter optical fiber sensing device for monitoring magnetic field and temperature and implementation method
CN112525259B (en) * 2020-11-19 2021-09-07 哈尔滨理工大学 Double-parameter optical fiber sensing device for monitoring current and temperature and implementation method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794608A (en) 1984-03-06 1988-12-27 Matsushita Electric Inductrial Co., Ltd. Semiconductor laser device
US4884276A (en) 1987-11-25 1989-11-28 Amoco Corporation Optical feedback control in the frequency conversion of laser diode radiation
DE3741455A1 (en) * 1987-12-08 1989-06-22 Standard Elektrik Lorenz Ag OPTICAL ISOLATOR
US4907237A (en) * 1988-10-18 1990-03-06 The United States Of America As Represented By The Secretary Of Commerce Optical feedback locking of semiconductor lasers
US5111330A (en) * 1989-08-14 1992-05-05 Optics For Research Optical isolators employing wavelength tuning
US5052786A (en) * 1990-03-05 1991-10-01 Massachusetts Institute Of Technology Broadband faraday isolator
US5572542A (en) 1995-04-13 1996-11-05 Amoco Corporation Technique for locking an external cavity large-area laser diode to a passive optical cavity
US5737349A (en) * 1996-05-22 1998-04-07 Lucent Technologies Inc. Optical isolator and alignment method
US6449091B1 (en) * 1996-12-03 2002-09-10 Jds Fitel Inc. Optical isolator
FR2825463B1 (en) * 2001-05-30 2003-09-12 Thales Sa SOLID STATE LASER GYROMETER COMPRISING A RESONATOR BLOCK
FR2830617B1 (en) * 2001-10-10 2004-01-30 Univ Joseph Fourier LASER DEVICE COUPLED TO AN OPTICAL FEEDBACK CAVITY FOR THE DETECTION OF TRACES OF GAS
EP2162784B1 (en) * 2007-06-13 2017-08-09 Strobe, Inc. Tunable lasers locked to whispering gallery mode resonators
EP2245710A2 (en) * 2008-02-22 2010-11-03 CSEM Centre Suisse D'electronique Et De Microtechnique SA Method and device for stabilising the spectrum of a pulsed coherent optical source
US8327686B2 (en) * 2010-03-02 2012-12-11 Li-Cor, Inc. Method and apparatus for the photo-acoustic identification and quantification of analyte species in a gaseous or liquid medium
CN101924320A (en) 2010-07-07 2010-12-22 北京理工大学 Fabry-Perot cavity based non-modulating 2 mu m laser frequency stabilizing method and device thereof
US8885167B2 (en) * 2012-11-02 2014-11-11 Li-Cor, Inc. Cavity enhanced laser based gas analyzer systems and methods
CN103487403B (en) * 2013-10-14 2015-09-02 北京信息科技大学 With the dual wavelength combination of fiber-optic laser gas detection system that reference cavity compensates

Also Published As

Publication number Publication date
US20180375284A1 (en) 2018-12-27
EP3419122A1 (en) 2018-12-26
US11258226B2 (en) 2022-02-22
GB201709922D0 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
EP3419122B1 (en) Optical device
US6765948B2 (en) VCSEL assembly with edge-receiving optical devices
AU2003283377B2 (en) Wavelength control of an external-cavity tuneable laser
US7962044B2 (en) Temperature stabilizing packaging for optoelectronic components in a transmitter module
CA2571699C (en) Thermally controlled external cavity tuneable laser
US8804787B1 (en) Narrow linewidth semiconductor laser
JP3726676B2 (en) External cavity mode-locked semiconductor laser device
US6594022B1 (en) Wavelength reference device
US6272157B1 (en) Apparatus and method for calibrating a wavelength stabilized laser
US20150023672A1 (en) Wavelength-Tunable Laser Output Method and Tunable Laser Apparatus
US11699891B2 (en) Laser device
JPWO2018146749A1 (en) Tunable laser device
US20030072336A1 (en) Miniaturized internal laser stabilizing apparatus with inline output for fiber optic applications
US7027473B2 (en) Multimode semiconductor laser module, wavelength detector, wavelength stabilizer, and Raman amplifier
US20060256437A1 (en) Wavelength filter and wavelength monitor device
CA2732912C (en) External cavity laser module comprising a multi-functional optical element
CN110718851B (en) Optical assembly
CN114424416A (en) Laser wavelength stabilizing device
JP2003101135A (en) Light emitting module
JP2003101134A (en) Light emitting module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190625

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200430

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01S 5/0235 20210101ALN20220510BHEP

Ipc: H01S 5/0233 20210101ALN20220510BHEP

Ipc: H01S 5/02326 20210101ALN20220510BHEP

Ipc: H01S 5/023 20210101ALN20220510BHEP

Ipc: H01S 5/12 20060101ALN20220510BHEP

Ipc: H01S 5/00 20060101ALI20220510BHEP

Ipc: H01S 5/065 20060101AFI20220510BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018044177

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1538240

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1538240

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230525

Year of fee payment: 6

Ref country code: DE

Payment date: 20230623

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230414

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018044177

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 6

26N No opposition filed

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230620

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230620

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221214

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630