EP3404320B1 - Led lamp - Google Patents

Led lamp Download PDF

Info

Publication number
EP3404320B1
EP3404320B1 EP18171735.6A EP18171735A EP3404320B1 EP 3404320 B1 EP3404320 B1 EP 3404320B1 EP 18171735 A EP18171735 A EP 18171735A EP 3404320 B1 EP3404320 B1 EP 3404320B1
Authority
EP
European Patent Office
Prior art keywords
circuit board
glass bulb
led lamp
printed circuit
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18171735.6A
Other languages
German (de)
French (fr)
Other versions
EP3404320A1 (en
Inventor
Georg Rosenbauer
Bernhard Rieder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ledvance GmbH
Original Assignee
Ledvance GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledvance GmbH filed Critical Ledvance GmbH
Publication of EP3404320A1 publication Critical patent/EP3404320A1/en
Application granted granted Critical
Publication of EP3404320B1 publication Critical patent/EP3404320B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/0015Fastening arrangements intended to retain light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/001Arrangement of electric circuit elements in or on lighting devices the elements being electrical wires or cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • F21V3/0615Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass the material diffusing light, e.g. translucent glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an LED light source and an LED lamp with such an LED light source.
  • LED lamps for use in LED lamps, especially in LED retrofit lamps, are becoming increasingly popular as a replacement for classic lamps such as halogen or incandescent lamps due to their high energy efficiency.
  • LED light sources have several disadvantages compared to traditional light sources.
  • LED lamps for example, have significantly poorer radiation characteristics and a reduced lighting quality.
  • Known LED lighting means for example, have light flickering at a frequency of 100 Hz.
  • the solid angle covered is usually much smaller than with classic light sources and / or the radiation is spatially highly inhomogeneous. Bad mounting or adjustment of the light-emitting diode chips within the LED lighting means can also lead to a reduction in the quality of the lighting.
  • LED lamps Another disadvantage is the current size of the LED light sources or LED lamps.
  • additional driver electronics are required, which are usually housed in the base of the LED lamps and / or in the connection areas of the LED lamps.
  • conventional LED lamps are made relatively large.
  • the heat sinks required for the driver electronics and / or the light-emitting diode chips are another reason for bulky and expensive LED lamps.
  • poor cooling reduces the service life of the LED lamp and the quality of the lighting.
  • the pamphlet WO 2012/031533 A1 describes an LED lamp in which an omnidirectional radiation characteristic is guaranteed through the use of LED filaments.
  • the driver electronics are arranged in the lamp base of the LED lamp. As a result, the LED lamp is made relatively large overall.
  • the pamphlet JP 2013-222782 A describes an LED light source in which light-emitting diode chips are attached to a printed circuit board by means of so-called bare chip assembly (English: chip-on-board assembly, COB).
  • bare chip assembly English: chip-on-board assembly, COB.
  • the radiation characteristic of the LED light source corresponds to the one-sided Lambertian radiation of the light-emitting diode chips and is therefore very inhomogeneous.
  • the already mentioned 100 Hz flickering occurs.
  • the pamphlet US 9,420,644 B1 Figure 12 shows a bypass driver module which dynamically adds a bypass current to an LED current so that the summed current maintains a predetermined minimum holding current requirement of a phased dimmer supply.
  • the pamphlet US 2016/0348852 A1 shows a lighting device comprising a substrate, a plurality of light sources and a housing made of a non-permeable material.
  • the pamphlet US 2013/0271972 A1 shows a gas-cooled LED lamp.
  • an object of the present invention to provide a compact and inexpensive to manufacture LED light source. Furthermore, an LED lamp with such an LED light source is to be provided.
  • an LED lamp comprising a housing and an LED lighting means arranged within the housing, having a glass bulb, a light module with at least one light-emitting diode chip which is applied to a printed circuit board by means of bare chip assembly, and driver electronics for the light module, the light module and the driver electronics are accommodated in the glass envelope, and wherein the glass envelope has an indentation which protrudes into the interior of the glass envelope and is in thermal contact with the circuit board.
  • the bare chip assembly of light-emitting diode chips also enables the cost-effective production of compact and small electrical modules.
  • the term “bare chip assembly” is to be understood as the direct assembly of semiconductor chips on a printed circuit board, in particular using bond wires. Bare chip assembly is preferably carried out with unhoused semiconductor chips and / or with so-called chip-scale components in which the housing makes up a maximum of 20% more than the area of the bare semiconductor chip.
  • a compact LED light source can thus be provided in a cost-effective manner.
  • the light module preferably has a multiplicity of light emitting diode chips.
  • the light-emitting diode chips can, for example, be connected to one another in series.
  • the LED lighting means can have a multiplicity of lighting modules.
  • the LED lighting means contains a single lighting module with a plurality of light-emitting diode chips.
  • the driver electronics in particular the entire driver electronics, is applied to the circuit board by means of bare chip assembly.
  • the driver electronics have electronic components in particular. At least some of the electronic components, in particular all of the electronic components, of the driver electronics are preferably applied to the circuit board by means of bare chip assembly. As an alternative or in addition, it is possible for at least part of the driver electronics to be applied to an additional circuit board. Furthermore, at least some of the electronic components can be applied to the circuit board and / or the circuit board by means of surface mounting (English: surface mounted device, SMD) and / or be electrically conductively connected to the light-emitting diode chip by means of wire connections.
  • surface mounting English: surface mounted device, SMD
  • the electronic driver includes a smoothing capacitor which is connected in parallel with the at least one light-emitting diode chip.
  • each light-emitting diode chip is preferably connected in parallel to the smoothing capacitor.
  • An energy store is introduced into the system through the smoothing capacitor.
  • the smoothing capacitor can be applied to the circuit board of the driver electronics and / or the circuit board of the lighting module, in particular by means of surface mounting.
  • the smoothing capacitor can be applied to the printed circuit board of the light module or to another board by means of surface mounting or bare chip mounting.
  • a laser soldering process is preferably used for surface mounting, which means that the use of a reflow oven can be avoided.
  • the smoothing capacitor can be attached to the circuit board of the light module as a simple clamping capacitor.
  • the smoothing capacitor can be applied by means of an electrically conductive adhesive and / or bonding wires.
  • the smoothing capacitor and / or the other electronic components of the driver electronics are surface-mounted on the board (or the printed circuit board), the smoothing capacitor and / or the electronic components are preferred before the light-emitting diode chips are applied and the light-emitting diode chips are possibly potted with a potting material carried out.
  • the smoothing capacitor can be a ceramic multilayer (chip) capacitor whose capacitance is, for example, in a range of 1 ⁇ m.
  • an electrolytic capacitor can be used, which enables high capacities.
  • the driver electronics can comprise a rectifier circuit, which is set up to convert an AC mains voltage into a DC operating voltage of the LED lighting means. It is possible for the light-emitting diode chips, in particular exclusively the light-emitting diode chips, to be used as rectification components for the rectifier circuit.
  • the driver electronics can furthermore comprise a transistor which is set up for current regulation and / or current limitation of the current flowing through the light-emitting diode chips.
  • the thickness of the circuit board is at most 400 ⁇ m.
  • the thickness is preferably at most 300 ⁇ m, particularly preferably at most 200 ⁇ m.
  • a small thickness is particularly advantageous for uniform emission characteristics.
  • the thickness of the circuit board is its extent along a vertical direction of the circuit board. The vertical direction runs perpendicular to the lateral directions of the circuit board along which it extends.
  • the printed circuit board has a width and a length running perpendicular to the width, which is preferably greater than the width.
  • the circuit board is preferably held in the glass bulb in such a way that the length runs along an axis of symmetry of the glass bulb.
  • the lateral directions span a front side and a rear side of the circuit board.
  • the light-emitting diode chips are mounted on the front and / or on the back.
  • the circuit board is designed to be transparent. That is to say, at least 50%, preferably at least 70%, of the light emitted by the at least one light-emitting diode chip and incident on the circuit board is transmitted through the circuit board.
  • quartz glass SiO 2 , thermal conductivity 1.0 W / mK
  • sapphire Al 2 O 3 , thermal conductivity 25 W / mK
  • mullite ceramic silicate ceramic type C610 / 620, thermal conductivity 10 W / mK
  • AlN aluminum nitride
  • a light-permeable printed circuit board enables the emission characteristics of the LED light source to be improved.
  • the solid angle covered by the light emitted by the LED lamp can be increased so that the typical Lambertian radiation characteristic of the light-emitting diode chip is homogenized, right up to omnidirectional radiation over the entire solid angle of 2n.
  • a further improvement in the radiation characteristics can be achieved by arranging light-emitting diode chips on both sides of the circuit board, that is to say on the front and the rear of the circuit board.
  • Two printed circuit boards equipped with light-emitting diode chips on the front side can also be connected to one another on their unpopulated rear sides.
  • An electrically conductive connection between the light-emitting diode chips on different sides of the circuit board can be provided, for example, by means of clips, in particular metal clips, and / or wires, in particular metal wires.
  • the interior of the glass bulb is filled with a heat-conducting gas.
  • a heat conducting gas is understood to be a gas that conducts heat well.
  • a heat conducting gas can in particular have a higher thermal conductivity than air.
  • a heat conducting gas can have a thermal conductivity of at least 0.05 W / mK, preferably at least 0.10 W / mK and particularly preferably at least 0.13 W / mK at room temperature, i.e. at the dimensional reference temperature of 20 ° C (293.15 K) , exhibit.
  • Helium gas (thermal conductivity 0.16 W / mK) and / or hydrogen gas (thermal conductivity 0.18 W / mK) are, for example, suitable as heat conducting gas.
  • a mixture of helium with oxygen can also be used as a heat-conducting gas.
  • the absolute pressure of the heat conducting gas in the interior can be up to 10 bar, preferably at most 5 bar.
  • the absolute pressure is preferably at least 1 bar, preferably at least 2 bar.
  • the specifications of the absolute pressure are to be understood at room temperature.
  • the use of a high pressure of the heat-conducting gas enables improved heat dissipation within the LED light source.
  • the glass bulb is preferably designed to be vacuum-sealed.
  • the glass bulb can be closed and / or fused in such a way that the absolute pressure inside the glass bulb is maintained without external devices, such as vacuum pumps.
  • the glass flask can thus enclose a sealed or closed volume that forms the interior space.
  • the glass bulb is designed to be gas-tight.
  • the glass bulb can be made of hard glass, soft glass and / or quartz glass.
  • the glass bulb is preferably formed with quartz glass and / or hard glass or consists of at least one of these materials.
  • the term "exists" is to be interpreted in the context of manufacturing tolerances; that is, the glass bulb may have manufacturing-related impurities.
  • the glass bulb contains at least 99% silicon dioxide.
  • quartz glass or hard glass a glass bulb can be provided that can be filled with a gas pressure of up to 30 bar.
  • soft glass cannot be filled with high gas pressures (up to a maximum of 1 bar).
  • quartz glass and / or hard glass have the advantage that these materials are extremely temperature-resistant and also have very good optical properties.
  • the thermal conductivity of hard or quartz glasses is sufficiently high to enable good dissipation of waste heat generated during operation of the LED light source.
  • Duran glass, alumnosilicate glass and / or borosilicate glass can be used as hard glasses. Glasses that are also used in classic halogen lamp construction are particularly suitable as hard glasses.
  • the glass bulb can be constructed in the manner of a glass bulb of a classic halogen lamp. In contrast to soft glasses. Where even a temperature shock of 100 K can cause the glass to crack or crack, quartz glass and hard glass can be exposed to high temperature shocks, for example up to 1000 K, without cracks or cracks occurring.
  • the glass bulb can also contain a getter material for binding (so-called gettering) of volatile organic compounds (VOC) and / or of volatile sulfur, phosphorus and / or chlorine-containing compounds.
  • VOC volatile organic compounds
  • the volatile organic compounds can contain oxygen, nitrogen, hydrogen and / or carbon.
  • the getter material can be introduced into the glass bulb in the solid and / or gaseous state.
  • the volatile organic and / or sulfur, phosphorus and / or chlorine-containing compounds can also be referred to in general as “volatile compounds” below.
  • the volatile compounds can come from flux residues or solder resists from soldering processes, for example. Furthermore, the volatile compounds can be outgassing of polymers of the light-emitting diode chips, adhesives and / or heat-conducting pastes. In addition, the volatile compounds can come from the circuit board.
  • Volatile organic compounds present in the glass bulb can be deposited on the material of the glass bulb and cause discoloration there. This is known under the term “fogging” of the glass bulb and can lead to a loss of luminous flux of up to 10%. Diffusion of the volatile organic compounds into an optionally present silicone shell of the light-emitting diode chips can be even more serious. Through this Hydrocarbon compounds in the silicone shell can be broken and the silicone shell can turn dark. This can lead to a loss of luminous flux of over 50%. This loss of luminous flux is usually associated with an additional shift in the color locus. These two phenomena are known under the terms “lumen degradation” and "change color chromaticity". Furthermore, compounds containing sulfur, phosphorus and / or chlorine can lead to reflection losses at a silver mirror that may be present below the emitting layers of the light-emitting diode chips.
  • the getter material is preferably at least partially introduced into the glass bulb as a gas.
  • the gaseous getter material is hydrogen- and / or oxygen-rich compounds which preferably bind volatile carbon-containing compounds and react, for example, to form CH 4 or CO / CO 2 .
  • the setting can prevent a reaction with a silicone cover and / or a deposit on the glass bulb.
  • the getter material can contain oxygen gas and / or a silane, for example a monosilane (SiH 4 ). Due to the high pressure inside the gas piston, it may be possible to introduce the silane at a maximum concentration below an ignition limit or explosion limit.
  • the flask can be filled with 8% by volume of silane.
  • the amount of gaseous getter material can be increased in direct proportion to the absolute pressure of a heat-conducting gas that may be introduced into the glass bulb.
  • the getter material can be introduced into the glass bulb at least partially as a solid.
  • a pure metal such as zirconium Zr, tantalum Ta, titanium Ti, palladium Pd, vanadium V, aluminum Al, copper Cu, silver Ag, magnesium Mg, nickel Ni, iron Fe, calcium Ca, strontium Sr and is suitable as a solid getter material Barium Ba, or alloys made of pure metals, such as ZrAl, ZrTi, ZrFe, ZrNi, ZrPd and / or BaAl 4 . The use of a ZrAl alloy is preferred here. Oxides and hydrides of pure metals are also suitable as getter material.
  • metal hydroxides such as magnesium hydroxide or aluminum hydroxide, are suitable as solid getter materials within the glass bulb. Metal hydroxides are suitable for example for a gettering off volatile carbon compounds in the closed volume of the glass bulb.
  • Solid getter materials are preferably applied in such a way that they have a large reactive surface, for example as a coating and / or as a sintered material.
  • the getter material can be introduced into the glass bulb as solid metal, for example in the form of a wire.
  • the getter materials can be optimized with regard to their getter behavior by additionally introduced gaseous getters.
  • the getter materials can be activated after a pumping-out process and baking in the oven (tempering). In this way, for example, reactive oxides of metallic getter materials can form.
  • the circuit board is thermally connected to the glass bulb.
  • the smoothing capacitor is thermally connected to the glass bulb.
  • the smoothing capacitor is preferably applied to the circuit board and thermally connected to the glass bulb together with the circuit board. "Thermally connected" means here and below that the printed circuit board or the smoothing capacitor is connected to the glass bulb in a thermally conductive manner.
  • the circuit board and / or the smoothing capacitor can be in direct contact with the glass bulb in places. This enables efficient cooling of the at least one light-emitting diode chip or the light-emitting diode chip applied to the circuit board Smoothing capacitor and consequently a constant lighting quality in connection with an increased operating time.
  • the glass bulb has an indentation (English: dimple), preferably a plurality of indentations.
  • the indentation protrudes into the interior of the glass bulb.
  • the indentation is concave with respect to the interior.
  • the indentation is in thermal contact with the printed circuit board and / or the smoothing capacitor.
  • the indentation preferably adjoins the circuit board and / or the smoothing capacitor.
  • the indentation can be formed, for example, during the production of the LED lighting means by pressing in and / or squeezing together the still soft material of the glass bulb.
  • the conduction of heat between the glass bulb and the circuit board with the light-emitting diode chips and / or the smoothing capacitor can be further improved by means of the indentation. It is advantageous here if the indentation is in thermal contact with temperature-sensitive (opto) electronic components. The indentation can also hide the direct view of electronic components in the interior of the glass bulb and thus improve the aesthetic appearance of the LED light source. This is particularly advantageous when the indentation directly adjoins the smoothing capacitor, since it can appear unaesthetic, for example due to its size.
  • the glass bulb has two indentations lying opposite one another and the circuit board is clamped between the two indentations.
  • the indentations thus fix the circuit board within the glass bulb.
  • a distance between the indentations then preferably corresponds to the thickness of the printed circuit board.
  • further components can also be arranged between the circuit board and the indentations, so that the distance between the Indentations can also be larger than the thickness of the circuit board.
  • the indentations can in particular be designed mirror-symmetrically with respect to one another with respect to an axis of symmetry of the glass bulb.
  • the indentations center the circuit board in the glass bulb.
  • the circuit board then runs along the axis of symmetry.
  • the axis of symmetry of the glass bulb can here and subsequently run along the main direction of extent of the glass bulb.
  • the glass bulb has a cylindrical or elongated, in particular rounded, cuboid shape, the axis of symmetry then being the height of the cylinder or the length of the cuboid.
  • the heat dissipation can be improved and homogenized on the one hand and the mechanical holding of the circuit board, in particular a heavy circuit board, within the glass bulb can be reinforced on the other hand.
  • the aesthetic appearance can thus be further improved.
  • the mechanical stability of the lamp can be improved in the so-called postal drop test according to DIN ISO 2206 or DIN ISO 2248 (respective version at the time of registration). The postal drop test simulates the maximum mechanical loads during the transport of the lamp. Without the indentations, the respective bending moments on the wire sections of the holder and / or the crushed glass during transport can be very high.
  • the indentations are preferably located on an upper side of the glass bulb, which is opposite a holder of the light module.
  • the holder of the light module is located on the underside of the glass bulb, in particular together with electrical connections of the light module.
  • the holder can in particular correspond to the electrical connections.
  • the electrical connections can be, for example Trade wire pins.
  • the wire pins can be soldered and / or clamped to the circuit board. On a side facing away from the circuit board, the wire pins can be fused to the glass bulb, which ensures that the circuit board is mechanically held.
  • the clamping of the printed circuit board can reduce the mechanical load, in particular the mechanical tension, on the holder and also prevent the light module from bending or breaking off by shaking the LED light source. In the case of a single indentation, this can also be located on the upper side of the glass bulb facing away from the holder.
  • the electrical connections can be connected to contact pins arranged at least partially outside of the glass bulb via an electrically conductive connection area.
  • the connection area can be fused or welded to the glass bulb.
  • the fusing can in particular be carried out in such a way that the glass bulb continues to be vacuum-sealed.
  • a molybdenum foil and / or a molybdenum wire is attached between the glass bulb and the connection area, in particular in a fusion area of the connection, in order to facilitate the fusion.
  • the molybdenum foil or the molybdenum wire is formed with molybdenum or consists of molybdenum.
  • the molybdenum foil or the molybdenum wire can also contain a getter material, for example in the form of a coating.
  • a molybdenum foil is preferably used, and in the case of a hard glass glass bulb, a molybdenum wire is used.
  • the thermal expansion coefficient of molybdenum is 5.1 ⁇ 10 -6 K -1 , of quartz glass 0.6 ⁇ 10 -6 K -1 and of hard glass 4.7 ⁇ 10 -6 K -1 .
  • Tempered glass thus has a similar thermal Expansion coefficients such as molybdenum (the difference is less than 10%), which is why, in contrast to quartz glass, direct fusing is possible.
  • a wire with an iron-nickel-cobalt alloy aso-called KOVAR
  • a tungsten wire can be used.
  • transition glasses can be attached between the glass bulb and the connecting area. It is also possible for the connection and / or any retaining wires that may be present for a circuit board to consist of a getter material or to be coated with a getter material.
  • the solid getter materials mentioned above are suitable for this, for example.
  • the glass bulb has a notch protruding into the interior of the glass bulb, which runs along an axis of symmetry of the glass bulb and is designed to center the lighting module within the glass bulb.
  • the notch is used to clamp the circuit board on an edge of the circuit board opposite the holder of the circuit board.
  • the circuit board has a width which essentially corresponds to a largest inner diameter of the glass bulb. "Essentially” is to be understood here in such a way that the width can deviate by up to +/- 20%, preferably +/- 10%, from the largest inner diameter. Both the largest inner diameter and the width of the circuit boards run perpendicular to the axis of symmetry of the glass bulb.
  • the glass bulb preferably has a cylindrical shape with an elliptical or circular cross section; the largest inside diameter in this case is the major axis of the ellipse or the diameter of the circle.
  • the glass bulb can have the shape of a, in particular rounded, cuboid with a rounded rectangular cross section; the largest inside diameter in this case is the longer side of the rectangular cross-section. Due to the similar dimensions of the largest inner diameter of the glass bulb and the width of the printed circuit board, the printed circuit board can be clamped and held by means of the walls of the glass bulb. Further materials can be located between the printed circuit board and the glass bulb, so that a thermal connection of the printed circuit board to the glass bulb and / or compensation of manufacturing-related deviations in the geometries is made possible.
  • the glass bulb has a bulge that is convex with respect to the interior of the glass bulb.
  • the circuit board and / or the smoothing capacitor is / are at least partially received in the bulge.
  • the bulge can be the glass nose known from classic halogen lamps, which can be used to fill the glass bulb with a heat-conducting gas. Due to the bulge, the design of the LED light source can be approximated to that of a classic halogen lamp, which increases the aesthetics and customer acceptance. Furthermore, the bulge can be used to center and / or at least partially fix the light module within the glass bulb.
  • the circuit board and / or the smoothing capacitor is / are at least partially embedded in a mechanically flexible potting body.
  • the potting body can in particular be a silicone potting. Mechanical flexibility is given, for example, when the potting body can be compressed non-destructively by at least 30% of its expansion and / or when the potting body is elastic.
  • the potting body can in particular be attached to the points on the printed circuit board and / or the smoothing capacitor which are located at the indentation and / or the notch. In general, the potting body enables this Compensation of manufacturing-related tolerances in the dimensions of the circuit board, the smoothing capacitor and / or the glass bulb.
  • the potting body when clamping between two indentations, the potting body is compressed more strongly, that is to say elastically deformed, in the case of a thick circuit board than in the case of a thinner circuit board.
  • a reduction in the largest inside diameter of the glass bulb can be compensated for by potting the edges of the circuit board with the potting material, since this is then compressed when the circuit board is clamped in the glass bulb.
  • the potting body can alternatively or additionally be applied to the at least one light-emitting diode chip. This makes it possible to adapt the emission characteristics of the light-emitting diode chip.
  • the potting body contains scatter particles and / or wavelength-converting particles for this purpose.
  • the potting body can be designed in the form of a lens.
  • the smoothing capacitor can also be attached under the potting body so that the direct view of the smoothing capacitor is blocked. In this way, the aesthetic appearance of the LED light source can be further improved.
  • the glass bulb is made of frosted glass and / or has a matt finish.
  • the glass bulb preferably consists of frosted glass and / or a frosted glass.
  • the glass bulb has been treated with a sandblast for this purpose.
  • the lighting module comprises different sections, the sections of the lighting module Emit light of a different color temperature.
  • the LED lighting means it is possible for the LED lighting means to include several lighting modules which emit light of a color temperature that differs from one another.
  • the LED lighting means includes a first section that emits, in particular white, light of a first color temperature, and a second section that emits, in particular white, light of a second color temperature that is higher than the first color temperature.
  • the color temperature or the color locus of the light emitted by the LED lighting means is then specified by the respective color temperatures or color loci of the light emitted by the individual sections and / or light modules.
  • the first section and the second section can each include at least one blue light-emitting light-emitting diode chip, the blue light being converted into white light by means of a wavelength conversion element that includes wavelength-converting particles, in particular a phosphor.
  • the wavelength conversion element of the first section can comprise different wavelength-converting particles such as the wavelength conversion element of the second section and / or different compositions of the wavelength-converting particles, so that light of a different color temperature is emitted in the first section than in the second section.
  • the use of different wavelength conversion elements can analogously also be used for the case of several light modules. Furthermore, more than two sections, each with different wavelength conversion elements, can also be used.
  • the second section can be closer to the top of the glass envelope than the first section. It is also possible that the sections can be controlled electrically separately and / or are dimmable. In particular, the light-emitting diode chips of one section can become dark during dimming (ie they emit less light than in the other section), as a result of which the color locus of the light that is emitted as a whole by the LED lighting means changes. This arrangement enables a dimming effect similar to that of an incandescent lamp to be achieved, for example when dimming the LED light source, in particular by means of phase section dimming.
  • the circuit board can have a contact point that can be contacted by means of an electrical connection, wherein the contact point can preferably be formed by a high-temperature material, particularly preferably by uncoated material or by, for example, nickel, platinum, ruthenium, silver, tin, zinc, copper coated molybdenum, niobium, tantalum and / or stainless steel.
  • a high-temperature material particularly preferably by uncoated material or by, for example, nickel, platinum, ruthenium, silver, tin, zinc, copper coated molybdenum, niobium, tantalum and / or stainless steel.
  • the electrical connection can be formed by a metal clamp, the metal clamp having an opening in which the circuit board can be clamped, a contact area of the metal clamp being brought into direct contact with the contact point of the circuit board.
  • the clamping also creates a mechanical connection that makes subsequent soldering or other material-to-material connection superfluous.
  • the metal clamp can be formed by two wire tracks which are welded to one another at a connection point.
  • a metal clamp designed in this way can be manufactured inexpensively and with a precise fit and offers quick and easy contacting.
  • the LED lamp includes an enclosure and one within the enclosure arranged LED light source.
  • the LED illuminant of the LED lamp is a previously described LED illuminant. This means that all the features described for the LED lamp are also described for the LED lamp and vice versa.
  • the LED lamp can be, for example, an LED retrofit lamp or an LED light.
  • the housing can be a glass envelope and / or an at least partially transparent housing.
  • the housing is formed with a material which has a high thermal conductivity, which in particular corresponds at least to the thermal conductivity of quartz glass.
  • the housing of the LED lamp is preferably a glass envelope.
  • a heat-conducting gas can be located in a space between the glass envelope and the glass bulb.
  • the pressure of the heat-conducting gas within the glass envelope is preferably lower than the pressure of the heat-conducting gas within the glass bulb.
  • the pressure in the glass envelope is at least 0.5 bar, preferably at least 1 bar, lower than in the glass bulb.
  • the pressure in the glass envelope is preferably 1 bar.
  • a thermally conductive material such as a silicone potting and / or glass diffuser, can be introduced into the space between the glass bulb and the housing.
  • the glass envelope is preferably formed with or consists of a soft glass, in particular soda-lime glass.
  • Soft glass is characterized by its low manufacturing costs and easy processability.
  • the housing can alternatively or additionally comprise a reflector which is designed to be reflective for the light emitted by the LED illuminant.
  • the LED lamp can then be designed in particular as a retrofit for a classic halogen reflector lamp.
  • the LED lighting means described here is particularly compact and can be manufactured inexpensively.
  • the radiation characteristics are significantly improved compared to known LED light sources.
  • the LED lamp 1 shown can be used as an LED lamp, for example, in a so-called pin-base lamp, in particular a G9 pin-base lamp that can be operated at 230 V.
  • the Figure 1A shows a circuit diagram of a lighting module 100 for the LED lighting means 1
  • the Figure 1B shows a schematic sketch of the lighting module 100 for the LED lighting means 1
  • the Figure 1C shows a schematic sketch of the LED illuminant 1.
  • the light-emitting module 100 comprises a multiplicity of light-emitting diode chips 11. Specifically, four light-emitting diode chips 11 are shown in the example. Unlike in the Figure 1A shown, the light module 100 can also have more or fewer light-emitting diode chips 11.
  • the light-emitting diode chips 11 are connected in series with a transistor 31.
  • the transistor 31 can be used, for example, to set a current through the series-connected light-emitting diode chips 11.
  • a smoothing capacitor 30 is connected in parallel with the light-emitting diode chips 11. The smoothing capacitor 30 is used to filter modulations, in particular at 100 Hz, in the operating voltage of the light-emitting diode chips 11.
  • the operating voltage is provided by a voltage source 33.
  • a rectifier circuit 32 which in the present case is formed with four diodes 321, is located between the voltage source 33 and the light-emitting diode chips 11.
  • the rectifier circuit 32 and the transistor 31 can be part of driver electronics, which can be attached within the glass bulb 20 of the LED illuminant 1.
  • FIG. 1B are the electronic components of the Figure 1A shown schematically together on a circuit board 12.
  • the components of the light module 100 may be applied to a separate circuit board.
  • At least light-emitting diode chips 11 of light module 100 are preferably applied to printed circuit board 12 by means of bare chip assembly.
  • the electrical contacting of the light module 100 takes place by means of contact points 44 which are located on the circuit board 12.
  • the circuit board 12 preferably has a width of at least 5 mm and at most 11 mm.
  • the length is preferably at least 10 mm and at most 30 mm.
  • the contact points 44 are spaced 6 mm apart.
  • the Figure 1C shows an LED lamp 1, which is a in connection with the Figures 1A and 1B may include the light module 100 described.
  • the light module 100 of the LED light source 1 is shown purely by way of example as a filament of a classic halogen lamp.
  • the LED lighting means 1 comprises two lighting modules 100 in the present case. In a preferred embodiment of the LED lighting means 1, contrary to the illustration in FIG Figure 1C -but only one light module 100 may be provided.
  • the light modules 100 are located in a glass bulb 20.
  • the glass bulb 20 further comprises electrical connections 43, which are electrically conductively connected to the contact points 44 of the light module 100. The position of the electrical connections 43 defines an underside of the glass envelope 20.
  • the glass bulb 20 has a bulge 21 on an upper side opposite the lower side.
  • the bulge 21 is arranged on an axis of symmetry of the glass bulb 20.
  • a part 101 of the lighting module 100 protrudes into the bulge 21 into it and can thereby be centered by means of the bulge 21.
  • connection area 42 there is a molybdenum foil, with the use of which a different coefficient of thermal expansion of the material of the electrical connections 43 or of the contact pins 41 and the material of the glass bulb 20 can be compensated.
  • the glass bulb 20 can be formed with quartz glass.
  • the connection area 42 only comprises a wire, for example a molybdenum wire, a tungsten wire or an iron-nickel-cobalt wire, since in hard glass in connection with the mentioned electrically conductive materials none Adjustment of the thermal expansion coefficient is required.
  • the LED lamp 1 shown can also be used as an LED lamp in a pin-base lamp, in particular a G4 pin-base lamp that can be operated at 12 V.
  • the Figure 2A shows a circuit diagram of a light module 100 for the LED light source 1
  • the Figure 2B shows a schematic sketch of the lighting module 100 for the LED lighting means 1
  • the Figure 1C shows a schematic sketch of the LED illuminant 1.
  • the light module 100 of Figure 1A comprises the light module 100 of Figure 2A only three light-emitting diode chips 11.
  • the rest of the configuration does not differ from the light-emitting module 100 of FIG Figure 1A .
  • FIG. 11 shows a schematic representation of the electronic components of FIG Figure 2A .
  • the structure of the other components corresponds to that of Figure 1B .
  • the circuit board 12 preferably has a width of at least 5 mm and at most 10 mm and a length of at least 5 mm and at most 20 mm.
  • the contact points 44 are spaced 5 mm apart.
  • the Figure 2C shows an LED lamp 1, which in connection with the Figures 2A and 2B may include light module 100 described.
  • the light module 100 of the LED light source 1 is shown purely by way of example as a filament.
  • the light module 100 comprises the light-emitting diode chips 11 of FIG. 4 which are applied to a printed circuit board 12 by means of naked assembly Figures 2A and 2B .
  • the LED light source 1 differs from the LED light source 1 Figure 1C in particular through a partially spherical structure of the glass bulb 20 through a more pronounced bulge 21. As a result, the LED illuminant 1 is even more similar to a classic halogen or incandescent lamp.
  • the LED light source 1 of the Figure 1C can of course also with the light module 100 of the Figures 2A and 2B be populated and vice versa.
  • the LED lamp 1 shown can be designed as a halogen tube lamp, for example.
  • the LED lighting means 1 has an elongated, rod-like shape.
  • the light module 100 can be used in conjunction with the Figure 1A as well as the connection with the Figure 2A described light module 100 can be used.
  • the circuit board 12 should also be elongated.
  • the printed circuit board 12 preferably has a width of 5 mm and a length of at least 50 mm and at most 100 mm.
  • the contact pins 41 are now arranged on opposite sides of the glass bulb 20.
  • the contact points 44 are preferably also attached to opposite sides of the circuit board 12 (see FIG Figure 3B ).
  • the LED lamps are each designed as LED retrofit lamps.
  • Each of the LED lamps comprises an LED illuminant 1 and a housing 60.
  • the housing 60 is a glass envelope which preferably corresponds to the glass envelope of a classic light bulb.
  • the housing 60 is pear-shaped.
  • the housing 60 can also be designed in the shape of a cylinder.
  • a heat-conducting gas is preferably introduced between the housing 60 and the glass bulb 20 of the LED lighting means 1.
  • the LED illuminant 1 is connected to the base 62 by means of two mounting wires 61.
  • the mounting wires 61 serve, on the one hand, to hold the LED illuminant 1 and, on the other hand, establish an electrically conductive connection between the base 62 and the contact pins 41 of the LED illuminant 1.
  • the LED lamp of the Figure 4B comprises a housing 60 which is designed as a reflector of a (halogen) reflector lamp.
  • the LED lamp 1 (in the Figure 4B not visible) is located in a cavity of the housing 60.
  • the housing 60 of the LED lamp Figure 4C is formed with a glass envelope which partially has a reflective coating to form a reflector.
  • the housings 60 of the LED lamps Figures 4B and 4C can also contain a heat-conducting gas in an intermediate space between the housing 60 and the LED lighting means 1.
  • a lighting module 100 for an LED lighting means 1 Based on the schematic representations of the Figures 5A to 5E embodiments of a lighting module 100 for an LED lighting means 1 described here are explained in more detail.
  • a circuit board 12 with contact points 44 and electrical connections 43 connected to them in an electrically conductive manner is shown in sketch form.
  • the light-emitting diode chips 11 and the electronic components, in particular the smoothing capacitor 30, of the light module 100 (in FIGS Figures 5A to 5E not shown).
  • the light modules 100 of the Figures 5A to 5E differ in the electrical contacting of the contact points 44.
  • the electrical connections 43 are designed as wires that are soldered to the contact points 44.
  • a high-temperature solder melting temperature above 400 ° C.
  • the melting temperature of the solder, the wire and the material of the contact points 44 is at least 1800 ° C.
  • coated or uncoated molybdenum, niobium, tantalum and / or stainless steel are suitable as such high-temperature materials.
  • the electrical connections 43 designed as wire are connected to the contact points 44 by means of rivets 441.
  • rivets 441 holes are made in the contact points 44 and the electrical connections 43 are riveted to the contact points 44 by means of a riveting tool.
  • the contact points 44 and the electrical connections 43 are preferably formed from one of the high-temperature materials described above.
  • the light module 100 of the Figure 5C In contrast to the previous lighting modules 100, it has no electrical connections 43. Instead, a connection area 42 designed as a molybdenum foil is connected directly to the contact points 44. In particular, the molybdenum foil is soldered directly onto the contact points 44, so that material can be saved. To mechanically stabilize the thin film and / or to improve the soldering or welding properties, it can be coated, for example with ruthenium. The use of a molybdenum foil instead of a wire is particularly advantageous in the case of quartz glasses.
  • the electrical connections 43 have first connection areas 431 and second connection areas 432.
  • the electrical connections 43 can be designed as a wire which is soldered to the contact points 44.
  • the second connection regions 432 are designed to be bent in a double manner. This makes it possible to use the Figure 5D
  • the front side of the printed circuit board 12 shown in FIG Figure 5D not shown) contact points which are attached to the rear side of the printed circuit board 12 facing away from the front side to be connected in an electrically conductive manner.
  • both sides of the circuit board 12 are equipped with light-emitting diode chips 11, since the light-emitting diode chips 11 on the front and the light-emitting diode chips 11 on the rear can be contacted with one wire each as the electrical connection 43.
  • the Figure 5E shows an embodiment of a light module 100, in which a contact point 44 is attached to the front side of the circuit board 12 and the second contact point 44 is attached to the rear side of the circuit board 12 facing away from the front side (in Figure 5E not visible).
  • This arrangement is advantageous, for example, for equipping the printed circuit board 12 with light-emitting diode chips 11 on both sides.
  • the electrical connections 43 can be soldered to the contact points 44, for example.
  • Figures 5A to 5E can be combined with each other.
  • the one in the Figure 5C connection area 42 shown in connection with one of the electrical connections 43 of Figures 5A, 5B, 5D or 5E are used and / or the two connection areas 431, 432 of the Figure 5D by means of riveting 441 of Figure 5B are connected to the contact points 44.
  • the Figures 6A, 6B and 6C each show metal terminals 444 for transferring an electrical contact from the front side of the circuit board 12 to the rear side of the circuit board 12.
  • Such metal clips 444 can be used in conjunction with the FIGS Figures 5A to 5E Light modules 100 shown are used, in particular when contact points 44 are attached both to the front and to the rear of the circuit board 12. They can also serve for contacting only one contact point lying on one of the two sides of the circuit board 12.
  • the metal clips 444 are each made of an electrically conductive material such as stainless steel.
  • the metal terminals 444 each have contact areas 446 and an opening 445 which is designed for inserting the printed circuit board 12.
  • a diameter of the opening 445 corresponds essentially to the thickness of the circuit board 12.
  • the circuit board 12 is clamped into the opening 445 and the contact areas 446 are brought into direct contact with the contact points 44, whereby an electrical contact between contact points 44 on the front side and contact points 44 the back of the circuit board 12 is made.
  • the metal clamp 444 of the Figure 6A is designed like a spring and has a curved area that provides a clamp facilitated.
  • the metal clamp 445 of the Figure 6B is planar on its outer sides facing away from the opening 445, whereby the metal clamp 445 can be made extremely narrow.
  • a metal clamp 444 of the Figure 6C two wire tracks, which can in particular be designed as protective conductors, were arranged at an angle to one another and welded to one another at a connection point 447.
  • a metal clamp 444 can hereby be provided in a simple manner.
  • the Figures 7A and 7B each show photographs of an LED light source 1, the top side of the LED light source 1 being shown on the left side and the bottom side with the electrical connections 43 and the contact pins 41 separately on the right side.
  • the Figure 7A shows the LED lamp 1 in a side view and
  • FIG Figure 7B shows the LED lamp 1 in a plan view.
  • the LED lighting means 1 contains two indentations 22 in the glass bulb 20.
  • the light modules 20 arranged in the glass bulb 20 are held and centered by means of the indentations 22.
  • the electrical contact is made by means of a connection area 42 (see also Figure 1C ).
  • FIGS 7C and 7D show enlargements of indentations 22 in the glass bulb 20.
  • the indentations 22 are formed as cavities in the glass bulb.
  • a free space into which the circuit board 12 can be clamped is formed between the indentations 22.
  • the Figure 7E shows a schematic sketch of an LED lighting means 1. Only the glass bulb 20 and the contact pins 41 and the connection area 42 of the LED lighting means 1 are shown.
  • the glass bulb 23 has a Notch 23 which is used to center a printed circuit board 12 in the glass bulb 20.
  • the circuit board 12 can be clamped firmly in the interior of the glass bulb 20 by means of the notch 23.
  • FIG. 8A and 8B each show enlargements of the area around an indentation 22 in the glass bulb 20 (see also Figures 7A to 7D ).
  • the indentations 22 shown are each a space in which the circuit board 12 is located. Furthermore, the smoothing capacitor 30 applied to the printed circuit board 12 is located between the indentations 22, whereby the smoothing capacitor 30 is virtually hidden.
  • the smoothing capacitor 30 is only attached to one side of the circuit board 12, for example the front side, while the circuit board 12 of the Figure 8B has a smoothing capacitor 30 on both sides, that is to say on the front side and on the rear side of the circuit board 12.
  • the circuit board 12 is embedded together with the smoothing capacitor 30 in a mechanically flexible potting body 122.
  • the potting body 122 can be formed from silicone. Furthermore, the potting body 122 can have wavelength-converting particles, as a result of which the view of the smoothing capacitor 30 is additionally obscured.
  • the potting body 122 By means of the potting body 122, manufacturing-related deviations in the thickness d of the circuit board 12 and / or in the expansion of the space between the indentations 22 can be compensated. In this way, the potting body 122 is compressed to a greater or lesser extent in accordance with the deviation, as a result of which clamping is made possible even when there are deviations from an optimal dimension.
  • the glass bulb 20 has the shape of a classic halogen glass bulb, namely cylinder-like with a bulge 21 along an axis of symmetry of the glass bulb 20.
  • Part of the circuit board 12 of the LED lamp 1 can be arranged in the bulge 21 and thermally in the area of the bulge 21 be connected to the glass bulb 20, whereby the heat dissipation can be improved without adversely affecting the appearance of the LED lamp 1.
  • the glass bulb 20 can alternatively have a cuboid shape and follow a rectangular shape of the printed circuit board 12.
  • the fact that the shape of the glass bulb 20 is selected to be similar to the shape of the printed circuit board 12 can improve the heat dissipation away from the printed circuit board 12.
  • the width b of the printed circuit board 12 corresponds approximately to the largest inner diameter r of the glass bulb 20.
  • the printed circuit board 12 can be held by the walls of the glass bulb 20. It is possible for the circuit board 12 to be embedded in a mechanically flexible potting body 122, as a result of which manufacturing tolerances in the width b of the circuit board 12 and / or the largest inner diameter r of the glass bulb 20 can be compensated.
  • the glass bulb 20 of the Figure 10A has a cylindrical cross section and the glass bulb 20 of Figure 10B has a circular cross-section, the cross-section in each case being formed perpendicular to an axis of symmetry and the glass bulb 20 in each case having a cylindrical shape.
  • the width corresponds to Printed circuit board b with an elliptical cross section preferably of the large semiaxis of the ellipse, so that when the printed circuit board 12 is clamped by means of the walls of the glass bulb 20, the maximum width of the glass bulb 20 can be used.
  • the measured illuminance levels 71, 72 (in lux) and radiation characteristics 711, 722 (also called: light intensity distribution curves) of the Figures 11A and 11B and 12A and 12C are exemplary embodiments of an LED lighting means 1 described here explained in more detail.
  • the measurements are each with an LED lamp 1, which is the Figures 1A to 1C has been carried out.
  • the Figures 11A and 12A show measurements in the case of an LED illuminant 1 with a regular glass bulb 20, while the glass bulb 20 of the LED illuminant 1 is used for the measurements Figures 11B and 12B was matted with a sandblast.
  • the Figures 11A and 11B each show a first illuminance 71, which was measured in the plane spanned by the lateral directions of the circuit board 12 (i.e. in a plan view of the light-emitting diode chips 11), and a second illuminance 72, which was measured in a vertical direction and that along the length of the Circuit board 12 extending lateral direction of the circuit board 12 spanned plane (that is, in a side view) was measured. The measurement takes place as a function of the respective angle ⁇ to the vertical on the plane.
  • the Figures 12A and 12B show a first emission characteristic 711 which was measured in the measuring plane of the first illuminance 71 and a second emission characteristic 722 which was measured in the measuring plane of the second illuminance 72.
  • the matting reduces the overall illuminance 71, 72 (a total of 211 lumens for the Figures 11A and 12A and 191 lumens for that Figures 11B and 12B , each measured at a power of 1.9 watts).
  • the left maximum of the first illuminance 71 is in FIG Figure 11A at about 250 lux and the right maximum of the first illuminance 71 at about 53 lux, that is only about 20% of the value of the left maximum.
  • the second illuminance 72 is in FIG Figure 11A on average significantly lower than the first illuminance 71 (maximum about 51 lux).
  • the left maximum of the first illuminance 71 is approximately 215 lux and the right maximum is approximately 73 lux, that is approximately 30% of the value of the left maximum.
  • the second illuminance 72 is compared to Figure 11A significantly increased (maximum at around 83 lux).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft ein LED-Leuchtmittel sowie eine LED-Lampe mit einem solchen LED-Leuchtmittel.The present invention relates to an LED light source and an LED lamp with such an LED light source.

Stand der TechnikState of the art

LED-Leuchtmittel zum Einsatz in LED-Lampen, insbesondere in LED-Retrofitlampen, werden aufgrund ihrer hohen Energieeffizienz immer beliebter als Ersatz für klassische Leuchtmittel wie Halogen- oder Glühlampen. LED-Leuchtmittel weisen jedoch im Vergleich zu klassischen Leuchtmitteln mehrere Nachteile auf.LED lamps for use in LED lamps, especially in LED retrofit lamps, are becoming increasingly popular as a replacement for classic lamps such as halogen or incandescent lamps due to their high energy efficiency. However, LED light sources have several disadvantages compared to traditional light sources.

So haben LED-Leuchtmittel eine deutlich schlechtere Abstrahlcharakteristik und eine reduzierte Beleuchtungsqualität. Bekannte LED-Leuchtmittel weisen beispielsweise ein Lichtflackern bei einer Frequenz von 100 Hz auf. Zudem ist der abgedeckte Raumwinkel meist wesentlich geringer als bei klassischen Leuchtmitteln und/oder die Abstrahlung ist räumlich stark inhomogen. Auch eine schlechte Halterung bzw. Justage der Leuchtdiodenchips innerhalb des LED-Leuchtmittels kann zu einer Reduktion der Beleuchtungsqualität führen.LED lamps, for example, have significantly poorer radiation characteristics and a reduced lighting quality. Known LED lighting means, for example, have light flickering at a frequency of 100 Hz. In addition, the solid angle covered is usually much smaller than with classic light sources and / or the radiation is spatially highly inhomogeneous. Bad mounting or adjustment of the light-emitting diode chips within the LED lighting means can also lead to a reduction in the quality of the lighting.

Ein weiterer Nachteil ist die derzeitige Größe der LED-Leuchtmittel bzw. der LED-Lampen. So wird bei LED-Leuchtmitteln zusätzlich Treiberelektronik benötigt, die meist im Sockel der LED-Lampen und/oder in Anschlussbereichen der LED-Leuchtmittel untergebracht ist. Hierdurch sind herkömmliche LED-Lampen relativ groß ausgebildet. Die für die Treiberelektronik und/oder die Leuchtdiodenchips erforderlichen Kühlkörper sind ein weiterer Grund für sperrige und teure LED-Leuchtmittel. Eine schlechte Kühlung reduziert aber die Lebensdauer der LED-Lampe und die Beleuchtungsqualität.Another disadvantage is the current size of the LED light sources or LED lamps. In the case of LED lamps, additional driver electronics are required, which are usually housed in the base of the LED lamps and / or in the connection areas of the LED lamps. As a result, conventional LED lamps are made relatively large. The heat sinks required for the driver electronics and / or the light-emitting diode chips are another reason for bulky and expensive LED lamps. However, poor cooling reduces the service life of the LED lamp and the quality of the lighting.

Die Druckschrift WO 2012/031533 A1 beschreibt eine LED-Lampe bei der eine omnidirektionale Abstrahlcharakteristik durch die Verwendung von LED-Filamenten gewährleistet wird. Zudem ist die Treiberelektronik in dem Lampensockel der LED-Lampe angeordnet. Hierdurch ist die LED-Lampe insgesamt relativ groß ausgebildet.The pamphlet WO 2012/031533 A1 describes an LED lamp in which an omnidirectional radiation characteristic is guaranteed through the use of LED filaments. In addition, the driver electronics are arranged in the lamp base of the LED lamp. As a result, the LED lamp is made relatively large overall.

Die Druckschrift JP 2013-222782 A beschreibt ein LED-Leuchtmittel bei dem Leuchtdiodenchips mittels sogenannter Nacktchipmontage (Englisch: chip-on-board assembly, COB) auf eine Leiterplatte aufgebracht sind. Die Abstrahlcharakteristik des LED-Leuchtmittels entspricht jedoch der einseitigen Lambert'schen Abstrahlung der Leuchtdiodenchips und ist damit stark inhomogen. Zudem tritt das bereits erwähnte 100 Hz-Flackern auf.The pamphlet JP 2013-222782 A describes an LED light source in which light-emitting diode chips are attached to a printed circuit board by means of so-called bare chip assembly (English: chip-on-board assembly, COB). The radiation characteristic of the LED light source, however, corresponds to the one-sided Lambertian radiation of the light-emitting diode chips and is therefore very inhomogeneous. In addition, the already mentioned 100 Hz flickering occurs.

Die Druckschrift US 9,420,644 B1 zeigt ein Umleitungstreibermodul, welches einem LED-Strom dynamisch einen Umleitungsstrom hinzufügt, so dass der summierte Strom einen vorgegebenen Mindesthaltestrombedarf einer phasengesteuerten Dimmerversorgung aufrechterhält.The pamphlet US 9,420,644 B1 Figure 12 shows a bypass driver module which dynamically adds a bypass current to an LED current so that the summed current maintains a predetermined minimum holding current requirement of a phased dimmer supply.

Die Druckschrift US 2016/0348852 A1 zeigt eine Leuchtvorrichtung, welche ein Substrat, eine Mehrzahl von Lichtquellen und ein Gehäuse aus einem nicht durchlässigen Material umfasst.The pamphlet US 2016/0348852 A1 shows a lighting device comprising a substrate, a plurality of light sources and a housing made of a non-permeable material.

Die Druckschrift US 2013/0271972 A1 zeigt eine gasgekühlte LED Lampe.The pamphlet US 2013/0271972 A1 shows a gas-cooled LED lamp.

Darstellung der ErfindungPresentation of the invention

Ausgehend von dem bekannten Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein kompaktes und kostengünstig herstellbares LED-Leuchtmittel bereitzustellen. Ferner soll eine LED-Lampe mit einem solchen LED-Leuchtmittel bereitgestellt werden.Based on the known prior art, it is an object of the present invention to provide a compact and inexpensive to manufacture LED light source. Furthermore, an LED lamp with such an LED light source is to be provided.

Die Aufgaben werden durch eine LED-Lampe mit den Merkmalen des unabhängigen Patentanspruchs gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen, der Beschreibung, den Figuren sowie den im Zusammenhang mit den Figuren beschriebenen Ausführungsbeispielen.The tasks are performed by an LED lamp with the features of the independent patent claim solved. Advantageous further developments result from the dependent claims, the description, the figures and the exemplary embodiments described in connection with the figures.

Entsprechend wird eine LED-Lampe vorgeschlagen, umfassend eine Einhausung und ein innerhalb der Einhausung angeordnetes LED-Leuchtmittel, aufweisend einen Glaskolben, ein Leuchtmodul mit wenigstens einem Leuchtdiodenchip, der mittels Nacktchipmontage auf eine Leiterplatte aufgebracht ist, und eine Treiberelektronik des Leuchtmoduls, wobei das Leuchtmodul und die Treiberelektronik in dem Glaskolben aufgenommen sind, und wobei der Glaskolben eine Einbuchtung aufweist, die in den Innenraum des Glaskolbens ragt und mit der Leiterplatte in thermischem Kontakt steht.Accordingly, an LED lamp is proposed, comprising a housing and an LED lighting means arranged within the housing, having a glass bulb, a light module with at least one light-emitting diode chip which is applied to a printed circuit board by means of bare chip assembly, and driver electronics for the light module, the light module and the driver electronics are accommodated in the glass envelope, and wherein the glass envelope has an indentation which protrudes into the interior of the glass envelope and is in thermal contact with the circuit board.

Die Nacktchipmontage von Leuchtdiodenchips ermöglicht zudem die kostengünstige Herstellung von kompakten und kleinen elektrischen Modulen. Hierbei und im Folgenden ist unter dem Begriff "Nacktchipmontage" die Direktmontage von Halbleiterchips auf eine Leiterplatte, insbesondere unter Verwendung von Bonddrähten, zu verstehen. Die Nacktchipmontage erfolgt bevorzugt mit ungehäusten Halbleiterchips und/oder mit sogenannten chip-scale Bauteilen, bei denen das Gehäuse maximal 20 % mehr als die Fläche des nackten Halbleiterchips ausmacht.The bare chip assembly of light-emitting diode chips also enables the cost-effective production of compact and small electrical modules. Here and in the following, the term “bare chip assembly” is to be understood as the direct assembly of semiconductor chips on a printed circuit board, in particular using bond wires. Bare chip assembly is preferably carried out with unhoused semiconductor chips and / or with so-called chip-scale components in which the housing makes up a maximum of 20% more than the area of the bare semiconductor chip.

Durch das Einbringen der Treiberelektronik in den Glaskolben in Kombination mit der Nacktchipmontage der Leuchtdiodenchips kann somit ein kompaktes LED-Leuchtmittel auf kostengünstige Weise bereitgestellt werden.By introducing the driver electronics into the glass bulb in combination with the bare chip assembly of the light-emitting diode chips, a compact LED light source can thus be provided in a cost-effective manner.

Bevorzugt weist das Leuchtmodul eine Vielzahl von Leuchtdiodenchips auf. Die Leuchtdiodenchips können beispielsweise seriell miteinander verschaltet sein. Ferner kann das LED-Leuchtmittel eine Vielzahl von Leuchtmodulen aufweisen. In einer bevorzugten Ausführungsform enthält das LED-Leuchtmittel ein einziges Leuchtmodul mit einer Vielzahl von Leuchtdiodenchips.The light module preferably has a multiplicity of light emitting diode chips. The light-emitting diode chips can, for example, be connected to one another in series. Furthermore, the LED lighting means can have a multiplicity of lighting modules. In a preferred embodiment, the LED lighting means contains a single lighting module with a plurality of light-emitting diode chips.

Gemäß einer bevorzugten Ausführungsform des LED-Leuchtmittels ist zumindest ein Teil der Treiberelektronik, insbesondere die gesamte Treiberelektronik, mittels Nacktchipmontage auf die Leiterplatte aufgebracht. Die Treiberelektronik weist insbesondere elektronische Komponenten auf. Bevorzugt ist zumindest ein Teil der elektronischen Komponenten, insbesondere alle elektronischen Komponenten, der Treiberelektronik mittels Nacktchipmontage auf die Leiterplatte aufgebracht. Alternativ oder zusätzlich ist es möglich, dass zumindest ein Teil der Treiberelektronik auf eine zusätzliche Platine aufgebracht ist. Ferner kann zumindest ein Teil der elektronischen Komponenten mittels Oberflächenmontage auf die Platine und/oder die Leiterplatte aufgebracht sein (Englisch: surface mounted device, SMD) und/oder mittels Drahtverbindungen elektrisch leitend mit dem Leuchtdiodenchip verbunden sein.According to a preferred embodiment of the LED lighting means, at least part of the driver electronics, in particular the entire driver electronics, is applied to the circuit board by means of bare chip assembly. The driver electronics have electronic components in particular. At least some of the electronic components, in particular all of the electronic components, of the driver electronics are preferably applied to the circuit board by means of bare chip assembly. As an alternative or in addition, it is possible for at least part of the driver electronics to be applied to an additional circuit board. Furthermore, at least some of the electronic components can be applied to the circuit board and / or the circuit board by means of surface mounting (English: surface mounted device, SMD) and / or be electrically conductively connected to the light-emitting diode chip by means of wire connections.

Gemäß einer bevorzugten Ausführungsform des LED-Leuchtmittels umfasst die Treiberelektronik einen Glättungskondensator, der mit dem wenigstens einen Leuchtdiodenchip parallel geschaltet ist. Im Fall von mehreren Leuchtdiodenchips ist jeder Leuchtdiodenchip bevorzugt parallel zu dem Glättungskondensator geschaltet. Durch den Glättungskondensator wird ein Energiespeicher in das System eingeführt. Hierdurch kann ein Flackern (auch Lichtflimmern genannt), insbesondere das 100 Hz-Flackern, des von dem zumindest einen Leuchtdiodenchip emittierten Lichts wesentlich reduziert oder sogar ganz verhindert werden und so die Abstrahlcharakteristik deutlich verbessert werden.According to a preferred embodiment of the LED light source, the electronic driver includes a smoothing capacitor which is connected in parallel with the at least one light-emitting diode chip. In the case of a plurality of light-emitting diode chips, each light-emitting diode chip is preferably connected in parallel to the smoothing capacitor. An energy store is introduced into the system through the smoothing capacitor. As a result, flickering (also called light flickering), in particular 100 Hz flickering, of the light emitted by the at least one light-emitting diode chip can be significantly reduced or even completely prevented and the emission characteristics can thus be significantly improved.

Der Glättungskondensator kann auf der Platine der Treiberelektronik und/oder die Leiterplatte des Leuchtmoduls, insbesondere mittels Oberflächenmontage, aufgebracht sein. Alternativ kann der Glättungskondensator mittels Oberflächenmontage oder Nacktchipmontage auf die Leiterplatte des Leuchtmoduls oder eine weitere Platine aufgebracht sein. Bei der Oberflächenmontage kommt bevorzugt ein Laserlötverfahren zum Einsatz, wodurch die Verwendung eines Reflow-Ofens vermieden werden kann. Es ist ferner möglich, dass der Glättungskondensator als einfacher Klemmkondensator an der Leiterplatte des Leuchtmoduls angebracht ist. Alternativ kann der Glättungskondensator mittels eines elektrisch leitfähigen Klebers und/oder Bonddrähten aufgebracht werden.The smoothing capacitor can be applied to the circuit board of the driver electronics and / or the circuit board of the lighting module, in particular by means of surface mounting. Alternatively, the smoothing capacitor can be applied to the printed circuit board of the light module or to another board by means of surface mounting or bare chip mounting. A laser soldering process is preferably used for surface mounting, which means that the use of a reflow oven can be avoided. It is also possible for the smoothing capacitor to be attached to the circuit board of the light module as a simple clamping capacitor. Alternatively, the smoothing capacitor can be applied by means of an electrically conductive adhesive and / or bonding wires.

Falls der Glättungskondensator und/oder die weiteren elektronischen Bauteile der Treiberelektronik mittels Oberflächenmontage auf die Platine (bzw. die Leiterplatte) aufgebracht werden, werden der Glättungskondensator und/oder die elektronischen Bauteile bevorzugt vor dem Aufbringen der Leuchtdiodenchips und einem eventuellen Vergießen der Leuchtdiodenchips mit einem Vergussmaterial durchgeführt. Alternativ oder zusätzlich kann die Oberflächenmontage in einem gemeinsamen Verfahrensschritt mit dem Anbringen von elektrischen Anschlüssen zur elektrischen Kontaktierung des Leuchtmoduls erfolgen, wodurch die Herstellung des LED-Leuchtmittels noch weiter vereinfacht wird.If the smoothing capacitor and / or the other electronic components of the driver electronics are surface-mounted on the board (or the printed circuit board), the smoothing capacitor and / or the electronic components are preferred before the light-emitting diode chips are applied and the light-emitting diode chips are possibly potted with a potting material carried out. Alternatively or additionally, surface mounting in a common process step with the attachment of electrical connections for making electrical contact with the light module, whereby the production of the LED light source is simplified even further.

Bei dem Glättungskondensator kann es sich um einen Keramikvielschicht-(Chip-)Kondensator handeln, dessen Kapazität beispielsweise in einem Bereich von 1 µm liegt. Alternativ kann ein Elektrolytkondensator zum Einsatz kommen, der hohe Kapazitäten ermöglicht.The smoothing capacitor can be a ceramic multilayer (chip) capacitor whose capacitance is, for example, in a range of 1 μm. Alternatively, an electrolytic capacitor can be used, which enables high capacities.

Die Treiberelektronik kann eine Gleichrichterschaltung (Englisch: rectifier circuit) umfassen, die dazu eingerichtet ist, eine AC-Netzspannung in eine DC-Betriebsspannung des LED-Leuchtmittels umzuwandeln. Es ist möglich, dass für die Gleichrichterschaltung die Leuchtdiodenchips, insbesondere ausschließlich die Leuchtdiodenchips, als Gleichrichtungskomponenten verwendet werden. Die Treiberelektronik kann ferner einen Transistor, der zur Stromregulierung und/oder Strombegrenzung des durch die Leuchtdiodenchips fließenden Stroms eingerichtet ist, umfassen.The driver electronics can comprise a rectifier circuit, which is set up to convert an AC mains voltage into a DC operating voltage of the LED lighting means. It is possible for the light-emitting diode chips, in particular exclusively the light-emitting diode chips, to be used as rectification components for the rectifier circuit. The driver electronics can furthermore comprise a transistor which is set up for current regulation and / or current limitation of the current flowing through the light-emitting diode chips.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels beträgt eine Dicke der Leiterplatte höchstens 400 µm. Bevorzugt beträgt die Dicke höchstens 300 µm, besonders bevorzugt höchstens 200 µm. Eine geringe Dicke ist insbesondere für eine gleichmäßige Abstrahlungscharakteristik vorteilhaft. Hierbei und im Folgenden ist die Dicke der Leiterplatte deren Ausdehnung entlang einer vertikalen Richtung der Leiterplatte. Die vertikale Richtung läuft senkrecht zu lateralen Richtungen der Leiterplatte, entlang derer sich diese erstreckt.According to at least one embodiment of the LED lighting means, the thickness of the circuit board is at most 400 μm. The thickness is preferably at most 300 μm, particularly preferably at most 200 μm. A small thickness is particularly advantageous for uniform emission characteristics. Here and in the following, the thickness of the circuit board is its extent along a vertical direction of the circuit board. The vertical direction runs perpendicular to the lateral directions of the circuit board along which it extends.

In den lateralen Richtungen weist die Leiterplatte eine Breite und eine senkrecht zur Breite verlaufende Länge, die bevorzugt größer als die Breite ist, auf. Die Leiterplatte ist bevorzugt derart in dem Glaskolben gehaltert, dass die Länge entlang einer Symmetrieachse des Glaskolbens verläuft.In the lateral directions, the printed circuit board has a width and a length running perpendicular to the width, which is preferably greater than the width. The circuit board is preferably held in the glass bulb in such a way that the length runs along an axis of symmetry of the glass bulb.

Die lateralen Richtungen spannen eine Vorderseite und eine Rückseite der Leiterplatte auf. Die Leuchtdiodenchips sind auf der Vorderseite und/oder auf der Rückseite montiert.The lateral directions span a front side and a rear side of the circuit board. The light-emitting diode chips are mounted on the front and / or on the back.

Gemäß einer bevorzugten Ausführungsform des LED-Leuchtmittels ist die Leiterplatte lichtdurchlässig ausgebildet. Das heißt, wenigstens 50 %, bevorzugt wenigstens 70 %, des von dem zumindest einen Leuchtdiodenchip emittierten und auf die Leiterplatte auftreffenden Lichts wird durch die Leiterplatte transmittiert.According to a preferred embodiment of the LED light source, the circuit board is designed to be transparent. That is to say, at least 50%, preferably at least 70%, of the light emitted by the at least one light-emitting diode chip and incident on the circuit board is transmitted through the circuit board.

Beispielsweise eignen sich als Materialien für die Leiterplatte Quarzglas (SiO2, Wärmeleitfähigkeit 1,0 W/mK), Saphir (Al2O3, Wärmeleitfähigkeit 25 W/mK), Mullitkeramik (Silikatkeramik Typ C610/620, Wärmeleitfähigkeit 10 W/mK) und/oder Aluminiumnitrid (AlN, Wärmeleitfähigkeit 200 W/mK). Die in den Klammern angegebenen Wärmeleitfähigkeiten beziehen sich auf bei 20°C gemessene Werte von industriell häufig genutzten Zusammensetzungen. Bei der Verwendung von elektrisch nicht leitfähigen, insbesondere lichtdurchlässigen Materialien für die Leiterplatte können weitere Metallisierungen unterhalb der Leuchtdiodenchips und/oder weiterer elektronischer Komponenten auf der Leiterplatte erforderlich sein um eine elektrische Kontaktierung zu ermöglichen. Zur Verbesserung der Ästhetik kann unter elektronischen Komponenten, bei denen es sich nicht um die Leuchtdiodenchips handelt, ein transluzentes und/oder lichtundurchlässiges Material angebracht werden, um so die Sichtbarkeit dieser elektronischen Komponenten zu reduzieren.For example, quartz glass (SiO 2 , thermal conductivity 1.0 W / mK), sapphire (Al 2 O 3 , thermal conductivity 25 W / mK), mullite ceramic (silicate ceramic type C610 / 620, thermal conductivity 10 W / mK) are suitable as materials for the circuit board. and / or aluminum nitride (AlN, thermal conductivity 200 W / mK). The thermal conductivities given in brackets relate to values measured at 20 ° C for compositions that are frequently used in industry. When using electrically non-conductive, in particular light-permeable materials for the circuit board, further metallizations below the light-emitting diode chips and / or further electronic components on the circuit board may be required in order to enable electrical contacting. To improve the aesthetics, a translucent and / or opaque material can be attached under electronic components that are not the light-emitting diode chips in order to reduce the visibility of these electronic components.

Insbesondere in Kombination mit einer geringen Dicke ermöglicht eine lichtdurchlässig ausgebildete Leiterplatte die Verbesserung der Abstrahlcharakteristik des LED-Leuchtmittels. Hierbei kann der von dem durch das LED-Leuchtmittel emittierten Lichts abgedeckte Raumwinkel erhöht werden, sodass die typische Lambert'sche Abstrahlcharakteristik des Leuchtdiodenchips homogenisiert wird, bis hin zur omnidirektionalen Abstrahlung über den gesamten Raumwinkel von 2n.In particular in combination with a small thickness, a light-permeable printed circuit board enables the emission characteristics of the LED light source to be improved. Here, the solid angle covered by the light emitted by the LED lamp can be increased so that the typical Lambertian radiation characteristic of the light-emitting diode chip is homogenized, right up to omnidirectional radiation over the entire solid angle of 2n.

Eine weitere Verbesserung der Abstrahlcharakteristik kann durch eine beidseitige Anordnung von Leuchtdiodenchips auf der Leiterplatte erreicht werden, also auf der Vorderseite und der Rückseite der Leiterplatte. Hierbei können auch zwei an der Vorderseite mit Leuchtdiodenchips bestückte Leiterplatten jeweils an ihren unbestückten Rückseiten miteinander verbunden werden. Eine elektrisch leitende Verbindung zwischen den Leuchtdiodenchips auf unterschiedlichen Seiten der Leiterplatte kann beispielsweise mittels Klammern, insbesondere Metallklammern, und/oder Drähten, insbesondere Metalldrähten, bereitgestellt werden.A further improvement in the radiation characteristics can be achieved by arranging light-emitting diode chips on both sides of the circuit board, that is to say on the front and the rear of the circuit board. Two printed circuit boards equipped with light-emitting diode chips on the front side can also be connected to one another on their unpopulated rear sides. An electrically conductive connection between the light-emitting diode chips on different sides of the circuit board can be provided, for example, by means of clips, in particular metal clips, and / or wires, in particular metal wires.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels ist der Innenraum des Glaskolbens mit einem Wärmeleitgas gefüllt. Unter einem Wärmeleitgas wird ein Gas verstanden, das Wärme gut leitet. Ein Wärmeleitgas kann insbesondere eine höhere Wärmeleitfähigkeit als Luft aufweisen. Ein Wärmeleitgas kann bei Raumtemperatur, also bei der Maßbezugstemperatur von 20°C (293,15 K), eine Wärmeleitfähigkeit von wenigstens 0,05 W/mK, bevorzugt wenigstens 0,10 W/mK und besonders bevorzugt wenigstens 0,13 W/mK, aufweisen. Als Wärmeleitgas eignen sich beispielsweise Heliumgas (Wärmeleitfähigkeit 0,16 W/mK) und/oder Wasserstoffgas (Wärmeleitfähigkeit 0,18 W/mK). Ferner kommt eine Mischung von Helium mit Sauerstoff als Wärmeleitgas in Frage. Der Absolutdruck des Wärmeleitgases in dem Innenraum kann bis zu 10 bar, bevorzugt höchstens 5 bar betragen. Bevorzugt beträgt der Absolutdruck wenigstens 1 bar, bevorzugt wenigstens 2 bar. Die Angaben des Absolutdrucks sind bei Raumtemperatur zu verstehen. Die Verwendung eines hohen Drucks des Wärmeleitgases ermöglicht eine verbesserte Wärmeabfuhr innerhalb des LED-Leuchtmittels.According to at least one embodiment of the LED illuminant, the interior of the glass bulb is filled with a heat-conducting gas. A heat conducting gas is understood to be a gas that conducts heat well. A heat conducting gas can in particular have a higher thermal conductivity than air. A heat conducting gas can have a thermal conductivity of at least 0.05 W / mK, preferably at least 0.10 W / mK and particularly preferably at least 0.13 W / mK at room temperature, i.e. at the dimensional reference temperature of 20 ° C (293.15 K) , exhibit. Helium gas (thermal conductivity 0.16 W / mK) and / or hydrogen gas (thermal conductivity 0.18 W / mK) are, for example, suitable as heat conducting gas. A mixture of helium with oxygen can also be used as a heat-conducting gas. The absolute pressure of the heat conducting gas in the interior can be up to 10 bar, preferably at most 5 bar. The absolute pressure is preferably at least 1 bar, preferably at least 2 bar. The specifications of the absolute pressure are to be understood at room temperature. The use of a high pressure of the heat-conducting gas enables improved heat dissipation within the LED light source.

Bevorzugt ist der Glaskolben vakuumversiegelt ausgebildet. Mit anderen Worten, der Glaskolben kann derart verschlossen und/der verschmolzen sein, dass der Absolutdruck innerhalb des Glaskolbens ohne externe Vorrichtungen, wie beispielsweise Vakuumpumpen, beibehalten wird. Der Glaskolben kann somit ein abgedichtetes bzw. abgeschlossenes Volumen einschließen, das den Innenraum bildet. Insbesondere ist der Glaskolben gasdicht ausgebildet.The glass bulb is preferably designed to be vacuum-sealed. In other words, the glass bulb can be closed and / or fused in such a way that the absolute pressure inside the glass bulb is maintained without external devices, such as vacuum pumps. The glass flask can thus enclose a sealed or closed volume that forms the interior space. In particular, the glass bulb is designed to be gas-tight.

Der Glaskolben kann mit Hartglas, Weichglas und/oder Quarzglas gebildet sein. Bevorzugt ist der Glaskolben mit Quarzglas und/oder Hartglas gebildet oder besteht aus zumindest einem dieser Materialien. Hierbei und im Folgenden ist der Begriff "besteht" im Rahmen der Herstellungstoleranzen zu interpretieren; das heißt, der Glaskolben kann herstellungsbedingte Unreinheiten aufweisen. Beispielsweise enthält der Glaskolben wenigstens 99 % Siliziumdioxid. Durch die Verwendung von Quarzglas oder Hartglas kann ein Glaskolben bereitgestellt werden, der mit einem Gasdruck von bis zu 30 bar befüllt werden kann. Im Gegensatz hierzu kann ein Weichglas nicht mit hohen Gasdrücken befüllt werden (bis circa maximal 1 bar). Ferner haben Quarzglas und/oder Hartglas den Vorteil, dass diese Materialien äußerst temperaturbeständig sind und zudem sehr gute optische Eigenschaften aufweisen. Zudem ist die Wärmeleitfähigkeit von Hart- bzw. Quarzgläsern ausreichend hoch um eine gute Ableitung von während des Betriebs des LED-Leuchtmittels erzeugter Abwärme zu ermöglichen.The glass bulb can be made of hard glass, soft glass and / or quartz glass. The glass bulb is preferably formed with quartz glass and / or hard glass or consists of at least one of these materials. Here and in the following, the term "exists" is to be interpreted in the context of manufacturing tolerances; that is, the glass bulb may have manufacturing-related impurities. For example, the glass bulb contains at least 99% silicon dioxide. By using quartz glass or hard glass, a glass bulb can be provided that can be filled with a gas pressure of up to 30 bar. In contrast, soft glass cannot be filled with high gas pressures (up to a maximum of 1 bar). Furthermore, quartz glass and / or hard glass have the advantage that these materials are extremely temperature-resistant and also have very good optical properties. In addition, the thermal conductivity of hard or quartz glasses is sufficiently high to enable good dissipation of waste heat generated during operation of the LED light source.

Als Hartgläser kommen beispielsweise Duranglas, Alumnosilikatglas und/oder Borosilikatglas in Frage. Insbesondere eignen sich als Hartgläser solche Gläser, die auch im klassischen Halogenlampenbau zum Einsatz kommen. Der Glaskolben kann nach Art eines Glaskolbens einer klassischen Halogenlampe aufgebaut sein. Im Gegensatz zu Weichgläsern. Bei denen bereits ein Temperaturschock von 100 K zu einem Reißen bzw. Springen des Glases führen kann, können Quarzglas und auch Hartglas hohen Temperaturschocks, beispielsweise bis zu 1000 K, ausgesetzt werden, ohne dass es zu Rissen oder Sprüngen kommt.Duran glass, alumnosilicate glass and / or borosilicate glass can be used as hard glasses. Glasses that are also used in classic halogen lamp construction are particularly suitable as hard glasses. The glass bulb can be constructed in the manner of a glass bulb of a classic halogen lamp. In contrast to soft glasses. Where even a temperature shock of 100 K can cause the glass to crack or crack, quartz glass and hard glass can be exposed to high temperature shocks, for example up to 1000 K, without cracks or cracks occurring.

Der Glaskolben kann ferner ein Gettermaterial zum Abbinden (sogenannte Abgetterung) von flüchtigen organischen Verbindungen (Englisch: volatile organic compounds, VOC) und/oder von flüchtigen Schwefel-, Phosphor- und/oder Chlorhaltigen Verbindungen enthalten. Insbesondere können die flüchtigen organischen Verbindungen Sauerstoff, Stickstoff, Wasserstoff und/oder Kohlenstoff aufweisen. Das Gettermaterial kann im festen und/oder gasförmigen Zustand in den Glaskolben eingebracht sein. Die flüchtigen organischen und/oder Schwefel-, Phosphor- und/oder Chlorhaltigen Verbindungen können im Folgenden auch allgemein als "flüchtige Verbindungen" bezeichnet sein.The glass bulb can also contain a getter material for binding (so-called gettering) of volatile organic compounds (VOC) and / or of volatile sulfur, phosphorus and / or chlorine-containing compounds. In particular, the volatile organic compounds can contain oxygen, nitrogen, hydrogen and / or carbon. The getter material can be introduced into the glass bulb in the solid and / or gaseous state. The volatile organic and / or sulfur, phosphorus and / or chlorine-containing compounds can also be referred to in general as “volatile compounds” below.

In abgeschlossenen Glaskolben kann bei LED-Leuchtmitteln mit Leuchtdiodenchips und/oder weiteren Komponenten verstärkt das Problem von Ausgasungen flüchtiger organischer Verbindungen auftreten. Dies ist teilweise dadurch bedingt, dass der Glaskolben des LED-Leuchtmittels aufgrund der höheren mechanischen Belastung durch den hohen Druck relativ klein ausgebildet ist. Analog zur Technologie der klassischen Halogenlampe, bei der durch den kleineren Kolben etwaige abdampfende Wolframverbindungen durch Halogenverbindungen abgegettert werden können, kann es auch bei kleinen, geschlossenen Glaskolben für LED-Leuchtmittel mit Leuchtdiodenchips zur Abgetterung von flüchtigen Verbindungen kommen.In sealed glass bulbs, the problem of outgassing of volatile organic compounds can increasingly occur in LED lamps with light-emitting diode chips and / or other components. This is partly due to the fact that the glass bulb of the LED light source is made relatively small due to the higher mechanical stress caused by the high pressure. Analogous to the technology of the classic halogen lamp, in which any evaporating tungsten compounds can be degassed by halogen compounds through the smaller bulb, volatile compounds can also be gettered off with small, closed glass bulbs for LED lamps with light-emitting diode chips.

Die flüchtigen Verbindungen können beispielsweise von Flussmittelresten oder Lötstopplacken von Lötvorgängen stammen. Ferner können die flüchtigen Verbindungen Ausgasungen von Polymeren der Leuchtdiodenchips, Klebern und/oder Wärmeleitpasten sein. Zudem können die flüchtigen Verbindungen von der Leiterplatte stammen.The volatile compounds can come from flux residues or solder resists from soldering processes, for example. Furthermore, the volatile compounds can be outgassing of polymers of the light-emitting diode chips, adhesives and / or heat-conducting pastes. In addition, the volatile compounds can come from the circuit board.

In dem Glaskolben vorhandene flüchtige organische Verbindungen können sich auf dem Material des Glaskolbens niederschlagen und dort zu Verfärbungen führen. Dies ist unter dem Begriff "Eintrübung" (Englisch: "Fogging") des Glaskolbens bekannt und kann zu Lichtstromverlusten von bis zu 10% führen. Noch gravierender kann das Eindiffundieren der flüchtigen organischen Verbindungen in eine gegebenenfalls vorhandene Silikonhülle der Leuchtdiodenchips sein. Hierdurch können Kohlenwasserstoffverbindungen in der Silikonhülle aufgebrochen werden und die Silikonhülle kann sich dunkel einfärben. Dies kann zu Lichtstromverlusten von über 50% führen. Meist ist dieser Lichtstromverlust mit einer zusätzlichen Farbortverschiebung verbunden. Diese zwei Phänomene sind unter den Begriffen "Lumen degradation" und "Change Color Chromaticity" bekannt. Ferner können Schwefel-, Phosphor und/oder Chlorhaltige Verbindungen zu Reflexionsverlusten an einem gegebenenfalls unterhalb der emittierenden Schichten der Leuchtdiodenchips vorhandenen Silberspiegel führen.Volatile organic compounds present in the glass bulb can be deposited on the material of the glass bulb and cause discoloration there. This is known under the term “fogging” of the glass bulb and can lead to a loss of luminous flux of up to 10%. Diffusion of the volatile organic compounds into an optionally present silicone shell of the light-emitting diode chips can be even more serious. Through this Hydrocarbon compounds in the silicone shell can be broken and the silicone shell can turn dark. This can lead to a loss of luminous flux of over 50%. This loss of luminous flux is usually associated with an additional shift in the color locus. These two phenomena are known under the terms "lumen degradation" and "change color chromaticity". Furthermore, compounds containing sulfur, phosphorus and / or chlorine can lead to reflection losses at a silver mirror that may be present below the emitting layers of the light-emitting diode chips.

Das Gettermaterial ist bevorzugt zumindest teilweise als Gas in den Glaskolben eingebracht. Beispielsweise handelt es sich bei dem gasförmigen Gettermaterial um Wasserstoff- und/oder Sauerstoffreiche Verbindungen, die bevorzugt flüchtige Kohlenstoffhaltige Verbindungen abbinden und beispielsweise zu CH4 oder CO/CO2 reagieren. Durch das Abbinden kann eine Reaktion mit einem Silikonhülle und/oder ein Niederschlagen auf dem Glaskolben verhindert werden. Insbesondere kann das Gettermaterial Sauerstoffgas und/oder ein Silan, beispielsweise ein Monosilan (SiH4), enthalten. Hierbei kann es aufgrund des hohen Drucks innerhalb des Gaskolbens möglich sein, das Silan bei einer maximalen Konzentration unterhalb einer Zündgrenze bzw. Explosionsgrenze einzubringen. Beispielsweise kann der Kolben mit 8 Vol.-% Silan gefüllt sein. Insbesondere kann die Menge an gasförmigem Gettermaterial direkt proportional zum Absolutdruck eines gegebenenfalls in dem Glaskolben eingebrachten Wärmeleitgases erhöht werden.The getter material is preferably at least partially introduced into the glass bulb as a gas. For example, the gaseous getter material is hydrogen- and / or oxygen-rich compounds which preferably bind volatile carbon-containing compounds and react, for example, to form CH 4 or CO / CO 2 . The setting can prevent a reaction with a silicone cover and / or a deposit on the glass bulb. In particular, the getter material can contain oxygen gas and / or a silane, for example a monosilane (SiH 4 ). Due to the high pressure inside the gas piston, it may be possible to introduce the silane at a maximum concentration below an ignition limit or explosion limit. For example, the flask can be filled with 8% by volume of silane. In particular, the amount of gaseous getter material can be increased in direct proportion to the absolute pressure of a heat-conducting gas that may be introduced into the glass bulb.

Alternativ oder zusätzlich kann das Gettermaterial zumindest teilweise als Feststoff in den Glaskolben eingebracht sein. Als festes Gettermaterial eignet sich beispielsweise ein reines Metall, wie Zirkon Zr, Tantal Ta, Titan Ti, Palladium Pd, Vanadium V, Aluminium Al, Kupfer Cu, Silber Ag, Magnesium Mg, Nickel Ni, Eisen Fe, Calcium Ca, Strontium Sr und Barium Ba, oder auch Legierungen aus reinen Metallen, wie z.B. ZrAl, ZrTi, ZrFe, ZrNi, ZrPd und/oder BaAl4. Die Verwendung einer ZrAl-Legierung ist hierbei bevorzugt. Ferner eignen sich Oxide und Hydride reiner Metalle als Gettermaterial. Insbesondere kommen als feste Gettermaterialien innerhalb des Glaskolbens Metallhydroxide, wie beispielsweise Magnesiumhydroxid oder Aluminiumhydroxid, in Frage. Metallhydroxide eignen sich beispielsweise für ein Abgettern von flüchtigen Kohlenstoffverbindungen in dem geschlossenen Volumen des Glaskolbens.Alternatively or additionally, the getter material can be introduced into the glass bulb at least partially as a solid. A pure metal such as zirconium Zr, tantalum Ta, titanium Ti, palladium Pd, vanadium V, aluminum Al, copper Cu, silver Ag, magnesium Mg, nickel Ni, iron Fe, calcium Ca, strontium Sr and is suitable as a solid getter material Barium Ba, or alloys made of pure metals, such as ZrAl, ZrTi, ZrFe, ZrNi, ZrPd and / or BaAl 4 . The use of a ZrAl alloy is preferred here. Oxides and hydrides of pure metals are also suitable as getter material. In particular, metal hydroxides, such as magnesium hydroxide or aluminum hydroxide, are suitable as solid getter materials within the glass bulb. Metal hydroxides are suitable for example for a gettering off volatile carbon compounds in the closed volume of the glass bulb.

Feste Gettermaterialien werden bevorzugt so aufgebracht, dass diese eine große reaktive Oberfläche aufweisen, wie beispielsweise als Beschichtung und/oder als Sintermaterial. Alternativ oder zusätzlich kann das Gettermaterial als massives Metall, beispielsweise in Drahtform, in den Glaskolben eingebracht sein.Solid getter materials are preferably applied in such a way that they have a large reactive surface, for example as a coating and / or as a sintered material. Alternatively or additionally, the getter material can be introduced into the glass bulb as solid metal, for example in the form of a wire.

Hierbei ist es möglich, dass feste Gettermaterialien durch zusätzlich eingebrachte gasförmige Getter hinsichtlich ihres Getterverhaltens optimiert werden. Beispielswese können die Gettermaterialien nach einem Abpumpvorgang und einem Einbrennen im Ofen (Tempern) aktiviert werden. Hierdurch können sich beispielsweise reaktive Oxide metallischer Gettermaterialien bilden.It is possible here for solid getter materials to be optimized with regard to their getter behavior by additionally introduced gaseous getters. For example, the getter materials can be activated after a pumping-out process and baking in the oven (tempering). In this way, for example, reactive oxides of metallic getter materials can form.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels ist die Leiterplatte thermisch an den Glaskolben angebunden. Alternativ oder zusätzlich ist der Glättungskondensator thermisch an den Glaskolben angebunden. Bevorzugt ist der Glättungskondensator auf der Leiterplatte aufgebracht und gemeinsam mit der Leiterplatte thermisch an den Glaskolben angebunden. "Thermisch angebunden" bedeutet hierbei und im Folgenden, dass die Leiterplatte bzw. der Glättungskondensator thermisch leitend mit dem Glaskolben verbunden ist. Insbesondere kann sich die Leiterplatte und/oder der Glättungskondensator stellenweise in direktem Kontakt mit dem Glaskolben befinden. Dies ermöglicht eine effiziente Kühlung des auf der Leiterplatte aufgebrachten zumindest einen Leuchtdiodenchips bzw. des Glättungskondensators und folglich eine gleichbleibende Beleuchtungsqualität in Verbindung mit einer erhöhten Betriebsdauer.According to at least one embodiment of the LED lighting means, the circuit board is thermally connected to the glass bulb. Alternatively or in addition, the smoothing capacitor is thermally connected to the glass bulb. The smoothing capacitor is preferably applied to the circuit board and thermally connected to the glass bulb together with the circuit board. "Thermally connected" means here and below that the printed circuit board or the smoothing capacitor is connected to the glass bulb in a thermally conductive manner. In particular, the circuit board and / or the smoothing capacitor can be in direct contact with the glass bulb in places. This enables efficient cooling of the at least one light-emitting diode chip or the light-emitting diode chip applied to the circuit board Smoothing capacitor and consequently a constant lighting quality in connection with an increased operating time.

Gemäß der Erfindung weist der Glaskolben eine Einbuchtung (Englisch: dimple), bevorzugt mehrere Einbuchtungen, auf. Die Einbuchtung ragt in den Innenraum des Glaskolbens. Mit anderen Worten, die Einbuchtung ist in Bezug auf den Innenraum konkav ausgebildet. Die Einbuchtung steht mit der Leiterplatte und/oder dem Glättungskondensator in thermischem Kontakt. Bevorzugt grenzt die Einbuchtung direkt an die Leiterplatte und/oder den Glättungskondensator. Die Einbuchtung kann beispielsweise bei der Herstellung des LED-Leuchtmittels durch Eindrücken und/oder Zusammenquetschen des noch weichen Materials des Glaskolbens gebildet werden.According to the invention, the glass bulb has an indentation (English: dimple), preferably a plurality of indentations. The indentation protrudes into the interior of the glass bulb. In other words, the indentation is concave with respect to the interior. The indentation is in thermal contact with the printed circuit board and / or the smoothing capacitor. The indentation preferably adjoins the circuit board and / or the smoothing capacitor. The indentation can be formed, for example, during the production of the LED lighting means by pressing in and / or squeezing together the still soft material of the glass bulb.

Mittels der Einbuchtung kann die Wärmeleitung zwischen dem Glaskolben und der Leiterplatte mit den Leuchtdiodenchips und/oder dem Glättungskondensator weiter verbessert werden. Es ist hierbei vorteilhaft, wenn die Einbuchtung in thermischen Kontakt mit temperaturempfindlichen (opto-)elektronischen Komponenten steht. Die Einbuchtung kann zudem den direkten Blick auf elektronische Komponenten im Innenraum des Glaskolbens verdecken und somit das ästhetische Erscheinungsbild des LED-Leuchtmittels verbessern. Dies ist insbesondere dann vorteilhaft, wenn die Einbuchtung direkt an den Glättungskondensator angrenzt, da dieser, beispielsweise aufgrund seiner Größe, unästhetisch wirken kann.The conduction of heat between the glass bulb and the circuit board with the light-emitting diode chips and / or the smoothing capacitor can be further improved by means of the indentation. It is advantageous here if the indentation is in thermal contact with temperature-sensitive (opto) electronic components. The indentation can also hide the direct view of electronic components in the interior of the glass bulb and thus improve the aesthetic appearance of the LED light source. This is particularly advantageous when the indentation directly adjoins the smoothing capacitor, since it can appear unaesthetic, for example due to its size.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels weist der Glaskolben zwei einander gegenüberliegende Einbuchtungen auf und die Leiterplatte ist zwischen den beiden Einbuchtungen eingeklemmt. Die Einbuchtungen fixieren also die Leiterplatte innerhalb des Glaskolbens. Ein Abstand zwischen den Einbuchtungen entspricht dann bevorzugt der Dicke der Leiterplatte. Es können aber auch weitere Komponenten zwischen der Leiterplatte und den Einbuchtungen angeordnet sein, sodass der Abstand zwischen den Einbuchtungen auch größer als die Dicke der Leiterplatte sein kann.According to at least one embodiment of the LED illuminant, the glass bulb has two indentations lying opposite one another and the circuit board is clamped between the two indentations. The indentations thus fix the circuit board within the glass bulb. A distance between the indentations then preferably corresponds to the thickness of the printed circuit board. However, further components can also be arranged between the circuit board and the indentations, so that the distance between the Indentations can also be larger than the thickness of the circuit board.

Die Einbuchtungen können insbesondere zueinander spiegelsymmetrisch bezüglich einer Symmetrieachse des Glaskolbens ausgebildet sein. In diesem Fall zentrieren die Einbuchtungen die Leiterplatte in dem Glaskolben. Die Leiterplatte läuft dann entlang der Symmetrieachse. Die Symmetrieachse des Glaskolbens kann hierbei und im Folgenden entlang der Haupterstreckungsrichtung des Glaskolbens verlaufen. Beispielsweise weist der Glaskolben eine zylinderartige oder langgezogene, insbesondere abgerundete, quaderartige Form auf, wobei die Symmetrieachse dann die Höhe des Zylinders bzw. die Länge des Quaders ist.The indentations can in particular be designed mirror-symmetrically with respect to one another with respect to an axis of symmetry of the glass bulb. In this case, the indentations center the circuit board in the glass bulb. The circuit board then runs along the axis of symmetry. The axis of symmetry of the glass bulb can here and subsequently run along the main direction of extent of the glass bulb. For example, the glass bulb has a cylindrical or elongated, in particular rounded, cuboid shape, the axis of symmetry then being the height of the cylinder or the length of the cuboid.

Durch beidseitige Einbuchtungen, die in thermischen Kontakt zur Leiterplatte stehen, kann somit einerseits die Wärmeabfuhr verbessert und homogenisiert und andererseits die mechanische Halterung der Leiterplatte, insbesondere einer schweren Leiterplatte, innerhalb des Glaskolbens verstärkt werden. Insbesondere im Fall einer Zentrierung der Leiterplatte durch die Glaskolben kann somit das ästhetische Erscheinungsbild weiter verbessert werden. Ferner kann die mechanische Stabilität der Lampe im sogenannten postalischen Falltest gemäß DIN ISO 2206 bzw. DIN ISO 2248 (jeweilige Version zum Zeitpunkt der Anmeldung) verbessert werden. Der postalische Falltest simuliert die maximalen mechanischen Belastungen während des Transports der Lampe. Ohne die Einbuchtungen können die jeweiligen Biegemomente auf die Drahtabschnitte der Halterung und/oder die Glasquetschung beim Transport sehr hoch sein.As a result of indentations on both sides that are in thermal contact with the circuit board, the heat dissipation can be improved and homogenized on the one hand and the mechanical holding of the circuit board, in particular a heavy circuit board, within the glass bulb can be reinforced on the other hand. In particular, if the circuit board is centered by the glass bulb, the aesthetic appearance can thus be further improved. Furthermore, the mechanical stability of the lamp can be improved in the so-called postal drop test according to DIN ISO 2206 or DIN ISO 2248 (respective version at the time of registration). The postal drop test simulates the maximum mechanical loads during the transport of the lamp. Without the indentations, the respective bending moments on the wire sections of the holder and / or the crushed glass during transport can be very high.

Bevorzugt befinden sich die Einbuchtungen an einer Oberseite des Glaskolbens, die einer Halterung des Leuchtmoduls gegenüberliegt. Die Halterung des Leuchtmoduls befindet sich an der Unterseite des Glaskolbens, insbesondere zusammen mit elektrischen Anschlüssen des Leuchtmoduls. Die Halterung kann insbesondere den elektrischen Anschlüssen entsprechen. Bei den elektrischen Anschlüssen kann es sich beispielsweise um Drahtpins handeln. Die Drahtpins können an die Leiterplatte angelötet und/oder angeklemmt sein. An einer der Leiterplatte abgewandten Seite können die Drahtpins mit dem Glaskolben verschmolzen sein, wodurch eine mechanische Halterung der Leiterplatte gewährleistet wird. Wenn sich die Einbuchtung an der Oberseite befindet, kann durch die Einklemmung der Leiterplatte die mechanische Belastung, insbesondere die mechanische Spannung, an der Halterung reduziert werden und zudem ein Verbiegen oder Abbrechen des Leuchtmoduls durch Schütteln des LED-Leuchtmittels verhindert werden. Im Fall einer einzigen Einbuchtung kann sich diese ebenfalls an der der Halterung abgewandten Oberseite des Glaskolbens befinden.The indentations are preferably located on an upper side of the glass bulb, which is opposite a holder of the light module. The holder of the light module is located on the underside of the glass bulb, in particular together with electrical connections of the light module. The holder can in particular correspond to the electrical connections. The electrical connections can be, for example Trade wire pins. The wire pins can be soldered and / or clamped to the circuit board. On a side facing away from the circuit board, the wire pins can be fused to the glass bulb, which ensures that the circuit board is mechanically held. If the indentation is on the upper side, the clamping of the printed circuit board can reduce the mechanical load, in particular the mechanical tension, on the holder and also prevent the light module from bending or breaking off by shaking the LED light source. In the case of a single indentation, this can also be located on the upper side of the glass bulb facing away from the holder.

Zur elektrischen Kontaktierung des Leuchtmoduls von außen können die elektrischen Anschlüsse über einen elektrisch leitenden Verbindungsbereich mit zumindest teilweise außerhalb des Glaskolbens angeordneten Kontaktpins verbunden sein. Der Verbindungsbereich kann mit dem Glaskolben verschmolzen bzw. verschweißt sein. Das Verschmelzen kann insbesondere derart erfolgt sein, dass der Glaskolben weiterhin vakuumversiegelt ist. Beispielsweise ist zwischen dem Glaskolben und dem Verbindungsbereich, insbesondere in einem Verschmelzungsbereich des Anschlusses, eine Molybdän-Folie und/oder ein Molybdän-Draht angebracht, um so das Verschmelzen zu erleichtern. Die Molybdän-Folie bzw. der Molybdän-Draht ist mit Molybdän gebildet oder besteht aus Molybdän. Die Molybdän-Folie bzw. der Molybdän-Draht kann ferner ein Gettermaterial enthalten, beispielsweise in Form einer Beschichtung.For electrical contacting of the light module from the outside, the electrical connections can be connected to contact pins arranged at least partially outside of the glass bulb via an electrically conductive connection area. The connection area can be fused or welded to the glass bulb. The fusing can in particular be carried out in such a way that the glass bulb continues to be vacuum-sealed. For example, a molybdenum foil and / or a molybdenum wire is attached between the glass bulb and the connection area, in particular in a fusion area of the connection, in order to facilitate the fusion. The molybdenum foil or the molybdenum wire is formed with molybdenum or consists of molybdenum. The molybdenum foil or the molybdenum wire can also contain a getter material, for example in the form of a coating.

Bevorzugt wird im Fall eines Quarzglas-Glaskolbens eine Molybdän-Folie verwendet und im Fall eines Hartglas-Glaskolbens ein Molybdän-Draht. Dies ist durch unterschiedlichen thermischen Ausdehnungskoeffizienten von Quarzglas und Hartglas bedingt. So beträgt der thermische Ausdehnungskoeffizient von Molybdän 5,1 · 10-6 K-1, von Quarzglas 0,6 · 10-6 K-1 und von Hartglas 4,7 · 10-6 K-1. Hartglas hat somit einen ähnlichen thermischen Ausdehnungskoeffizienten wie Molybdän (der Unterschied ist geringer als 10 %), weshalb im Gegensatz zu Quarzglas ein direktes Verschmelzen möglich ist. Alternativ kann im Fall von Hartglas ein Draht mit einer Eisen-Nickel-KobaltLegierung (sogenanntes KOVAR) und/oder ein Wolfram-Draht verwendet werden.In the case of a quartz glass bulb, a molybdenum foil is preferably used, and in the case of a hard glass glass bulb, a molybdenum wire is used. This is due to the different thermal expansion coefficients of quartz glass and hard glass. The thermal expansion coefficient of molybdenum is 5.1 · 10 -6 K -1 , of quartz glass 0.6 · 10 -6 K -1 and of hard glass 4.7 · 10 -6 K -1 . Tempered glass thus has a similar thermal Expansion coefficients such as molybdenum (the difference is less than 10%), which is why, in contrast to quartz glass, direct fusing is possible. Alternatively, in the case of hard glass, a wire with an iron-nickel-cobalt alloy (so-called KOVAR) and / or a tungsten wire can be used.

Ferner können zwischen dem Glaskolben und dem Verbindungsbereich Übergangsgläser angebracht sein. Es ist zudem möglich, dass der Anschluss und/oder gegebenenfalls vorhandene Haltedrähte für eine Platine aus einem Gettermaterial bestehen oder mit einem Gettermaterial beschichtet sind. Hierfür eignen sich beispielsweise die oben genannten festen Gettermaterialien.Furthermore, transition glasses can be attached between the glass bulb and the connecting area. It is also possible for the connection and / or any retaining wires that may be present for a circuit board to consist of a getter material or to be coated with a getter material. The solid getter materials mentioned above are suitable for this, for example.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels weist der Glaskolben eine in den Innenraum des Glaskolbens ragende Kerbe auf, die entlang einer Symmetrieachse des Glaskolbens verläuft und zur Zentrierung des Leuchtmoduls innerhalb des Glaskolbens eingerichtet ist. Beispielsweise dient die Kerbe zur Klemmung der Leiterplatte an einer der Halterung der Leiterplatte gegenüberliegenden Kante der Leiterplatte.According to at least one embodiment of the LED lamp, the glass bulb has a notch protruding into the interior of the glass bulb, which runs along an axis of symmetry of the glass bulb and is designed to center the lighting module within the glass bulb. For example, the notch is used to clamp the circuit board on an edge of the circuit board opposite the holder of the circuit board.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels weist die Leiterplatte eine Breite auf, die im Wesentlichen einem größten Innendurchmesser des Glaskolbens entspricht. "Im Wesentlichen" ist hierbei derart zu verstehen, dass die Breite um bis zu +/- 20 %, bevorzugt +/- 10 %, von dem größten Innendurchmesser abweichen kann. Sowohl der größte Innendurchmesser als auch die Breite der Leiterplatten verlaufen senkrecht zur Symmetrieachse des Glaskolbens. Bevorzugt weist der Glaskolben eine zylindrische Form mit einem elliptischen oder kreisförmigen Querschnitt auf; der größte Innendurchmesser ist in diesem Fall der großen Achse der Ellipse oder dem Durchmesser des Kreises. Alternativ kann der Glaskolben die Form eines, insbesondere abgerundeten, Quaders mit einem abgerundeten rechteckigen Querschnitt aufweisen; der größte Innendurchmesser ist in diesem Fall die längere Seite des rechteckigen Querschnitts. Durch die ähnlichen Abmessungen des größten Innendurchmessers des Glaskolbens und der Breite der Leiterplatte kann die Leiterplatte mittels der Wände des Glaskolbens geklemmt und gehaltert werden. Zwischen der Leiterplatte und dem Glaskolben können sich hierbei weitere Materialien befinden, sodass eine thermische Anbindung der Leiterplatte an den Glaskolben und/oder eine Ausgleichung von herstellungsbedingten Abweichungen der Geometrien ermöglicht wird.In accordance with at least one embodiment of the LED lighting means, the circuit board has a width which essentially corresponds to a largest inner diameter of the glass bulb. "Essentially" is to be understood here in such a way that the width can deviate by up to +/- 20%, preferably +/- 10%, from the largest inner diameter. Both the largest inner diameter and the width of the circuit boards run perpendicular to the axis of symmetry of the glass bulb. The glass bulb preferably has a cylindrical shape with an elliptical or circular cross section; the largest inside diameter in this case is the major axis of the ellipse or the diameter of the circle. Alternatively, the glass bulb can have the shape of a, in particular rounded, cuboid with a rounded rectangular cross section; the largest inside diameter in this case is the longer side of the rectangular cross-section. Due to the similar dimensions of the largest inner diameter of the glass bulb and the width of the printed circuit board, the printed circuit board can be clamped and held by means of the walls of the glass bulb. Further materials can be located between the printed circuit board and the glass bulb, so that a thermal connection of the printed circuit board to the glass bulb and / or compensation of manufacturing-related deviations in the geometries is made possible.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels weist der Glaskolben eine bezüglich des Innenraums des Glaskolbens konvex ausgebildete Ausbuchtung auf. Die Leiterplatte und/oder der Glättungskondensator ist/sind zumindest teilweise in die Ausbuchtung aufgenommen. Bei der Ausbuchtung kann es sich um die von klassischen Halogenlampen bekannte Glasnase handeln, die zum Befüllen des Glaskolbens mit einem Wärmeleitgas dienen können. Durch die Ausbuchtung kann das Design des LED-Leuchtmittels dem einer klassischen Halogenlampe angenähert werden, wodurch die Ästhetik und die Kundenakzeptanz erhöht wird. Ferner kann die Ausbuchtung zur Zentrierung und/oder zumindest teilweisen Fixierung des Leuchtmoduls innerhalb des Glaskolbens dienen.According to at least one embodiment of the LED light source, the glass bulb has a bulge that is convex with respect to the interior of the glass bulb. The circuit board and / or the smoothing capacitor is / are at least partially received in the bulge. The bulge can be the glass nose known from classic halogen lamps, which can be used to fill the glass bulb with a heat-conducting gas. Due to the bulge, the design of the LED light source can be approximated to that of a classic halogen lamp, which increases the aesthetics and customer acceptance. Furthermore, the bulge can be used to center and / or at least partially fix the light module within the glass bulb.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels ist/sind die Leiterplatte und/oder der Glättungskondensator zumindest teilweise in einen mechanisch flexiblen Vergusskörper eingebettet. Bei dem Vergusskörper kann es sich insbesondere um einen Silikonverguss handeln. Mechanische Flexibilität ist beispielsweise dann gegeben, wenn der Vergusskörper zerstörungsfrei um wenigstens 30 % seiner Ausdehnung zerstörungsfrei komprimierbar ist und/oder wenn der Vergusskörper elastisch ausgebildet ist. Der Vergusskörper kann insbesondere an den Stellen der Leiterplatte und/oder des Glättungskondensators angebracht sein, die sich an der Einbuchtung und/oder der Kerbe befinden. Generell ermöglicht der Vergusskörper das Ausgleichen von herstellungsbedingten Toleranzen bei den Abmessungen der Leiterplatte, des Glättungskondensators und/oder des Glaskolbens. Beispielsweise wird der Vergusskörper beim Klemmen zwischen zwei Einbuchtungen im Fall einer dickeren Leiterplatte stärker zusammengedrückt, also elastisch verformt, als im Fall einer dünneren Leiterplatte. Ähnlich kann eine Reduktion des größten Innendurchmessers des Glaskolbens durch ein Vergießen der Kanten der Leiterplatte mit dem Vergussmaterial ausgeglichen werden, da dieses dann beim Einklemmen der Leiterplatte in den Glaskolben komprimiert wird.In accordance with at least one embodiment of the LED lighting means, the circuit board and / or the smoothing capacitor is / are at least partially embedded in a mechanically flexible potting body. The potting body can in particular be a silicone potting. Mechanical flexibility is given, for example, when the potting body can be compressed non-destructively by at least 30% of its expansion and / or when the potting body is elastic. The potting body can in particular be attached to the points on the printed circuit board and / or the smoothing capacitor which are located at the indentation and / or the notch. In general, the potting body enables this Compensation of manufacturing-related tolerances in the dimensions of the circuit board, the smoothing capacitor and / or the glass bulb. For example, when clamping between two indentations, the potting body is compressed more strongly, that is to say elastically deformed, in the case of a thick circuit board than in the case of a thinner circuit board. Similarly, a reduction in the largest inside diameter of the glass bulb can be compensated for by potting the edges of the circuit board with the potting material, since this is then compressed when the circuit board is clamped in the glass bulb.

Der Vergusskörper kann alternativ oder zusätzlich auf dem zumindest einen Leuchtdiodenchip aufgebracht sein. Hierdurch ist es möglich, die Abstrahlcharakteristik des Leuchtdiodenchips anzupassen. Beispielsweise enthält der Vergusskörper hierfür Streupartikel und/oder wellenlängenkonvertierende Partikel. Ferner kann der Vergusskörper in Form einer Linse ausgebildet sein. Insbesondere wenn der Vergusskörper wellenlängenkonvertierende Partikel enthält kann der Glättungskondensator ebenfalls unter dem Vergusskörper angebracht sein, sodass der direkte Blick auf den Glättungskondensator versperrt ist. Hierdurch kann das ästhetische Erscheinungsbild des LED-Leuchtmittels weiter verbessert werden.The potting body can alternatively or additionally be applied to the at least one light-emitting diode chip. This makes it possible to adapt the emission characteristics of the light-emitting diode chip. For example, the potting body contains scatter particles and / or wavelength-converting particles for this purpose. Furthermore, the potting body can be designed in the form of a lens. In particular if the potting body contains wavelength-converting particles, the smoothing capacitor can also be attached under the potting body so that the direct view of the smoothing capacitor is blocked. In this way, the aesthetic appearance of the LED light source can be further improved.

Gemäß zumindest einer Ausführungsform des LED-Leuchtmittels ist der Glaskolben mit Milchglas gebildet und/oder mattiert ausgebildet. Bevorzugt besteht der Glaskolben aus Milchglas und/oder aus einem mattierten Glas. Beispielsweise ist der Glaskolben hierfür mit einem Sandstrahl behandelt worden. Durch die Verwendung von Milchglas kann der von dem LED-Leuchtmittel abgedeckte Raumwinkelbereich weiter erhöht werden und die Abstrahlcharakteristik verbessert werden.According to at least one embodiment of the LED illuminant, the glass bulb is made of frosted glass and / or has a matt finish. The glass bulb preferably consists of frosted glass and / or a frosted glass. For example, the glass bulb has been treated with a sandblast for this purpose. By using frosted glass, the solid angle area covered by the LED illuminant can be increased further and the radiation characteristic can be improved.

Zur Verbesserung der Ästhetik des LED-Leuchtmittels ist es ferner möglich, dass das Leuchtmodul unterschiedliche Abschnitte umfasst, wobei die Abschnitte des Leuchtmoduls Licht einer sich voneinander unterscheidenden Farbtemperatur abstrahlen. Alternativ oder zusätzlich ist es möglich, dass das LED-Leuchtmittel mehrere Leuchtmodule umfasst, die Licht einer sich voneinander unterscheidenden Farbtemperatur abstrahlen.To improve the aesthetics of the LED lighting means, it is also possible that the lighting module comprises different sections, the sections of the lighting module Emit light of a different color temperature. As an alternative or in addition, it is possible for the LED lighting means to include several lighting modules which emit light of a color temperature that differs from one another.

Beispielsweise beinhaltet das LED-Leuchtmittel einen ersten Abschnitt, der, insbesondere weißes, Licht einer ersten Farbtemperatur emittiert, und einen zweiten Abschnitt , der, insbesondere weißes, Licht einer zweiten Farbtemperatur, die höher als die erste Farbtemperatur ist, emittiert. Die Farbtemperatur bzw. der Farbort des von dem LED-Leuchtmittel emittierten Lichts wird dann durch die jeweiligen Farbtemperaturen bzw. Farborte des von den einzelnen Abschnitten und/oder Leuchtmodulen emittierten Lichts vorgegeben.For example, the LED lighting means includes a first section that emits, in particular white, light of a first color temperature, and a second section that emits, in particular white, light of a second color temperature that is higher than the first color temperature. The color temperature or the color locus of the light emitted by the LED lighting means is then specified by the respective color temperatures or color loci of the light emitted by the individual sections and / or light modules.

Beispielsweise können der erste Abschnitt und der zweite Abschnitt jeweils wenigstens einen blaues Licht emittierenden Leuchtdiodenchip umfassen, wobei das blaue Licht mittels eines Wellenlängenkonversionselements, das wellenlängenkonvertierende Partikel, insbesondere einen Phosphor, umfasst, in weißes Licht umgewandelt wird. Das Wellenlängenkonversionselement des ersten Abschnitts kann unterschiedliche wellenlängenkonvertierende Partikel wie das Wellenlängenkonversionselement des zweiten Abschnitts umfassen und/oder unterschiedliche Zusammensetzungen der wellenlängenkonvertierenden Partikel, sodass in dem ersten Abschnitt Licht einer anderen Farbtemperatur wie in dem zweiten Abschnitt emittiert wird. Die Verwendung unterschiedlicher Wellenlängenkonversionselemente kann analog auch für den Fall mehrere Leuchtmodule angewendet werden. Ferner können auch mehr als zwei Abschnitte, jeweils mit unterschiedlichen Wellenlängenkonversionselementen, verwendet werden.For example, the first section and the second section can each include at least one blue light-emitting light-emitting diode chip, the blue light being converted into white light by means of a wavelength conversion element that includes wavelength-converting particles, in particular a phosphor. The wavelength conversion element of the first section can comprise different wavelength-converting particles such as the wavelength conversion element of the second section and / or different compositions of the wavelength-converting particles, so that light of a different color temperature is emitted in the first section than in the second section. The use of different wavelength conversion elements can analogously also be used for the case of several light modules. Furthermore, more than two sections, each with different wavelength conversion elements, can also be used.

Der zweite Abschnitt kann sich näher an der Oberseite des Glaskolbens befinden als der erste Abschnitt. Es ist ferner möglich, dass die Abschnitte elektrisch getrennt ansteuerbar und/oder dimmbar sind. Insbesondere können beim Dimmen die Leuchtdiodenchips eines Abschnitts dunkel werden (d.h., sie emittieren weniger Licht als im anderen Abschnitt), wodurch sich der Farbort des Lichts, das insgesamt von dem LED-Leuchtmittel abgestrahlt wird, verändert. Durch diese Anordnung kann beispielsweise beim Dimmen des LED-Leuchtmittels, insbesondere mittels Phasenabschnittsdimmen, ein Dimmeffekt ähnlich dem einer Glühlampe erzielt werden.The second section can be closer to the top of the glass envelope than the first section. It is also possible that the sections can be controlled electrically separately and / or are dimmable. In particular, the light-emitting diode chips of one section can become dark during dimming (ie they emit less light than in the other section), as a result of which the color locus of the light that is emitted as a whole by the LED lighting means changes. This arrangement enables a dimming effect similar to that of an incandescent lamp to be achieved, for example when dimming the LED light source, in particular by means of phase section dimming.

Die Leiterplatte kann eine Kontaktstelle aufweisen, die mittels eines elektrischen Anschlusses kontaktiert sein kann, wobei die Kontaktstelle bevorzugt durch ein Hochtemperatur-Material ausgebildet sein kann, besonders bevorzugt durch unbeschichtetes oder durch beispielsweise mit Nickel, Platin, Ruthenium, Silber, Zinn, Zink, Kupfer beschichtetes Molybdän, Niob, Tantal und/oder Edelstahl.The circuit board can have a contact point that can be contacted by means of an electrical connection, wherein the contact point can preferably be formed by a high-temperature material, particularly preferably by uncoated material or by, for example, nickel, platinum, ruthenium, silver, tin, zinc, copper coated molybdenum, niobium, tantalum and / or stainless steel.

Dabei kann der elektrische Anschluss durch eine Metallklemme ausgebildet sein, wobei die Metallklemme eine Öffnung aufweisen kann, in welcher die Leiterplatte eingeklemmt sein kann, wobei ein Kontaktbereich der Metallklemme in direkten Kontakt mit der Kontaktstelle der Leiterplatte gebracht ist.The electrical connection can be formed by a metal clamp, the metal clamp having an opening in which the circuit board can be clamped, a contact area of the metal clamp being brought into direct contact with the contact point of the circuit board.

Auf diese Weise kann eine schnelle und einfache Kontaktierung und Verbindung der Leiterplatte mit dem elektrischen Anschluss erreicht werden. Durch die Klemmung wird auch gleich eine mechanische Verbindung hergestellt, die ein nachfolgendes Verlöten oder anderweitiges stoffschlüssiges Verbinden überflüssig macht.In this way, quick and easy contacting and connection of the circuit board with the electrical connection can be achieved. The clamping also creates a mechanical connection that makes subsequent soldering or other material-to-material connection superfluous.

Die Metallklemme kann durch zwei Drahtbahnen ausgebildet sein, die an einem Verbindungspunkt miteinander verschweißt sind.The metal clamp can be formed by two wire tracks which are welded to one another at a connection point.

Eine derart ausgebildete Metallklemme kann kostengünstig und passgenau hergestellt werden und bietet eine schnelle und einfache Kontaktierung.A metal clamp designed in this way can be manufactured inexpensively and with a precise fit and offers quick and easy contacting.

Es wird ferner eine LED-Lampe angegeben. Die LED-Lampe umfasst eine Einhausung und ein innerhalb der Einhausung angeordnetes LED-Leuchtmittel. Bei dem LED-Leuchtmittel der LED-Lampe handelt es sich um ein zuvor beschriebenes LED-Leuchtmittel. Das heißt, sämtliche für das LED-Leuchtmittel beschriebenen Merkmale sind auch für die LED-Lampe beschrieben und umgekehrt. Die LED-Lampe kann beispielsweise eine LED-Retrofitlampe oder eine LED-Leuchte sein.An LED lamp is also specified. The LED lamp includes an enclosure and one within the enclosure arranged LED light source. The LED illuminant of the LED lamp is a previously described LED illuminant. This means that all the features described for the LED lamp are also described for the LED lamp and vice versa. The LED lamp can be, for example, an LED retrofit lamp or an LED light.

Die Einhausung kann eine Glashülle und/oder ein zumindest teilweise lichtdurchlässiges Gehäuse sein. Insbesondere ist die Einhausung mit einem Material gebildet, das eine hohe Wärmeleitfähigkeit, die insbesondere wenigstens der Wärmeleitfähigkeit von Quarzglas entspricht, aufweist. Bevorzugt ist die Einhausung der LED-Lampe eine Glashülle. In einem Zwischenraum zwischen der Glashülle und dem Glaskolben kann sich ein Wärmeleitgas befinden. Der Druck des Wärmeleitgases innerhalb der Glashülle ist bevorzugt geringer als der Druck des Wärmeleitgases innerhalb des Glaskolbens. Beispielsweise ist der Druck in der Glashülle um wenigstens 0,5 bar, bevorzugt wenigstens 1 bar, geringer als in dem Glaskolben. Bevorzugt beträgt der Druck in der Glashülle 1 bar. Alternativ oder zusätzlich kann in dem Zwischenraum zwischen dem Glaskolben und der Einhausung ein wärmeleitendes Material, wie beispielsweise ein Silikonverguss und/oder Glas-Streukörper, eingebracht sein.The housing can be a glass envelope and / or an at least partially transparent housing. In particular, the housing is formed with a material which has a high thermal conductivity, which in particular corresponds at least to the thermal conductivity of quartz glass. The housing of the LED lamp is preferably a glass envelope. A heat-conducting gas can be located in a space between the glass envelope and the glass bulb. The pressure of the heat-conducting gas within the glass envelope is preferably lower than the pressure of the heat-conducting gas within the glass bulb. For example, the pressure in the glass envelope is at least 0.5 bar, preferably at least 1 bar, lower than in the glass bulb. The pressure in the glass envelope is preferably 1 bar. Alternatively or additionally, a thermally conductive material, such as a silicone potting and / or glass diffuser, can be introduced into the space between the glass bulb and the housing.

Die Glashülle ist bevorzugt mit einem Weichglas, insbesondere Kalk-Natron-Glas, gebildet oder besteht daraus. Weichglas zeichnet sich durch seine geringen Herstellungskosten und leichte Verarbeitbarkeit aus.The glass envelope is preferably formed with or consists of a soft glass, in particular soda-lime glass. Soft glass is characterized by its low manufacturing costs and easy processability.

Die Einhausung kann alternativ oder zusätzlich einen Reflektor umfassen, der reflektierend für das von dem LED-Leuchtmittel abgestrahlte Licht ausgebildet ist. Die LED-Lampe kann dann insbesondere als Retrofit für eine klassische Halogen-Reflektorlampe ausgebildet sein.The housing can alternatively or additionally comprise a reflector which is designed to be reflective for the light emitted by the LED illuminant. The LED lamp can then be designed in particular as a retrofit for a classic halogen reflector lamp.

Das hier beschriebene LED-Leuchtmittel ist insbesondere kompakt ausgebildet und kostengünstig herstellbar. Die Abstrahlcharakteristik ist im Vergleich zu bekannten LED-Leuchtmitteln wesentlich verbessert.The LED lighting means described here is particularly compact and can be manufactured inexpensively. The radiation characteristics are significantly improved compared to known LED light sources.

Kurze Beschreibung der FigurenBrief description of the figures

Bevorzugte weitere Ausführungsformen der Erfindung werden durch die nachfolgende Beschreibung der Figuren näher erläutert.

  • Die Figuren 1A, 1B, 1C, 2A, 2B, 2C, 3A und 3B zeigen Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels sowie von Leuchtmodulen für ein hier beschriebenes LED-Leuchtmittel.
  • Die Figuren 4A, 4B und 4C zeigen Ausführungsbeispiele einer hier beschriebenen LED-Lampe.
  • Die Figuren 5A, 5B, 5C, 5D und 5E zeigen Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels.
  • Die Figuren 6A, 6B und 6C zeigen Ausführungsbeispiele von Metallklemmen für ein hier beschriebenes LED-Leuchtmittel.
  • Die Figuren 7A, 7B, 7C, 7D, 7E, 8A, 8B, 9A, 9B, 10A, 10B zeigen Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels.
  • Die Figuren 11A, 11B, 12A und 12B zeigen gemessene Beleuchtungsstärken und Abstrahlcharakteristiken für Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels.
Preferred further embodiments of the invention are explained in more detail by the following description of the figures.
  • The Figures 1A, 1B, 1C , 2A, 2B, 2C , 3A and 3B show exemplary embodiments of an LED lighting means described here and of lighting modules for an LED lighting means described here.
  • The Figures 4A, 4B and 4C show exemplary embodiments of an LED lamp described here.
  • The Figures 5A, 5B, 5C, 5D and 5E show exemplary embodiments of an LED light source described here.
  • The Figures 6A, 6B and 6C show exemplary embodiments of metal clamps for an LED lamp described here.
  • The Figures 7A, 7B, 7C, 7D, 7E , 8A, 8B , 9A, 9B , 10A, 10B show exemplary embodiments of an LED light source described here.
  • The Figures 11A, 11B , 12A and 12B show measured illuminance levels and radiation characteristics for exemplary embodiments of an LED light source described here.

Detaillierte Beschreibung bevorzugter AusführungsbeispieleDetailed description of preferred exemplary embodiments

Im Folgenden werden das hier beschriebene Leuchtmittel sowie die hier beschriebene LED-Lampe anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert. Dabei werden gleiche, gleichartige, ähnliche oder gleichwirkende Elemente mit denselben Bezugszeichen versehen. Auf eine wiederholte Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden.In the following, the lighting means described here and the LED lamp described here are explained in more detail on the basis of exemplary embodiments and the associated figures. Identical, identical, similar or identically acting elements are provided with the same reference symbols. A repeated description of these elements is partly dispensed with in order to avoid redundancies.

Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als maßstäblich zu betrachten. Vielmehr können einzelne Elemente zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.The figures and the proportions of the elements shown in the figures are not to be regarded as being to scale. Rather, individual elements can be shown in exaggerated size for better illustration and / or for better understanding.

Anhand der schematischen Darstellungen der Figuren 1A, 1B und 1C ist ein erstes Ausführungsbeispiel eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert. Das gezeigte LED-Leuchtmittel 1 kann beispielsweise in einer sogenannten Stiftsockellampe, insbesondere eine bei 230 V betreibbare G9-Stiftsockellampe, als LED-Lampe zum Einsatz kommen. Die Figur 1A zeigt hierbei ein Schaltbild eines Leuchtmoduls 100 für das LED-Leuchtmittel 1, die Figur 1B zeigt eine schematische Skizze des Leuchtmoduls 100 für das LED-Leuchtmittel 1 und die Figur 1C zeigt eine schematische Skizze des LED-Leuchtmittels 1.Based on the schematic representations of the Figures 1A, 1B and 1C a first embodiment of an LED lighting means 1 described here is explained in more detail. The LED lamp 1 shown can be used as an LED lamp, for example, in a so-called pin-base lamp, in particular a G9 pin-base lamp that can be operated at 230 V. The Figure 1A shows a circuit diagram of a lighting module 100 for the LED lighting means 1, the Figure 1B shows a schematic sketch of the lighting module 100 for the LED lighting means 1 and the Figure 1C shows a schematic sketch of the LED illuminant 1.

Das Leuchtmodul 100 umfasst eine Vielzahl an Leuchtdiodenchips 11. Konkret sind in dem Beispiel vier Leuchtdiodenchips 11 gezeigt. Anders als in der Figur 1A dargestellt, kann das Leuchtmodul 100 aber auch mehr oder weniger Leuchtdiodenchips 11 aufweisen. Die Leuchtdiodenchips 11 sind mit einem Transistor 31 in Reihe geschaltet. Der Transistor 31 kann beispielsweise zur Einstellung eines Stroms durch die in Reihe geschalteten Leuchtdiodenchips 11 dienen. Ein Glättungskondensator 30 ist mit den Leuchtdiodenchips 11 parallel geschaltet. Der Glättungskondensator 30 dient zur Filterung von Modulationen, insbesondere bei 100 Hz, in der Betriebsspannung der Leuchtdiodenchips 11. Die Betriebsspannung wird durch eine Spannungsquelle 33 bereitgestellt. Zwischen der Spannungsquelle 33 und den Leuchtdiodenchips 11 befindet sich eine Gleichrichterschaltung 32, die vorliegend mit vier Dioden 321 gebildet ist. Die Gleichrichterschaltung 32 und der Transistor 31 können Teil einer Treiberelektronik sein, die innerhalb des Glaskolbens 20 des LED-Leuchtmittels 1 angebracht sein kann.The light-emitting module 100 comprises a multiplicity of light-emitting diode chips 11. Specifically, four light-emitting diode chips 11 are shown in the example. Unlike in the Figure 1A shown, the light module 100 can also have more or fewer light-emitting diode chips 11. The light-emitting diode chips 11 are connected in series with a transistor 31. The transistor 31 can be used, for example, to set a current through the series-connected light-emitting diode chips 11. A smoothing capacitor 30 is connected in parallel with the light-emitting diode chips 11. The smoothing capacitor 30 is used to filter modulations, in particular at 100 Hz, in the operating voltage of the light-emitting diode chips 11. The operating voltage is provided by a voltage source 33. A rectifier circuit 32, which in the present case is formed with four diodes 321, is located between the voltage source 33 and the light-emitting diode chips 11. The rectifier circuit 32 and the transistor 31 can be part of driver electronics, which can be attached within the glass bulb 20 of the LED illuminant 1.

In der Figur 1B sind die elektronischen Komponenten der Figur 1A schematisch gemeinsam auf einer Leiterplatte 12 dargestellt. Es ist alternativ möglich, dass zumindest ein Teil der Komponenten des Leuchtmoduls 100 auf einer separaten Platine aufgebracht ist. Bevorzugt sind zumindest Leuchtdiodenchips 11 des Leuchtmoduls 100 mittels Nacktchipmontage auf die Leiterplatte 12 aufgebracht. Die elektrische Kontaktierung des Leuchtmoduls 100 erfolgt mittels Kontaktstellen 44, die sich auf der Leiterplatte 12 befinden.In the Figure 1B are the electronic components of the Figure 1A shown schematically together on a circuit board 12. Alternatively, it is possible for at least some of the components of the light module 100 to be applied to a separate circuit board. At least light-emitting diode chips 11 of light module 100 are preferably applied to printed circuit board 12 by means of bare chip assembly. The electrical contacting of the light module 100 takes place by means of contact points 44 which are located on the circuit board 12.

Die Leiterplatte 12 weist im Fall einer G9-Stiftsockellampe bevorzugt eine Breite von wenigstens 5 mm und höchstens 11 mm auf. Die Länge beträgt bevorzugt wenigstens 10 mm und höchstens 30 mm. Die Kontaktstellen 44 sind 6 mm voneinander beabstandet.In the case of a G9 pin-base lamp, the circuit board 12 preferably has a width of at least 5 mm and at most 11 mm. The length is preferably at least 10 mm and at most 30 mm. The contact points 44 are spaced 6 mm apart.

Die Figur 1C zeigt ein LED-Leuchtmittel 1, welches ein in Zusammenhang mit den Figuren 1A und 1B beschriebenes Leuchtmodul 100 beinhalten kann. Das Leuchtmodul 100 des LED-Leuchtmittels 1 ist rein beispielhaft als Glühfilament einer klassischen Halogenlampe dargestellt. Das LED-Leuchtmittel 1 umfasst vorliegend zwei Leuchtmodule 100. In einer bevorzugten Ausführungsform des LED-Leuchtmittels 1 kann - entgegen der Darstellung der Figur 1C -jedoch nur ein Leuchtmodul 100 vorgesehen sein. Die Leuchtmodule 100 befinden sich in einem Glaskolben 20. Der Glaskolben 20 umfasst ferner elektrische Anschlüsse 43, die mit den Kontaktstellen 44 des Leuchtmoduls 100 elektrisch leitend verbunden sind. Die Position der elektrischen Anschlüsse 43 definiert eine Unterseite des Glaskolbens 20.The Figure 1C shows an LED lamp 1, which is a in connection with the Figures 1A and 1B may include the light module 100 described. The light module 100 of the LED light source 1 is shown purely by way of example as a filament of a classic halogen lamp. The LED lighting means 1 comprises two lighting modules 100 in the present case. In a preferred embodiment of the LED lighting means 1, contrary to the illustration in FIG Figure 1C -but only one light module 100 may be provided. The light modules 100 are located in a glass bulb 20. The glass bulb 20 further comprises electrical connections 43, which are electrically conductively connected to the contact points 44 of the light module 100. The position of the electrical connections 43 defines an underside of the glass envelope 20.

An einer der Unterseite gegenüberliegenden Oberseite weist der Glaskolben 20 eine Ausbuchtung 21 auf. Die Ausbuchtung 21 ist an einer Symmetrieachse des Glaskolbens 20 angeordnet. Ein Teil 101 des Leuchtmoduls 100 ragt in die Ausbuchtung 21 hinein und kann dadurch mittels der Ausbuchtung 21 zentriert werden.The glass bulb 20 has a bulge 21 on an upper side opposite the lower side. The bulge 21 is arranged on an axis of symmetry of the glass bulb 20. A part 101 of the lighting module 100 protrudes into the bulge 21 into it and can thereby be centered by means of the bulge 21.

Die elektrischen Anschlüsse 43 sind über einen Verbindungsbereich 42 mit Kontaktpins 41 elektrisch leitend verbunden. In dem Verbindungsbereich 42 befindet sich eine Molybdän-Folie, unter deren Verwendung ein unterschiedlicher thermischer Ausdehnungskoeffizient des Materials der elektrischen Anschlüsse 43 bzw. der Kontaktpins 41 und des Materials des Glaskolbens 20 ausgeglichen werden kann. Insbesondere kann der Glaskolben 20 bei dem gezeigten Beispiel mit Quarzglas gebildet sein. Im Fall von Hartglas ist es alternativ möglich, dass der Verbindungsbereich 42 lediglich einen Draht, beispielsweise einen Molybdän-Draht, einen Wolfram-Draht oder einen Eisen-Nickel-Kobalt-Draht umfasst, da bei Hartglas in Verbindung mit den genannten elektrisch leitfähigen Materialien keine Anpassung der thermischen Ausdehnungskoeffizienten erforderlich ist.The electrical connections 43 are connected in an electrically conductive manner to contact pins 41 via a connection area 42. In the connection area 42 there is a molybdenum foil, with the use of which a different coefficient of thermal expansion of the material of the electrical connections 43 or of the contact pins 41 and the material of the glass bulb 20 can be compensated. In particular, in the example shown, the glass bulb 20 can be formed with quartz glass. In the case of hard glass, it is alternatively possible that the connection area 42 only comprises a wire, for example a molybdenum wire, a tungsten wire or an iron-nickel-cobalt wire, since in hard glass in connection with the mentioned electrically conductive materials none Adjustment of the thermal expansion coefficient is required.

Anhand der schematischen Darstellungen der Figuren 2A, 2B und 2C ist ein weiteres Ausführungsbeispiel eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert. Das gezeigte LED-Leuchtmittel 1 kann ebenfalls in einer Stiftsockellampe, insbesondere eine bei 12 V betreibbare G4-Stiftsockellampe, als LED-Lampe zum Einsatz kommen. Die Figur 2A zeigt hierbei ein Schaltbild eines Leuchtmodul sein 100 für das LED Leuchtmittel 1, die Figur 2B zeigt eine schematische Skizze des Leuchtmodul 100 für das LED-Leuchtmittel 1 und die Figur 1C zeigt eine schematische Skizze des LED Leuchtmittels 1.Based on the schematic representations of the Figures 2A, 2B and 2C Another embodiment of an LED lamp 1 described here is explained in more detail. The LED lamp 1 shown can also be used as an LED lamp in a pin-base lamp, in particular a G4 pin-base lamp that can be operated at 12 V. The Figure 2A shows a circuit diagram of a light module 100 for the LED light source 1, the Figure 2B shows a schematic sketch of the lighting module 100 for the LED lighting means 1 and the Figure 1C shows a schematic sketch of the LED illuminant 1.

Im Gegensatz zu dem Leuchtmodul 100 der Figur 1A umfasst das Leuchtmodul 100 der Figur 2A lediglich drei Leuchtdiodenchips 11. Die übrige Konfiguration unterscheidet sich nicht von dem Leuchtmodul 100 der Figur 1A. Durch die Reduktion der Anzahl der Leuchtdiodenchips 11 ist ein Betrieb des Leuchtmoduls 100 auch bei niedrigen Spannungen, insbesondere bei 12 V, möglich.In contrast to the light module 100 of Figure 1A comprises the light module 100 of Figure 2A only three light-emitting diode chips 11. The rest of the configuration does not differ from the light-emitting module 100 of FIG Figure 1A . By reducing the number of light-emitting diode chips 11, it is possible to operate the light-emitting module 100 even at low voltages, in particular at 12 V.

Die Figur 2B zeigt eine schematische Darstellung der auf eine Leiterplatte 12 aufgebrachten elektronischen Komponenten der Figur 2A. Der Aufbau entspricht bei den übrigen Komponenten dem der Figur 1B. Die Leiterplatte 12 weist im Fall einer G4-Stiftsockellampe bevorzugt eine Breite von wenigstens 5 mm und höchstens 10 mm und eine Länge von wenigstens 5 mm und höchstens 20 mm. Die Kontaktstellen 44 sind 5 mm voneinander beabstandet.The Figure 2B FIG. 11 shows a schematic representation of the electronic components of FIG Figure 2A . The structure of the other components corresponds to that of Figure 1B . In the case of a G4 pin-base lamp, the circuit board 12 preferably has a width of at least 5 mm and at most 10 mm and a length of at least 5 mm and at most 20 mm. The contact points 44 are spaced 5 mm apart.

Die Figur 2C zeigt ein LED-Leuchtmittel 1, welches das in Zusammenhang mit den Figuren 2A und 2B beschriebene Leuchtmodul 100 beinhalten kann. Das Leuchtmodul 100 des LED-Leuchtmittels 1 ist rein beispielhaft als Glühwendel dargestellt. Das Leuchtmodul 100 umfasst jedoch die mittels Nacktmontage auf eine Leiterplatte 12 aufgebrachten Leuchtdiodenchips 11 der Figuren 2A und 2B. Das LED-Leuchtmittel 1 unterscheidet sich von dem LED-Leuchtmittel 1 die Figur 1C insbesondere durch einen teilweise kugelförmigen Aufbau des Glaskolbens 20 durch eine ausgeprägtere Ausbuchtung 21. Hierdurch ähnelt das LED-Leuchtmittel 1 noch mehr einer klassischen Halogen- oder Glühlampe.The Figure 2C shows an LED lamp 1, which in connection with the Figures 2A and 2B may include light module 100 described. The light module 100 of the LED light source 1 is shown purely by way of example as a filament. The light module 100, however, comprises the light-emitting diode chips 11 of FIG. 4 which are applied to a printed circuit board 12 by means of naked assembly Figures 2A and 2B . The LED light source 1 differs from the LED light source 1 Figure 1C in particular through a partially spherical structure of the glass bulb 20 through a more pronounced bulge 21. As a result, the LED illuminant 1 is even more similar to a classic halogen or incandescent lamp.

Das LED-Leuchtmittel 1 der Figur 1C kann selbstverständlich auch mit dem Leuchtmodul 100 der Figuren 2A und 2B bestückt werden und umgekehrt.The LED light source 1 of the Figure 1C can of course also with the light module 100 of the Figures 2A and 2B be populated and vice versa.

Anhand der schematischen Darstellungen der Figuren 3A und 3B ist ein weiteres Ausführungsbeispiel eines hier beschriebenen LED-Leuchtmittel 1 näher erläutert. Das gezeigte LED-Leuchtmittel 1 kann beispielsweise als Halogen-Röhrenlampe ausgebildet sein. Das LED-Leuchtmittel 1 weist eine längliche, stabähnliche Form auf. Als Leuchtmodul 100 kann sowohl das in Verbindung mit der Figur 1A als auch das Verbindung mit der Figur 2A beschriebene Leuchtmodul 100 verwendet werden. Aufgrund der länglichen Form sollte die Leiterplatte 12 ebenfalls länglich ausgebildet sein. Bevorzugt weist die Leiterplatte 12 eine Breite von 5 mm und eine Länge von wenigstens 50 mm und höchstens 100 mm auf.Based on the schematic representations of the Figures 3A and 3B Another embodiment of an LED lamp 1 described here is explained in more detail. The LED lamp 1 shown can be designed as a halogen tube lamp, for example. The LED lighting means 1 has an elongated, rod-like shape. The light module 100 can be used in conjunction with the Figure 1A as well as the connection with the Figure 2A described light module 100 can be used. Due to the elongated shape, the circuit board 12 should also be elongated. The printed circuit board 12 preferably has a width of 5 mm and a length of at least 50 mm and at most 100 mm.

Im Gegensatz zu den LED-Leuchtmitteln 1 der Figuren 1A bis 2C, bei denen die Kontaktpins 41 an derselben Seite des Glaskolben 20 angeordnet waren, sind die Kontaktpins 41 nun an gegenüberliegenden Seiten des Glaskolbens 20 angeordnet. Bevorzugt sind auch die Kontaktstellen 44 an gegenüberliegenden Seiten der Leiterplatte 12 angebracht (siehe Figur 3B).In contrast to the LED light sources 1 of the Figures 1A to 2C , in which the contact pins 41 were arranged on the same side of the glass bulb 20, the contact pins 41 are now arranged on opposite sides of the glass bulb 20. The contact points 44 are preferably also attached to opposite sides of the circuit board 12 (see FIG Figure 3B ).

Anhand der schematischen Darstellungen der Figuren 4A, 4B und 4C sind Ausführungsbeispiele einer hier beschriebenen LED-Lampe näher erläutert. Die LED-Lampen sind jeweils als LED-Retrofitlampen ausgebildet. Jede der LED-Lampen umfasst ein LED-Leuchtmittel 1 sowie eine Einhausung 60. Ferner sind Sockel 62 zum Einbringen der LED-Lampe in eine Lampenfassung und zur elektrischen Kontaktierung der LED-Lampe vorhanden.Based on the schematic representations of the Figures 4A, 4B and 4C embodiments of an LED lamp described here are explained in more detail. The LED lamps are each designed as LED retrofit lamps. Each of the LED lamps comprises an LED illuminant 1 and a housing 60. There are also bases 62 for inserting the LED lamp into a lamp socket and for making electrical contact with the LED lamp.

Bei der LED-Lampe der Figur 4A ist die Einhausung 60 eine Glashülle, die bevorzugt der Glashülle einer klassischen Glühbirne entspricht. In der Figur 4A ist die Einhausung 60 birnenförmig ausgebildet. Alternativ kann die Einhausung 60 auch zylinderförmig ausgebildet sein. Zwischen der Einhausung 60 und dem Glaskolben 20 des LED-Leuchtmittels 1 ist bevorzugt ein Wärmeleitgas eingebracht. Das LED-Leuchtmittel 1 ist mittels zweier Montagedrähte 61 mit dem Sockel 62 verbunden. Die Montagedrähte 61 dienen einerseits zur Halterung des LED-Leuchtmittels 1 und stellen andererseits eine elektrisch leitende Verbindung zwischen dem Sockel 62 und den Kontaktpins 41 des LED-Leuchtmittels 1 her.With the LED lamp of the Figure 4A the housing 60 is a glass envelope which preferably corresponds to the glass envelope of a classic light bulb. In the Figure 4A the housing 60 is pear-shaped. Alternatively, the housing 60 can also be designed in the shape of a cylinder. A heat-conducting gas is preferably introduced between the housing 60 and the glass bulb 20 of the LED lighting means 1. The LED illuminant 1 is connected to the base 62 by means of two mounting wires 61. The mounting wires 61 serve, on the one hand, to hold the LED illuminant 1 and, on the other hand, establish an electrically conductive connection between the base 62 and the contact pins 41 of the LED illuminant 1.

Die LED-Lampe der Figur 4B umfasst eine Einhausung 60, die als Reflektor einer (Halogen-)Reflektorlampe ausgebildet ist. Das LED-Leuchtmittel 1 (in der Figur 4B nicht zu sehen) befindet sich in einer Kavität der Einhausung 60. Die Einhausung 60 der LED-Lampe der Figur 4C ist mit einer Glashülle, die teilweise eine reflektierende Beschichtung zur Ausbildung eines Reflektors aufweist, gebildet. Die Einhausungen 60 der LED-Lampen der Figuren 4B und 4C können ebenfalls ein Wärmeleitgas in einem Zwischenraum zwischen der Einhausung 60 und dem LED-Leuchtmittel 1 enthalten.The LED lamp of the Figure 4B comprises a housing 60 which is designed as a reflector of a (halogen) reflector lamp. The LED lamp 1 (in the Figure 4B not visible) is located in a cavity of the housing 60. The housing 60 of the LED lamp Figure 4C is formed with a glass envelope which partially has a reflective coating to form a reflector. The housings 60 of the LED lamps Figures 4B and 4C can also contain a heat-conducting gas in an intermediate space between the housing 60 and the LED lighting means 1.

Anhand der schematischen Darstellungen der Figuren 5A bis 5E sind Ausführungsbeispiele eines Leuchtmoduls 100 für ein hier beschriebenes LED-Leuchtmittel 1 näher erläutert. In den Figuren 5A bis 5E ist jeweils skizzenhaft eine Leiterplatte 12 mit Kontaktstellen 44 und mit diesen elektrisch leitend verbundenen elektrischen Anschlüssen 43 dargestellt. Auf der Leiterplatte 12 befinden sich die Leuchtdiodenchips 11 sowie die elektronischen Komponenten, insbesondere der Glättungskondensator 30, des Leuchtmoduls 100 (in den Figuren 5A bis 5E nicht dargestellt). Die Leuchtmodule 100 der Figuren 5A bis 5E unterscheiden sich durch die elektrische Kontaktierung der Kontaktstellen 44.Based on the schematic representations of the Figures 5A to 5E embodiments of a lighting module 100 for an LED lighting means 1 described here are explained in more detail. In the Figures 5A to 5E a circuit board 12 with contact points 44 and electrical connections 43 connected to them in an electrically conductive manner is shown in sketch form. The light-emitting diode chips 11 and the electronic components, in particular the smoothing capacitor 30, of the light module 100 (in FIGS Figures 5A to 5E not shown). The light modules 100 of the Figures 5A to 5E differ in the electrical contacting of the contact points 44.

Bei dem Ausführungsbeispiel der Figur 5A sind die elektrischen Anschlüsse 43 als Drähte, die an die Kontaktstellen 44 angelötet sind, ausgebildet. Bevorzugt wird für das Löten ein Hochtemperatur-Lot (Schmelztemperatur über 400°C) in Verbindung mit einem Draht und Kontaktstellen, die jeweils eine hohe Schmelztemperatur aufweisen, verwendet. Insbesondere beträgt die Schmelztemperatur des Lots, des Draht und des Materials der Kontaktstellen 44 wenigstens 1800°C. Beispielsweise eignen sich als derartige Hochtemperatur-Materialien beschichtetes oder unbeschichtetes Molybdän, Niob, Tantal und/oder Edelstahl. Durch die Wahl eines solchen Materials kann sichergestellt werden, dass sich die mechanische Verbindung zwischen den elektrischen Anschlüssen 43 und den Kontaktstellen 44 beim Verschmelzen des Glaskolbens 20 um die elektrischen Anschlüsse 43 herum durch die damit verbundene Wärmeentwicklung nicht löst.In the embodiment of Figure 5A the electrical connections 43 are designed as wires that are soldered to the contact points 44. A high-temperature solder (melting temperature above 400 ° C.) in conjunction with a wire and contact points that each have a high melting temperature is preferably used for soldering. In particular, the melting temperature of the solder, the wire and the material of the contact points 44 is at least 1800 ° C. For example, coated or uncoated molybdenum, niobium, tantalum and / or stainless steel are suitable as such high-temperature materials. By choosing such a material, it can be ensured that the mechanical connection between the electrical connections 43 and the contact points 44 does not come loose when the glass bulb 20 fuses around the electrical connections 43 due to the heat development associated therewith.

Bei dem Ausführungsbeispiel der Figur 5B sind die als Draht ausgebildeten elektrischen Anschlüsse 43 mittels Vernietungen 441 mit den Kontaktstellen 44 verbunden. Für die Vernietung 441 werden in die Kontaktstellen 44 Löcher eingebracht und die elektrischen Anschlüsse 43 mittels eines Nietwerkzeugs mit den Kontaktstellen 44 vernietet. Die Kontaktstellen 44 und die elektrischen Anschlüsse 43 sind bevorzugt aus einem der zuvor beschriebenen Hochtemperatur-Materialien gebildet.In the embodiment of Figure 5B the electrical connections 43 designed as wire are connected to the contact points 44 by means of rivets 441. For the riveting 441, holes are made in the contact points 44 and the electrical connections 43 are riveted to the contact points 44 by means of a riveting tool. The contact points 44 and the electrical connections 43 are preferably formed from one of the high-temperature materials described above.

Das Leuchtmodul 100 der Figur 5C weist im Gegensatz zu den vorherigen Leuchtmodulen 100 keine elektrischen Anschlüsse 43 auf. Stattdessen ist direkt ein als Molybdän-Folie ausgebildeter Verbindungsbereich 42 mit den Kontaktstellen 44 verbunden. Die Molybdän-Folie ist insbesondere direkt auf die Kontaktstellen 44 gelötet, wodurch Material eingespart werden kann. Zur mechanischen Stabilisierung der dünnen Folie und/oder zur Verbesserung der Löt- bzw. Schweißeigenschaften kann diese beschichtet werden, beispielsweise mit Ruthenium. Die Verwendung einer Molybdän-Folie anstelle eines Drahtes ist insbesondere bei Quarzgläsern vorteilhaft.The light module 100 of the Figure 5C In contrast to the previous lighting modules 100, it has no electrical connections 43. Instead, a connection area 42 designed as a molybdenum foil is connected directly to the contact points 44. In particular, the molybdenum foil is soldered directly onto the contact points 44, so that material can be saved. To mechanically stabilize the thin film and / or to improve the soldering or welding properties, it can be coated, for example with ruthenium. The use of a molybdenum foil instead of a wire is particularly advantageous in the case of quartz glasses.

Bei dem in der Figur 5D gezeigten Ausführungsbeispiel weisen die elektrischen Anschlüsse 43 erste Anschlussbereiche 431 und zweite Anschlussbereiche 432 auf. Die elektrischen Anschlüsse 43 können hierbei als Draht ausgebildet sein, der an die Kontaktstellen 44 angelötet ist. Die zweiten Anschlussbereiche 432 sind doppelt gebogen ausgebildet. Hierdurch ist es möglich, die an der in der Figur 5D gezeigten Vorderseite der Leiterplatte 12 angebrachten Kontaktstellen 44 mit weiteren (in der Figur 5D nicht dargestellten) Kontaktstellen, die an der der Vorderseite abgewandten Rückseite der Leiterplatte 12 angebracht sind, elektrisch leitend zu verbinden. Dies ist insbesondere wenn beide Seiten der Leiterplatte 12 mit Leuchtdiodenchips 11 bestückt sind vorteilhaft, da mit jeweils einem Draht als elektrischer Anschluss 43 die Leuchtdiodenchips 11 an der Vorderseite und die Leuchtdiodenchips 11 an der Rückseite kontaktiert werden können.The one in the Figure 5D In the exemplary embodiment shown, the electrical connections 43 have first connection areas 431 and second connection areas 432. The electrical connections 43 can be designed as a wire which is soldered to the contact points 44. The second connection regions 432 are designed to be bent in a double manner. This makes it possible to use the Figure 5D The front side of the printed circuit board 12 shown in FIG Figure 5D not shown) contact points which are attached to the rear side of the printed circuit board 12 facing away from the front side to be connected in an electrically conductive manner. This is particularly advantageous if both sides of the circuit board 12 are equipped with light-emitting diode chips 11, since the light-emitting diode chips 11 on the front and the light-emitting diode chips 11 on the rear can be contacted with one wire each as the electrical connection 43.

Die Figur 5E zeigt ein Ausführungsbeispiel eines Leuchtmoduls 100, bei dem eine Kontaktstelle 44 an der Vorderseite der Leiterplatte 12 angebracht ist und die zweite Kontaktstelle 44 an der der Vorderseite abgewandten Rückseite der Leiterplatte 12 (in der Figur 5E nicht erkennbar). Diese Anordnung ist beispielsweise für eine beidseitige Bestückung der Leiterplatte 12 mit Leuchtdiodenchips 11 vorteilhaft. Die elektrischen Anschlüsse 43 können beispielsweise an die Kontaktstellen 44 angelötet werden.The Figure 5E shows an embodiment of a light module 100, in which a contact point 44 is attached to the front side of the circuit board 12 and the second contact point 44 is attached to the rear side of the circuit board 12 facing away from the front side (in Figure 5E not visible). This arrangement is advantageous, for example, for equipping the printed circuit board 12 with light-emitting diode chips 11 on both sides. The electrical connections 43 can be soldered to the contact points 44, for example.

Die Ausführungsbeispiele der Figuren 5A bis 5E können miteinander kombiniert werden. Beispielsweise kann der in der Figur 5C dargestellte Verbindungsbereich 42 in Verbindung mit einem der elektrischen Anschlüsse 43 der Figuren 5A, 5B, 5D oder 5E verwendet werden und/oder die zwei Anschlussbereiche 431, 432 der Figur 5D mittels der Vernietung 441 der Figur 5B mit den Kontaktstellen 44 verbunden werden.The embodiments of Figures 5A to 5E can be combined with each other. For example, the one in the Figure 5C connection area 42 shown in connection with one of the electrical connections 43 of Figures 5A, 5B, 5D or 5E are used and / or the two connection areas 431, 432 of the Figure 5D by means of riveting 441 of Figure 5B are connected to the contact points 44.

Die Figuren 6A, 6B und 6C zeigen jeweils Metallklemmen 444 zur Übertragung eines elektrischen Kontakts von der Vorderseite der Leiterplatte 12 zur Rückseite der Leiterplatte 12.The Figures 6A, 6B and 6C each show metal terminals 444 for transferring an electrical contact from the front side of the circuit board 12 to the rear side of the circuit board 12.

Derartige Metallklemmen 444 können in Verbindung mit den in den Figuren 5A bis 5E gezeigten Leuchtmodulen 100 verwendet werden, insbesondere wenn sowohl an der Vorderseite als auch an der Rückseite der Leiterplatte 12 Kontaktstellen 44 angebracht sind. Sie können auch zur Kontaktierung lediglich einer auf einer der beiden Seiten der Leiterplatte 12 liegenden Kontaktstellen dienen.Such metal clips 444 can be used in conjunction with the FIGS Figures 5A to 5E Light modules 100 shown are used, in particular when contact points 44 are attached both to the front and to the rear of the circuit board 12. They can also serve for contacting only one contact point lying on one of the two sides of the circuit board 12.

Die Metallklemmen 444 bestehen jeweils aus einem elektrisch leitfähigen Material, wie beispielsweise Edelstahl.The metal clips 444 are each made of an electrically conductive material such as stainless steel.

Die Metallklemmen 444 weisen jeweils Kontaktbereiche 446 und eine Öffnung 445, die zum Einbringen der Leiterplatte 12 ausgebildet ist, auf. Ein Durchmesser der Öffnung 445 entspricht im Wesentlichen der Dicke der Leiterplatte 12. Die Leiterplatte 12 wird in die Öffnung 445 geklemmt und die Kontaktbereiche 446 in direkten Kontakt mit den Kontaktstellen 44 gebracht, wodurch ein elektrischer Kontakt zwischen Kontaktstellen 44 an der Vorderseite und Kontaktstellen 44 an der Rückseite der Leiterplatte 12 hergestellt wird.The metal terminals 444 each have contact areas 446 and an opening 445 which is designed for inserting the printed circuit board 12. A diameter of the opening 445 corresponds essentially to the thickness of the circuit board 12. The circuit board 12 is clamped into the opening 445 and the contact areas 446 are brought into direct contact with the contact points 44, whereby an electrical contact between contact points 44 on the front side and contact points 44 the back of the circuit board 12 is made.

Die Metallklemme 444 der Figur 6A ist federartig ausgebildet und weist einen geschwungenen Bereich auf, der eine Klemmung erleichtert. Die Metallklemme 445 der Figur 6B ist an ihren der Öffnung 445 abgewandten Außenseiten planar ausgebildet, wodurch die Metallklemme 445 äußerst schmal ausgebildet sein kann.The metal clamp 444 of the Figure 6A is designed like a spring and has a curved area that provides a clamp facilitated. The metal clamp 445 of the Figure 6B is planar on its outer sides facing away from the opening 445, whereby the metal clamp 445 can be made extremely narrow.

Bei der Metallklemme 444 der Figur 6C wurden zwei Drahtbahnen, die insbesondere als Schutzleiter ausgebildet sein können, in einem Winkel zueinander angeordnet und an einem Verbindungspunkt 447 miteinander verschweißt. Hierdurch kann auf einfache Weise eine Metallklemme 444 bereitgestellt werden.With the metal clamp 444 of the Figure 6C two wire tracks, which can in particular be designed as protective conductors, were arranged at an angle to one another and welded to one another at a connection point 447. A metal clamp 444 can hereby be provided in a simple manner.

Anhand der Darstellungen der Figuren 7A bis 7E sind weitere Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert.Based on the representations of the Figures 7A to 7E further exemplary embodiments of an LED light source 1 described here are explained in more detail.

Die Figuren 7A und 7B zeigen jeweils Fotografien eines LED-Leuchtmittels 1, wobei die Oberseite des LED-Leuchtmittels 1 jeweils auf der linken Seite dargestellt ist und die Unterseite mit den elektrischen Anschlüssen 43 und den Kontaktpins 41 separat auf der rechten Seite. Die Figur 7A zeigt das LED-Leuchtmittel 1 in einer Seitenansicht und die Figur 7B zeigt das LED-Leuchtmittel 1 in einer Aufsicht.The Figures 7A and 7B each show photographs of an LED light source 1, the top side of the LED light source 1 being shown on the left side and the bottom side with the electrical connections 43 and the contact pins 41 separately on the right side. The Figure 7A shows the LED lamp 1 in a side view and FIG Figure 7B shows the LED lamp 1 in a plan view.

Das LED-Leuchtmittel 1 beinhaltet zwei Einbuchtungen 22 in dem Glaskolben 20. Die im Glaskolben 20 angeordneten Leuchtmodule 20 werden mittels der Einbuchtungen 22 gehaltert und zentriert. Die elektrische Kontaktierung erfolgt mittels eines Verbindungsbereichs 42 (siehe auch Figur 1C).The LED lighting means 1 contains two indentations 22 in the glass bulb 20. The light modules 20 arranged in the glass bulb 20 are held and centered by means of the indentations 22. The electrical contact is made by means of a connection area 42 (see also Figure 1C ).

Die Figuren 7C und 7D zeigen Vergrößerungen von Einbuchtungen 22 in dem Glaskolben 20. Die Einbuchtungen 22 sind als Kavitäten in dem Glaskolben gebildet. Zwischen den Einbuchtungen 22 ist ein Freiraum ausgebildet, in den die Leiterplatte 12 eingeklemmt werden kann.The Figures 7C and 7D show enlargements of indentations 22 in the glass bulb 20. The indentations 22 are formed as cavities in the glass bulb. A free space into which the circuit board 12 can be clamped is formed between the indentations 22.

Die Figur 7E zeigt eine schematische Skizze eines LED-Leuchtmittels 1. Es ist lediglich der Glaskolben 20 sowie die Kontaktpins 41 und der Verbindungsbereich 42 des LED-Leuchtmittels 1 dargestellt. Der Glaskolben 23 weist eine Kerbe 23 auf, die zur Zentrierung einer Leiterplatte 12 in dem Glaskolben 20 dient. Beispielsweise kann die Leiterplatte 12 mittels der Kerbe 23 in dem Innenraum des Glaskolbens 20 festgeklemmt werden.The Figure 7E shows a schematic sketch of an LED lighting means 1. Only the glass bulb 20 and the contact pins 41 and the connection area 42 of the LED lighting means 1 are shown. The glass bulb 23 has a Notch 23 which is used to center a printed circuit board 12 in the glass bulb 20. For example, the circuit board 12 can be clamped firmly in the interior of the glass bulb 20 by means of the notch 23.

Anhand der schematischen Skizzen der Figuren 8A und 8B sind Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert. Die Figuren 8A und 8B zeigen jeweils Vergrößerungen des Bereichs um eine Einbuchtung 22 in dem Glaskolben 20 (siehe auch Figuren 7A bis 7D).Using the schematic sketches of the Figures 8A and 8B Embodiments of an LED lamp 1 described here are explained in more detail. The Figures 8A and 8B each show enlargements of the area around an indentation 22 in the glass bulb 20 (see also Figures 7A to 7D ).

Zwischen den in den Figuren 8A und 8B gezeigten Einbuchtungen 22 befindet sich jeweils ein Zwischenraum, in dem sich die Leiterplatte 12 befindet. Ferner befindet sich der auf der Leiterplatte 12 aufgebrachte Glättungskondensator 30 zwischen den Einbuchtungen 22, wodurch der Glättungskondensator 30 quasi versteckt wird. In der Figur 8A ist der Glättungskondensator 30 nur an einer Seite der Leiterplatte 12, beispielsweise der Vorderseite, angebracht, während die Leiterplatte 12 der Figur 8B beidseitig, also an der Vorderseite und an der Rückseite der Leiterplatte 12, einen Glättungskondensator 30 aufweist.Between the in the Figures 8A and 8B The indentations 22 shown are each a space in which the circuit board 12 is located. Furthermore, the smoothing capacitor 30 applied to the printed circuit board 12 is located between the indentations 22, whereby the smoothing capacitor 30 is virtually hidden. In the Figure 8A the smoothing capacitor 30 is only attached to one side of the circuit board 12, for example the front side, while the circuit board 12 of the Figure 8B has a smoothing capacitor 30 on both sides, that is to say on the front side and on the rear side of the circuit board 12.

Die Leiterplatte 12 ist gemeinsam mit dem Glättungskondensator 30 in einen mechanisch flexiblen Vergusskörper 122 eingebettet. Der Vergusskörper 122 kann aus Silikon gebildet sein. Ferner kann der Vergusskörper 122 wellenlängenkonvertierende Partikel aufweisen, wodurch der Blick auf den Glättungskondensator 30 zusätzlich verdeckt wird.The circuit board 12 is embedded together with the smoothing capacitor 30 in a mechanically flexible potting body 122. The potting body 122 can be formed from silicone. Furthermore, the potting body 122 can have wavelength-converting particles, as a result of which the view of the smoothing capacitor 30 is additionally obscured.

Durch den Vergusskörper 122 können herstellungsbedingte Abweichungen der Dicke d der Leiterplatte 12 und/oder der Ausdehnung des Zwischenraums zwischen den Einbuchtungen 22 ausgeglichen werden. So wird der Vergusskörper 122 entsprechend der Abweichung mehr oder weniger stark komprimiert, wodurch eine Klemmung auch bei Abweichungen von einem optimalen Maß ermöglicht wird.By means of the potting body 122, manufacturing-related deviations in the thickness d of the circuit board 12 and / or in the expansion of the space between the indentations 22 can be compensated. In this way, the potting body 122 is compressed to a greater or lesser extent in accordance with the deviation, as a result of which clamping is made possible even when there are deviations from an optimal dimension.

Anhand der schematischen Darstellungen der Figuren 9A und 9B sind weitere Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert. Konkret werden mögliche Formen für den Glaskolben 20 gezeigt. In der Figur 9A weist der Glaskolben 20 die Form eines klassischen Halogen-Glaskolbens auf, nämlich zylinderartig mit einer Ausbuchtung 21 entlang einer Symmetrieachse des Glaskolbens 20. Ein Teil der Leiterplatte 12 des LED-Leuchtmittels 1 kann in der Ausbuchtung 21 angeordnet sein und im Bereich der Ausbuchtung 21 thermisch an den Glaskolben 20 angebunden sein, wodurch die Wärmeabfuhr verbessert werden kann ohne das Aussehen des LED-Leuchtmittels 1 negativ zu beeinflussen.Based on the schematic representations of the Figures 9A and 9B further exemplary embodiments of an LED light source 1 described here are explained in more detail. Possible shapes for the glass bulb 20 are specifically shown. In the Figure 9A the glass bulb 20 has the shape of a classic halogen glass bulb, namely cylinder-like with a bulge 21 along an axis of symmetry of the glass bulb 20. Part of the circuit board 12 of the LED lamp 1 can be arranged in the bulge 21 and thermally in the area of the bulge 21 be connected to the glass bulb 20, whereby the heat dissipation can be improved without adversely affecting the appearance of the LED lamp 1.

Wie in der Figur 9B gezeigt, kann der Glaskolben 20 alternativ quaderartig ausgebildet sein und einer rechteckigen Form der Leiterplatte 12 folgen. Allgemein kann dadurch, dass die Form des Glaskolbens 20 ähnlich zu der Form der Leiterplatte 12 gewählt wird die Wärmeableitung von der Leiterplatte 12 weg verbessert werden.Like in the Figure 9B As shown, the glass bulb 20 can alternatively have a cuboid shape and follow a rectangular shape of the printed circuit board 12. In general, the fact that the shape of the glass bulb 20 is selected to be similar to the shape of the printed circuit board 12 can improve the heat dissipation away from the printed circuit board 12.

Anhand der schematischen Darstellungen der Figuren 10A und 10B sind weitere Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert. Bei den dargestellten Ausführungsbeispielen entspricht die Breite b der Leiterplatte 12 in etwa dem größten Innendurchmesser r des Glaskolbens 20. Hierdurch kann die Leiterplatte 12 durch die Wände des Glaskolbens 20 gehaltert werden. Es ist möglich, dass die Leiterplatte 12 in einen mechanisch flexiblen Vergusskörper 122 eingebettet ist, wodurch Herstellungstoleranzen bei der Breite b der Leiterplatte 12 und/oder des größten Innendurchmessers r des Glaskolbens 20 ausgeglichen werden können.Based on the schematic representations of the Figures 10A and 10B further exemplary embodiments of an LED light source 1 described here are explained in more detail. In the exemplary embodiments shown, the width b of the printed circuit board 12 corresponds approximately to the largest inner diameter r of the glass bulb 20. As a result, the printed circuit board 12 can be held by the walls of the glass bulb 20. It is possible for the circuit board 12 to be embedded in a mechanically flexible potting body 122, as a result of which manufacturing tolerances in the width b of the circuit board 12 and / or the largest inner diameter r of the glass bulb 20 can be compensated.

Der Glaskolben 20 der Figur 10A weist einen zylindrischen Querschnitt auf und der Glaskolben 20 der Figur 10B weist einen kreisförmigen Querschnitt auf, wobei der Querschnitt jeweils senkrecht zu einer Symmetrieachse gebildet ist und der Glaskolben 20 jeweils eine zylindrische Form hat. Zur Maximierung der Abstrahlfläche entspricht die Breite der Leiterplatte b bei einem elliptischen Querschnitt bevorzugt der großen Halbachse der Ellipse, wodurch bei einer Klemmung der Leiterplatte 12 mittels der Wände des Glaskolbens 20 die maximale Breite des Glaskolbens 20 ausgenutzt werden kann.The glass bulb 20 of the Figure 10A has a cylindrical cross section and the glass bulb 20 of Figure 10B has a circular cross-section, the cross-section in each case being formed perpendicular to an axis of symmetry and the glass bulb 20 in each case having a cylindrical shape. To maximize the radiating surface, the width corresponds to Printed circuit board b with an elliptical cross section preferably of the large semiaxis of the ellipse, so that when the printed circuit board 12 is clamped by means of the walls of the glass bulb 20, the maximum width of the glass bulb 20 can be used.

Anhand der gemessenen Beleuchtungsstärken 71, 72 (in Lux) und Abstrahlcharakteristiken 711, 722 (auch genannt: Lichtstärkeverteilungskurven) der Figuren 11A und 11B bzw. 12A und 12C sind Ausführungsbeispiele eines hier beschriebenen LED-Leuchtmittels 1 näher erläutert. Die Messungen sind jeweils mit einem LED-Leuchtmittel 1, welches dem der Figuren 1A bis 1C ähnelt, durchgeführt worden. Die Figuren 11A und 12A zeigen Messungen im Fall eines LED-Leuchtmittels 1 mit einem regulären Glaskolben 20, während der Glaskolben 20 des LED-Leuchtmittels 1 für die Messungen der Figuren 11B und 12B mit einem Sandstrahl mattiert wurde.Using the measured illuminance levels 71, 72 (in lux) and radiation characteristics 711, 722 (also called: light intensity distribution curves) of the Figures 11A and 11B and 12A and 12C are exemplary embodiments of an LED lighting means 1 described here explained in more detail. The measurements are each with an LED lamp 1, which is the Figures 1A to 1C has been carried out. The Figures 11A and 12A show measurements in the case of an LED illuminant 1 with a regular glass bulb 20, while the glass bulb 20 of the LED illuminant 1 is used for the measurements Figures 11B and 12B was matted with a sandblast.

Die Figuren 11A und 11B zeigen jeweils eine erste Beleuchtungsstärke 71, die in der durch die lateralen Richtungen der Leiterplatte 12 aufgespannten Ebene (also in einer Aufsicht auf die Leuchtdiodenchips 11) gemessen wurde, und eine zweite Beleuchtungsstärke 72, die in einer durch vertikale Richtung und die entlang der Länge der Leiterplatte 12 verlaufende laterale Richtung der Leiterplatte 12 aufgespannten Ebene (also in einer Seitenansicht) gemessen wurde. Die Messung erfolgt in Abhängigkeit des jeweiligen Winkels α zur Vertikalen auf die Ebene. Die Figuren 12A und 12B zeigen eine erste Abstrahlcharakteristik 711 die in der Messebene der ersten Beleuchtungsstärke 71 gemessen wurde und eine zweite Abstrahlcharakteristik 722 die in der Messebene der zweiten Beleuchtungsstärke 72 gemessen wurde.The Figures 11A and 11B each show a first illuminance 71, which was measured in the plane spanned by the lateral directions of the circuit board 12 (i.e. in a plan view of the light-emitting diode chips 11), and a second illuminance 72, which was measured in a vertical direction and that along the length of the Circuit board 12 extending lateral direction of the circuit board 12 spanned plane (that is, in a side view) was measured. The measurement takes place as a function of the respective angle α to the vertical on the plane. The Figures 12A and 12B show a first emission characteristic 711 which was measured in the measuring plane of the first illuminance 71 and a second emission characteristic 722 which was measured in the measuring plane of the second illuminance 72.

Durch die Mattierung reduziert sich die gesamte Beleuchtungsstärke 71, 72 (insgesamt 211 Lumen für die Figuren 11A und 12A und 191 Lumen für die Figuren 11B und 12B, jeweils gemessen bei einer Leistung von 1,9 Watt). Die Abstrahlcharakteristik wird jedoch deutlich homogenisiert und verbessert. So liegt das linke Maximum der ersten Beleuchtungsstärke 71 in der Figur 11A bei etwa 250 Lux und das rechte Maximum der ersten Beleuchtungsstärke 71 bei etwa 53 Lux, also nur etwa 20 % des Wertes des linken Maximums. Die zweite Beleuchtungsstärke 72 ist in der Figur 11A im Mittel deutlich geringer als die erste Beleuchtungsstärke 71 (maximal etwa 51 Lux). In der Figur 11B liegt das linke Maximum der ersten Beleuchtungsstärke 71 bei etwa 215 Lux und das rechte Maximum bei etwa 73 Lux, also bei etwa 30 % des Wertes des linken Maximums. Die zweite Beleuchtungsstärke 72 ist im Vergleich zur Figur 11A deutlich erhöht (maximal bei etwa 83 Lux).The matting reduces the overall illuminance 71, 72 (a total of 211 lumens for the Figures 11A and 12A and 191 lumens for that Figures 11B and 12B , each measured at a power of 1.9 watts). However, the radiation characteristics are clearly homogenized and improved. The left maximum of the first illuminance 71 is in FIG Figure 11A at about 250 lux and the right maximum of the first illuminance 71 at about 53 lux, that is only about 20% of the value of the left maximum. The second illuminance 72 is in FIG Figure 11A on average significantly lower than the first illuminance 71 (maximum about 51 lux). In the Figure 11B the left maximum of the first illuminance 71 is approximately 215 lux and the right maximum is approximately 73 lux, that is approximately 30% of the value of the left maximum. The second illuminance 72 is compared to Figure 11A significantly increased (maximum at around 83 lux).

Diese Homogenisierung der Lichtstärkeverteilung ist auch in den Figuren 12A und 12B deutlich erkennbar. Insbesondere in der 0°-Ebene wird mehr Licht emittiert und die Lambert'sche Abstrahlcharakteristik der Leuchtdiodenchips 11 wird aufgeweitet. In der Figur 12A ist deutlich erkennbar, dass die Leuchtdiodenchips 11 lediglich an der Vorderseite der Leiterplatte 12 angebracht sind (höhere Abstrahlung im linken Bereich), während die Abstrahlung in der Figur 12B weniger einseitig erfolgt.This homogenization of the light intensity distribution is also in the Figures 12A and 12B clearly. In particular, more light is emitted in the 0 ° plane and the Lambertian radiation characteristic of the light-emitting diode chips 11 is widened. In the Figure 12A It can be clearly seen that the light-emitting diode chips 11 are only attached to the front side of the circuit board 12 (higher radiation in the left-hand area), while the radiation in the Figure 12B less unilateral.

Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Die Erfindung wird durch die Patentansprüche definiert.The description based on the exemplary embodiments is not restricted to the invention. The invention is defined by the claims.

BezugszeichenlisteList of reference symbols

11
LED-LeuchtmittelLED bulbs
1111
LeuchtdiodenchipLED chip
1212
LeiterplatteCircuit board
122122
VergusskörperPotting body
100100
LeuchtmodulLight module
2020th
GlaskolbenGlass bulb
2121st
Ausbuchtungbulge
2222nd
Einbuchtungindentation
2323
Kerbescore
3030th
GlättungskondensatorSmoothing capacitor
3131
Transistortransistor
3232
GleichrichterschaltungRectifier circuit
321321
Diodediode
3333
SpannungsquelleVoltage source
4141
KontaktpinContact pin
4242
VerbindungsbereichConnection area
4343
elektrischer Anschlusselectrical connection
431431
erster Anschlussbereichfirst connection area
432432
zweiter Anschlussbereichsecond connection area
4444
KontaktstelleContact point
441441
VernietungRiveting
444444
MetallklemmeMetal clamp
445445
Öffnungopening
446446
KontaktbereichContact area
447447
VerbindungspunktConnection point
2323
Kerbescore
6060
EinhausungEnclosure
6161
MontagedrähteMounting wires
6262
Sockelbase
7171
erste Beleuchtungsstärkefirst illuminance
7272
zweite Beleuchtungsstärkesecond illuminance
711711
erste Abstrahlcharakteristikfirst radiation characteristic
722722
zweite Abstrahlcharakteristiksecond radiation characteristic
dd
Dicke der LeiterplattePCB thickness
rr
größter Innendurchmesser des Glaskolbenslargest inner diameter of the glass bulb

Claims (14)

  1. LED lamp comprising an enclosure (60) and an LED lighting means (1) arranged within the enclosure (60), having a glass bulb (20), a lighting module (100) with at least one light-emitting diode chip (11), which is mounted to a printed circuit board (12) as a chip on board assembly, and driver electronics of the lighting module (100), the lighting module (100) and the driver electronics being accommodated in the glass bulb (20)
    characterized in that
    the glass bulb (20) has an indentation (22) which projects into the interior of the glass bulb (20) and is in thermal contact with the printed circuit board (12).
  2. LED lamp according to the preceding claim, wherein at least a part of the driver electronics, in particular the entire driver electronics, is mounted to the printed circuit board (12) as a chip on board assembly.
  3. LED lamp according to one of the preceding claims, wherein the drive electronics comprise a smoothing capacitor (30) which is connected in parallel with the at least one light emitting diode chip (11).
  4. LED lamp according to one of the preceding claims, wherein a thickness (d) of the printed circuit board (12) is at most 400 µm.
  5. LED lamp according to one of the preceding claims, wherein the printed circuit board (12) is designed to be transparent and/or wherein an interior of the glass bulb (20) is filled with a heat conducting gas and/or wherein the glass bulb (20) is formed with frosted glass and/or is designed to be frosted.
  6. LED lamp according to one of the preceding claims, wherein the printed circuit board (12) and/or the smoothing capacitor (30) is/are thermally connected to the glass bulb (20) and/or wherein the printed circuit board (12) and/or the smoothing capacitor (30) is/are at least partially embedded in a mechanically flexible encapsulation body (122).
  7. LED lamp according to the preceding claim, wherein the indentation (22) is in thermal contact with the printed circuit board (12) and the smoothing capacitor (30).
  8. LED lamp according to one of the preceding claims, wherein the glass bulb (20) has two opposing indentations (22) and the printed circuit board (12) is clamped between the two indentations (22).
  9. LED lamp according to one of the preceding claims, wherein the glass bulb (20) has a notch (23) projecting into the interior of the glass bulb (20), which extends along an axis of symmetry of the glass bulb (20) and is adapted to center the lighting module (100) within the glass bulb (20).
  10. LED lamp according to one of the preceding claims, wherein the printed circuit board (12) has a width (b) which substantially corresponds to a largest inner diameter (r) of the glass bulb (20).
  11. LED lamp according to one of the preceding claims, wherein the glass bulb (20) has a bulge (21) formed convexly with respect to the interior of the glass bulb (20) and wherein the printed circuit board (12) and/or the smoothing capacitor (30) are at least partially accommodated in the bulge (21).
  12. LED lamp according to one of the preceding claims, wherein a contact point (44) is provided on the printed circuit board (12), which is contacted by means of an electrical connection (43), wherein the contact point (44) is preferably formed by a high-temperature material, particularly preferably by uncoated molybdenum, niobium, tantalum and/or stainless steel or by molybdenum, niobium, tantalum and/or stainless steel coated with nickel, platinum, ruthenium, silver, tin, zinc, copper.
  13. LED lamp according to claim 12, wherein the electrical connection (43) is formed by a metal terminal (444), wherein the metal terminal (444) has an opening (445) in which the printed circuit board (12) is clamped, wherein a contact area (446) of the metal terminal (444) is brought into direct contact with the contact point (44) of the printed circuit board (12).
  14. The LED lamp according to claim 13, wherein the metal terminal (444) is formed by two wire paths welded together at a junction point (447).
EP18171735.6A 2017-05-12 2018-05-11 Led lamp Active EP3404320B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017110378.3A DE102017110378B4 (en) 2017-05-12 2017-05-12 LED lamp with LED bulbs

Publications (2)

Publication Number Publication Date
EP3404320A1 EP3404320A1 (en) 2018-11-21
EP3404320B1 true EP3404320B1 (en) 2020-12-09

Family

ID=62152398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18171735.6A Active EP3404320B1 (en) 2017-05-12 2018-05-11 Led lamp

Country Status (4)

Country Link
US (1) US10823338B2 (en)
EP (1) EP3404320B1 (en)
CN (1) CN108870116B (en)
DE (1) DE102017110378B4 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115885A1 (en) 2017-07-14 2019-01-17 Ledvance Gmbh LED bulb and LED bulb
TWI638116B (en) * 2017-09-01 2018-10-11 液光固態照明股份有限公司 Led light bulb and manufacturing method thereof
DE102019110222A1 (en) * 2019-02-22 2020-08-27 Ledvance Gmbh LED light with reduced stroboscopic flicker
CN211450400U (en) * 2019-12-03 2020-09-08 漳州立达信光电子科技有限公司 LED bulb
CN111883636A (en) * 2019-12-06 2020-11-03 中山市木林森电子有限公司 Manufacturing method of LED lamp filament
CN111810855A (en) * 2020-07-07 2020-10-23 弘森(柬埔寨)电器有限公司 Anti-pull-off decorative lamp and anti-pull-off lamp string
CN212617740U (en) * 2020-07-22 2021-02-26 漳州冠誉灯饰有限公司 Decorative bulb with inner lens
CN113503472B (en) * 2021-06-30 2023-01-03 常州市丰豪照明电器有限公司 Manufacturing method of LEDG9 bulb
CN217763108U (en) * 2022-06-22 2022-11-08 任菊辉 Intelligent multicolor LED dimming lamp piece module, bulb and lamp string

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271972A1 (en) * 2012-04-13 2013-10-17 Cree, Inc. Gas cooled led lamp
US20150109758A1 (en) * 2012-10-18 2015-04-23 GE Lighting Solutions, LLC Led lamp with nd-glass bulb

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9004495U1 (en) 1990-04-20 1990-06-21 Norka Norddeutsche Kunststoff- und Elektro-Gesellschaft Stäcker & Co mbH, 2817 Dörverden Light for low ambient temperatures
US5688042A (en) 1995-11-17 1997-11-18 Lumacell, Inc. LED lamp
US6525668B1 (en) 2001-10-10 2003-02-25 Twr Lighting, Inc. LED array warning light system
DE20214661U1 (en) * 2002-09-06 2002-12-05 Signal Construct Elektro Optis Festoon
AU2009203998B2 (en) * 2008-01-10 2014-03-20 Feit Electric Company, Inc. LED lamp replacement of low power incandescent lamp
JP2010015754A (en) * 2008-07-02 2010-01-21 Panasonic Corp Lamp and lighting device
WO2010110652A1 (en) 2009-03-23 2010-09-30 Eldolab Holding B.V. Led lamp comprising light guide including first and second diffusing surfaces
DE102009056115B4 (en) 2009-11-30 2016-08-25 Tridonic Jennersdorf Gmbh Retrofit LED lamp with double-layer heat sink
GB201014056D0 (en) 2010-08-23 2010-10-06 Litonics Ltd Heatsink for lighting device
DK2535640T4 (en) 2010-09-08 2020-09-28 Zhejiang Ledison Optoelectronics Co Ltd LED bulb and LED lighting strip for emitting light over 4 PI
JP4995997B2 (en) 2010-09-29 2012-08-08 パナソニック株式会社 lamp
DE202010013037U1 (en) * 2010-12-01 2011-02-24 Harvatek Corp. Dismountable luminous tube for lighting purposes
US9004705B2 (en) 2011-04-13 2015-04-14 Intematix Corporation LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
US9091398B2 (en) * 2011-05-20 2015-07-28 Panasonic Intellectual Property Management Co., Ltd. Light
TWM420647U (en) * 2011-05-26 2012-01-11 Lighting Device Technologies Corp LED lamp tube
CN202546363U (en) * 2012-03-21 2012-11-21 苏州东山精密制造股份有限公司 Linear tubular LED (light emitting diode) lamp
US8757839B2 (en) * 2012-04-13 2014-06-24 Cree, Inc. Gas cooled LED lamp
US9410687B2 (en) * 2012-04-13 2016-08-09 Cree, Inc. LED lamp with filament style LED assembly
US9395074B2 (en) * 2012-04-13 2016-07-19 Cree, Inc. LED lamp with LED assembly on a heat sink tower
JP5858854B2 (en) 2012-04-16 2016-02-10 シチズンホールディングス株式会社 LED module
PL2929238T3 (en) * 2012-12-05 2018-08-31 Philips Lighting Holding B.V. Flat lighting device
US9677738B2 (en) 2013-03-15 2017-06-13 1947796 Ontario Inc. Optical device and system for solid-state lighting
US9702510B2 (en) * 2013-05-24 2017-07-11 Yjb Led LED light bulb
US9080733B2 (en) 2013-10-11 2015-07-14 LED Waves, Inc. Method of making an LED lamp
US20150109813A1 (en) 2013-10-23 2015-04-23 Heathco, Llc Light with Asymmetric Distribution Pattern
JP6549595B2 (en) * 2014-01-30 2019-07-24 シグニファイ ホールディング ビー ヴィ Lighting device
JP5929958B2 (en) * 2014-05-07 2016-06-08 株式会社デンソー Electronic equipment
US9538623B2 (en) * 2014-05-12 2017-01-03 Lg Electronics Inc. Lighting device
US9488352B2 (en) 2014-05-28 2016-11-08 Technical Consumer Products, Inc. Radio frequency (RF) signal pathway for a lamp antenna
CN204227201U (en) * 2014-11-03 2015-03-25 杭州云博科技有限公司 The three-dimensional syndeton of the circuit board of underwater LED lamp
US9759389B2 (en) * 2014-12-09 2017-09-12 Cree, Inc. LED based candelabra lamp
CN107580668A (en) * 2015-03-12 2018-01-12 通用电气照明解决方案有限责任公司 LED with scope
US9958116B2 (en) 2015-03-20 2018-05-01 Eye Lighting International Of North America, Inc. Glass jacketed LED lamp
EP3278019A1 (en) * 2015-03-30 2018-02-07 Philips Lighting Holding B.V. Lighting device with improved thermal performancespec
US9420644B1 (en) * 2015-03-31 2016-08-16 Frank Shum LED lighting
DE102015206797A1 (en) * 2015-04-15 2016-10-20 Osram Gmbh Lamp with LEDs
US10203103B2 (en) 2016-02-08 2019-02-12 Cree, Inc. LED luminaire having enhanced thermal management
DE102017115885A1 (en) 2017-07-14 2019-01-17 Ledvance Gmbh LED bulb and LED bulb

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271972A1 (en) * 2012-04-13 2013-10-17 Cree, Inc. Gas cooled led lamp
US20150109758A1 (en) * 2012-10-18 2015-04-23 GE Lighting Solutions, LLC Led lamp with nd-glass bulb

Also Published As

Publication number Publication date
DE102017110378A1 (en) 2018-11-15
CN108870116B (en) 2021-06-04
EP3404320A1 (en) 2018-11-21
DE102017110378B4 (en) 2023-03-02
CN108870116A (en) 2018-11-23
US20180328544A1 (en) 2018-11-15
US10823338B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
EP3404320B1 (en) Led lamp
WO2018091149A1 (en) Illuminant for an led lamp, and led lamp
CN206669380U (en) LEDbulb lamp
DE102017115885A1 (en) LED bulb and LED bulb
EP2287925B1 (en) Expansion compensated optoelectronic semiconductor device, in particular UV emitting diode
DE102014109718B4 (en) Light-emitting device and lighting device using the same
CN103069593A (en) Mounting board, light emitting device and lamp
DE112004002083T5 (en) Light-emitting device
EP2293356A2 (en) LED package structure for increasing heat-dissipating and light-emitting efficiency and method for manufacturing the same
DE102006015606A1 (en) Semiconductor lamps and light panels with such
EP2156469A1 (en) Illuminant
DE102012108719A1 (en) Reflector for lighting fixture e.g. lamp, has transparent layer that is provided with metallic support layer in regions provided with electrical connection to light source, and electrical circuit is used as connection structure
US7053554B2 (en) Bulb-shaped fluorescent lamp and illumination device
US10168030B2 (en) LED lamp with fusible metal heat management elements
WO2021121943A1 (en) Halogen lamp replacement
WO2016165871A1 (en) Luminous means having leds
CN204088363U (en) Light-emitting device
WO2008012257A1 (en) Light source and fluorescent material layer for a light source
DE102010017710A1 (en) Carrier element for LED module
WO2011101257A1 (en) Light-emitting means and method for producing same
DE102018116933A1 (en) External control unit for an LED tube lamp
DE102011086365A1 (en) LED assembly for retrofit LED lamp, has strip conductor that is electrically connected with the LED chip
JP2004165122A (en) Compact self-ballasted fluorescent lamp and lighting equipment
DE19925406A1 (en) Gas discharge lamp, in particular low-pressure gas discharge lamp
DE102014204116A1 (en) LED module with substrate body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190515

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191213

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 3/06 20180101ALI20200526BHEP

Ipc: F21V 19/00 20060101ALI20200526BHEP

Ipc: F21Y 115/10 20160101ALN20200526BHEP

Ipc: F21V 29/506 20150101ALI20200526BHEP

Ipc: F21V 23/00 20150101AFI20200526BHEP

Ipc: F21K 9/232 20160101ALI20200526BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1343829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003227

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

26N No opposition filed

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209