EP3413319B1 - Traversée d'alimentation remplie d'huile avec compensation de pression par soufflet - Google Patents
Traversée d'alimentation remplie d'huile avec compensation de pression par soufflet Download PDFInfo
- Publication number
- EP3413319B1 EP3413319B1 EP17188182.4A EP17188182A EP3413319B1 EP 3413319 B1 EP3413319 B1 EP 3413319B1 EP 17188182 A EP17188182 A EP 17188182A EP 3413319 B1 EP3413319 B1 EP 3413319B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bushing
- bellow
- chamber
- expansion chamber
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 claims description 54
- 239000012212 insulator Substances 0.000 claims description 26
- 239000004020 conductor Substances 0.000 claims description 18
- 230000008602 contraction Effects 0.000 claims description 14
- 238000012360 testing method Methods 0.000 description 6
- 238000010420 art technique Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011989 factory acceptance test Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000009421 internal insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/34—Insulators containing liquid, e.g. oil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/02—Casings
- H01F27/04—Leading of conductors or axles through casings, e.g. for tap-changing arrangements
Definitions
- the present invention relates generally to bushings for transformers and more particularly to insulated liquid filled power bushing.
- FIG. 1 shows an oil filled bushing 1 for a transformer or a high voltage device, said bushing 1 comprising an insulator 11 having a chamber 111 for receiving an electrical conductor 13 and insulating material 12, for instance oil and/or oil impregnated paper that surrounds the electrical conductor 13.
- the insulator 11 is surmounted by an oil expansion chamber 14 communicating with the chamber 111 of the insulator 11 in order to have the oil 2 filling the chamber 111 and extending upwardly into the oil expansion chamber 14.
- the electrical conductor 13 comprises a first extremity 131 located at the top of the bushing 1 and configured for being electrically connected to a first device and a second extremity (not shown) configured for being connected to another device, for instance a transformer.
- the electrical conductor 13 typically extends from the top of the bushing 1 to its bottom through the oil expansion chamber 14 and the insulator chamber 111, clamping means and gaskets ensuring the different parts of the bushing 1 being hermetically held together.
- the oil expansion chamber 14 further comprises a gas cushion 15 located above the oil level in said oil expansion chamber 14. The oil filling the bushing 1 is therefore in contact with the gas cushion 15, allowing the oil 2 to expand or contract in function of variations of the temperature.
- standard oil filled power bushings usually integrate such a gas cushion (for instance N2) in the top housing for compensating oil dilatation due to thermal changes.
- N2 gas cushion
- the solubility of the gas in the oil increases with increasing temperature. Consequently, N2 is dissolved in the oil until the oil-gas system reaches an equilibrium corresponding to an N2 saturation level in the oil of 100%.
- N2 solubility in the oil decreases, which results in N2 being released from the oil.
- a large quantity of N2 released in a short time may generate bubbles in the insulating oil. If bubbles appear in a zone of high electrical stress, partial discharges may appear, inducing degradation of the insulation.
- a single occurrence is not dangerous for the bushing, but the repeated entering of gas in oil followed by its release from said oil can lead to an accelerated aging of the condenser active part, and ultimately a bushing failure.
- Factory test program can include a temperature rise test, followed by electrical tests. Manufacturers may want to save time by cooling as fast as possible the transformer after temperature rise test. This can lead to bubble generation, and failure during electrical tests performed right after.
- Figure 2 presents a bushing embodiment disclosed in US6271470B1 . It shows a liquid filled power bushing 1 including an insulator 11 having a chamber 111 for receiving an insulating liquid 2.
- An expansion chamber 14 communicates with the insulator chamber 111 for receiving insulating liquid 2 and gas 15.
- the technical problem is solved by means of a movable piston 5 slidably mounted within the expansion chamber 14 and dividing the latter into a liquid filled section 14A and a gas filled section 14B.
- the piston 5 is adapted to move up or down in function of an expansion or contraction of the liquid volume, while preventing the gas to communicate with said liquid, and preventing therefore the formation of bubbles within said liquid.
- Figure 3 illustrates another embodiment for solving the present technical problem. It shows a schematic cross-sectional view of an Oil-Impregnated Paper (OIP) insulated transformer bushing, wherein two sealed bellows 3 are used for compensating an expansion or contraction of the oil due to thermal changes.
- the sealed bellows 3 are completely immersed in the insulating liquid and totally closed.
- the sealed bellows will contract or dilate in function of an expansion or contraction of the liquid volume, in order to avoid overpressure inside the expansion chamber.
- the bellows do not communicate with any space located inside or outside from the bushing.
- the contraction of the bellows generates additional pressure inside said bellows, which the bellows can withstand due to their material and design.
- An objective of the present invention is to propose a new concept for solving the technical problem related to the generation of gas bubbles in insulating oil of oil filled bushing, like OIP insulated transformer bushings, which is notably efficient during fast variations of the temperature within the bushing.
- the present invention proposes notably a liquid filled power bushing comprising a bellow as disclosed by the object of the independent claim.
- the power bushing according to the invention comprises notably:
- the expansion chamber surmounts the insulator.
- the insulator is mounted on a top part of the insulator, wherein a first extremity of the conductor is located, said first extremity, usually called top terminal, being configured for enabling a connection of the bushing with an external electrical circuit, while a second extremity of the electrical conductor (typically its bottom part) comprises connecting means for connecting the electrical connector to a high voltage device or a transformer.
- the bushing according to the invention is an OIP insulated transformer bushing capable of compensating pressure variations occurring in the expansion chamber by variations of the volume of the interior chamber of the bellow.
- the bushing comprises a single tubular-shaped bellow located inside the expansion chamber.
- said bellow is a stainless steel bellow.
- the bellow is fixed to a removable closing lid of the bushing, or more precisely of the expansion chamber, wherein said lid is configured for hermetically closing the expansion chamber.
- said lid comprises, for each of the bellow according to the invention, a communication channel that makes the interior chamber of each of the bellow communicate with said space at the exterior of the expansion chamber.
- Said lid is configured for closing a top part of the expansion chamber so that removing said lid enables an easy filling of the expansion chamber with insulating liquid.
- the problematic of the generation of gas bubbles is therefore solved by physically separating oil from gas through the means of the bellow.
- FIGS 1-3 illustrates a prior art techniques in relation with the present invention, wherein Fig. 1 is a schematic representation of a bushing confronted to the problem of gas bubbles generation within the insulating oil, and Fig. 2 and Fig. 3 are illustrations of known techniques for solving the above-mentioned technical problem.
- Figure 5 describes a preferred embodiment of a liquid filled power bushing 1 according to the invention wherein volume variations of oil 2, or any insulating liquid, comprised within the bushing 1 are compensated by volume variations of an interior chamber 31 of a bellow 3.
- the interior chamber 31 communicates with the exterior, i.e. with a space located outside the expansion chamber 14, via a channel or orifice 32, but is hermetically sealed with regard to the insulating liquid (oil 2).
- the bushing 1 according to the invention is typically configured for use with high voltage apparatus like a transformer.
- the bushing 1 comprises notably an insulator 11 whose body is configured for defining a chamber 111 for receiving an electrical conductor 13, like a central current carrying conductor, and insulating material surrounding the electrical conductor 13, for instance oil 2 and/or oil impregnated paper.
- the oil expansion chamber 14 is preferentially mounted at the top of the insulator 11 and communicates with the chamber 111 of the insulator 11 via a channel or orifice in order to have the oil filling the chamber 111 also filling the interior of the expansion chamber 14, for instance by extending upwardly into the oil expansion chamber 14 until a top part 14A of the expansion chamber.
- the oil 2 fills the expansion chamber 14 until said top part 14A, the expansion chamber 14 being thus free of gas that could dissolve within the oil 2.
- the bushing 1 according to the invention is free of a gas cushion that would be located above the oil level in the expansion chamber 14 and in contact with said oil.
- the electrical conductor 13 comprises notably a first extremity 131 located above the top part 14A of the expansion chamber 14 and configured for electrically connecting the bushing to a first electrical connection, e.g. an electrical connection of an external electrical circuit, then extends through the expansion chamber 14 and the insulator chamber 111 and terminates with a second extremity (not shown) configured for electrically connecting the bushing to a second electrical connection, e.g. an electrical connection of a high voltage device or a transformer.
- a first electrical connection e.g. an electrical connection of an external electrical circuit
- the electrical conductor 13 typically extends therefore from the top of the bushing 1 to its bottom through the oil expansion chamber 14 and the insulator 11, and clamping or fixing means and sealing gaskets (not shown) are preferentially used for holding the different parts of the bushing 1 together, so that oil 2 is hermetically contained within the bushing 1.
- the bushing 1 further comprises preferentially a single or several bellows 3, located within the expansion chamber 14 and configured for being submerged into the oil 2 contained within said expansion chamber 14 when the bushing is in operation.
- the bellow 3 located within the expansion chamber 14 and configured for being submerged into the oil 2 contained within said expansion chamber 14 when the bushing is in operation.
- oil 2 completely fills the expansion chamber 14, it surrounds at least partially the bellow 3, for instance its lateral faces and its bottom, while the top or upper part of the bellow might be fixed to the top part 14A of the expansion chamber 14.
- each bellow 3 is in particular mounted inside said expansion chamber 14 so as to freely expand or contract in function of variations of the volume of the oil 2, with one part of the bellow being fixed to a wall of the expansion chamber 14 while another part, opposite to said one part, is free to move within said expansion chamber 14 in order to enable an expansion or contraction of the volume of the interior chamber 31.
- the bellow is characterized by an interior chamber volume that is able to change in function of forces, like pressure, applied by the oil 2 on the bellow 3.
- the interior chamber 31 of the bellow 3 communicates with a space located outside of the expansion chamber 14 through a small channel or orifice 32 so that a gas may enter the interior chamber 31 from said space when the interior chamber expands and may leave the interior chamber for said space when the interior chamber contracts due to forces applied by the oil on the bellow.
- the upper part of the bellow is fixed to a removable lid 141 of the top part 14A of the expansion chamber 14, that is configured for hermetically closing the expansion chamber 14.
- said lid 141 is a plate comprising fixing means for hermetically closing the expansion chamber 14.
- the lower part of the bellow 3 is in particular free to move substantially vertically, i.e. substantially perpendicularly compared to a plane within which the lid lies, inside the expansion chamber depending on the pressure inside said expansion chamber 14.
- the inside of the bellow 3, i.e. its interior chamber 31 is filled with air, and communicates with the external atmosphere through the small channel or orifice 32.
- this channel or orifice 32 includes a filter to avoid moisture ingress inside the bellow 3.
- the bellow 3 will contract or expand depending on the volume required by oil 2 inside the bushing in function of thermal variations, and when oil 2 dilates due to thermal expansion, the bellow 3 will contract and the air inside the bellow 3 will be expelled through the channel or orifice 32 for instance in the surrounding environment of the bushing 1, and when oil 2 contracts due to cooling, the bellow 3 will fill with air coming through the channel or orifice 32 for instance from the surrounding environment of the bushing and expand.
- the bellow 3 is substantially cylindrical and fixed to the top part 14A of the expansion chamber 14. Nevertheless, other embodiments might be envisaged, wherein the bellow may have another shape, like a spherical shape.
- a preferred embodiment of the bellow 3 is illustrated in Fig. 4 .
- the bellow 3 is a tubular-shaped bellow, i.e. has a shape of a hollow cylinder characterized by an internal wall 33, an external wall 34, a bottom plate 35 and a lid 36.
- the space between the internal wall 33, the external wall 34, the bottom plate 35 and the lid 36 forms said interior chamber 31 hermetically sealed from the insulating liquid (e.g. oil 2).
- the internal wall 33 is configured for surrounding the electrical conductor 13, forming therefore a cavity or hollow part of the cylinder, which is preferentially cylindrical, and is in other words configured for receiving or housing the electrical conductor 13 which extends according to the length of the cylinder.
- the geometrical shape of the bottom plate is preferentially an annular disc.
- the length L of the cylinder is variable in function of the pressure in the expansion chamber, so that the bellow can contract or extend.
- the lid 36 comprises fixing means 361 to enable fixing said lid 36 to the removable lid 141 of the expansion chamber 14 or is preferentially said removable lid 141 of the expansion chamber 14. In that case, the lid 36 of the bellow 3 is directly fixable to a wall or body of the expansion chamber in order to hermetically close the latter.
- Said lid 36 further comprises said channel or orifice 32 making the interior chamber 31 of the bellow communicate with the exterior as previously described.
- the contraction and expansion of the bellow within the expansion chamber eliminates the generation of gas bubbles within the oil 2, preventing therefore an accelerated aging of the bushing in case of use in cycling load conditions (solar power plants, wind farms%), and also preventing losing time during factory acceptance test of transformers.
- the presented design enables the bushing to "breathe", the latter remaining at a pressure close to atmospheric pressure due to its communication through the channel or orifice 32 with the surrounding environment of the bushing, which further prevents any risk of overpressure inside the bushing that could cause one or more of the bushing sealing gaskets to leak or fail (especially in case of temporary overload conditions).
- the present invention provides also the following advantages: it reduces the manufacturing costs of the power bushing due to the use of simple elements like the claimed bellow which communicates via a channel with a space like the external atmosphere.
- the manufacturing costs of such a bellow are for instance lower compared to bellows designed for being totally immersed within the insulating liquid
- the bellow according to the invention enables a direct access to information regarding the insulating liquid level within the expansion chamber by checking the position of the extremity of the bellow that is designed for freely moving within the insulating liquid (hereafter called the freely hanging part, which is for instance the bottom part of the bellow, while the other extremity of the bellow, e.g. the top part, is fixed and cannot move - see Fig. 5 for instance) during its expansion or contraction.
- the freely hanging part which is for instance the bottom part of the bellow
- the other extremity of the bellow e.g. the top part
- the expansion chamber 14 may simply comprise a window 142 enabling a direct visualization of the position of the freely hanging part of the bellow.
- Said window 142 comprises for instance an indicator indicating a position of the freely hanging part that corresponds to a critical level of the insulating liquid and which may require an intervention of an operator.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Insulators (AREA)
Claims (7)
- Traversée d'alimentation remplie de liquide (1) comprenant :- un isolant (11) comprenant une chambre d'isolant (111) pour recevoir un liquide isolant (2) ;- une chambre d'expansion (14) communiquant avec la chambre d'isolant (111) afin de permettre une expansion ou contraction du liquide isolant (2) ;- un conducteur électrique (13) situé à l'intérieur de la traversée (1) et s'étendant à travers la chambre d'expansion (14) et la chambre d'isolant (111) ; un soufflet (3) situé à l'intérieur de la chambre d'expansion (14), le soufflet (3) comprenant une chambre intérieure (31) à volume variable,caractérisé en ce que ladite chambre intérieure (31) communique via un conduit (32) avec un espace (4) rempli de gaz et situé à l'extérieur de la chambre d'expansion (14) afin de permettre audit gaz de pénétrer dans la chambre intérieure (31) dans l'hypothèse d'une expansion du volume de la chambre intérieure (31) résultant de la contraction du liquide isolant (2) et étant relâché de ladite chambre intérieure (31) dans ledit espace dans l'hypothèse d'une contraction du volume de la chambre intérieure (31) résultant de l'expansion du liquide isolant (2), dans laquelle le soufflet (3) est fixé à un capot de fermeture amovible (141) d'une partie supérieure (14A) de la chambre d'expansion (14).
- Traversée d'alimentation remplie de liquide (1) selon la revendication 1, dans laquelle le soufflet est partiellement immergé dans le liquide isolant (2).
- Traversée d'alimentation remplie de liquide (1) selon la revendication 1 ou 2, dans laquelle l'espace (4) est l'atmosphère extérieure entourant la traversée de liquide remplie de liquide (1) .
- Traversée d'alimentation remplie de liquide (1) selon l'une des revendications 1 à 3, dans laquelle la chambre d'expansion (14) est configurée pour entourer l'isolant (11).
- Traversée d'alimentation remplie de liquide (1) selon l'une des revendications 1 à 4, dans laquelle le conduit (32) comprend un filtre à humidité.
- Traversée d'alimentation remplie de liquide (1) selon la revendication 1, dans laquelle le capot de fermeture amovible (141) comprend ledit conduit (32).
- Traversée d'alimentation remplie de liquide (1) selon l'une des revendications 1 à 6, dans laquelle elle comprend un seul soufflet de forme tubulaire.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17174731 | 2017-06-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3413319A1 EP3413319A1 (fr) | 2018-12-12 |
EP3413319B1 true EP3413319B1 (fr) | 2020-09-30 |
Family
ID=59745688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17188182.4A Active EP3413319B1 (fr) | 2017-06-07 | 2017-08-28 | Traversée d'alimentation remplie d'huile avec compensation de pression par soufflet |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3413319B1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110366303A (zh) * | 2019-06-05 | 2019-10-22 | 南宁一举医疗电子设备股份有限公司 | 医用x射线发生器高压油箱内嵌入式膨胀阀密封结构 |
CN110504092B (zh) * | 2019-09-10 | 2022-03-08 | 日立能源瑞士股份公司 | 套管及其制造方法 |
CN111665031A (zh) * | 2020-06-04 | 2020-09-15 | 广东电网有限责任公司 | 外油波纹储油柜波纹移动顺畅测试装置及方法 |
CN112310912A (zh) * | 2020-09-24 | 2021-02-02 | 江苏神马电力股份有限公司 | 穿墙套管 |
CN112802671A (zh) * | 2021-02-02 | 2021-05-14 | 南京电气高压套管有限公司 | 一种可插拔式快速安装高压套管 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2224772A1 (de) * | 1972-05-20 | 1973-11-29 | Schorch Gmbh | In geneigter lage einbaubare kondensatordurchfuehrung |
SE377400B (fr) * | 1973-10-26 | 1975-06-30 | Asea Ab | |
FR2338558A2 (fr) * | 1976-01-16 | 1977-08-12 | Alsthom Savoisienne | Liaison entre appareillage sous enveloppe metallique et transformateur |
US4494811A (en) * | 1980-12-10 | 1985-01-22 | Picker Corporation | High voltage connector assembly with internal oil expansion chamber |
US6271470B1 (en) | 2000-01-12 | 2001-08-07 | Abb Power T&D Company Inc. | Oil filled power bushing with piston |
-
2017
- 2017-08-28 EP EP17188182.4A patent/EP3413319B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3413319A1 (fr) | 2018-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3413319B1 (fr) | Traversée d'alimentation remplie d'huile avec compensation de pression par soufflet | |
CN104101820B (zh) | 一种变压器油/纸绝缘老化实验装置及实验方法 | |
KR101512877B1 (ko) | 밀봉 유체 기반 절연 시스템을 갖는 전기 장치의 상태를 진단하는 디바이스 및 방법 | |
JP5140190B2 (ja) | ガス絶縁真空遮断器 | |
CN105390337A (zh) | 一种高抗振六氟化硫气体密度继电器 | |
CN104299844B (zh) | 一种大量程六氟化硫气体密度继电器 | |
RU2681274C2 (ru) | Конструкция масляной активной части в газе | |
EP0354494A1 (fr) | Installation de commutation | |
US4054351A (en) | Connection between a device in a metallic sheath and a transformer | |
CN210245403U (zh) | 一种方便快速校验的气体密度继电器 | |
CN103680834B (zh) | 一种活塞结构的变压器储油柜 | |
CN107808798A (zh) | 一种小型化的大量程气体密度继电器 | |
WO2017085065A1 (fr) | Condensateur électrolytique à évent de sécurité | |
US2769070A (en) | Pressure transducer apparatus | |
JP6207805B1 (ja) | 真空バルブの真空劣化監視装置及びこれを備えた開閉装置 | |
US2749754A (en) | Electrical apparatus for measuring pressure | |
CN201820703U (zh) | 气体密度继电器接点引出线的密封结构 | |
US2853538A (en) | Electrical bushings | |
US2142233A (en) | Expansion chamber for bushing insulators | |
US2099666A (en) | High voltage liquid-filled bushing | |
US2961508A (en) | Pressure relay for fluid containing enclosures | |
CA1185455A (fr) | Indicateur de densite de gaz | |
US2891226A (en) | Pressure transducer apparatus | |
US4122297A (en) | Electrical bushing | |
US2116419A (en) | High voltage bushing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190517 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190806 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 27/04 20060101ALN20200519BHEP Ipc: H01F 27/14 20060101ALI20200519BHEP Ipc: H01B 17/34 20060101AFI20200519BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 27/04 20060101ALN20200525BHEP Ipc: H01B 17/34 20060101AFI20200525BHEP Ipc: H01F 27/14 20060101ALI20200525BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200616 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH Ref country code: AT Ref legal event code: REF Ref document number: 1319638 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017024492 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201231 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1319638 Country of ref document: AT Kind code of ref document: T Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210201 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017024492 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
26N | No opposition filed |
Effective date: 20210701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20211202 AND 20211209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602017024492 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210828 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170828 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230902 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20240411 AND 20240417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240826 Year of fee payment: 8 |