EP3412978B1 - Procédé de commande d'un système de refroidissement et/ou de chauffage - Google Patents

Procédé de commande d'un système de refroidissement et/ou de chauffage Download PDF

Info

Publication number
EP3412978B1
EP3412978B1 EP17175231.4A EP17175231A EP3412978B1 EP 3412978 B1 EP3412978 B1 EP 3412978B1 EP 17175231 A EP17175231 A EP 17175231A EP 3412978 B1 EP3412978 B1 EP 3412978B1
Authority
EP
European Patent Office
Prior art keywords
heating
open
ideal
heating circuits
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17175231.4A
Other languages
German (de)
English (en)
Other versions
EP3412978A1 (fr
Inventor
Willi Pommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rehau Automotive SE and Co KG
Original Assignee
Rehau AG and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rehau AG and Co filed Critical Rehau AG and Co
Priority to EP17175231.4A priority Critical patent/EP3412978B1/fr
Publication of EP3412978A1 publication Critical patent/EP3412978A1/fr
Application granted granted Critical
Publication of EP3412978B1 publication Critical patent/EP3412978B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors

Definitions

  • the present invention relates to a method for controlling a heating and / or cooling system, in which a temperature control medium is heated or cooled in a temperature control element, is led via a flow line with a flow temperature sensor to a flow heating circuit distributor, through the flow heating circuit distributor Heating circuits, each comprising a valve with an actuator assigned to it, a flow, a consumer and a return with a return temperature sensor, is distributed, flows through the heating circuits and is fed via a return heating circuit distributor into a return line and via the return line to the temperature control element .
  • the present invention also relates to a heating and / or cooling system that a temperature control element; a flow line with a flow temperature sensor; a flow heating circuit distributor; Heating circuits, each comprising a valve with an actuator assigned to it, a flow, a consumer and a return with a return temperature sensor; a return heating circuit distributor; comprises a return line and a control unit; the control unit being designed to provide the operations for carrying out such a method.
  • the present invention also relates to a computer program product of a control unit for controlling such a heating and / or cooling system.
  • document DE 2006 052124 A1 discloses a method according to the preamble of claim 1.
  • Such methods for controlling a heating and / or cooling system and corresponding heating and / or cooling systems are known from the prior art.
  • a suitable flow temperature of the temperature control medium in a temperature control element for example a boiler, a condensing boiler or a heat pump, as well as by individually setting the amount of water, which is supplied to the heating circuits.
  • the flow temperature is not set individually for each individual room / consumer, but for a group of rooms / consumers.
  • the room-specific energy supply is therefore realized by the individual room control technology, usually by the room Room controller.
  • the detection of the return temperature of the individual heating circuits to detect the spread between the flow and return temperatures can also lead to a reduction of the problems described.
  • This is used in control systems in which the room temperature is controlled in a control unit by opening the valves in the heating circuit, either in a time ratio or in a certain degree of opening.
  • the temperature difference between the flow and return of the respective heating circuit is determined and taken into account in the control algorithm.
  • this temperature difference represents only one parameter for the assessment of the heat dissipation to a room.
  • the resulting flow rate which is another crucial parameter for the heat dissipation to a room, cannot be recorded with this procedure.
  • the flow rate is therefore set either in steps of time or by adjusting the degree of opening of the valves so that a temperature difference between the flow and the return calculated as suitable by the control system is established.
  • the mutual hydraulic influence of the heating circuits is, however, only reduced in the quasi-steady state, i.e. when the room temperature is regulated near the setpoint.
  • the cooling of the heating surfaces results in a high temperature difference between the flow temperature and the return temperature, which exceeds the value applicable for the steady state and cannot be corrected.
  • the present invention comes in, which is based on the object of providing a method for controlling a heating and / or cooling system which overcomes the disadvantages of the prior art.
  • the method according to the invention is intended to ensure an improved supply of the individual heating circuits for the load case in the event of changing operating conditions of the heating system which comprises several heating circuits.
  • the present invention also lies in the provision of a heating and / or cooling system which is designed to carry out the method according to the invention, and in a computer program product of a control unit for controlling a heating and / or cooling system which carries out the operations for carrying out a method according to the invention Provides procedure in the control unit.
  • the period of time determined by a suitable measuring technique which is required for the complete exchange of the temperature control medium in a heating circuit in different load cases, can also be used. While the methods of classic room temperature control can only react to the changes in room temperature and thus in heating systems with a large storage mass only with a considerable time delay, the method according to the invention can intervene in a corrective manner even when the energy is released to the heating surface.
  • the time required to replace the temperature control medium in a heating circuit varies with different operating states of the system.
  • the time required to completely replace the temperature control medium in one heating circuit without operating another heating circuit is therefore determined in an undisturbed state of the heating circuits of a room, i.e. without the hydraulic conditions being influenced by other heating circuits.
  • This period of time is determined by evaluating the temperature profiles of temperature sensors in the flow line and in the return of the respective heating circuit. This process is carried out one after the other for all n heating circuits. This period of time corresponds to the time interval between the occurrence of a temperature change at the flow temperature sensor after an opening signal is sent to the actuator of the valve of a heating circuit until the resultant temperature change at the return temperature sensor of this heating circuit when the valves of the other heating circuits are closed referred to as T (circuit response, n).
  • the effect of an operating state with a high load is determined on the period of time required for the complete exchange of the temperature control medium in a heating circuit.
  • an opening signal is emitted to all actuators of the valves of the heating circuits of a heating circuit distributor at the same time.
  • ideal opening times T are first determined for the respective valves of the n heating circuits.
  • These ideal opening times T (open ideal, n) are a percentage of a cycle time that is adapted to the characteristics of the heating system. For example, a surface heating system in which the heating circuits are embedded in screed typically uses a cycle time of 20 minutes. This results in calculated opening times of 0 minutes to 20 minutes for a desired heating output of 0% to 100%. This process is called pulse width modulation (PWM).
  • PWM pulse width modulation
  • the ideal opening times T (open ideal, n) for the individual heating circuits are calculated depending on the amount of energy required by the respective consumer, for example a room concerned, which results, among other things, from the deviation of the prevailing room temperature from the room temperature setpoint for this room .
  • These ideal opening times T (open ideal, n) are then subjected to a correction, which results in an actual opening time T (open act, n) of the valve for each of the n heating circuits.
  • the prerequisite for this correction is to identify those heating circuits in which the change in load conditions only has a smaller effect on the determined running time of the temperature control medium through the heating circuit than in other heating circuits.
  • the heating circuits identified in this way are preferred to the remaining heating circuits in the distribution of the temperature control medium available, the other heating circuits are thus disadvantaged. The operation of one or more of these heating circuits will therefore hinder the operation of the remaining heating circuits.
  • the ideal opening times T (open ideal, n) are corrected for each of the n heating circuits as a function of the deviation of the maximum throughput time T (circuit response max, n) from the ideal throughput time T (circuit response, n) of the respective heating circuit. Finally, the valves of the individual heating circuits are opened over a period of time that corresponds to the determined actual opening time T (open act, n) of the respective valve.
  • the present invention is to provide a heating and / or cooling system that includes a temperature control element; a flow line with a flow temperature sensor; a flow heating circuit distributor; Heating circuits, each comprising a valve with an actuator assigned to it, a flow, a consumer and a return with a return temperature sensor; a return heating circuit distributor; comprises a return line and a control unit, the control unit being designed to provide the operations for carrying out the method according to the invention.
  • the present invention also provides a computer program product of a control unit for controlling a heating and / or cooling system, in which a temperature control medium is heated or cooled in a temperature control element, is led to a flow heating circuit distributor via a flow line with a flow temperature sensor, is distributed by the flow heating circuit distributor to heating circuits, each comprising a valve with an actuator assigned to it, a flow, a consumer and a return with a return temperature sensor, flows through the heating circuits and via a return heating circuit distributor into a return line and via the Return line is led to the temperature control element, wherein the execution of the computer program product in the control unit is set up to provide the operations for performing the method according to the invention.
  • pulse width modulation means the variable switch-on time of a signal, the switch-on time being repeated periodically in a fixed time frame, the cycle time. This switch-on time, which corresponds to the switch-on time of the flow in the present application, is referred to as "pulse width”.
  • the length of the pulse width is determined by the control algorithm integrated in the control unit on the basis of the measured room temperature and the temperature setpoint currently or at intervals, taking into account the properties of the controlled system.
  • a minimum pulse width is preferred to achieve efficient heating.
  • the amount of the minimum pulse width is based on the characteristic properties of the system to be controlled.
  • the characteristic properties of the system to be controlled also include the timing of the actuator, in the case of surface heating the combination of the actuator with the valve attached to the hydraulic distributor.
  • the pulse width is selected such that the longest heating circuit is also filled with the temperature control medium during this period.
  • the time frame required for this can e.g. B. vary between 5 and 60 minutes.
  • the start of the switch-on time of the different heating circuits can begin at the same time or preferably at different times.
  • the time offset of the switch-on times reduces the load on the control system caused by the switch-on currents of the actuators used at the time of switch-on and at the same time reduces the changes in the increase in the flow of the temperature control medium caused by the valve opening.
  • the heating and / or cooling system according to the invention is preferably an underfloor heating / cooling system.
  • the temperature control medium is fed to the heating circuits for cooling / heating.
  • the temperature control medium can be, for example, water or another suitable liquid medium.
  • the tempering medium can, for. B. Glycol added.
  • Underfloor heating / cooling means that the heating loops run, for example, in the screed under the floor or are otherwise integrated into the floor structure.
  • the heating loops can also be installed in another suitable structure.
  • the heating loops can also be installed in the wall or ceiling.
  • the ideal opening times T (open ideal, n) are corrected by applying a correction factor K (load max, n) to the ideal opening time T (open ideal, n) for each of the n heating circuits.
  • the heating circuits are then preferably classified into critical and non-critical heating circuits.
  • a heating circuit should preferably be classified as a critical heating circuit if it falls below a statistical parameter of the correction factors K (load max, n) of the n heating circuits.
  • a mean value is preferably used as the statistical parameter, in particular the geometric mean, the harmonic mean or the arithmetic mean, the median or another suitable statistical parameter.
  • the actual opening times T (open act, n) of the respective valve can then preferably vary according to T open act .
  • n T open ideal .
  • n calculate in the event that the ideal opening time T (open ideal, n) of all heating circuits, especially all critical ones, does not exceed the minimum fraction of the largest ideal opening time T (open ideal, n) of the other heating circuits, for each heating circuit. This represents a simple and very effective method for correcting the ideal opening times T (open ideal, n) of the heating circuits.
  • the actual opening time T (open act, n) of the valves can also be determined such that the actual opening time T (open act, n) of the valves for the heating circuits classified as critical compared to the relevant ideal opening time T (open ideal, n ) is shortened if the valve has at least one heating circuit classified as critical is opened, or the actual opening time T (open act, n) of the valves corresponds to the relevant ideal opening time T (open ideal, n) if no valve (6, 6 ', 6 ", 6"") is classified as critical
  • the actual opening time T (open act, n) of the heating circuits classified as non-critical preferably corresponds in both cases to the respective ideal opening time T (open ideal, n) of the valve in question.
  • Shortening the opening times of the valves for the as critically classified heating circuits take place in particular by a fraction of at least about 20% of the relevant ideal opening time T (open ideal, n), preferably 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% and preferably at most 80% of the respective ideal opening time T (open ideal, n) of the valve in question.
  • T open ideal, n
  • Such a procedure represents a further simplification for the method according to the invention.
  • the actual opening time T (open act, n) of the valves for the heating circuits classified as critical is reduced compared to the ideal opening time T (open ideal, n) concerned, whose correction factor K (load max , n) falls below the mean value of the correction factors K (load max, n) of the n heating circuits by at least 10%, preferably by at least 30%.
  • a mean value is preferably used as the statistical parameter, in particular the geometric mean, the harmonic mean or the arithmetic mean, the median or another suitable statistical parameter.
  • step (ii) and (iv) are carried out several times, wherein in step (ii) the opening signal is only given to a selection of the actuators of the valves and the times determined and in Corrections determined in the following step (iv) are stored in such a way that they are applied when the equivalent requirement situation according to stage (v) is present.
  • the term "equivalent request situation” means the set of ideal opening times T (open ideal, n) and correction factors K (load max, n) stored in the system of the n heating circuits that is most similar to the current request situation.
  • the selection of the actuation of the valve actuators is carried out in such a way that activation of only one of the actuators of the heating circuits is omitted, the selection of the uncontrolled heating circuits in ascending order of the values for K (load max , n) takes place.
  • the selection of the actuation of the actuators of the valves is carried out in such a way that preferably the actuation of more than one of the Actuators of the heating circuits are omitted, whereby the selection of the uncontrolled heating circuits is limited to the heating circuits that have the lowest values for K (load max). It is particularly preferred if the corrections in step (iv) are selected in such a way that the stored operating state is used which comes closest to the current requirement situation.
  • valves in stage (vi) are opened simultaneously. However, it is preferred if the valves are opened in stage (vi) with a time delay of at least 20 seconds. In this way, sudden electrical and hydraulic loads that can occur when the valve is opened at the same time can be avoided. From a certain load requirement, a more uniform operation is guaranteed.
  • control unit is modularly constructed from a main unit and an additional unit, the additional unit comprising the flow temperature sensor and the return temperature sensor and is connected to the main unit via a communication line.
  • the heating and / or cooling system according to the invention and individual parts thereof can also be produced line by line or layer by layer using a line-building or layer-building manufacturing process (for example 3D printing).
  • FIG. 1 A heating and / or cooling system 1 for carrying out a method according to an embodiment of the present invention is shown schematically.
  • a temperature control medium for example water or a water / glycol mixture
  • the flow heating circuit distributor 4 distributes the temperature control medium to several heating circuits 5, 5 ', 5 ", 5"".
  • the heating circuits 5, 5', 5", 5 "" lead the temperature control medium through the surfaces through which the room in question to be heated or cooled.
  • the heating circuits 5, 5 ', 5 ", 5' '' each comprise a valve 6, 6 ', 6", 6' '' with an actuator assigned to them, a flow, a consumer (in the case of underfloor heating, for example, the screed of the one to be heated or room to be cooled, in the case of a heating system with radiators a radiator) and a return with a return temperature sensor 7, 7 ', 7 ", 7' ''.
  • the heating circuits 5, 5 ', 5", 5' '' flow into one Return heating circuit distributor 8. From the return heating circuit distributor 8, the temperature control medium flows through a return line 9 back to a temperature control element 10 for heating or cooling the temperature control medium (for example a heat pump or a condensing boiler).
  • valves 6, 6 ', 6 ", 6” "and the actuators assigned to them are arranged in the return of the individual heating circuits 5, 5', 5", 5 “” and control the flow of the temperature control medium through the individual heating circuits 5 there , 5 ', 5 ", 5' ''.
  • a control unit 11 is connected in a signal-conducting manner to the individual actuators and controls their operation.
  • the valves 6, 6 ', 6", 6' '' and the actuators assigned to them can also be used Flow of the individual heating circuits 5, 5 ', 5 ", 5" ".
  • heating and / or cooling system 1 can optionally further comprise a circulating pump 16 and / or a connection 12 between the flow line 2 and the return line 9 ,
  • the connection 12 can be provided with a mixing valve 13.
  • the separate circulation pump and / or the connection 12 between the feed line 2 and the return line 9 are not absolutely necessary in every embodiment of the heating and / or cooling system 1.
  • the temperature of the temperature control medium in the flow line 2 is measured via the flow temperature sensor 3 and transmitted to the control unit 11.
  • a return temperature sensor 14 assigned to the return line 9 measures the temperature of the temperature control medium in the return line 9 and transmits this to the control unit 11.
  • the control unit 11 can regulate the temperature of the temperature control medium in the flow line 2, for example, by controlling the mixing valve 13 accordingly.
  • An outside temperature sensor 15 can also determine the outside temperature and in turn pass this on to the control unit 11.
  • the piping of the flow line 2, the heating circuits 5, 5 ', 5 ", 5"' and the return line 9 typically consists, for example, of plastic pipes made of cross-linked polyethylene, which are provided with an oxygen barrier layer.
  • the heating and / or cooling system 1 distributes the amount of heat required in the individual rooms in the case of underfloor heating by virtue of the fact that the valves 6, 6 ', 6 ", 6”' 'flow the temperature medium into the respective heating circuit 5 at a specific temperature , 5 ', 5 ", 5' '' is regulated / controlled in the floor.
  • one heating circuit 5, 5 ', 5 ", 5" " is used per room, the heat supply of a correspondingly large room also requiring two or more heating circuits 5, 5', 5", 5 "”.
  • the control unit 11 sends corresponding signals to the actuators of the valves 6, 6 ', 6 ", 6” "to open and close them for a corresponding period of time.
  • FIG Fig. 2 shows a diagram of a possible temporal course of the flow and return temperatures as an example for the heating circuit 5, the course shown for the first opening of valves 6, 6 ', 6 ", 6"''after a sufficiently long waiting time, in which the temperature of the stagnant temperature control medium has largely adapted to the prevailing ambient temperature.
  • the Fig. 1 illustrated heating circuits 5, 5 ', 5 ", 5"''determines the ideal throughput time T (circuit response, n), with only one heating circuit (or all heating circuits assigned to a room) being operated at a time.
  • the ideal throughput time T corresponds to the time interval between the occurrence of a temperature change at the flow temperature sensor 3 for each of the n heating circuits 5, 5 ', 5 ", 5"''after an opening signal has been given to the actuator of the valve 6 of the heating circuit 5 to for the occurrence of a temperature change at the return temperature sensor 7 of this heating circuit 5 caused by the opening of the valve 6 of the heating circuit 5 in the closed state of the valves 6 ', 6 ", 6''' of the other heating circuits 5 ', 5", 5''' . This is then also carried out for the other heating circuits 5 ', 5 ", 5"".
  • the ideal throughput times T thus determined correspond to the respective throughput time of the temperature control medium through the heating circuit 5, 5', 5", 5 '''in this operating state.
  • the control unit 11 For the T (circuit response, n) thus determined for each of the heating circuits 5, 5 “, 5" ", the control unit 11 provides an ideal opening time for each of the heating circuits 5, 5", 5 “, 5" " T (open ideal) of the respective valve 6, 6 ', 6 “, 6' '' is calculated, which depends on the amount of energy required by the respective consumer, that is to say from the room in question, which in turn depends, inter alia, on the deviation of the prevailing room temperature Depending on the room temperature setpoint for this room, different load cases will occur during regular operation of the system, so that for an adequate supply to the heating circuits 5, 5 ', 5 “, 5"' a different actual opening time T (open act, n) des respective valve 6, 6 ', 6 “, 6” "is required.
  • the ideal opening times T are corrected for each of the n heating circuits 5, 5 ', 5 “, 5"' 'as a function of the deviation of the maximum throughput time T (circuit response max, n) from the ideal throughput time T (circuit response, n) of the respective heating circuit 5, 5 ', 5 ", 5"' '.
  • the maximum throughput time T (circuit response max, n) is first determined for each of the n heating circuits 5, 5 ', 5 “, 5"' ', which is the time interval between the occurrence of a temperature change on the flow temperature sensor 3 after simultaneous delivery an opening signal to the actuators of all valves 6, 6 ', 6 “, 6” “of the heating circuits 5, 5', 5", 5 “” until the occurrence of a by opening the valve 6, 6 ', 6 ", 6 '' 'of the respective heating circuit 5, 5', 5 ", 5 '' 'caused temperature change on the respective return temperature sensor 7, 7', 7", 7 '' 'of the heating circuit 5, 5', 5 ", 5
  • the maximum throughput times T (circuit response max, n) thus determined correspond to the respective throughput time of the temperature control medium through the heating circuit 5, 5 ', 5 “, 5" “in this operating state, that is to say under full load. Due to the mutual hydraulic influence, changed time periods T (circuit response max,
  • K load Max . n T circuit response Max . n / T circuit response . n
  • K (load.) results from the quotient of the maximum throughput times T (circuit response max, n) and the ideal throughput times T (circuit response max, n) for each of the n heating circuits 5, 5 ', 5 ", 5"'' Based on this correction factor K (load max, n), the heating circuits 5, 5 ', 5 ", 5"''can now be classified into critical and non-critical heating circuits.
  • a heating circuit 5, 5 ', 5 ", 5''' should be classified as critical if the correction factor K (load max, n) belonging to the respective heating circuit 5, 5 ', 5", 5''' is a statistical parameter of the correction factors K (load max, n) of the n heating circuits 5, 5 ', 5 ", 5"'', preferably the arithmetic mean of the correction factors K (load max, n) of the n heating circuits 5, 5', 5 " , 5 '''is used.
  • This calculation of the actual opening time T (open act, n) of the respective valve 6, 6 ', 6 ", 6"'' is only used if the ideal opening time T (open ideal, n) of at least one critical heating circuit has a minimum fraction of preferably at least 60% of the largest ideal opening time T (open ideal, n) of the other heating circuits.
  • the ideal opening times T (open ideal, n) are the actual opening times T (open act, n) of the respective valve 6, 6 ', 6 ", 6""for the heating circuits 5, 5 ', 5 ", 5''' used.
  • valves of the individual heating circuits 5, 5 ', 5 ", 5"" are opened over a period of time that corresponds to the actual opening time T (open act, n) of the respective valve 6, 6', 6", 6 "''corresponds.
  • the control unit 11 sends the signal to the actuators, the valves 6, 6 ', 6 ", 6””over the period T (open act, calculated for the respective heating circuit 5, 5', 5", 5 “”).
  • n) open.
  • These adjusted opening times T (open act, n) correspond to a percentage of the time interval T (open ideal, n) predetermined by the pulse width modulating method.
  • valves 6, 6 ', 6 ", 6''' of the individual heating circuits 5, 5 ', 5", 5''' thus open at the beginning of the time interval simultaneously or with little time Offset and close without corrective intervention after the adjusted opening time T (open act, n).
  • the ideal opening times T (open ideal, n) obtained, the actual opening times T (open act, n) and the respective correction factors K (load max, n) are stored in the control unit 11.
  • a number of corresponding requirement situations that is to say load cases for the heating and / or cooling system 1 according to the invention, are stored.
  • control unit 11 can display the corresponding already stored values of the actual opening times T (open act, n) for the n heating circuits 5 , 5 ', 5 ", 5' '' from their memory and transmit the appropriate signals to the actuators of the valves 6, 6 ', 6", 6' '' to ensure the heat supply to the individual rooms.
  • control unit 11 is constructed modularly from a main unit and an additional unit.
  • the additional unit includes the flow temperature sensor 3 and the return temperature sensors 7, 7 ', 7 ", 7" "and is connected to the main unit via a communication line. This makes it possible to retrofit a heating and / or cooling system 1 for implementation guaranteed the inventive method.
  • the control unit 11 can comprise a computer program, the execution of which is set up in the control unit 11 to provide at least some of the functional sequences described above.
  • the software product can be downloaded to the control unit 11 from a memory or data carrier, such as a USB stick, a storage disk, a hard disk, a network server or the like.
  • the execution of this software product in the processor of the control unit 11 brings about functional sequences which are described in this technical description for controlling a heating and / or cooling system 1 according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Claims (12)

  1. Procédé de commande d'un système de chauffage et/ou de refroidissement (1), dans lequel un fluide de régulation thermique est chauffé ou refroidi dans un élément de régulation thermique (10), guidé par le biais d'une conduite d'alimentation (2) dotée d'une sonde de température d'alimentation (3) jusqu'à un distributeur de circuits de chauffage d'alimentation (4), réparti par le distributeur de circuits de chauffage d'alimentation (4) entre des circuits de chauffage (5, 5', 5", 5"'), qui comprennent respectivement une vanne (6, 6', 6", 6"') avec un actionneur associé à celle-ci, une canalisation d'alimentation, un consommateur et une canalisation de retour dotée d'une sonde de température de retour (7, 7', 7", 7'''), traverse les circuits de chauffage (5, 5', 5", 5"') et est guidé par le biais d'un distributeur de circuits de chauffage de retour (8) dans une conduite de retour (9) et par le biais de la conduite de retour (9) jusqu'à l'élément de régulation thermique (10), le procédé comprenant les étapes suivantes :
    (i) détermination des temps de passage idéaux T(circuit response, n), qui correspondent respectivement à l'intervalle de temps entre l'apparition d'un changement de température au niveau de la sonde de température d'alimentation (3) après l'émission d'un signal d'ouverture pour l'actionneur de la vanne (6) d'un circuit de chauffage (5) et l'apparition d'un changement de température, causé par du fluide de régulation thermique s'écoulant dans le circuit de chauffage (5) après l'ouverture de la vanne (6), au niveau de la sonde de température de retour (7) de ce circuit de chauffage (5) lorsque les vannes (6', 6", 6"') des autres circuits de chauffage (5', 5", 5''') sont fermées, pour chacun des n circuits de chauffage (5, 5', 5", 5'''), les temps de passage idéaux T(circuit response, n) ainsi déterminés correspondant ainsi au temps de passage respectif du fluide de régulation thermique à travers le circuit de chauffage (5, 5', 5", 5"') dans cet état de fonctionnement ;
    (ii) détermination des temps de passage maximaux T(circuit response max, n), qui correspondent respectivement à l'intervalle de temps entre l'apparition d'un changement de température au niveau de la sonde de température d'alimentation (3) après l'émission simultanée d'un signal d'ouverture pour les actionneurs de toutes les vannes (6, 6', 6", 6"') des circuits de chauffage (5, 5', 5", 5"') et l'apparition d'un changement de température, causé par du fluide de régulation thermique s'écoulant dans les circuits de chauffage (5, 5', 5", 5"') après l'ouverture des vannes (6, 6', 6", 6"') des circuits de chauffage (5, 5', 5", 5"'), au niveau de la sonde de température de retour (7, 7', 7", 7''') respective du circuit de chauffage (5, 5', 5", 5'''), les temps de passage maximaux T(circuit response max, n) ainsi déterminés correspondant ainsi au temps de passage respectif du fluide de régulation thermique à travers le circuit de chauffage (5, 5', 5", 5"') dans cet état de fonctionnement ;
    (iii) détermination d'un temps d'ouverture idéal T(open ideal, n) de la vanne (6, 6', 6", 6"') respective pour chacun des n circuits de chauffage (5, 5', 5", 5"'), qui est nécessaire pour atteindre ou maintenir une température ambiante de consigne par le circuit de chauffage (5, 5', 5", 5"') respectif, au moyen d'une unité de régulation (11),
    (iv) correction du temps d'ouverture idéal T(open ideal, n) déterminé à l'étape (iii) de la vanne respective (6, 6', 6", 6) en fonction de la différence entre le temps de passage maximal T(circuit response max, n) et le temps de passage idéal T(circuit response, n) du circuit de chauffage (5, 5', 5", 5''') respectif pour chacun des n circuits de chauffage (5, 5', 5", 5"'), de manière à déterminer un temps d'ouverture réel T(open act, n) de la vanne (6, 6', 6", 6"') respective pour chacun des n circuits de chauffage (5, 5', 5", 5''') ; et
    (v) ouverture des vannes (6, 6', 6", 6"') pendant un laps de temps, qui correspond au temps d'ouverture réel T(open act, n) déterminé à l'étape (iv) de la vanne (6, 6', 6", 6"') respective.
  2. Procédé selon la revendication 1, caractérisé en ce que la correction du temps d'ouverture idéal T(open ideal, n) de la vanne (6, 6', 6", 6''') respective est effectuée à l'étape (iv), en déterminant un facteur de correction K(load max, n) pour chacun des n circuits de chauffage (5, 5', 5", 5"') selon K load max , n = T circuit response max , n / T circuit response , n ,
    Figure imgb0014
    en identifiant les circuits de chauffage (5, 5', 5", 5'''), dont le facteur de correction K(load max, n) est inférieur à une grandeur caractéristique statistique des facteurs de correction K(load max, n) des n circuits de chauffage (5, 5', 5", 5"'), comme circuits de chauffage critiques ; et en déterminant les temps d'ouverture réels T(open act, n) de la vanne (6, 6', 6", 6"') respective selon T open act , n = T open ideal , n * K load max , n ,
    Figure imgb0015
    quand le temps d'ouverture idéal T(open ideal, n) d'au moins un circuit de chauffage critique dépasse une fraction minimale du temps d'ouverture idéal T(open ideal, n) le plus long des autres circuits de chauffage ; ou selon T open act , n = T open ideal , n ,
    Figure imgb0016
    quand le temps d'ouverture idéal T(open ideal, n) de tous les circuits de chauffage critiques ne dépasse pas une fraction minimale du temps d'ouverture idéal T(open ideal, n) le plus long des autres circuits de chauffage, pour chacun des n circuits de chauffage (5, 5', 5", 5"').
  3. Procédé selon la revendication 1, caractérisé en ce que la correction du temps d'ouverture idéal T(open ideal, n) déterminé à l'étape (iii) de la vanne (6, 6', 6", 6) respective est effectuée à l'étape (iv), en déterminant un facteur de correction K(load max, n) pour chacun des n circuits de chauffage (5, 5', 5", 5"') selon K load max , n = T circuit response max , n / T circuit response , n ,
    Figure imgb0017
    en identifiant les circuits de chauffage (5, 5', 5", 5'''), dont le facteur de correction K(load max, n) est inférieur à une grandeur caractéristique statistique des facteurs de correction K(load max, n) des n circuits de chauffage (5, 5', 5", 5"'), comme circuits de chauffage critiques ; et la détermination du temps d'ouverture réel T(open act, n) de la vanne (6, 6', 6", 6"') pour chacun des n circuits de chauffage (5, 5', 5", 5"') est effectuée en raccourcissant le temps d'ouverture réel T(open act, n) des vannes (6, 6', 6", 6"') pour les circuits de chauffage (5, 5', 5", 5''') identifiés comme critiques par rapport au temps d'ouverture idéal T(open ideal, n) concerné, quand la vanne (6, 6', 6", 6''') d'au moins un circuit de chauffage critique est ouverte, ou en faisant correspondre le temps d'ouverture réel T(open act, n) des vannes (6, 6', 6", 6''') au temps d'ouverture idéal T(open ideal, n) concerné quand aucune vanne (6, 6', 6", 6''') d'un circuit de chauffage critique n'est ouverte.
  4. Procédé selon la revendication 3, caractérisé en ce que le temps d'ouverture réel T(open act, n) des vannes (6, 6', 6", 6"') pour les circuits de chauffage (5, 5', 5", 5"') identifiés comme critiques est raccourci par rapport au temps d'ouverture idéal T(open ideal, n) concerné, dont le facteur de correction K(load max, n) est inférieur d'au moins 10 %, de préférence d'au moins 30 %, à la valeur moyenne des facteurs de correction K(load max, n) des n circuits de chauffage (5, 5', 5", 5''').
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les étapes (ii) et (iv) sont exécutées plusieurs fois, dans lequel à l'étape (ii) l'émission du signal d'ouverture est effectuée uniquement pour une sélection des actionneurs des vannes et les temps déterminés ainsi que les corrections déterminées à l'étape suivante (iv) sont enregistrés de telle manière qu'ils sont appliqués selon l'étape (v) en présence de la situation exigée équivalente.
  6. Procédé selon la revendication 5, caractérisé en ce que la sélection de l'activation des actionneurs des vannes est effectuée de telle manière que l'activation uniquement respectivement d'un des actionneurs des circuits de chauffage (5, 5', 5", 5"') n'a pas lieu, la sélection des circuits de chauffage (5, 5', 5", 5"') non activés étant effectuée par ordre croissant des valeurs pour K(load max, n).
  7. Procédé selon la revendication 5, caractérisé en ce que la sélection de l'activation des actionneurs des vannes (6, 6', 6", 6"') est effectuée de telle manière que l'activation de préférence de plus d'un des actionneurs des circuits de chauffage (5, 5', 5", 5''') n'a pas lieu, la sélection des circuits de chauffage (5, 5', 5", 5''') non activés étant limitée aux circuits de chauffage (5, 5', 5", 5''') qui présentent les valeurs les plus faibles pour K(load max).
  8. Procédé selon l'une des revendications 5 à 7, caractérisé en ce que les corrections à l'étape (iv) sont sélectionnées de telle manière que l'état de fonctionnement enregistré, qui s'approche le plus de la situation exigée actuellement présente, est utilisé.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'ouverture des vannes (6, 6', 6", 6''') à l'étape (vi) est effectuée simultanément ou avec un décalage dans le temps d'au moins 20 secondes.
  10. Système de chauffage et/ou de refroidissement (1), qui comprend un élément de régulation thermique (10) ; une conduite d'alimentation (2) dotée d'une sonde de température d'alimentation (3) ; un distributeur de circuits de chauffage d'alimentation (4) ; des circuits de chauffage (5, 5', 5", 5''') qui comprennent respectivement une vanne (6, 6', 6", 6''') avec un actionneur associé à celle-ci, une canalisation d'alimentation, un consommateur et une canalisation de retour dotée d'une sonde de température de retour (7, 7', 7", 7''') ; un distributeur de circuits de chauffage de retour (8) ; une conduite de retour (9) ainsi qu'une unité de régulation (11) ;
    caractérisé en ce que
    l'unité de régulation (11) est conçue pour préparer les opérations pour l'exécution d'un procédé selon l'une des revendications 1 à 9.
  11. Système de chauffage et/ou de refroidissement (1) selon la revendication 10, caractérisé en ce que l'unité de régulation (11) est assemblée de façon modulaire à partir d'une unité principale et d'une unité supplémentaire, l'unité supplémentaire comprenant la sonde de température d'alimentation (3) et la sonde de température de retour (7, 7', 7", 7''') et étant raccordée à l'unité principale par une ligne de communication.
  12. Produit-programme informatique d'une unité de régulation (11) pour la commande d'un système de chauffage et/ou de refroidissement (1), dans lequel un fluide de régulation thermique est chauffé ou refroidi dans un élément de régulation thermique (10), guidé par le biais d'une conduite d'alimentation (2) dotée d'une sonde de température d'alimentation (3) jusqu'à un distributeur de circuits de chauffage d'alimentation (4), réparti par le distributeur de circuits de chauffage d'alimentation (4) entre des circuits de chauffage (5, 5', 5", 5"'), qui comprennent respectivement une vanne (6, 6', 6", 6''') avec un actionneur associé à celle-ci, une canalisation d'alimentation, un consommateur et une canalisation de retour dotée d'une sonde de température de retour (7, 7', 7", 7'''), traverse les circuits de chauffage (5, 5', 5", 5''') et est guidé par le biais d'un distributeur de circuits de chauffage de retour (8) dans une conduite de retour (9) et par le biais de la conduite de retour (9) jusqu'à l'élément de régulation thermique (10), l'exécution du produit-programme informatique dans l'unité de régulation (11) étant configurée pour préparer les opérations pour exécuter un procédé selon l'une des revendications 1 à 9.
EP17175231.4A 2017-06-09 2017-06-09 Procédé de commande d'un système de refroidissement et/ou de chauffage Active EP3412978B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17175231.4A EP3412978B1 (fr) 2017-06-09 2017-06-09 Procédé de commande d'un système de refroidissement et/ou de chauffage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17175231.4A EP3412978B1 (fr) 2017-06-09 2017-06-09 Procédé de commande d'un système de refroidissement et/ou de chauffage

Publications (2)

Publication Number Publication Date
EP3412978A1 EP3412978A1 (fr) 2018-12-12
EP3412978B1 true EP3412978B1 (fr) 2020-03-04

Family

ID=59070447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17175231.4A Active EP3412978B1 (fr) 2017-06-09 2017-06-09 Procédé de commande d'un système de refroidissement et/ou de chauffage

Country Status (1)

Country Link
EP (1) EP3412978B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120839A1 (de) 2020-08-07 2022-02-10 Audi Aktiengesellschaft Temperatursteuervorrichtung mit reduzierter Temperatursensoranzahl
DE102020120844A1 (de) 2020-08-07 2022-02-10 Audi Aktiengesellschaft Temperatursteuervorrichtung mit Vorsteuerung und Regelung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120126B4 (de) * 2019-07-25 2021-08-05 Straub Kg Einstellvorrichtung und Verfahren zur Ermittlung eines hydraulischen Schwellwerts eines Ventils
BE1027799B1 (fr) * 2019-11-27 2021-06-23 Bess Energie Sprl Régulation à température glissante des eaux des circuits de retour de chauffage / d'eau glacée en vue de leur uniformisation automatique et, in fine, en guise de l'optimisation des rendements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052124A1 (de) * 2006-11-06 2008-05-15 Danfoss A/S Abgleichsystem für eine Fußbodentemperierungs-Anordnung
CH705804A1 (de) * 2011-11-28 2013-05-31 Belimo Holding Ag Verfahren zur Regelung der Raumtemperatur in einem Raum oder einer Gruppe von mehreren Räumen sowie eine Vorrichtung zur Durchführung des Verfahrens.
EP2871421B1 (fr) * 2013-11-07 2017-04-12 Grundfos Holding A/S Distributeur hydraulique pour un système de chauffage et/ou de refroidissement hydraulique
US10465919B2 (en) * 2015-07-28 2019-11-05 B2 Products Ltd. Modular track wiring assembly for a hydronic system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120839A1 (de) 2020-08-07 2022-02-10 Audi Aktiengesellschaft Temperatursteuervorrichtung mit reduzierter Temperatursensoranzahl
DE102020120844A1 (de) 2020-08-07 2022-02-10 Audi Aktiengesellschaft Temperatursteuervorrichtung mit Vorsteuerung und Regelung
DE102020120839B4 (de) 2020-08-07 2024-05-16 Audi Aktiengesellschaft Temperatursteuervorrichtung mit reduzierter Temperatursensoranzahl

Also Published As

Publication number Publication date
EP3412978A1 (fr) 2018-12-12

Similar Documents

Publication Publication Date Title
EP3412978B1 (fr) Procédé de commande d'un système de refroidissement et/ou de chauffage
EP1606556B1 (fr) Procede pour assurer le reglage de plusieurs echangeurs de chaleur couples en parallele
EP3593055B1 (fr) Procédé pour faire fonctionner une installation de chauffage
EP2960587B1 (fr) Procédé de limitation du débit d'alimentation dans un système de transmission de chaleur
EP1754004B1 (fr) Dispositif de refroidissement et/ou de chauffage
DE102009004319A1 (de) Verfahren, Computerprogramm und Regelgerät für einen temperaturbasierten hydraulischen Abgleich
EP3722680B1 (fr) Procédé de réalisation d'une comparaison hydraulique d'un système de chauffage pour un bâtiment ainsi que système de chauffage conçu pour celui-ci
EP2187136A2 (fr) Procédé de fonctionnement d'un système de transport d'énergie thermique sur un support fluide
DE102012020750B4 (de) Verfahren zur Optimierung eines thermischen und eines hydraulischen Abgleichs in einer Temperieranlage
EP3101352B1 (fr) Procede de fonctionnement d'une installation de chauffage et dispositif de regulation comprenant un capteur de difference de pression
EP0594886B1 (fr) Procédé de régulation d'une installation de chauffage et dispositif pour sa mise en oeuvre
DE102014202738B4 (de) Verfahren zum automatisierten hydraulischen Abgleich einer Heizungsanlage
EP3473939B1 (fr) Procédé de fonctionnement d'une installation de chauffage et installation de chauffage
EP3425291B1 (fr) Procédé d'attribution d'une sonde de température à circuit de chauffage d'un système de chauffage et / ou de refroidissement à un circuit de chauffage ou de vérification de l'attribution d'une sonde de température à circuit de chauffage d'un système de chauffage et / ou de refroidissement à un circuit de chauffage
DE10144595A1 (de) Zentralheizungsanlage
DE102010056301B4 (de) Verfahren zur automatischen Optimierung einer Aufheizphase eines Heizsystems sowie ein Heizsystem
EP3431888B1 (fr) Procédé de mise en uvre d'un équilibre hydraulique d'un système de chauffage et/ou de refroidissement
EP2369245A1 (fr) Procédé de réglage d'une valeur de consigne de température d'entrée d'une courbe de chauffe d'un système de chauffage
DE102015222110A1 (de) Verfahren zum Durchführen eines automatisierten hydraulischen Abgleichs, Ventil und Heizungsanlage hierzu
EP0352401B1 (fr) Procédure pour régler la quantité de chaleur apportée aux utilisateurs dans un système de chauffage et équipement de réglage.
EP3835667B1 (fr) Procédé de commande d'une installation de chauffage et appareil de commande associé
DE102018115838A1 (de) Verfahren zum Betrieb einer Temperieranlage, Temperieranlage sowie Messvorrichtung
EP3372905A1 (fr) Procédé de fonctionnement des systèmes de climatisation de bâtiments à une pluralité d'échangeurs thermiques dans un état d'équilibre hydraulique et dynamique
EP3350515B1 (fr) Procédé et dispositif de régulation de la température d'un milieu porteur fluide
DE102013012080A1 (de) Heizsystem und Betriebsverfahren dafür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190611

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/10 20060101AFI20190716BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004050

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: REHAU AG + CO

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004050

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017004050

Country of ref document: DE

Owner name: REHAU INDUSTRIES SE & CO. KG, DE

Free format text: FORMER OWNER: REHAU AG + CO, 95111 REHAU, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220505 AND 20220512

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1240816

Country of ref document: AT

Kind code of ref document: T

Owner name: REHAU INDUSTRIES SE & CO. KG, DE

Effective date: 20220419

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: REHAU INDUSTRIES SE & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: REHAU AG + CO

Effective date: 20220414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230530

Year of fee payment: 7

Ref country code: FR

Payment date: 20230602

Year of fee payment: 7

Ref country code: DE

Payment date: 20230630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230530

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230530

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230628

Year of fee payment: 7

Ref country code: GB

Payment date: 20230602

Year of fee payment: 7

Ref country code: CH

Payment date: 20230702

Year of fee payment: 7