EP3415860A1 - Method for predicting the trajectory of a hostile aircraft, particularly in the context of anti-air defence - Google Patents
Method for predicting the trajectory of a hostile aircraft, particularly in the context of anti-air defence Download PDFInfo
- Publication number
- EP3415860A1 EP3415860A1 EP18175386.4A EP18175386A EP3415860A1 EP 3415860 A1 EP3415860 A1 EP 3415860A1 EP 18175386 A EP18175386 A EP 18175386A EP 3415860 A1 EP3415860 A1 EP 3415860A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aircraft
- point
- trajectory
- probability
- impact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000013598 vector Substances 0.000 claims description 20
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000013459 approach Methods 0.000 claims description 2
- 230000007123 defense Effects 0.000 abstract description 12
- 238000004364 calculation method Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000012417 linear regression Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/2206—Homing guidance systems using a remote control station
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/224—Deceiving or protecting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
- F41H11/02—Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
Definitions
- the present invention relates to a method for predicting the trajectory of a hostile aircraft. It concerns in particular the naval air defense by the prediction of the objective of a hostile aircraft attacking a ship among several possible, the aircraft may be for example a missile. More generally, the invention applies to all anti-aircraft defenses where it is necessary to provide the attacked target among several.
- a set of ships that may be attacked by hostile aircraft is, for example, a frigate, a major naval vessel and several important naval vessels that are not necessarily armed.
- the frigate is for example followed at a distance of about 15 km for the naval ship, the two unarmed buildings following the frigate more closely.
- the major armed building has powerful defenses to protect itself, such as an aircraft carrier, but it nevertheless requires to be defended by a first barrier of defense consisting of the frigate. The latter must for example remove 80% of the dangers.
- the object of the invention is in particular to reduce this uncertainty rate.
- the subject of the invention is a method for predicting the trajectory of a hostile aircraft, characterized in that the predicted trajectory ends on a fictitious impact point according to a predicted objective point targeted by the 'aircraft.
- the main advantages of the invention are that it is applicable to countering many types of hostile aircraft, that it adapts to different types of trajectories of these aircraft and that it can adapt to existing systems. .
- the figure 1 shows an example of a set of buildings represented by their location points F, C1, C2, HV.
- a frigate F is ahead of a building of high value HV able to defend itself, an aircraft carrier for example.
- a distance of about 15 km separates, for example, the frigate from the high-value building.
- Two buildings C1, C2, called thereafter buildings consorts, follow the frigate.
- the adjacent buildings C1, C2 are for example located in a circular zone of 6.5 km radius centered on the frigate F.
- the frigate can fulfill its mission only if it knows what a hostile aircraft aims hence the need to predict the intended target.
- the figure 1 present at a given moment, by a point H, the position of a hostile aircraft.
- two trajectories T1, T2 are for example still possible. It is nevertheless necessary to predict as early as possible what is the right trajectory.
- calculation means define the trajectory of a missile so that it meets the predicted trajectory of the hostile aircraft, the point of impact between the two gears taking place at the intersection of the two trajectories.
- Hostile aircraft are for example missiles with great maneuverability, especially for short turns.
- the figure 2 illustrates main steps for the implementation of the method according to the invention.
- a first step 1 predicts a goal point targeted by a spotted aircraft, including hostile.
- a second step 2 determines a fictitious point of impact according to the predicted objective goal point.
- a third step 3 determines a trajectory of the aircraft ending at the previously determined fictitious impact point.
- This trajectory is subsequently taken into account by anti-aircraft means, a missile for example, to define a meeting point between the latter and the hostile aircraft to which this trajectory is attributed, the destruction of the hostile aircraft being done by example at this meeting point.
- anti-aircraft means a missile for example
- a fictitious point of impact to define the trajectory of the identified aircraft and not using the predicted objective point, improves makes the chances of success of hitting a hostile aircraft. Indeed, once the objective point of the aircraft predicts, several trajectories are possible between this aircraft and the predicted objective point. All these trajectories can not for example be memorized by the calculation means associated with an anti-aircraft missile, these calculation means defining in particular from a predicted trajectory of the aircraft the meeting point of the latter with the missile.
- a single trajectory can for example be memorized by the calculation means whereas by playing on one of the ends of this trajectory, the meeting point calculated on this trajectory can effectively correspond to the actual encounter of the missile or any other means of air defense and hostile aircraft.
- An objective of the method according to the invention is therefore to provide the anti-aircraft missile, based on radar information and the position of the ships, the predicted position of the impact between a hostile aircraft and the missile so as to promote interception of the hostile aircraft.
- the figure 3 illustrates an example of possible implementation of the method according to the invention by two substeps 11, 12, a first substep 11 of classification of potentially attackable ships followed by a second substep of determining the target objective .
- the figure 4 present in the plane ( x, y ) the position O of a analyzed building and the position D of a hostile aircraft, all the buildings being analyzed successively.
- the curve 41 represents a cubic trajectory, corresponding to the relation (1), for which the definition of the boundary conditions makes it possible to define the coefficients of the relation (1).
- a principle adopted consists, for example, in associating a ship with a probability Pcap that is all the greater as the aircraft's heading of the runway. compared to the analyzed building is weak.
- the probability Pcap is equal to 0. If ⁇ is between ⁇ min and ⁇ max, the probability decreases linearly from 1 to 0 as illustrated by figure 5 it is 1 when ⁇ is less than ⁇ min.
- the hypothesis is for example that the closer a target is to a ship, the more likely it is to be targeted.
- Relation (4) thus ensures a rather severe discrimination in distance between 5 km and 15 km.
- the objective is to determine which vessels are being used to maneuver the hostile aircraft. This detection is based for example on the exploitation of the results of a linear regression on the last estimated positions.
- the purpose of the linear regression on the last estimated positions makes it possible as far as possible to avoid an error in estimating the direction taken by the hostile aircraft. Only for example the window containing the last four positions estimated by the multifunction radar is considered.
- the figure 6 illustrates the maneuver detection criterion.
- a hostile aircraft H has successively three speed vectors V 1 , V 2 , V 3 .
- the probability of maneuvering depends, for example, on the relative position of the last three speed vectors. V 1 , V 2 , V 3 relative to the aforementioned line 61, this probability increasing when these vectors are successively approaching the line, that is to say that the angle they make with the line decreases.
- the probability Pm freezes at 1, that is to say, it no longer intervenes in the combination with the other criteria.
- the probability Pm is fixed at 1 for example after a given number of speed vectors. V 4 successive aircraft on the same side of the line; this number may be equal for example to 3.
- the classification of the ships is done, by combining for each of them the results of the three previously defined probabilities Pcap , Pdis and Pm.
- the first possibility is simply to detain the vessel with the probability of being targeted at the highest Pv .
- the second possibility is to calculate a center of gravity from the position of each weighted vessel by its probability of being targeted Pv, the calculated center of gravity then being considered as the point targeted by the aircraft. This second solution makes it possible to eliminate discontinuities.
- the second step 2 determines a fictitious point of impact according to this predicted objective, this objective possibly being, for example, the vessel with the highest probability of be targeted or the center of gravity as previously calculated.
- the second step 2 makes it possible to approximate the predicted cubic trajectory. of the real trajectory, in particular by reducing its curvature.
- the second step 2 consists, in particular, of the target objective determined in step 1, to calculate a fictitious point of impact which reduces the curvature, by reducing the distance D and the heading angle ⁇ when these are too important.
- the reduction of the curvature of the cubic trajectory thus brings the latter closer to the real trajectory.
- the fictitious point of impact is for example located on the line segment between the predicted objective objective and the orthogonal projection of this predicted objective on the line borne by the speed vector of the hostile aircraft as illustrated by FIG. figure 8 .
- the predicted objective is, for example, either the vessel with the highest probability of being targeted or the center of gravity of vessels weighted by their probabilities of being targeted.
- the figure 8 represents by a point P and a vector V , the position and the speed vector of a hostile aircraft, the torque ( P, V ) still being called track as it was seen previously.
- the second step determines for example a fictitious impact point I located on the line segment 81 between the position 0 of the predicted objective, located for example in the center of the x, y axis system , and the orthogonal projection N from this objective on the right 82 passing through the position P of the aircraft and carried by its speed vector V .
- This fictitious point of impact is used as a new boundary condition to define the predicted cubic trajectory, starting from the fact that this trajectory ends at this point of fictitious impact.
- the shape of the curvature is given by the relation (5) and the decrease of D and ⁇ decreases the curvature.
- the figure 9 shows that the new distance D ' between the aircraft and the fictitious point of impact is less than the distance D between the predicted objective and the aircraft. It is the same for the course angles ⁇ ', ⁇ .
- the coefficient ⁇ is a function of the distance D and the angle of heading ⁇ .
- This coefficient ⁇ can for example be defined by neglecting the influence of the distance D. This can be especially enabled by the fact that the targets concerned are for example between 5 km and 15 km, in this range of distance only the influence the heading angle ⁇ being preponderant.
- the figure 10 illustrates with a diagram an example of a possible determination of the coefficient ⁇ represented on the ordinate as a function of the heading angle ⁇ represented on the abscissa.
- the coefficient ⁇ is limited for example to 0.5, especially not to reduce too much the length of the cubic trajectory. Indeed, the time the hostile aircraft has to travel the cubic trajectory to the point of fictitious impact must be large enough to allow an anti-aircraft missile to calculate the interception time. In this case, the fictitious impact point I is located on the first half of the segment [ ON ] starting from the position O of the predicted target objective.
- a new cubic trajectory 101 is calculated in the third step 3 of the method according to the invention taking into account a point of fictitious impact as defined above. As the radius of curvature of the new cubic trajectory 101 has significantly decreased with respect to the first cubic trajectory 73, this new cubic trajectory is considerably closer to the real trajectory.
- the trajectory 101 thus defined is then provided for example to an anti-aircraft missile whose calculation means will determine its point of intercept with the aircraft on the same trajectory.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
- Regulating Braking Force (AREA)
Abstract
L'invention concerne un procédé de prédiction de la trajectoire d'un aéronef hostile.The invention relates to a method for predicting the trajectory of a hostile aircraft.
Le procédé comporte une première étape (1) de prédiction d'un point d'objectif visé par un aéronef, une deuxième étape (2) de détermination d'un point d'impact fictif fonction du point d'objectif prédit et une troisième étape (3) de détermination d'une trajectoire finissant sur le point d'impact fictif.The method comprises a first step (1) for predicting an objective point targeted by an aircraft, a second step (2) for determining a fictitious impact point according to the predicted objective point, and a third step (3) determining a trajectory ending at the fictitious impact point.
Application : Défense navale antiaérienne. Application: Naval anti-aircraft defense.
Description
La présente invention concerne un procédé de prédiction de la trajectoire d'un aéronef hostile. Elle concerne notamment la défense antiaérienne navale par la prédiction de l'objectif visé par un aéronef hostile attaquant un navire parmi plusieurs possibles, l'aéronef pouvant être par exemple un missile. Plus généralement l'invention s'applique à toutes défenses antiaériennes où il est nécessaire de prévoir la cible attaquée parmi plusieurs.The present invention relates to a method for predicting the trajectory of a hostile aircraft. It concerns in particular the naval air defense by the prediction of the objective of a hostile aircraft attacking a ship among several possible, the aircraft may be for example a missile. More generally, the invention applies to all anti-aircraft defenses where it is necessary to provide the attacked target among several.
Un ensemble de navires susceptible d'être attaqué par des aéronefs hostiles est constitué par exemple d'une frégate, d'un bâtiment naval important armé et de plusieurs bâtiments navals importants non nécessairement armés. La frégate est par exemple suivie à une distance d'environ 15 km pour le bâtiment naval armé, les deux bâtiments non armés suivant la frégate de façon plus rapprochée. Le bâtiment important armé a de puissants moyens de défense pour se protéger, c'est par exemple un porte-avions, mais il nécessite néanmoins d'être défendu par une première barrière de défense constituée de la frégate. Cette dernière doit par exemple supprimer 80 % des dangers.A set of ships that may be attacked by hostile aircraft is, for example, a frigate, a major naval vessel and several important naval vessels that are not necessarily armed. The frigate is for example followed at a distance of about 15 km for the naval ship, the two unarmed buildings following the frigate more closely. The major armed building has powerful defenses to protect itself, such as an aircraft carrier, but it nevertheless requires to be defended by a first barrier of defense consisting of the frigate. The latter must for example remove 80% of the dangers.
En cas d'attaque aérienne, des systèmes permettent actuellement de prévoir lequel des bâtiments est visé par l'aéronef hostile, ce peut être a priori indifféremment la frégate, le bâtiment important armé ou un des bâtiments importants. Ces systèmes utilisent notamment des radars qui effectuent des mesures échantillonnées de la trajectoire d'un aéronef hostile, par exemple toutes les secondes. A chaque échantillonnage, un vecteur vitesse de l'aéronef est déduit. Une donnée constituée de la position mesurée et de la vitesse de l'aéronef est généralement appelée une piste. Le système de défense utilise la suite des pistes d'un aéronef hostile repéré pour prédire lequel des bâtiments est visé par cet aéronef. Les systèmes actuels présentent encore un taux d'incertitude qui constitue un point faible de leur action de défense antiaérienne.In the event of an air attack, systems currently make it possible to predict which of the buildings is targeted by the hostile aircraft, it can be a priori indifferently the frigate, the important armed building or one of the important buildings. These systems use in particular radars that perform sampled measurements of the trajectory of a hostile aircraft, for example every second. At each sampling, a velocity vector of the aircraft is deduced. Data consisting of the measured position and the speed of the aircraft is generally called a track. The defense system uses the suite of tracks of a hostile aircraft identified to predict which of the vessels is targeted by that aircraft. Current systems still have an uncertainty rate which is a weak point in their air defense action.
Le but de l'invention est notamment de réduire ce taux d'incertitude.The object of the invention is in particular to reduce this uncertainty rate.
A cet effet, l'invention a pour objet un procédé de prédiction de la trajectoire d'un aéronef hostile, caractérisé en ce que la trajectoire prédite finit sur un point d'impact fictif fonction d'un point d'objectif prédit visé par l'aéronef.To this end, the subject of the invention is a method for predicting the trajectory of a hostile aircraft, characterized in that the predicted trajectory ends on a fictitious impact point according to a predicted objective point targeted by the 'aircraft.
L'invention a pour principaux avantages qu'elle s'applique pour contrer de nombreux types d'aéronefs hostiles, qu'elle s'adapte à différents types de trajectoires de ces aéronefs et qu'elle peut s'adapter à des systèmes déjà existants.The main advantages of the invention are that it is applicable to countering many types of hostile aircraft, that it adapts to different types of trajectories of these aircraft and that it can adapt to existing systems. .
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :
- la
figure 1 : un ensemble de bâtiments navals et un aéronef hostile repérés par leur position ; - la
figure 2 : une succession d'étapes pour un exemple de mise en oeuvre possible du procédé selon l'invention ; - la
figure 3 : une décomposition possible d'une première étape du procédé selon l'invention ; - la
figure 4 : une trajectoire possible d'un aéronef hostile ; - la
figure 5 : une loi de probabilité élémentaire fonction de l'angle de cap d'un aéronef hostile ; - la
figure 6 : une évolution possible de vecteurs vitesses d'un aéronef hostile par rapport à un navire donné ; - la
figure 7 : une trajectoire estimée d'un aéronef hostile et la trajectoire réelle de ce dernier ; - les
figures 8 et 9 : une illustration d'une méthode possible pour obtenir un point d'impact fictif fonction d'un objectif visé par un aéronef hostile ; - la
figure 10 : une illustration d'un exemple de loi possible donnant la position du point d'impact fictif précité en fonction de l'angle de cap de l'aéronef ; - la
figure 11 : les trajectoires de lafigure 7 ainsi qu'une trajectoire de l'aéronef tenant compte du point d'impact fictif précité.
- the
figure 1 : a set of naval vessels and a hostile aircraft spotted by their position; - the
figure 2 a succession of steps for an example of possible implementation of the method according to the invention; - the
figure 3 a possible decomposition of a first step of the process according to the invention; - the
figure 4 : a possible trajectory of a hostile aircraft; - the
figure 5 : a basic probability law based on the heading angle of a hostile aircraft; - the
figure 6 : a possible evolution of velocity vectors of a hostile aircraft with respect to a given ship; - the
figure 7 : an estimated trajectory of a hostile aircraft and the actual trajectory of the latter; - the
Figures 8 and 9 : an illustration of a possible method for obtaining a fictitious point of impact according to an objective targeted by a hostile aircraft; - the
figure 10 : an illustration of an example of a possible law giving the position of the aforementioned fictitious impact point as a function of the heading angle of the aircraft; - the
figure 11 : the trajectories of thefigure 7 and a trajectory of the aircraft taking into account the aforementioned fictitious impact point.
La
La
La
Une première étape 1 prédit un point d'objectif visé par un aéronef repéré, notamment hostile.A
Une deuxième étape 2 détermine un point d'impact fictif fonction du point prédit d'objectif visé.A
Enfin, une troisième étape 3 détermine une trajectoire de l'aéronef finissant sur le point d'impact fictif précédemment déterminé.Finally, a
Cette trajectoire est par la suite prise en compte par des moyens antiaériens, un missile par exemple, pour définir un point de rencontre entre ce dernier et l'aéronef hostile à qui est attribuée cette trajectoire, la destruction de l'aéronef hostile se faisant par exemple en ce point de rencontre. Faire appel à un point d'impact fictif pour définir la trajectoire de l'aéronef repéré et non pas faire appel au point d'objectif prédit, améliore en fait les chances de succès de frapper un aéronef hostile. En effet, une fois le point d'objectif de l'aéronef prédit, plusieurs trajectoires sont possibles entre cet aéronef et le point d'objectif prédit. Toutes ces trajectoires ne peuvent pas par exemple être mémorisées par les moyens de calcul associés à un missile antiaérien, ces moyens de calcul définissant notamment à partir d'une trajectoire prédite de l'aéronef le point de rencontre de celui-ci avec le missile. Selon l'invention, une seule trajectoire peut par exemple être mémorisée par les moyens de calcul tandis qu'en jouant sur une des extrémités de cette trajectoire, le point de rencontre calculé sur cette trajectoire peut effectivement correspondre à la rencontre réelle du missile ou de tout autre moyen de défense antiaérienne et de l'aéronef hostile. Un objectif du procédé selon l'invention est donc de fournir au missile antiaérien, à partir d'informations radar et de la position des navires, la position prédite de l'impact entre un aéronef hostile et le missile de façon à favoriser l'interception de l'aéronef hostile.This trajectory is subsequently taken into account by anti-aircraft means, a missile for example, to define a meeting point between the latter and the hostile aircraft to which this trajectory is attributed, the destruction of the hostile aircraft being done by example at this meeting point. Using a fictitious point of impact to define the trajectory of the identified aircraft and not using the predicted objective point, improves makes the chances of success of hitting a hostile aircraft. Indeed, once the objective point of the aircraft predicts, several trajectories are possible between this aircraft and the predicted objective point. All these trajectories can not for example be memorized by the calculation means associated with an anti-aircraft missile, these calculation means defining in particular from a predicted trajectory of the aircraft the meeting point of the latter with the missile. According to the invention, a single trajectory can for example be memorized by the calculation means whereas by playing on one of the ends of this trajectory, the meeting point calculated on this trajectory can effectively correspond to the actual encounter of the missile or any other means of air defense and hostile aircraft. An objective of the method according to the invention is therefore to provide the anti-aircraft missile, based on radar information and the position of the ships, the predicted position of the impact between a hostile aircraft and the missile so as to promote interception of the hostile aircraft.
La
Un des buts de la première sous-étape 11 est de classer les navires potentiels en fonction de leur probabilité d'être visés par l'aéronef hostile. Les critères pour définir une trajectoire de l'aéronef sont par exemple les suivants :
- l'accélération maximale de l'aéronef hostile ;
- l'alignement de la trajectoire ou du vecteur vitesse de l'aéronef avec la ligne de visée ;
- la distance entre l'hostile et son but ;
- la détection de manoeuvre.
- the maximum acceleration of the hostile aircraft;
- aligning the trajectory or velocity vector of the aircraft with the line of sight;
- the distance between the hostile and his goal;
- maneuver detection.
Concernant l'accélération maximale de l'aéronef hostile, celui-ci est supposé ne pas pouvoir dépasser une accélération maximale notée Γmax par exemple égale à 10 g, g étant l'accélération de la pesanteur. Cette limitation de l'accélération permet de ne pas prendre en considération les navires trop improbables dans la mesure où l'accélération maximale donne le rayon de courbure minimum de l'aéronef.Regarding the maximum acceleration of the hostile aircraft, it is assumed that it can not exceed a maximum acceleration noted Γmax for example equal to 10 g, where g is the acceleration of gravity. This limitation of the acceleration makes it possible not to take into consideration ships that are too improbable insofar as the maximum acceleration gives the minimum radius of curvature of the aircraft.
Une trajectoire cubique de l'aéronef hostile est par exemple définie dans le plan horizontal (x, y) par la relation cubique suivante :
La
on a alors :
we then have:
Par conséquent, un navire n'est plus atteignable par l'aéronef hostile si l'angle Ψ est supérieur en valeur absolue à l'angle
Les navires qui ne sont plus atteignables ne sont pas pris en compte dans le classement des navires potentiels.Ships that are no longer reachable are not considered in the ranking of potential vessels.
Concernant l'alignement de la trajectoire ou du vecteur vitesse de l'aéronef avec la ligne de visée, un principe retenu consiste par exemple à associer à un navire une probabilité Pcap d'autant plus forte que le cap de la piste de l'aéronef par rapport au bâtiment analysé est faible.Regarding the alignment of the trajectory or the speed vector of the aircraft with the line of sight, a principle adopted consists, for example, in associating a ship with a probability Pcap that is all the greater as the aircraft's heading of the runway. compared to the analyzed building is weak.
Si le cap de la piste par rapport au bâtiment analysé est noté Ψ, selon le principe retenu précédemment, si Ψ est supérieur à l'angle Ψmax défini par la relation (3) précédente, la probabilité Pcap est égale à 0. Si Ψ est compris entre Ψmin et Ψmax, la probabilité décroît linéairement de 1 à 0 comme l'illustre la
Concernant la distance entre l'aéronef hostile et son but, l'hypothèse est par exemple faite que plus une cible est proche d'un navire, plus celui-ci est susceptible d'être visé.Regarding the distance between the hostile aircraft and its purpose, the hypothesis is for example that the closer a target is to a ship, the more likely it is to be targeted.
En notant Pdis la probabilité du navire d'être visé par l'aéronef hostile selon le critère distance, Pdis est défini par la relation suivante :
- D est la distance de l'aéronef au navire
- Df est une distance déterminée, par exemple Df =5.000m
- D is the distance from the aircraft to the ship
- Df is a determined distance, for example Df = 5.000m
La relation (4) assure alors ainsi une discrimination assez sévère en distance entre 5 km et 15 km.Relation (4) thus ensures a rather severe discrimination in distance between 5 km and 15 km.
Concernant la détection de manoeuvre, l'objectif est de déterminer quels sont les navires vers lesquels se déroule la manoeuvre de l'aéronef hostile. Cette détection repose par exemple sur l'exploitation des résultats d'une régression linéaire sur les dernières positions estimées. Le but de la régression linéaire sur les dernières positions estimées permet de se mettre autant que possible à l'abri d'une erreur d'estimation de la direction prise par l'aéronef hostile. Seule par exemple la fenêtre contenant les quatre dernières positions estimées par le radar multifonctions est considérée.With regard to maneuver detection, the objective is to determine which vessels are being used to maneuver the hostile aircraft. This detection is based for example on the exploitation of the results of a linear regression on the last estimated positions. The purpose of the linear regression on the last estimated positions makes it possible as far as possible to avoid an error in estimating the direction taken by the hostile aircraft. Only for example the window containing the last four positions estimated by the multifunction radar is considered.
La
Dès qu'un vecteur vitesse
Le classement des navires se fait, en combinant pour chacun d'eux les résultats des trois probabilités précédemment définies Pcap , Pdis et Pm. The classification of the ships is done, by combining for each of them the results of the three previously defined probabilities Pcap , Pdis and Pm.
Ainsi pour le navire n°i, sa probabilité Pv(i) d'être visé est égale au produit Pcap(i), Pdis(i), Pm(i). Thus, for ship No. i, its probability Pv (i) of being targeted is equal to the product Pcap (i), Pdis (i), Pm ( i ) .
Les navires sont par exemple classés selon la probabilité Pv= Pcapx Pdisx Pm. The ships are for example classified according to the probability Pv = Pcapx Pdisx Pm.
Pour la deuxième sous-étape 12 de détermination de l'objectif visé, deux possibilités sont par exemple possibles.For the
La première possibilité consiste simplement à retenir le navire ayant la probabilité d'être visé Pv la plus élevée.The first possibility is simply to detain the vessel with the probability of being targeted at the highest Pv .
La seconde possibilité consiste à réaliser le calcul d'un barycentre à partir de la position de chaque navire pondérée par sa probabilité d'être visé Pv, le barycentre calculé étant alors considéré comme le point visé par l'aéronef. Cette seconde solution permet notamment d'éliminer des discontinuités.The second possibility is to calculate a center of gravity from the position of each weighted vessel by its probability of being targeted Pv, the calculated center of gravity then being considered as the point targeted by the aircraft. This second solution makes it possible to eliminate discontinuities.
Dans le cas de quatre navires potentiels, la position
Une fois réalisée la première étape 1 de prédiction d'un objectif visé par l'aéronef, la deuxième étape 2 détermine un point d'impact fictif fonction de cet objectif prédit, cet objectif pouvant être par exemple le navire de plus forte probabilité d'être visé ou le barycentre tel que calculé précédemment.Once the
Il a été vu précédemment que la trajectoire d'un hostile a été approximée à bord d'un missile de défense, par exemple, par une trajectoire cubique 41.It has been previously seen that the trajectory of a hostile has been approximated aboard a defense missile, for example, by a
Pour D et Ψ grands, la courbure de la trajectoire cubique est donc importante. Ainsi, comme l'illustre la
Néanmoins, si les moyens de calcul du missile de défense antiaérienne ne peuvent extrapoler qu'un seul type de trajectoire, en l'occurrence par exemple une trajectoire cubique, la deuxième étape 2 selon l'invention, permet de rapprocher la trajectoire cubique prédite 73 de la trajectoire réelle, notamment en réduisant sa courbure.Nevertheless, if the means for calculating the anti-aircraft defense missile can extrapolate only one type of trajectory, in this case for example a cubic trajectory, the
La deuxième étape 2 consiste notamment, à partir de l'objectif visé déterminé lors de l'étape 1, à calculer un point d'impact fictif qui réduit la courbure, en réduisant la distance D et l'angle de cap Ψ lorsque ces derniers sont trop importants. La réduction de la courbure de la trajectoire cubique rapproche ainsi cette dernière de la trajectoire réelle.The
Le point d'impact fictif est par exemple situé sur le segment de droite compris entre l'objectif visé prédit et la projection orthogonale de cet objectif prédit sur la droite portée par le vecteur vitesse de l'aéronef hostile comme l'illustre la
Dans un système d'axes horizontaux perpendiculaires qui ne sont plus orientés comme ceux de la
La deuxième étape détermine par exemple un point d'impact fictif I situé sur le segment de droite 81 compris entre la position 0 de l'objectif prédit, situé par exemple au centre du système d'axes x, y, et la projection orthogonale N de cet objectif sur la droite 82 passant par la position P de l'aéronef et portée par son vecteur vitesse
La position du point d'impact fictif I sur le segment [ON] 81, est donné par la relation suivante :
D'après les caractéristiques de la trajectoire cubique, le coefficient α est fonction de la distance D et de l'angle de cap Ψ. Ce coefficient α peut par exemple être défini en négligeant l'influence de la distance D. Cela peut être notamment permis par le fait que les cibles concernées sont par exemple situées entre 5 km et 15 km, dans cette plage de distance seule l'influence de l'angle de cap Ψ étant prépondérante.According to the characteristics of the cubic trajectory, the coefficient α is a function of the distance D and the angle of heading Ψ. This coefficient α can for example be defined by neglecting the influence of the distance D. This can be especially enabled by the fact that the targets concerned are for example between 5 km and 15 km, in this range of distance only the influence the heading angle Ψ being preponderant.
La
Aux petits angles Ψ, par exemple pour Ψ<20°, l'utilisation d'un point d'impact I ne se justifie par exemple pas. Dans ce cas α= 0, I = 0. Il n'y a pas de point d'impact fictif. Le point d'impact pris en compte est l'objectif visé prédit.At small angles Ψ, for example for Ψ <20 °, the use of a point of impact I is not justified for example. In this case α = 0 , I = 0. There is no point of fictitious impact. The point of impact taken into account is the predicted objective.
Quand l'angle Ψ est supérieur à 70° par exemple, le coefficient α est limité par exemple à 0,5, notamment pour ne pas trop réduire la longueur de la trajectoire cubique. En effet, le temps que met l'aéronef hostile pour parcourir la trajectoire cubique jusqu'au point d'impact fictif doit être suffisamment grand pour permettre à un missile antiaérien de calculer le temps d'interception. Dans ce cas, le point d'impact fictif I est situé sur la première moitié du segment [ON] en partant de la position O de l'objectif visé prédit.When the angle Ψ is greater than 70 ° for example, the coefficient α is limited for example to 0.5, especially not to reduce too much the length of the cubic trajectory. Indeed, the time the hostile aircraft has to travel the cubic trajectory to the point of fictitious impact must be large enough to allow an anti-aircraft missile to calculate the interception time. In this case, the fictitious impact point I is located on the first half of the segment [ ON ] starting from the position O of the predicted target objective.
La
La trajectoire 101 ainsi définie est ensuite fournie par exemple à un missile antiaérien dont les moyens de calcul vont déterminer son point d'interception avec l'aéronef sur cette même trajectoire.The
La mise en oeuvre du procédé selon l'invention a été illustrée pour la défense antiaérienne de navires. Néanmoins, le procédé selon l'invention peut s'appliquer à la défense antiaérienne d'un ensemble de bâtiments terrestres, mobiles ou non.The implementation of the method according to the invention has been illustrated for the anti-aircraft defense of ships. Nevertheless, the method according to the invention can be applied to the anti-aircraft defense of a set of land buildings, mobile or not.
Claims (18)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1700646A FR3067840B1 (en) | 2017-06-16 | 2017-06-16 | METHOD FOR PREDICTING THE TRAJECTORY OF A HOSTILE AIRCRAFT PARTICULARLY WITHIN THE FRAMEWORK OF ANTI-AIRCRAFT DEFENSE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3415860A1 true EP3415860A1 (en) | 2018-12-19 |
EP3415860B1 EP3415860B1 (en) | 2022-11-16 |
Family
ID=62567271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18175386.4A Active EP3415860B1 (en) | 2017-06-16 | 2018-05-31 | Method for predicting the trajectory of a hostile aircraft, particularly in the context of anti-air defence |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3415860B1 (en) |
ES (1) | ES2932621T3 (en) |
FR (1) | FR3067840B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111783358A (en) * | 2020-07-02 | 2020-10-16 | 哈尔滨工业大学 | Bayesian estimation-based long-term trajectory prediction method for hypersonic aircraft |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1610152A1 (en) * | 2004-05-28 | 2005-12-28 | Saab Ab | Tracking of a moving object for a self-defence system |
US20160131455A1 (en) * | 2013-05-28 | 2016-05-12 | Bae Systems Bofors Ab | Method of fire control for gun-based anti-aircraft defence |
KR20160070573A (en) * | 2014-12-10 | 2016-06-20 | 국방과학연구소 | Real-time prediction method of impact point of guided missile |
-
2017
- 2017-06-16 FR FR1700646A patent/FR3067840B1/en active Active
-
2018
- 2018-05-31 EP EP18175386.4A patent/EP3415860B1/en active Active
- 2018-05-31 ES ES18175386T patent/ES2932621T3/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1610152A1 (en) * | 2004-05-28 | 2005-12-28 | Saab Ab | Tracking of a moving object for a self-defence system |
US20160131455A1 (en) * | 2013-05-28 | 2016-05-12 | Bae Systems Bofors Ab | Method of fire control for gun-based anti-aircraft defence |
KR20160070573A (en) * | 2014-12-10 | 2016-06-20 | 국방과학연구소 | Real-time prediction method of impact point of guided missile |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111783358A (en) * | 2020-07-02 | 2020-10-16 | 哈尔滨工业大学 | Bayesian estimation-based long-term trajectory prediction method for hypersonic aircraft |
CN111783358B (en) * | 2020-07-02 | 2022-10-04 | 哈尔滨工业大学 | Bayesian estimation-based long-term trajectory prediction method for hypersonic aircraft |
Also Published As
Publication number | Publication date |
---|---|
FR3067840A1 (en) | 2018-12-21 |
ES2932621T3 (en) | 2023-01-23 |
EP3415860B1 (en) | 2022-11-16 |
FR3067840B1 (en) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2092366B1 (en) | Method of estimating the elevation of a ballistic projectile | |
CA2257336C (en) | Method for the lateral avoidance of a mobile zone by a vehicle | |
EP2150836B1 (en) | Methods and apparatus for selecting a target from radar tracking data | |
EP3051519B1 (en) | A safety system, a helicopter fitted with such a system, and a safety method seeking to avoid an undesirable event | |
CN105022035A (en) | Trajectory target launch point estimate apparatus based on model updating and method | |
EP1870789A1 (en) | System for detecting obstacles in the proximity of a landing point | |
EP3074786B1 (en) | Anticollision radar, especially for an aircraft when taxiing, and anticollision system | |
FR2913781A1 (en) | Anti-collision alarm filtering method for e.g. helicopter type aircraft, involves calculating weighting coefficient of extrapolated duration according to obstacle density data of topographical data bases in determined perimeter | |
US20130214045A1 (en) | Low-altitude low-speed small target intercepting method | |
FR2893147A1 (en) | METHOD FOR PREDICTING COLLISION WITH GROUND OBSTACLES AND ALERTS, PARTICULARLY EMBEDDED ON AN AIRCRAFT | |
FR3000238A1 (en) | METHOD WITH A SYSTEM FOR DETERMINING AND PREDICTING A MOVEMENT OF A TARGET OBJECT | |
EP3415860B1 (en) | Method for predicting the trajectory of a hostile aircraft, particularly in the context of anti-air defence | |
FR2978282A1 (en) | Method for filtering alarms from on-board ground collision detection system of aircraft in phase of approach of landing strip, involves inhibiting ground alarm when factor is positive and incidence angle is lower than preset threshold | |
WO2020260649A1 (en) | Radar device for detecting reference behaviour of tracked targets; associated method and computer program product | |
EP3239656B1 (en) | Method for optimising the detection of sea targets and airborne radar implementing such a method | |
EP3236331A1 (en) | Method for optimising images taken by an airborne radar imaging device, and mission system implementing such a method | |
Pohasii et al. | UAVs intercepting possibility substantiation: economic and technical aspects | |
FR2929700A1 (en) | Surface-surface emergency response defense units driving device for e.g. boat, has processing units determining direction proceeded by defense units, from direction data provoking from visual pointing units | |
Gade et al. | Non-elliptical validation gate for maritime target tracking | |
EP0809084B1 (en) | Apparatus for determining the roll angle position of a flying device, especially of an ammunition | |
FR3037663A1 (en) | SYSTEM AND METHOD FOR MITIGATING THE SEISMIC SHOT EFFECTS AGAINST MARINE MAMMALS | |
FR2760079A1 (en) | METHOD OF RALLYING A TARGET | |
WO2016045703A1 (en) | Method and device for determining the ground collision risk of an aircraft | |
FR2619634A1 (en) | METHOD AND DEVICE FOR TRACKING TARGET WITH INFRARED EMISSION AND AMMUNITION COMPRISING APPLICATION | |
EP4425211A1 (en) | System for classifying radar tracks in animated runways, corresponding to radar traps, and other tracks corresponding to targets of interest such as aircraft or missiles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190613 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210201 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220714 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018043051 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1531998 Country of ref document: AT Kind code of ref document: T Effective date: 20221215 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2932621 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230123 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221116 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1531998 Country of ref document: AT Kind code of ref document: T Effective date: 20221116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230316 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230316 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230217 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602018043051 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: BAE SYSTEMS BOFORS AB Effective date: 20230807 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: TITRE |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: BAE SYSTEMS BOFORS AB Effective date: 20230807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221116 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240418 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240416 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240613 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240426 Year of fee payment: 7 Ref country code: FR Payment date: 20240422 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240429 Year of fee payment: 7 |