EP3408888A1 - Method and device for charging a battery - Google Patents

Method and device for charging a battery

Info

Publication number
EP3408888A1
EP3408888A1 EP17708746.7A EP17708746A EP3408888A1 EP 3408888 A1 EP3408888 A1 EP 3408888A1 EP 17708746 A EP17708746 A EP 17708746A EP 3408888 A1 EP3408888 A1 EP 3408888A1
Authority
EP
European Patent Office
Prior art keywords
battery
charging
charging current
voltage
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17708746.7A
Other languages
German (de)
French (fr)
Inventor
Andre Rompe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP3408888A1 publication Critical patent/EP3408888A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a method for charging a rechargeable battery. Furthermore, the invention relates to a device for charging a rechargeable battery, with a control device which is designed to control the charging current during operation of the pre ⁇ direction.
  • the battery of an electrically driven NEN line bus according to the CCCV method to be charged, so it may occur that the battery of the line bus at a loading station at which the bus stops, about a holding Stel ⁇ le, is not recharged completely. Is not completely added to the next charging station while driving between the laser destationen consumed charge of the battery, the battery level decreases always know ⁇ ter. The decrease in the state of charge accelerates, however, because of the proportionally extending charging time with decreasing state of charge, so that the battery continues to discharge and at the planned charging stops can be charged less and less ⁇ . Consequently, the range of the bus decreases.
  • the invention is therefore based on the object to provide a method and apparatus for charging a rechargeable battery, with which the battery can be recharged faster regardless of the state of charge.
  • the object is achieved in that in the method the battery is charged with a depending from La ⁇ deschreib the battery charging current.
  • the control device is designed to carry out the method according to the invention for charging the battery.
  • the charging current is selected or specified depending on the state of charge, the charging current can be increased at a low state of charge, so that the battery can be charged with a higher charging power compared to the CCCV method.
  • the charging current can be controlled so that the product of the charging current and the open circuit voltage of the battery is substantially constant.
  • the product of the charging current and the no-load voltage is the charging power. Consequently, the battery can be charged regardless of its state of charge with a high, possibly constant or even the maximum allowable charging power, which reduces the time required to charge the battery.
  • the charging current can be controlled so that the product of the charging current and the idling voltage ⁇ at the beginning of a charging cycle is greater than later or at the end of the charging cycle.
  • the La ⁇ detician can at the beginning of the charge cycle at least twice and Example up to three times or up to five times as large as the charging power at the end of the charging cycle.
  • the maximum permissible charging power depends on the type (design & chemistry) of the battery.
  • the internal resistance of the battery causes a power loss during the charging process, which leads to a warming.
  • the battery temperature must be kept below a limit, so as not to shorten the service life.
  • the determination of the variable across the charging internal resistance can be done for example on the determination of the ratio ⁇ ses between (charging voltage-no-load voltage) and the charging current.
  • the open circuit voltage can be determined repeatedly during the charging process.
  • the state of charge changes during the La ⁇ devorgangs, then that is also the open circuit voltage changes.
  • the charging current can thus be tracked easily, so that at any time essentially the desired charging power, in ⁇ example, the maximum allowable charging power of the battery is used.
  • the no-load voltage during the charging process can be determined more frequently than every ten minutes, for example every five minutes, every two minutes or once per minute. Even if the battery to be charged is a particularly fast chargeable battery, the idle ⁇ voltage changes during the charging process is slow and beispiels-, within the specified intervals only slightly so ⁇ that the charging voltage set accurately enough by tracking the charging current and, for example, can be kept substantially constant. In order to easily measure the open circuit voltage of the battery, the flow of the charging current to the battery during the charging process can be interrupted to determine the open circuit voltage. Due to the higher compared to the CCCV method possible charging power can still be charged faster with this method, the battery.
  • the flow of charging current may be less than one second, less than half a second, and for example
  • the duration of the charging current interruption is less than 5%, less than 2%, less than 1%, less than 0.5% or even less than 0.01% of the duration of the continuous section.
  • the maximum charging power During the charging process may be determined based on a self- ⁇ company of the battery.
  • the maximum possible charging power is the charging power with which the battery can be charged without further ado and, for example, without damage or reduction of the service life.
  • the charge current can be reduced if the property is outside its allowable operating interval, whereby the charging power is easily controllable.
  • the temperature of the battery can be determined ⁇ the. If the temperature rises above a limit value, then the charging power, that is to say in particular the charging current, can be reduced.
  • the temperature on the outside of the battery can be measured.
  • the temperature within the battery can and preferably measured centrally in the battery.
  • a temperature sensor may be provided, which is arranged for example between two cells of the battery centrally in ⁇ inside the battery.
  • the measurement of the battery temperature within the battery is therefore structurally complex.
  • the temperature is therefore off-center and measured and, for example, on the outside of the battery, the battery temperature can be determined mathematically within the battery based on the measured temperature and ge ⁇ known physical Eigenschaf- th of the battery.
  • the use of the temperature of the battery has the disadvantage that for temperature measurement, a temperature sensor is provided.
  • a temperature sensor In order to determine a temperature sensor the maximum possible charging performance even oh- ne can be determined as a property of the internal resistance of the battery during the charging ⁇ operation is completed.
  • the open-circuit voltage determined during the charging process can be subtracted from the charging voltage and the result divided by the charging current. If the no-load voltage, the charging voltage and the charging current are monitored during the charging process, then no further measured data need to be collected.
  • the device may include a voltmeter for measuring the open circuit voltage of the battery to be charged.
  • the voltmeter can simply be connected in parallel to the charging contacts of the device.
  • the voltage meter can be a voltmeter.
  • the charging voltage can be determined, so that the device can be simple and compact.
  • the device may have an internal resistance determining unit, the signal over carrying the voltmeter and ver ⁇ connected with the control unit. From the voltmeter, representative data can be transmitted to the internal resistance determination unit for the charging voltage and / or the no-load voltage. From the control unit, data representative of the charge current can be sent to the
  • Internal resistance determination unit to be transmitted.
  • the internal resistance determining unit which may be an integrated circuit such as a microchip, the internal resistance is determined.
  • the determined internal resistance may be output from the internal resistance determining unit to the controller.
  • the controller may be configured connectable to a battery temperature sensor.
  • the profile of the battery voltage can be determined according to the cut-off the charging current and, for example, measured dazzlingu ⁇ ell.
  • the open-circuit voltage can be estimated or determined by means of a mathematical method. For example, the battery voltage can drop exponentially after switching off the charging current. Based on the selective readings the open circuit voltage, determined as by a curve fit or suffi ⁇ accordingly can be accurately estimated without the battery voltage must completely fall on the open circuit voltage.
  • the control unit may have a charging current limiter which is connected to the internal resistance determination unit in a signal-receiving manner. Based on the specific internal resistance of the charging current limiter limit the charging current to prevent excessive charging power.
  • Figure 1 is a schematic representation of anwhosbei ⁇ game of the inventive method as a flowchart
  • Figure 2 is a schematic representation of anwhosbei ⁇ game of the device according to the invention.
  • FIG. 1 schematically shows the method 1 according to the invention for charging a rechargeable battery as a flow chart.
  • the method 1 starts with the method step 2, in which, for example, the battery is connected to a charging device.
  • Method step 2 may be followed by method step 3, in which the open-circuit voltage of a battery to be charged is measured, wherein the flow of the charging current may be interrupted during the measurement of the open-circuit voltage.
  • Method step 4 may be followed by method step 4, in which the charging current is selected so that the battery to be charged is charged with a predetermined charging power.
  • step 3 No-load voltage is measured again.
  • idle voltage can now be selected in the now performed process step 4, the charging current and With this newly selected charging current, the battery can be further charged in step 5 for the given charging time. If the desired state of charge has been reached, method step 6 can be followed by method step 7, in which the method ends.
  • step 3 of the first method step Ver ⁇ follow 8 in which a property is the Batte ⁇ RIE, for example, their temperature or internal resistance is determined.
  • process step 4 may then again follow, in which, taking into account the no-load voltage and the specific characteristic of the battery, the charging current is selected.
  • Figure 2 shows the device 10 according to the invention for charging a rechargeable battery schematically.
  • the device 10 comprises two charging contacts 11, 12 for connecting a Denden to la ⁇ battery.
  • the device 10 has a control unit 13 with which charging parameters, for example charging current and / or charging voltage, can be controlled.
  • the device 10 is provided with aistsmes ⁇ ser 14, which may be connected in parallel with the charging contacts 11, 12 to measure the voltage of a connected to the charging contacts 11, 12 battery.
  • the device 10 may have an internal resistance determination unit 15.
  • the mecanical sbestim- mung unit 15 may be connected in signal communication with both the tensioning ⁇ voltmeter 14 as well as with the control device. 13 Based on the charging voltage and the charging current and the
  • Open circuit voltage can determine the internal resistance determining unit 15 as a property of the battery to be charged whose internal resistance.
  • the internal resistance determination unit 15 can receive data representative of the voltmeter 14 at least for the no-load voltage or also for the charging voltage. Further, the internal resistance determining unit 15 may receive data representative of the charging current controller 13. Based on the received data, the internal resistance Status determination unit 15 determine the internal resistance and, for example, calculate or drive through a mathematical Ver ⁇ , for example, an algorithm appreciate determine rela ⁇ hung instance.
  • the internal resistance determination unit 15 can output representative data for the specific internal resistance to the control unit 13. In the control unit 13, the internal resistance can be used to specify the charging current.
  • the battery temperature may be measured for example with a temperature ⁇ tursensor. In order to determine the internal resistance of the battery, the difference between values for the open-circuit voltage and the charging voltage can be divided by the charging current with the internal resistance determination unit 15.
  • the values of the load and the charging voltage and the charging current ⁇ may be represented by digital data or analog signals.
  • the device 10 may be a control device for a vehicle, in particular an electrically driven vehicle, with a drive energy storing, rechargeable battery.
  • the vehicle is for example a bus.

Abstract

The invention relates to a method (1) and device for charging a rechargeable battery. According to the invention, in order to be able to quickly charge a battery even in a low state of charge, the battery is charged (4) with a charge current dependent on the battery state of charge.

Description

Beschreibung description
Verfahren und Vorrichtung zum Laden einer Batterie Die Erfindung betrifft ein Verfahren zum Laden einer wiede- raufladbaren Batterie. Ferner betrifft die Erfindung eine Vorrichtung zur Ladung einer wiederaufladbaren Batterie, mit einem Steuergerät, das ausgebildet ist, im Betrieb der Vor¬ richtung den Ladestrom zu kontrollieren. The invention relates to a method for charging a rechargeable battery. Furthermore, the invention relates to a device for charging a rechargeable battery, with a control device which is designed to control the charging current during operation of the pre ¬ direction.
Verfahren und Vorrichtungen zum Laden wiederaufladbarer Batterien sind allgemein bekannt. So werden Batterien nach dem sogenannten CCCV-Verfahren geladen, bei dem der Ladestrom und die Ladespannung über den gesamten Ladevorgang konstant ge- halten werden. Die Ladeleistung hängt jedoch von der aktuellen LeerlaufSpannung der zu ladenden Batterie ab, sodass Batterien mit einem niedrigeren Ladezustand mit einer geringeren Ladeleistung geladen werden. Je weiter der Ladezustand der Batterie absinkt, desto geringer fällt die Ladeleistung aus. Dies hat zur Folge, dass sich mit dem sinkenden Ladezustand die zum vollständigen Aufladen der Batterie benötigte Zeit proportional verlängern. Methods and devices for charging rechargeable batteries are well known. Thus, batteries are charged according to the so-called CCCV method, in which the charging current and the charging voltage are kept constant over the entire charging process. However, the charging power depends on the current no-load voltage of the battery being charged, so that batteries with a lower state of charge are charged with a lower charging power. The further the state of charge of the battery decreases, the lower the charge power drops. As a result, as the state of charge decreases, the time required to fully charge the battery will proportionally increase.
Soll beispielsweise die Batterie eines elektrisch angetriebe- nen Linienbusses gemäß dem CCCV-Verfahren aufgeladen werden, so kann es vorkommen, dass die Batterie des Linienbusses an einer Ladestation, an der der Bus hält, etwa eine Haltestel¬ le, nicht vollständig wieder aufgeladen wird. Wird an der folgenden Ladestation die während der Fahrt zwischen den La- destationen verbrauchte Ladung nicht vollständig der Batterie hinzugefügt, so nimmt der Ladezustand der Batterie immer wei¬ ter ab. Die Abnahme des Ladezustands beschleunigt sich jedoch wegen der sich proportional verlängernden Ladezeit mit sinkendem Ladezustand, sodass sich die Batterie immer weiter entlädt und bei den geplanten Ladestopps immer weniger aufge¬ laden werden kann. Folglich sinkt die Reichweite des Linienbusses. Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Laden einer wiederaufladbaren Batterie bereitzustellen, mit der die Batterie unabhängig vom Ladezustand schneller wieder aufgeladen werden kann. For example, if the battery of an electrically driven NEN line bus according to the CCCV method to be charged, so it may occur that the battery of the line bus at a loading station at which the bus stops, about a holding Stel ¬ le, is not recharged completely. Is not completely added to the next charging station while driving between the laser destationen consumed charge of the battery, the battery level decreases always know ¬ ter. The decrease in the state of charge accelerates, however, because of the proportionally extending charging time with decreasing state of charge, so that the battery continues to discharge and at the planned charging stops can be charged less and less ¬ . Consequently, the range of the bus decreases. The invention is therefore based on the object to provide a method and apparatus for charging a rechargeable battery, with which the battery can be recharged faster regardless of the state of charge.
Für das eingangsgenannte Verfahren ist die Aufgabe dadurch gelöst, dass bei dem Verfahren die Batterie mit einem vom La¬ dezustand der Batterie abhängenden Ladestrom geladen wird. Für die eingangsgenannte Vorrichtung ist die Aufgabe dadurch gelöst, dass das Steuergerät ausgebildet ist, zum Laden der Batterie das erfindungsgemäße Verfahren auszuführen. For the input-mentioned method, the object is achieved in that in the method the battery is charged with a depending from La ¬ dezustand the battery charging current. For the device mentioned in the introduction, the object is achieved in that the control device is designed to carry out the method according to the invention for charging the battery.
Dadurch, dass der Ladestrom in Abhängigkeit vom Ladezustand gewählt oder vorgegeben wird, kann der Ladestrom bei einem niedrigen Ladezustand erhöht werden, sodass die Batterie mit einer im Vergleich zum CCCV-Verfahren höheren Ladeleistung geladen werden kann. The fact that the charging current is selected or specified depending on the state of charge, the charging current can be increased at a low state of charge, so that the battery can be charged with a higher charging power compared to the CCCV method.
Die erfindungsgemäße Lösung kann durch verschiedene, jeweils für sich vorteilhafte, und sofern nicht anders ausgeführt, beliebig miteinander kombinierbare Ausgestaltungen weiter verbessert werden. Auf diese Ausgestaltungsformen und die mit ihnen verbundenen Vorteile wird im Folgenden eingegangen. So kann der Ladestrom so gesteuert werden, dass das Produkt aus dem Ladestrom und der LeerlaufSpannung der Batterie im Wesentlichen konstant ist. Das Produkt aus dem Ladestrom und der LeerlaufSpannung ist die Ladeleistung. Folglich kann die Batterie unabhängig von ihrem Ladezustand mit einer hohen, womöglich konstanten oder sogar der maximal zulässigen Ladeleistung geladen werden, wodurch sich die zum Laden der Batterie benötigte Zeit verringert. The solution according to the invention can be further improved by various configurations which are advantageous in each case and, if not stated otherwise, can be combined with one another as desired. These embodiments and the advantages associated with them will be discussed below. Thus, the charging current can be controlled so that the product of the charging current and the open circuit voltage of the battery is substantially constant. The product of the charging current and the no-load voltage is the charging power. Consequently, the battery can be charged regardless of its state of charge with a high, possibly constant or even the maximum allowable charging power, which reduces the time required to charge the battery.
Alternativ oder zusätzlich kann der Ladestrom so gesteuert werden, dass das Produkt aus dem Ladestrom und der Leerlauf¬ spannung zu Beginn eines Ladezyklus größer ist als später oder als am Ende des Ladezyklus. Beispielsweise kann die La¬ deleistung zu Beginn des Ladezyklus zumindest zweimal und zum Beispiel bis zu dreimal oder bis zu fünfmal so groß sein, wie die Ladeleistung am Ende des Ladezyklus. Alternatively or additionally, the charging current can be controlled so that the product of the charging current and the idling voltage ¬ at the beginning of a charging cycle is greater than later or at the end of the charging cycle. For example, the La ¬ deleistung can at the beginning of the charge cycle at least twice and Example up to three times or up to five times as large as the charging power at the end of the charging cycle.
Die maximal zulässige Ladeleistung ist vom Typ (Design & Che- mie) der Batterie abhängig. Der Innenwiderstand der Batterie verursacht eine Verlustleistung beim Ladevorgang, der zu einer Erwärmung führt. Die Batterietemperatur muss entsprechend unterhalb eines Grenzwertes bleiben, um nicht die Lebensdauer zu vermindern. The maximum permissible charging power depends on the type (design & chemistry) of the battery. The internal resistance of the battery causes a power loss during the charging process, which leads to a warming. The battery temperature must be kept below a limit, so as not to shorten the service life.
Die Bestimmung des über den Ladevorgang variablen Innenwiderstands kann zum Beispiel über die Ermittlung des Verhältnis¬ ses zwischen (Ladespannung-LeerlaufSpannung) und dem Ladestrom erfolgen. The determination of the variable across the charging internal resistance can be done for example on the determination of the ratio ¬ ses between (charging voltage-no-load voltage) and the charging current.
Die LeerlaufSpannung kann während des Ladevorgangs wiederholt bestimmt werden. Ändert sich der Ladezustand im Laufe des La¬ devorgangs, so ändert sich nämlich auch die LeerlaufSpannung . Der Ladestrom kann somit einfach nachgeführt werden, damit jederzeit im Wesentlichen die gewünschte Ladeleistung, bei¬ spielsweise die maximal zulässige Ladeleistung der Batterie, verwendet wird. The open circuit voltage can be determined repeatedly during the charging process. The state of charge changes during the La ¬ devorgangs, then that is also the open circuit voltage changes. The charging current can thus be tracked easily, so that at any time essentially the desired charging power, in ¬ example, the maximum allowable charging power of the battery is used.
Beispielsweise kann die LeerlaufSpannung während des Ladevor- gangs häufiger als alle zehn Minuten, zum Beispiel alle fünf Minuten, alle zwei Minuten oder einmal pro Minute, bestimmt werden. Selbst wenn die zu ladende Batterie eine besonders schnell ladbare Batterie ist, verändert sich die Leerlauf¬ spannung während des Ladevorgangs nur langsam und beispiels- weise innerhalb der genannten Intervalle nur geringfügig, so¬ dass die Ladespannung durch Nachführung des Ladestroms ausreichend genau eingestellt und zum Beispiel im Wesentlichen konstant gehalten werden kann. Um die LeerlaufSpannung der Batterie einfach messen zu können, kann zum Bestimmen der LeerlaufSpannung der Fluss des Ladestroms zur Batterie während des Ladevorgangs unterbrochen werden. Aufgrund der im Vergleich zum CCCV-Verfahren höheren möglichen Ladeleistung lässt sich mit diesem Verfahren die Batterie dennoch schneller laden. For example, the no-load voltage during the charging process can be determined more frequently than every ten minutes, for example every five minutes, every two minutes or once per minute. Even if the battery to be charged is a particularly fast chargeable battery, the idle ¬ voltage changes during the charging process is slow and beispiels-, within the specified intervals only slightly so ¬ that the charging voltage set accurately enough by tracking the charging current and, for example, can be kept substantially constant. In order to easily measure the open circuit voltage of the battery, the flow of the charging current to the battery during the charging process can be interrupted to determine the open circuit voltage. Due to the higher compared to the CCCV method possible charging power can still be charged faster with this method, the battery.
Beispielsweise kann zum Bestimmen der LeerlaufSpannung der Fluss des Ladestroms für weniger als eine Sekunde, weniger als eine halbe Sekunde und beispielsweise für For example, to determine the open circuit voltage, the flow of charging current may be less than one second, less than half a second, and for example
100 Millisekunden unterbrochen werden. Eine derart kurze Unterbrechung des Ladestroms ermöglicht eine ausreichend genaue Messung der LeerlaufSpannung, ohne die zur Ladung benötigte Zeit unnötig zu verlängern.  100 milliseconds are interrupted. Such a short interruption of the charging current allows a sufficiently accurate measurement of the no-load voltage without unnecessarily prolonging the time required for charging.
Im Vergleich zur Dauer eines ununterbrochenen Abschnitts des Ladevorgangs, währen dessen die Batterie ununterbrochen mit Ladestrom geladen wird, beträgt die Dauer der Ladestromunter- brechung weniger als 5 %, weniger als 2 %, weniger als 1 %, weniger als 0,5 % oder sogar weniger als 0,01 % der Dauer des ununterbrochenen Abschnitts. Compared to the duration of an uninterrupted portion of the charging process, during which the battery is charged continuously with charging current, the duration of the charging current interruption is less than 5%, less than 2%, less than 1%, less than 0.5% or even less than 0.01% of the duration of the continuous section.
Damit die Batterie mit der jeweils maximal möglichen Lade- leistung geladen werden kann, kann die maximal mögliche Ladeleistung währen des Ladevorgangs basierend auf einer Eigen¬ schaft der Batterie ermittelt werden. Die maximal mögliche Ladeleistung ist dabei die Ladeleistung, mit der die Batterie ohne Weiteres und beispielsweise ohne Beschädigungen bezie- hungsweise Reduzierung der Lebensdauer geladen werden kann. So that the battery can be charged with the highest possible respective charging power, the maximum charging power During the charging process may be determined based on a self-¬ company of the battery. The maximum possible charging power is the charging power with which the battery can be charged without further ado and, for example, without damage or reduction of the service life.
Insbesondere kann der Ladestrom reduziert werden, wenn die Eigenschaft außerhalb ihres zulässigen Betriebsintervalls liegt, wodurch die Ladeleistung einfach kontrollierbar ist. In particular, the charge current can be reduced if the property is outside its allowable operating interval, whereby the charging power is easily controllable.
Zum Beispiel kann die Temperatur der Batterie ermittelt wer¬ den. Steigt die Temperatur über einen Grenzwert, so kann die Ladeleistung, also insbesondere der Ladestrom, reduziert werden . For example, the temperature of the battery can be determined ¬ the. If the temperature rises above a limit value, then the charging power, that is to say in particular the charging current, can be reduced.
Als Batterietemperatur kann die Temperatur an der Außenseite der Batterie gemessen werden. Zur genaueren Bestimmung der Batterietemperatur kann die Temperatur innerhalb der Batterie und vorzugsweise mittig in der Batterie gemessen werden. Am Ort der Messung kann ein Temperatursensor vorgesehen sein, der zum Beispiel zwischen zwei Zellen der Batterie mittig in¬ nerhalb der Batterie angeordnet ist. Die Messung der Batte- rietemperatur innerhalb der Batterie ist daher konstruktiv aufwändig. Vorzugsweise wird die Temperatur daher außermittig und zum Beispiel an der Außenseite der Batterie gemessen und die Batterietemperatur innerhalb der Batterie anhand der ge¬ messenen Temperatur und bekannter physikalischer Eigenschaf- ten der Batterie mathematisch bestimmt werden. As the battery temperature, the temperature on the outside of the battery can be measured. For more accurate determination of the battery temperature, the temperature within the battery can and preferably measured centrally in the battery. At the location of the measurement, a temperature sensor may be provided, which is arranged for example between two cells of the battery centrally in ¬ inside the battery. The measurement of the battery temperature within the battery is therefore structurally complex. Preferably the temperature is therefore off-center and measured and, for example, on the outside of the battery, the battery temperature can be determined mathematically within the battery based on the measured temperature and ge ¬ known physical Eigenschaf- th of the battery.
Die Verwendung der Temperatur der Batterie hat jedoch den Nachteil, dass zur Temperaturmessung ein Temperatursensor vorzusehen ist. Um die maximal mögliche Ladeleistung auch oh- ne einen Temperatursensor bestimmen zu können, kann als Eigenschaft der Innenwiderstand der Batterie während des Lade¬ vorgangs bestimmt werden. However, the use of the temperature of the battery has the disadvantage that for temperature measurement, a temperature sensor is provided. In order to determine a temperature sensor the maximum possible charging performance even oh- ne can be determined as a property of the internal resistance of the battery during the charging ¬ operation is completed.
Zum Bestimmen des Innenwiderstands kann die während des Lade- Vorgangs ermittelte LeerlaufSpannung von der Ladespannung subtrahiert und das Ergebnis durch den Ladestrom dividiert werden. Werden die LeerlaufSpannung, die Ladespannung und der Ladestrom während des Ladevorgangs überwacht, brauchen also keine weiteren Messdaten erhoben zu werden. For determining the internal resistance, the open-circuit voltage determined during the charging process can be subtracted from the charging voltage and the result divided by the charging current. If the no-load voltage, the charging voltage and the charging current are monitored during the charging process, then no further measured data need to be collected.
Um die LeerlaufSpannung einfach messen zu können, kann die Vorrichtung einen Spannungsmesser zum Messen der Leerlaufspannung der zu ladenden Batterie aufweisen. Der Spannungsmesser kann dabei einfach parallel zu Ladekontakten der Vor- richtung geschaltet sein. Beispielsweise kann der Spannungs¬ messer ein Voltmeter sein. In order to easily measure the open circuit voltage, the device may include a voltmeter for measuring the open circuit voltage of the battery to be charged. The voltmeter can simply be connected in parallel to the charging contacts of the device. For example, the voltage meter can be a voltmeter.
Mit dem Spannungsmesser kann ebenfalls die Ladespannung bestimmt werden, sodass die Vorrichtung einfach und kompakt aufgebaut sein kann. With the voltmeter also the charging voltage can be determined, so that the device can be simple and compact.
Zur Ermittlung des Innenwiderstands kann die Vorrichtung eine Innenwiderstandsbestimmungseinheit aufweisen, die signalüber- tragend mit dem Spannungsmesser und mit dem Steuergerät ver¬ bunden ist. Vom Spannungsmesser können der Innenwiderstandbe- stimmungseinheit für die Ladespannung und/oder die Leerlauf- Spannung repräsentative Daten übermittelt werden. Vom Steuer- gerät können für den Ladestrom repräsentative Daten an dieIn order to determine the internal resistance, the device may have an internal resistance determining unit, the signal over carrying the voltmeter and ver ¬ connected with the control unit. From the voltmeter, representative data can be transmitted to the internal resistance determination unit for the charging voltage and / or the no-load voltage. From the control unit, data representative of the charge current can be sent to the
Innenwiderstandsbestimmungseinheit übermittelt werden. In der Innenwiderstandsbestimmungseinheit , die etwa eine integrierte Schaltung, zum Beispiel ein Mikrochip, sein kann, wird der Innenwiderstand bestimmt. Der bestimmte Innenwiderstand kann von der Innenwiderstandsbestimmungseinheit an das Steuergerät ausgegeben werden. Ferner kann das Steuergerät mit einem Batterietemperatursensor verbindbar ausgestaltet sein. Internal resistance determination unit to be transmitted. In the internal resistance determining unit, which may be an integrated circuit such as a microchip, the internal resistance is determined. The determined internal resistance may be output from the internal resistance determining unit to the controller. Further, the controller may be configured connectable to a battery temperature sensor.
Nach der Abschaltung des Ladestroms dauert es eine gewisse Zeit, bis die Batteriespannung auf die LeerlaufSpannung gefallen ist. Um die Unterbrechung des Ladevorgangs möglichst kurz zu halten, kann auf ein vollständiges Absinken der Batteriespannung auf die LeerlaufSpannung verzichtet werden. Insbesondere kann der Verlauf der Batteriespannung nach der Abschaltung des Ladestroms ermittelt und zum Beispiel punktu¬ ell gemessen werden. Anhand der punktuellen Messwerte kann bei bekanntem Verlauf der Batteriespannung die LeerlaufSpannung mithilfe eines mathematischen Verfahrens abgeschätzt oder ermittelt werden. Beispielsweise kann die Batteriespan- nung nach Abschaltung des Ladestroms exponentiell abfallen. Basierend auf den punktuellen Messwerten kann die Leerlaufspannung, etwa durch einen Kurvenfit, ermittelt oder ausrei¬ chend genau geschätzt werden, ohne dass die Batteriespannung vollständig auf die LeerlaufSpannung abfallen muss. After switching off the charging current, it takes a certain time until the battery voltage has fallen to the no-load voltage. In order to keep the interruption of the charging process as short as possible, can be dispensed with a complete drop in the battery voltage to the no-load voltage. In particular, the profile of the battery voltage can be determined according to the cut-off the charging current and, for example, measured punktu ¬ ell. On the basis of the punctual measured values, if the battery voltage is known, the open-circuit voltage can be estimated or determined by means of a mathematical method. For example, the battery voltage can drop exponentially after switching off the charging current. Based on the selective readings the open circuit voltage, determined as by a curve fit or suffi ¬ accordingly can be accurately estimated without the battery voltage must completely fall on the open circuit voltage.
Das Steuergerät kann einen Ladestrombegrenzer aufweisen, der signalempfangend mit der Innenwiderstandsbestimmungseinheit verbunden ist. Anhand des bestimmten Innenwiderstands kann der Ladestrombegrenzer den Ladestrom begrenzen, um zu hohe Ladeleistungen zu verhindern. The control unit may have a charging current limiter which is connected to the internal resistance determination unit in a signal-receiving manner. Based on the specific internal resistance of the charging current limiter limit the charging current to prevent excessive charging power.
Im Folgenden ist die Erfindung beispielhaft anhand von Aus¬ führungsformen mit Bezug auf die Zeichnungen erläutert. Die unterschiedlichen Merkmale der Ausführungsformen können dabei unabhängig voneinander kombiniert werden, wie es bei den einzelnen vorteilhaften Ausgestaltungen bereits dargelegt wurde. Es zeigen: The invention is explained below by way of example with reference to embodiments in reference to the drawings. The different features of the embodiments can be combined independently of each other, as already stated in the individual advantageous embodiments. Show it:
Figur 1 eine schematische Darstellung eines Ausführungsbei¬ spiels des erfindungsgemäßen Verfahrens als ein Flussdiagramm und Figure 1 is a schematic representation of an Ausführungsbei ¬ game of the inventive method as a flowchart and
Figur 2 eine schematische Darstellung eines Ausführungsbei¬ spiels der erfindungsgemäßen Vorrichtung. Figure 2 is a schematic representation of an Ausführungsbei ¬ game of the device according to the invention.
Figur 1 zeigt das erfindungsgemäße Verfahren 1 zum Laden ei- ner wiederaufladbaren Batterie schematisch als ein Flussdiagramm. Das Verfahren 1 startet mit dem Verfahrensschritt 2, in dem zum Beispiel die Batterie an eine Ladevorrichtung angeschlossen wird. Auf den Verfahrensschritt 2 kann der Verfahrensschritt 3 folgen, in dem die LeerlaufSpannung einer zu ladenden Batterie gemessen wird, wobei bei der Messung der LeerlaufSpannung der Fluss des Ladestroms unterbrochen sein kann. Auf den Verfahrensschritt 3 kann der Verfahrensschritt 4 folgen, in dem der Ladestrom so gewählt wird, dass die zu ladende Batterie mit einer vorgegebenen Ladeleistung geladen wird. FIG. 1 schematically shows the method 1 according to the invention for charging a rechargeable battery as a flow chart. The method 1 starts with the method step 2, in which, for example, the battery is connected to a charging device. Method step 2 may be followed by method step 3, in which the open-circuit voltage of a battery to be charged is measured, wherein the flow of the charging current may be interrupted during the measurement of the open-circuit voltage. Method step 4 may be followed by method step 4, in which the charging current is selected so that the battery to be charged is charged with a predetermined charging power.
Im Verfahrensschritt 5 kann die Batterie mit dem gewählten Ladestrom geladen werden. Im nun folgenden Verfahrensschritt 6 kann ermittelt werden, ob eine vorgegebene Ladezeit ver- strichen ist oder ein vorgegebener Ladezustand erreicht wurde. Wurde der vorgegebene Ladezustand, beispielsweise 100 % oder wenigstens 95 % beziehungsweise 90 % des maximal mögli¬ chen Ladezustands, der Batterie noch nicht erreicht und ist die vorgegebene Ladezeit verstrichen, so kann auf den Verfah- rensschritt 6 der Verfahrensschritt 3 folgen, in dem dieIn method step 5, the battery can be charged with the selected charging current. In the now following method step 6 it can be determined whether a given charging time has elapsed or a predetermined state of charge has been reached. The predetermined state of charge, for example, 100% or at least 95% or 90% of the maximum Moegli ¬ chen state of charge of the battery has not been reached and the predetermined charging time has elapsed, may be followed by the step 6 of method step 3, in which the
LeerlaufSpannung erneut gemessen wird. Anhand der im Verfahrensschritt 3 gemessenen LeerlaufSpannung kann im nun durchgeführten Verfahrensschritt 4 der Ladestrom neu gewählt und mit diesem neu gewählten Ladestrom die Batterie im Verfahrensschritt 5 für die vorgegebene Ladezeit weiter geladen werden. Ist der gewünschte Ladezustand erreicht, kann auf den Verfahrensschritt 6 der Verfahrensschritt 7 folgen, in dem das Verfahren endet. No-load voltage is measured again. On the basis of the measured in step 3 idle voltage can now be selected in the now performed process step 4, the charging current and With this newly selected charging current, the battery can be further charged in step 5 for the given charging time. If the desired state of charge has been reached, method step 6 can be followed by method step 7, in which the method ends.
Optional kann auf den Verfahrensschritt 3 zunächst der Ver¬ fahrensschritt 8 folgen, in dem eine Eigenschaft der Batte¬ rie, beispielsweise deren Temperatur oder Innenwiderstand, bestimmt wird. Nach dem Verfahrensschritt 8 kann dann wieder der Verfahrensschritt 4 folgen, in dem unter Berücksichtigung der LeerlaufSpannung und der bestimmten Eigenschaft der Batterie der Ladestrom gewählt wird. Figur 2 zeigt die erfindungsgemäße Vorrichtung 10 zur Ladung einer wiederaufladbaren Batterie schematisch. Die Vorrichtung 10 weist zwei Ladekontakte 11, 12 zum Anschluss einer zu la¬ denden Batterie auf. Ferner weist die Vorrichtung 10 ein Steuergerät 13 auf, mit dem Ladeparameter, beispielsweise La- destrom und/oder Ladespannung, kontrolliert werden können.Optionally, in the step 3 of the first method step Ver ¬ follow 8 in which a property is the Batte ¬ RIE, for example, their temperature or internal resistance is determined. After process step 8, process step 4 may then again follow, in which, taking into account the no-load voltage and the specific characteristic of the battery, the charging current is selected. Figure 2 shows the device 10 according to the invention for charging a rechargeable battery schematically. The device 10 comprises two charging contacts 11, 12 for connecting a Denden to la ¬ battery. Furthermore, the device 10 has a control unit 13 with which charging parameters, for example charging current and / or charging voltage, can be controlled.
Darüber hinaus ist die Vorrichtung 10 mit einem Spannungsmes¬ ser 14 versehen, der parallel zu den Ladekontakten 11, 12 geschaltet sein kann, um die Spannung einer an den Ladekontakten 11, 12 angeschlossenen Batterie zu messen. In addition, the device 10 is provided with a Spannungsmes ¬ ser 14, which may be connected in parallel with the charging contacts 11, 12 to measure the voltage of a connected to the charging contacts 11, 12 battery.
Darüber hinaus kann die Vorrichtung 10 eine Innenwiderstands- bestimmungseinheit 15 aufweisen. Die Innenwiderstandsbestim- mungseinheit 15 kann signalübertragend sowohl mit dem Span¬ nungsmesser 14 als auch mit dem Steuergerät 13 verbunden sein. Anhand der Ladespannung und des Ladestroms sowie derIn addition, the device 10 may have an internal resistance determination unit 15. The Innenwiderstandsbestim- mung unit 15 may be connected in signal communication with both the tensioning ¬ voltmeter 14 as well as with the control device. 13 Based on the charging voltage and the charging current and the
LeerlaufSpannung kann die Innenwiderstandsbestimmungseinheit 15 als Eigenschaft der zu ladenden Batterie deren Innenwiderstand bestimmen. Hierzu kann die Innenwiderstandsbestimmungs- einheit 15 vom Spannungsmesser 14 zumindest für die Leerlauf- Spannung oder auch für die Ladespannung repräsentative Daten empfangen. Ferner kann die Innenwiderstandsbestimmungseinheit 15 vom Steuergerät 13 für den Ladestrom repräsentative Daten empfangen. Anhand der empfangenen Daten kann die Innenwider- Standsbestimmungseinheit 15 den Innenwiderstand bestimmen und beispielsweise berechnen oder durch ein mathematisches Ver¬ fahren, beispielsweise einen Algorithmus, schätzen bezie¬ hungsweise bestimmen. Die Innenwiderstandsbestimmungseinheit 15 kann für den bestimmten Innenwiderstand repräsentative Da¬ ten an das Steuergerät 13 ausgeben. Im Steuergerät 13 kann der Innenwiderstand zum Vorgeben des Ladestroms verwendet werden . Die Batterietemperatur kann beispielsweise mit einem Tempera¬ tursensor gemessen werden. Zur Bestimmung des Innenwiderstandes der Batterie kann mit der Innenwiderstandsbestimmungsein- heit 15 die Differenz von Werten für die Leerlauf- und die Ladespannung durch den Ladestrom dividiert werden. Open circuit voltage can determine the internal resistance determining unit 15 as a property of the battery to be charged whose internal resistance. For this purpose, the internal resistance determination unit 15 can receive data representative of the voltmeter 14 at least for the no-load voltage or also for the charging voltage. Further, the internal resistance determining unit 15 may receive data representative of the charging current controller 13. Based on the received data, the internal resistance Status determination unit 15 determine the internal resistance and, for example, calculate or drive through a mathematical Ver ¬, for example, an algorithm appreciate determine rela ¬ hung instance. The internal resistance determination unit 15 can output representative data for the specific internal resistance to the control unit 13. In the control unit 13, the internal resistance can be used to specify the charging current. The battery temperature may be measured for example with a temperature ¬ tursensor. In order to determine the internal resistance of the battery, the difference between values for the open-circuit voltage and the charging voltage can be divided by the charging current with the internal resistance determination unit 15.
Die Werte der Leerlauf- und der Ladespannung sowie des Lade¬ stroms können durch digitale Daten oder durch analoge Signale repräsentiert sein. Die Vorrichtung 10 kann ein Steuergerät für ein Fahrzeug, insbesondere ein elektrisch angetriebenes Fahrzeug, mit einer Antriebsenergie speichernden, wiederauf- ladbaren Batterie sein. Das Fahrzeug ist beispielsweise ein Linienbus . The values of the load and the charging voltage and the charging current ¬ may be represented by digital data or analog signals. The device 10 may be a control device for a vehicle, in particular an electrically driven vehicle, with a drive energy storing, rechargeable battery. The vehicle is for example a bus.

Claims

Patentansprüche claims
1. Verfahren (1) zum Laden einer wiederaufladbaren Batterie, bei dem die Batterie mit einem vom Ladezustand der Batterie abhängenden Ladestrom geladen wird (5) . A method (1) of charging a rechargeable battery, wherein the battery is charged with a charging current depending on the state of charge of the battery (5).
2. Verfahren (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Ladestrom so gesteuert wird, dass das Produkt aus dem Ladestrom und der LeerlaufSpannung der Batterie im We- sentlichen konstant ist. 2. Method (1) according to claim 1, characterized in that the charging current is controlled so that the product of the charging current and the open circuit voltage of the battery is substantially constant.
3. Verfahren (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die LeerlaufSpannung während des Ladevorgangs wie¬ derholt bestimmt wird (3) . 3. Method (1) according to claim 1 or 2, characterized in that the no-load voltage is determined during the charging process as repeated ¬ (3).
4. Verfahren (1) nach Anspruch 3, dadurch gekennzeichnet, dass die LeerlaufSpannung während des Ladevorgangs häufiger als alle zehn Minuten bestimmt wird (3) . 4. Method (1) according to claim 3, characterized in that the no-load voltage is determined more frequently during the charging process than every ten minutes (3).
5. Verfahren (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zum Bestimmen der LeerlaufSpannung der Fluss des Ladestroms zur Batterie während des Ladevorgangs unterbrochen wird (3) . 5. The method (1) according to any one of claims 1 to 4, characterized in that for determining the open circuit voltage, the flow of the charging current to the battery during the charging process is interrupted (3).
6. Verfahren (1) nach Anspruch 5, dadurch gekennzeichnet, dass zum Bestimmen der LeerlaufSpannung der Fluss des Ladestroms für weniger als eine Sekunde unterbrochen wird (3) . 6. Method (1) according to claim 5, characterized in that for determining the open circuit voltage, the flow of the charging current is interrupted for less than one second (3).
7. Verfahren (1) nach Anspruch 5 oder 6, dadurch gekennzeich- net, dass die Unterbrechung des Ladestroms zur Bestimmung der7. The method (1) according to claim 5 or 6, characterized marked, that the interruption of the charging current for determining the
LeerlaufSpannung weniger als 5 % der Zeit des Ladevorgangs beträgt . Open circuit voltage is less than 5% of the time of charging.
8. Verfahren (1) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die LeerlaufSpannung durch die Anwendung eines mathematischen Verfahrens ermittelt wird. 8. The method (1) according to any one of claims 2 to 7, characterized in that the open-circuit voltage is determined by the application of a mathematical method.
9. Verfahren (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass basierend auf einer Eigenschaft der Bat¬ terie während des Ladevorgangs die maximal mögliche Ladeleis¬ tung, mit der die Batterie ohne Weiteres geladen werden kann, ermittelt wird (4, 8) . 9. The method (1) according to one of claims 1 to 8, characterized in that based on a property of the Bat ¬ terie during the charging process, the maximum possible charge Leis ¬ tung, with which the battery can be charged readily, is determined (4 , 8th) .
10. Verfahren (1) nach Anspruch 9, dadurch gekennzeichnet, dass der Ladestrom reduziert wird, wenn die Eigenschaft au¬ ßerhalb ihres zulässigen Betriebsintervalls liegt (4). 10. The method (1) according to claim 9, characterized in that the charging current is reduced if the property au ¬ ßerhalb their permissible operating interval is (4).
11. Verfahren (1) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass als Eigenschaft während des Ladevorgangs der Innenwiderstand der Batterie bestimmt wird (8) . 11. The method (1) according to claim 9 or 10, characterized in that is determined as a property during the charging process, the internal resistance of the battery (8).
12. Verfahren (1) nach Anspruch 11, dadurch gekennzeichnet, dass zum Bestimmen des Innenwiderstands die während des Lade¬ vorgangs ermittelte LeerlaufSpannung von der Ladespannung subtrahiert und das Ergebnis durch den Ladestrom dividiert wird ( 8 ) . 12. The method (1) according to claim 11, characterized in that for determining the internal resistance, the open-circuit voltage from the charging voltage subtracted determined during the charging operation, and ¬ the result is divided by the charging current (8).
13. Verfahren (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die maximal zulässige Batterietemperatur der Batterie während des Ladevorgangs die maximal mögliche Ladeleistung, mit der die Batterie ohne Weiteres geladen wer- den kann, bestimmt. 13. The method (1) according to any one of claims 1 to 12, characterized in that the maximum permissible battery temperature of the battery during the charging process, the maximum possible charging power with which the battery can be loaded easily determined.
14. Vorrichtung (10) zur Ladung einer wiederaufladbaren Batterie mit einem Steuergerät (13), das ausgebildet ist, im Be¬ trieb der Vorrichtung (10) den Ladestrom zu kontrollieren, dadurch gekennzeichnet, dass das Steuergerät (13) ausgebildet ist, zum Laden der Batterie das Verfahren (1) nach einem der Ansprüche 1 bis 13 auszuführen. 14. The device (10) for charging a rechargeable battery having a control unit (13) which is formed in the loading ¬ operating the device (10) to control the charging current, characterized in that the control unit (13) is adapted to load the battery to carry out the method (1) according to one of claims 1 to 13.
15. Vorrichtung (10) nach Anspruch 14, dadurch gekennzeich- net, dass die Vorrichtung (10) einen Spannungsmesser (14) zum15. Device (10) according to claim 14, characterized marked, that the device (10) has a voltmeter (14) for
Messen der LeerlaufSpannung der zu ladenden Batterie aufweist. Measuring the open circuit voltage of the battery to be charged has.
EP17708746.7A 2016-03-31 2017-03-02 Method and device for charging a battery Withdrawn EP3408888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016205374.4A DE102016205374A1 (en) 2016-03-31 2016-03-31 Method and device for charging a battery
PCT/EP2017/054905 WO2017167539A1 (en) 2016-03-31 2017-03-02 Method and device for charging a battery

Publications (1)

Publication Number Publication Date
EP3408888A1 true EP3408888A1 (en) 2018-12-05

Family

ID=58228119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17708746.7A Withdrawn EP3408888A1 (en) 2016-03-31 2017-03-02 Method and device for charging a battery

Country Status (7)

Country Link
US (1) US20190123401A1 (en)
EP (1) EP3408888A1 (en)
CN (1) CN108886177A (en)
CA (1) CA3019395A1 (en)
DE (1) DE102016205374A1 (en)
RU (1) RU2699247C1 (en)
WO (1) WO2017167539A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421702B (en) * 2019-08-23 2024-04-02 北京小米移动软件有限公司 Lithium battery charging method and device
CN111231764B (en) * 2020-02-25 2021-08-03 威马智慧出行科技(上海)有限公司 Electric vehicle battery thermal management method, electronic equipment and vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994878A (en) * 1997-09-30 1999-11-30 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery
JP4157317B2 (en) * 2002-04-10 2008-10-01 株式会社日立製作所 Status detection device and various devices using the same
JP2006129588A (en) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd Power control method of secondary battery, and power unit
US7626362B2 (en) * 2005-09-30 2009-12-01 International Components Corporation Rapid charge lithium ion battery charger
JP4835733B2 (en) * 2009-08-27 2011-12-14 トヨタ自動車株式会社 VEHICLE CHARGE CONTROL DEVICE AND ELECTRIC VEHICLE HAVING THE SAME
CN102971935B (en) * 2010-07-05 2015-03-11 丰田自动车株式会社 Control device for vehicle and control method for vehicle
CN101944760A (en) * 2010-09-30 2011-01-12 广东国光电子有限公司 Constant power charging system and method of lithium battery pack
CN103314503B (en) * 2010-11-15 2015-10-21 三菱自动车工业株式会社 The battery charge controller of motor vehicle
WO2012169063A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system
AT513335B1 (en) * 2012-09-13 2017-10-15 Fronius Int Gmbh Method and device for charging batteries
RU127521U1 (en) * 2012-10-22 2013-04-27 Федеральное государственное унитарное предприятие "18 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации DEVICE FOR CONTROL OF ELECTRICAL PARAMETERS AND CONTROL OF THE CHARGING MODE OF THE LITHIUM BATTERY
CN103872709B (en) * 2012-12-10 2018-08-31 联想(北京)有限公司 A kind of method and electronic equipment of charging
WO2014110477A2 (en) * 2013-01-11 2014-07-17 Zpower, Llc Methods and systems for recharging a battery
KR101502230B1 (en) * 2013-09-17 2015-03-12 삼성에스디아이 주식회사 Charging method of battery and battery charging system
JP2015154593A (en) * 2014-02-14 2015-08-24 ソニー株式会社 Charge/discharge control device, battery pack, electronic apparatus, electric motor vehicle and charge/discharge control method
CN105207281A (en) * 2014-06-26 2015-12-30 中兴通讯股份有限公司 Battery charging method and device
CN106797128B (en) * 2014-07-28 2020-03-24 美国电化学动力公司 System and method for rapidly charging a battery at low temperatures
DE102014221547A1 (en) * 2014-10-23 2016-05-12 Ford Global Technologies, Llc Method for monitoring the state of charge of a battery

Also Published As

Publication number Publication date
RU2699247C1 (en) 2019-09-04
US20190123401A1 (en) 2019-04-25
DE102016205374A1 (en) 2017-10-05
CA3019395A1 (en) 2017-10-05
CN108886177A (en) 2018-11-23
WO2017167539A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
EP1562049B1 (en) Method for the determination of characteristics for electrical states of a storage battery and corresponding monitoring device
DE10345057B4 (en) Method and device for determining the state of charge of a battery
EP2488885B1 (en) Method for determining and/or predicting the maximum performance capacity of a battery
EP1128187B1 (en) Method for determining the state of charge of lead accumulators
EP3445607B1 (en) Battery charging system and corresponding method
EP3701584A1 (en) Method for charging or discharging an energy store
EP0188477A1 (en) Device for controlling the charge state of rechargeable batteries.
DE102012010486B4 (en) Method and device for determining the actual capacity of a battery
EP1391742B1 (en) Monitoring device and method for determining the operating state of a storage battery
EP3708416A1 (en) Method and charging device for determining a maximum storage capacity of an energy storage device
WO2019175357A1 (en) Method for operating an electrical stored energy source, controller for an electrical stored energy source, and device and/or vehicle
EP4217753A1 (en) Method for determining the state of a rechargeable battery system
DE112016002067T5 (en) Method and monitoring unit for monitoring a battery system
WO2010025974A1 (en) Method for calculating the charge state of a battery
EP2856189B1 (en) Method and device for determining the actual capacity of a battery
WO2017167539A1 (en) Method and device for charging a battery
DE102013206189A1 (en) Determining a state of charge of a rechargeable battery
DE102017200548B4 (en) Method for determining a current characteristic curve for an electrochemical energy store, motor vehicle and server supplying a motor vehicle
WO2011144311A2 (en) Method for controlling the maximum charge rate of an electrochemical energy store device
WO2019072488A1 (en) Energy storage device and device and method for determining a capacitance of an energy storage device
WO2021083587A1 (en) Fast charging method
WO2021122368A1 (en) Device and method for monitoring at least three battery cells of a battery
EP2180540B1 (en) Rechargeable battery with multiple galvanic cells
DE102009042194B4 (en) Method for determining the operating range of a rechargeable electrical energy store
EP3408921B1 (en) Determining the capacitance of an energy store of an uninterruptible direct current supply unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200630