EP3404268A1 - Ventilation unit for refrigeration systems - Google Patents

Ventilation unit for refrigeration systems Download PDF

Info

Publication number
EP3404268A1
EP3404268A1 EP18172026.9A EP18172026A EP3404268A1 EP 3404268 A1 EP3404268 A1 EP 3404268A1 EP 18172026 A EP18172026 A EP 18172026A EP 3404268 A1 EP3404268 A1 EP 3404268A1
Authority
EP
European Patent Office
Prior art keywords
fan
ventilation unit
heat exchanger
designed
diagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18172026.9A
Other languages
German (de)
French (fr)
Other versions
EP3404268B1 (en
Inventor
Oliver Haaf
Thomas Heli
Daniel Gebert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3404268A1 publication Critical patent/EP3404268A1/en
Application granted granted Critical
Publication of EP3404268B1 publication Critical patent/EP3404268B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/06Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0681Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the invention relates to a ventilation unit designed for use and for arrangement on a refrigeration system.
  • the necessary defrosting is generally a disadvantageous, expensive and as far as possible avoidable disturbance process of the actual operation.
  • the invention is therefore based on the object to provide a ventilation unit, which overcomes the above disadvantages and can be operated more efficiently and with a lower defrost frequency.
  • a ventilation unit is designed for use and for arrangement on a refrigeration system, with a fan and a fan arranged in series in the heat exchanger, wherein the fan is formed and arranged opposite the heat exchanger, during operation, an air flow through the heat exchanger and out of the To promote ventilation unit out.
  • the fan is inventively designed as a diagonal fan. In the diagonal fan, the air volume flow is sucked axially during operation and blown diagonally at an angle relative to the axis of rotation of the diagonal fan.
  • the diagonal fan is characterized in an advantageous manner by a high air flow even at higher back pressure. In this case, it is ensured that even with the counter pressures occurring maximally in the operation, the discharge direction of the diagonal fan is always diagonal and not radial. Its throwing distance remains essentially unchanged, even in the case of a continuously increasing heat exchanger, and a thermal short circuit through an outward return flow to the intake area of the heat exchanger is prevented. In addition, a resulting greater icing of the heat exchanger is avoided. The defrost cycles of the heat exchanger are extended.
  • the diagonal fan is designed to suck the air flow axially and diagonally at an angle of 10 - 80 °, more preferably an angle of 25 - 60 °, to blow out from its axis of rotation.
  • the discharge angle of the diagonal fan a priori provides an average value which can be maintained over the operation.
  • a favorable embodiment of the ventilation unit provides that the diagonal fan is designed and arranged in the ventilation unit, to suck in the air volume flow through the heat exchanger and to blow it out of the ventilation unit into a free environment, for example in a cold room.
  • the diagonal fan is therefore fluidly downstream of the heat exchanger.
  • the heat exchanger generates in operation by progressive icing for the diagonal fan from a Popeströmungswiderstand having a first resistance characteristic (A) to an icing resistance with a second resistance characteristic (B) increasing flow resistance.
  • the diagonal fan is designed such that its highest efficiency range is in a range of a third resistance characteristic (C) of the heat exchanger, the third resistance characteristic lying between the first and the second resistance characteristic (A, B) ,
  • the resistance characteristic curves (A, B, C) are characterized by a backpressure psf [Pa] increasing over a conveyed air volume qv [m 3 / h].
  • the outflow remains always diagonal even at maximum back pressures and does not change in a radial direction, such as axial fans.
  • the heat exchanger is designed, the air volume flow to cool to a conveyor temperature of less than or equal to 15 ° C, in particular 5 ° C to form a cold air flow rate, the cold air flow is directly sucked and blown by the diagonal fan. Between the heat exchanger and the diagonal fan no cold air volume flow thermally influencing components are provided, the suction through the diagonal fan is directly downstream of the heat exchanger.
  • the ventilation unit is characterized in that the diagonal fan and the heat exchanger are connected to one another by a housing, wherein the housing forms a closed flow channel for the air volume flow or the cold air volume flow.
  • the ventilation unit is designed as an integral unit for the holistic arrangement and attachment to the refrigeration system.
  • the integral assembly can be pre-assembled and delivered as a whole. At the cold rooms only the electrical connection has to be done. The error probability during assembly is thereby reduced.
  • the heat exchanger is designed as an evaporator.
  • the ventilation unit further comprises a (flow) guide device, which is arranged in a blow-out section of the diagonal fan and designed to deflect the volume of air blown from the diagonal fan in the diagonal direction in an axial direction.
  • the diagonal discharge direction of the diagonal fan can thereby be deflected in an axial Ausblasströmungsraum and thus the throw of the diagonal fan can be increased.
  • the guide device can be realized by parts of the housing or by additionally attachable to the diagonal fan guide body such as baffles or the like.
  • the guide is integrally formed on the diagonal fan, so that the number of parts is minimized.
  • Ausblas well can be arranged on the diagonal fan in addition a protective grid or intervention protection.
  • the guide partially converts the swirl of the air volume flow generated by the diagonal fan into static pressure and thereby increases the pressure increase, efficiency and throw of the diagonal fan.
  • the diagonal fan is formed in a variant with a co-rotating, the fan blades covering the cover plate.
  • the ventilation unit can furthermore be designed in such a way that the flow guidance takes place in the stationary housing and the diagonal fan has an axial fan-like wing end. Between the impeller and the fan blades then a gap is provided.
  • FIG. 1 The basic structure of the ventilation unit according to the invention is shown schematically, but to illustrate the fluidic problem with an axial fan 11 following a heat exchanger 10. Shown is an icy state of the heat exchanger 10 and a resulting substantially radial outflow of the axial fan 11. About the with Arrows shown flow path 8, it comes to the thermal short circuit, in the blown air of the axial fan 11 back to the intake of the heat exchanger. In addition, there is a discharge-side inflow 9 in the hub region of the axial fan 11, which is superimposed by the outflow. From the actual, provided in the unvereisten state purely axial outflow, as exemplified in FIG. 2 is shown in the iced state of the heat exchanger, nothing or hardly anything left.
  • FIG. 3 schematically a ventilation unit 1 according to the invention in the icy state with a diagonal fan 2 and a arranged in series and designed as an evaporator heat exchanger 3 is shown.
  • the heat exchanger 3 and the diagonal fan are connected to each other via a flow channel forming housing 5. Both the diagonal fan 2 and the heat exchanger 3 are inserted and fixed in the housing 5, so that the ventilation unit is an integral structural unit.
  • a protective grid 19 is arranged at the blow-out portion of the diagonal fan 2.
  • the ventilation unit 1 is designed in its schematically illustrated form for use and for arrangement on a refrigeration system.
  • the diagonal discharge path 7 is marked with arrows.
  • the heat exchanger 3 cools the air volume flow to a conveyor temperature of less than or equal to 15 ° C, in particular less than or equal to 5 ° C, to form the cold air volume flow, which is sucked directly from the diagonal fan 2.
  • FIG. 3 with the diagonal fan 2 is opposite to in FIG. 1 shown embodiment with an axial fan 10 in a manner interpretable, as in FIG. 4 is shown on the basis of a graph of the amount of air delivered qv [m 3 / h] against the pressure psf [Pa].
  • the fan characteristics 11 ', 2' of the axial fan 11 are made FIG. 1 and the diagonal fan 2 off FIG. 3 and three due to different conditions of icing of the heat exchanger 3 resulting resistance characteristics A, B, C located.
  • the flow resistance of the heat exchanger 3 increases in operation by progressive icing of an output flow resistance with a first resistance characteristic A for the diagonal fan to a glacial resistance with a second resistance curve B. In the state of the second resistance characteristic, a defrosting process of the heat exchanger 3 is initiated.
  • the diagonal blower 2 is designed, by its diagonal blow-off direction, to have its highest efficiency range in a region of the third resistance characteristic C of the heat exchanger 3, the third resistance characteristic C lying between the first and second resistance characteristics A, B.
  • the resistance characteristics A, B, C are characterized by a backpressure psf [Pa] which increases over a conveyed air volume qv [m 3 / h].
  • the ventilation unit 1 according to the invention with the diagonal fan 2 can be operated over a longer period of time and with higher efficiency in the region of the resistance characteristic C with a correspondingly large flow rate in comparison with a construction with the axial fan 11, which works only in the area of the resistance characteristic A.
  • the absolute difference is characterized by the fan characteristics 11 ', 2' of the axial fan 11 and diagonal fan 2 in the diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

Die Erfindung betrifft eine Ventilationseinheit (1) ausgebildet zum Einsatz und zur Anordnung an einer Kälteanlage, mit einem Lüfter und einem zu dem Lüfter in Reihe angeordneten Wärmeübertrager (3), wobei der Lüfter ausgebildet und gegenüber dem Wärmeübertrager (3) angeordnet ist, im Betrieb einen Luftvolumenstrom durch den Wärmeübertrager (3) hindurch und aus der Ventilationseinheit heraus zu fördern, dadurch gekennzeichnet, dass der Lüfter als Diagonallüfter (2) ausgebildet ist und den Luftvolumenstrom im Betrieb axial ansaugt und diagonal in einem Winkel gegenüber seiner Rotationsachse (RA) ausbläst.

Figure imgaf001
The invention relates to a ventilation unit (1) designed for use and for arrangement on a refrigeration system, with a fan and a heat exchanger (3) arranged in series with the fan, the fan being designed and arranged opposite the heat exchanger (3) during operation to convey an air volume flow through the heat exchanger (3) and out of the ventilation unit, characterized in that the fan is designed as a diagonal fan (2) and axially draws in the air volume flow during operation and blows diagonally at an angle relative to its axis of rotation (RA).
Figure imgaf001

Description

Die Erfindung betrifft eine Ventilationseinheit ausgebildet zum Einsatz und zur Anordnung an einer Kälteanlage.The invention relates to a ventilation unit designed for use and for arrangement on a refrigeration system.

Beim Einsatz von Ventilationseinheiten mit Lüfter und Wärmeübertagern, die häufig auch als Wärmetauscher bezeichnet werden, an Kälteanlagen ist problematisch, dass der Wärmeübertrager während des Betriebs kontinuierlich zunehmend vereist und mithin sein Strömungswiderstand zunimmt. Der nachgeschaltete Lüfter muss gegen den zunehmenden Strömungswiderstand arbeiten, wodurch sich sein Betriebszustand verändert. Herkömmlicherweise werden bei derartigen Ventilationseinheiten Axiallüfter bzw. Axialventilatoren eingesetzt, die auf den Strömungswiderstand des Wärmetauschers ohne Vereisung ausgelegt werden. Daraus resultiert, dass der Lüfter nur kurzzeitig im Bereich optimaler Effizienz betrieben wird, jedoch mit zunehmender Vereisung des Wärmeübertragers und dessen steigendem Strömungswiderstand sich der Betriebszustand des Lüfters aus dem Bereich des Wirkungsgradoptimums heraus bewegt. Aufgrund des erhöhten Strömungswiderstands verändert sich zudem die Abströmrichtung von einer axialen in eine mehr und mehr radiale Richtung.When using ventilation units with fans and heat exchangers, which are often referred to as heat exchangers, to refrigeration systems is problematic that the heat exchanger during operation continuously increasingly iced and thus increases its flow resistance. The downstream fan must be against the increasing flow resistance work, which changes its operating state. Conventionally, axial fans or axial fans are used in such ventilation units, which are designed for the flow resistance of the heat exchanger without icing. As a result, the fan is operated only for a short time in the range of optimum efficiency, but with increasing icing of the heat exchanger and its increasing flow resistance, the operating state of the fan moves out of the range of optimum efficiency. Due to the increased flow resistance, the outflow direction also changes from an axial to a more and more radial direction.

Dabei ist neben der aus wirtschaftlicher Sicht verschlechterten Anlageneffizienz auch aus strömungstechnischer Sicht nachteilig, da sich die Wurfweite des Lüfters stark reduziert, wodurch es zu einer ungleichförmigen Temperaturverteilung in dem an den Lüfter angrenzenden Kühlraum kommt. Zudem wird radial ausgeblasene Luft anteilig direkt um den zunehmend vereisenden Wärmeübertrager zurück zu dessen Einlaufbereich gefördert und erneut durch den Wärmeübertrager hindurchgeführt, wodurch es zu einem thermischen Kurzschluss kommt.In addition to the deteriorated from an economic point of view system efficiency is also disadvantageous from a fluid engineering point of view, since the throwing distance of the fan is greatly reduced, resulting in a non-uniform temperature distribution in the adjoining the cooling fan room. In addition, radially blown air is proportionately conveyed directly to the increasingly icing heat exchanger back to the inlet region and again passed through the heat exchanger, resulting in a thermal short circuit.

Typischerweise befindet sich am Lüfter ausblasseitig ein Schutzgitter. In diesem Bereich mischt sich bei der zunehmend radialen Abströmung des Axiallüfters die sehr kalte Luft mit der Luft des angrenzenden Kühlraums (Rückströmung im Nabenbereich). In Anwendungen mit hoher Luftfeuchtigkeit kann sich Eis oder schneeähnliches Material an den Lüfterschaufeln oder dem Schutzgitter festsetzen, wodurch sich der Wirkungsgrad und die Strömungscharakteristik ebenfalls verschlechtern. Zudem kann beim Abtauen des Wärmeübertragers und stillstehendem Lüfter das Eis auf den Wandring des Lüfters fallen und durch Vereisung ein Wiederanlaufen des Lüfters verhindern.Typically, there is a protective grille on the exhaust side of the fan. In this area mixes with the increasingly radial outflow of the axial fan, the very cold air with the air of the adjacent refrigerator (backflow in the hub area). In high humidity applications, ice or snow-like material can adhere to the fan blades or guard, which also degrades efficiency and flow characteristics. In addition, when the heat exchanger defrosts and the fan is stationary, the ice can fall onto the wall ring of the fan and prevent the fan from restarting due to icing.

Das notwendige Abtauen ist generell ein nachteiliger, aufwendiger und so weit als möglich zu vermeidender Störungsprozess des eigentlichen Betriebs.The necessary defrosting is generally a disadvantageous, expensive and as far as possible avoidable disturbance process of the actual operation.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Ventilationseinheit bereit zu stellen, welche die vorstehenden Nachteile überwindet und effizienter sowie mit geringerer Abtauhäufigkeit betrieben werden kann.The invention is therefore based on the object to provide a ventilation unit, which overcomes the above disadvantages and can be operated more efficiently and with a lower defrost frequency.

Diese Aufgabe wird durch die Merkmalskombination gemäß Patentanspruch 1 gelöst.This object is achieved by the feature combination according to claim 1.

Erfindungsgemäß wird eine Ventilationseinheit ausgebildet zum Einsatz und zur Anordnung an einer Kälteanlage vorgeschlagen, mit einem Lüfter und einem zu dem Lüfter in Reihe angeordneten Wärmeübertrager, wobei der Lüfter ausgebildet und gegenüber dem Wärmeübertrager angeordnet ist, im Betrieb einen Luftvolumenstrom durch den Wärmeübertrager hindurch und aus der Ventilationseinheit heraus zu fördern. Der Lüfter ist erfindungsgemäß als Diagonallüfter ausgebildet. Bei dem Diagonallüfter wird der Luftvolumenstrom im Betrieb axial angesaugt und diagonal in einem Winkel gegenüber der Rotationsachse des Diagonallüfters ausgeblasen.According to the invention, a ventilation unit is designed for use and for arrangement on a refrigeration system, with a fan and a fan arranged in series in the heat exchanger, wherein the fan is formed and arranged opposite the heat exchanger, during operation, an air flow through the heat exchanger and out of the To promote ventilation unit out. The fan is inventively designed as a diagonal fan. In the diagonal fan, the air volume flow is sucked axially during operation and blown diagonally at an angle relative to the axis of rotation of the diagonal fan.

Der Diagonalventilator zeichnet sich in vorteilhafter Weise durch eine hohe Luftleistung auch bei höherem Gegendruck aus. Dabei ist sichergestellt, dass auch bei den im Betrieb maximal auftretenden Gegendrücken die Ausblasrichtung des Diagonalventilators stets diagonal und nicht radial ist. Seine Wurfweite bleibt auch bei einem kontinuierlich zunehmend vereisenden Wärmeübertrager im Wesentlichen unverändert groß, ein thermischer Kurzschluss durch eine außenseitige Rückströmung zum Ansaugbereich des Wärmeübertragers wird verhindert. Zudem wird eine sich hieraus ergebende stärkere Vereisung des Wärmeübertragers vermieden. Die Abtauzyklen des Wärmeübertragers werden verlängert.The diagonal fan is characterized in an advantageous manner by a high air flow even at higher back pressure. In this case, it is ensured that even with the counter pressures occurring maximally in the operation, the discharge direction of the diagonal fan is always diagonal and not radial. Its throwing distance remains essentially unchanged, even in the case of a continuously increasing heat exchanger, and a thermal short circuit through an outward return flow to the intake area of the heat exchanger is prevented. In addition, a resulting greater icing of the heat exchanger is avoided. The defrost cycles of the heat exchanger are extended.

In einer vorteilhaften Ausführungsvariante ist der Diagonallüfter ausgebildet, den Luftvolumenstrom axial anzusaugen und diagonal in einem Winkel von 10 - 80°, weiter bevorzugt einem Winkel von 25 - 60°, gegenüber seiner Rotationsachse auszublasen. Im Vergleich zu einem 0°-Ausblaswinkel eines Axiallüfters und einem 90°-Ausblaswinkel eines Radiallüfters bietet der Ausblaswinkel des Diagonallüfters von vorneherein einen Mittelwert, der über den Betrieb aufrecht erhalten werden kann.In an advantageous embodiment variant of the diagonal fan is designed to suck the air flow axially and diagonally at an angle of 10 - 80 °, more preferably an angle of 25 - 60 °, to blow out from its axis of rotation. Compared to a 0 ° blowing angle of an axial fan and a 90 ° blowing angle of a radial fan, the discharge angle of the diagonal fan a priori provides an average value which can be maintained over the operation.

Eine günstige Ausführungsform der Ventilationseinheit sieht vor, dass der Diagonallüfter ausgebildet und in der Ventilationseinheit angeordnet ist, den Luftvolumenstrom durch den Wärmeübertrager anzusaugen und aus der Ventilationseinheit heraus in eine freie Umgebung, beispielsweise in einem Kühlraum auszublasen. Der Diagonallüfter ist mithin strömungstechnisch dem Wärmeübertrager nachgeschaltet.A favorable embodiment of the ventilation unit provides that the diagonal fan is designed and arranged in the ventilation unit, to suck in the air volume flow through the heat exchanger and to blow it out of the ventilation unit into a free environment, for example in a cold room. The diagonal fan is therefore fluidly downstream of the heat exchanger.

Der Wärmeübertrager erzeugt im Betrieb durch fortschreitende Vereisung für den Diagonallüfter einen sich von einem Ausgangsströmungswiderstand mit einer ersten Widerstandskennlinie (A) zu einem Vereisungswiderstand mit einer zweiten Widerstandskennlinie (B) erhöhenden Durchströmungswiderstand. Bei der Ventilationseinheit ist eine vorteilhafte Ausführung dadurch gekennzeichnet, dass der Diagonallüfter ausgelegt ist, dass sein höchster Wirkungsgradbereich in einem Bereich einer dritten Widerstandskennlinie (C) des Wärmeübertragers ist, wobei die dritte Widerstandskennlinie zwischen der ersten und der zweiten Widerstandskennlinie (A, B) liegt. Die Widerstandskennlinien (A, B, C) sind dabei durch einen über eine geförderte Luftmenge qv [m3/h] ansteigenden Gegendruck psf [Pa] gekennzeichnet. Die Abströmung bleibt dabei auch bei maximalen Gegendrücken stets diagonal und verändert sich nicht in eine radiale Richtung, wie beispielsweise bei Axiallüftern.The heat exchanger generates in operation by progressive icing for the diagonal fan from a Ausgangsströmungswiderstand having a first resistance characteristic (A) to an icing resistance with a second resistance characteristic (B) increasing flow resistance. In the ventilation unit, an advantageous embodiment is characterized in that the diagonal fan is designed such that its highest efficiency range is in a range of a third resistance characteristic (C) of the heat exchanger, the third resistance characteristic lying between the first and the second resistance characteristic (A, B) , The resistance characteristic curves (A, B, C) are characterized by a backpressure psf [Pa] increasing over a conveyed air volume qv [m 3 / h]. The outflow remains always diagonal even at maximum back pressures and does not change in a radial direction, such as axial fans.

Erfindungsgemäß ist der Wärmeübertrager ausgebildet, den Luftvolumenstrom auf eine Fördermitteltemperatur von kleiner oder gleich 15°C, insbesondere 5°C zur Bildung eines Kaltluftvolumenstroms abzukühlen, wobei der Kaltluftvolumenstrom unmittelbar von dem Diagonallüfter ansaugbar und ausblasbar ist. Zwischen dem Wärmeübertrager und dem Diagonallüfter sind keine den Kaltluftvolumenstrom wärmetechnisch beeinflussenden Bauteile vorgesehen, die Ansaugung durch den Diagonallüfter erfolgt unmittelbar dem Wärmeübertrager nachgeschaltet.According to the invention, the heat exchanger is designed, the air volume flow to cool to a conveyor temperature of less than or equal to 15 ° C, in particular 5 ° C to form a cold air flow rate, the cold air flow is directly sucked and blown by the diagonal fan. Between the heat exchanger and the diagonal fan no cold air volume flow thermally influencing components are provided, the suction through the diagonal fan is directly downstream of the heat exchanger.

Die Ventilationseinheit ist in einer Weiterbildung dadurch gekennzeichnet, dass der Diagonallüfter und der Wärmeübertrager durch ein Gehäuse miteinander verbunden sind, wobei das Gehäuse einen geschlossenen Strömungskanal für den Luftvolumenstrom bzw. den Kaltluftvolumenstrom bildet.In a further development, the ventilation unit is characterized in that the diagonal fan and the heat exchanger are connected to one another by a housing, wherein the housing forms a closed flow channel for the air volume flow or the cold air volume flow.

Ferner ist auch vorteilhaft, dass die Ventilationseinheit als integrale Baueinheit zur ganzheitlichen Anordnung und Befestigung an der Kälteanlage ausgebildet ist. Die integrale Baueinheit kann als Ganzes vormontiert und geliefert werden. An den Kühlräumen muss lediglich noch der elektrische Anschluss erfolgen. Die Fehlerwahrscheinlichkeit bei der Montage wird hierdurch verringert.Furthermore, it is also advantageous that the ventilation unit is designed as an integral unit for the holistic arrangement and attachment to the refrigeration system. The integral assembly can be pre-assembled and delivered as a whole. At the cold rooms only the electrical connection has to be done. The error probability during assembly is thereby reduced.

In einer vorteilhaften Ausführungsvariante ist der Wärmeübertrager als Verdampfer ausgebildet.In an advantageous embodiment, the heat exchanger is designed as an evaporator.

Bei einer Weiterbildung umfasst die Ventilationseinheit ferner eine (Strömungs-)Leiteinrichtung, welche in einem Ausblasabschnitt des Diagonallüfters angeordnet und ausgebildet ist, den von dem Diagonallüfter in diagonaler Richtung ausgeblasenen Luftvolumenstrom in eine axiale Richtung umzulenken. Die diagonale Ausblasrichtung des Diagonallüfters kann hierdurch in eine axiale Ausblasströmungsrichtung umgelenkt und mithin die Wurfweite des Diagonallüfters vergrößert werden. Die Leiteinrichtung kann durch Teile des Gehäuses oder durch zusätzlich an dem Diagonallüfter befestigbare Leitkörper wie Leitbleche oder dergleichen realisiert werden. In einer Ausführungsvariante wird die Leiteinrichtung einteilig an dem Diagonallüfter ausgebildet, so dass die Teileanzahl minimiert ist.In a further development, the ventilation unit further comprises a (flow) guide device, which is arranged in a blow-out section of the diagonal fan and designed to deflect the volume of air blown from the diagonal fan in the diagonal direction in an axial direction. The diagonal discharge direction of the diagonal fan can thereby be deflected in an axial Ausblasströmungsrichtung and thus the throw of the diagonal fan can be increased. The guide device can be realized by parts of the housing or by additionally attachable to the diagonal fan guide body such as baffles or the like. In a variant the guide is integrally formed on the diagonal fan, so that the number of parts is minimized.

Ausblasseitig kann an dem Diagonallüfter zusätzlich ein Schutzgitter oder Eingriffsschutz angeordnet werden.Ausblasseitig can be arranged on the diagonal fan in addition a protective grid or intervention protection.

Ferner kann bei der Ventilationseinheit vorgesehen werden, dass die Leiteinrichtung den Drall des von dem Diagonallüfter erzeugten Luftvolumenstroms teilweise in statischen Druck umwandelt und dadurch die Druckerhöhung, Effizienz und Wurfweite des Diagonallüfters steigert.Furthermore, it can be provided in the ventilation unit that the guide partially converts the swirl of the air volume flow generated by the diagonal fan into static pressure and thereby increases the pressure increase, efficiency and throw of the diagonal fan.

Ferner ist der Diagonallüfter in einer Ausführungsvariante mit einer mitrotierenden, die Lüfterschaufeln überdeckenden Deckscheibe ausgebildet.Further, the diagonal fan is formed in a variant with a co-rotating, the fan blades covering the cover plate.

Der Ventilationseinheit kann zudem in einem Ausführungsbeispiel ferner derart ausgebildet sein, dass die Strömungsführung in dem feststehenden Gehäuse erfolgt und der Diagonallüfter ein axiallüfterähnliches Flügelende aufweist. Zwischen dem Laufrad und den Lüfterschaufeln ist dann ein Spalt vorgesehen.In one embodiment, the ventilation unit can furthermore be designed in such a way that the flow guidance takes place in the stationary housing and the diagonal fan has an axial fan-like wing end. Between the impeller and the fan blades then a gap is provided.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:

Fig. 1
eine nicht zur Erfindung gehörige Ventilationseinheit mit einem Axiallüfter gemäß dem Stand der Technik zur Veranschaulichung des Strömungsverhaltens im vereisten Zustand;
Fig. 2
die Ventilationseinheit aus Fig. 1 in einem Zustand ohne Vereisung;
Fig. 3
eine erfindungsgemäße Ventilationseinheit im vereisten Zustand;
Fig. 4
ein Diagramm zur Darstellung der Auslegung der erfindungsgemäßen Ventilationseinheit
Other advantageous developments of the invention are characterized in the subclaims or are shown in more detail below together with the description of the preferred embodiment of the invention with reference to FIGS. Show it:
Fig. 1
a ventilation unit not belonging to the invention with an axial fan according to the prior art for illustrating the flow behavior in the icy state;
Fig. 2
the ventilation unit off Fig. 1 in a condition without icing;
Fig. 3
a ventilation unit according to the invention in the icy state;
Fig. 4
a diagram illustrating the design of the ventilation unit according to the invention

In Figur 1 ist der grundsätzliche erfindungsgemäße Aufbau der Ventilationseinheit schematisch dargestellt, jedoch zur Veranschaulichung der strömungstechnischen Problematik mit einem Axiallüfter 11 im Anschluss an einen Wärmeübertrager 10. Gezeigt ist ein vereister Zustand des Wärmeübertragers 10 und einer daraus resultierenden im Wesentlichen radialen Abströmung des Axiallüfters 11. Über den mit Pfeilen dargestellten Strömungsweg 8 kommt es zum thermischen Kurzschluss, bei dem ausgeblasene Luft des Axiallüfters 11 wieder zum Ansaugbereich des Wärmeübertragers zurückgelangt. Zudem erfolgt eine ausblasseitige Zuströmung 9 im Nabenbereich des Axiallüfters 11, die durch die Abströmung überlagert wird. Von der eigentlichen, im unvereisten Zustand vorgesehenen rein axialen Abströmung, wie sie beispielhaft in Figur 2 gezeigt wird, ist im vereisten Zustand des Wärmetauschers nichts oder kaum etwas übrig.In FIG. 1 The basic structure of the ventilation unit according to the invention is shown schematically, but to illustrate the fluidic problem with an axial fan 11 following a heat exchanger 10. Shown is an icy state of the heat exchanger 10 and a resulting substantially radial outflow of the axial fan 11. About the with Arrows shown flow path 8, it comes to the thermal short circuit, in the blown air of the axial fan 11 back to the intake of the heat exchanger. In addition, there is a discharge-side inflow 9 in the hub region of the axial fan 11, which is superimposed by the outflow. From the actual, provided in the unvereisten state purely axial outflow, as exemplified in FIG. 2 is shown in the iced state of the heat exchanger, nothing or hardly anything left.

In Figur 3 ist schematisch eine erfindungsgemäße Ventilationseinheit 1 im vereisten Zustand mit einem Diagonallüfter 2 und einem hierzu in Reihe angeordneten und als Verdampfer ausgebildeten Wärmeübertrager 3 dargestellt. Der Wärmeübertrager 3 und der Diagonallüfter sind über ein einen Strömungskanal bildendes Gehäuse 5 miteinander verbunden. Sowohl der Diagonallüfter 2 als auch der Wärmeübertrager 3 sind in das Gehäuse 5 eingesetzt und befestigt, so dass die Ventilationseinheit eine integrale Baueinheit ist. Am Ausblasabschnitt des Diagonalventilators 2 ist ein Schutzgitter 19 angeordnet. Die Ventilationseinheit 1 ist in ihrer schematisch dargestellten Form ausgebildet zum Einsatz und zur Anordnung an einer Kälteanlage.In FIG. 3 schematically a ventilation unit 1 according to the invention in the icy state with a diagonal fan 2 and a arranged in series and designed as an evaporator heat exchanger 3 is shown. The heat exchanger 3 and the diagonal fan are connected to each other via a flow channel forming housing 5. Both the diagonal fan 2 and the heat exchanger 3 are inserted and fixed in the housing 5, so that the ventilation unit is an integral structural unit. At the blow-out portion of the diagonal fan 2, a protective grid 19 is arranged. The ventilation unit 1 is designed in its schematically illustrated form for use and for arrangement on a refrigeration system.

Im Betrieb saugt der Diagonallüfter 2 einen Luftvolumenstrom aus axialer Richtung durch den Wärmeübertrager 3 hindurch an und bläst ihn trotz Vereisung anschließend aus der Ventilationseinheit 1 diagonal in einem Winkel a=30° gegenüber der Rotationsachse RA des Diagonallüfters 2 heraus in die freie Umgebung, beispielsweise in eine Kühlkammer. Der diagonale Abströmweg 7 ist mit Pfeilen gekennzeichnet.In operation, the diagonal fan 2 sucks an air flow from the axial direction through the heat exchanger 3 through and blows it despite icing then from the ventilation unit 1 diagonally at an angle a = 30 ° relative to the axis of rotation RA of the diagonal 2 out in the open environment, for example a cooling chamber. The diagonal discharge path 7 is marked with arrows.

Der Wärmeübertrager 3 kühlt den Luftvolumenstrom auf eine Fördermitteltemperatur von kleiner oder gleich 15°C, insbesondere kleiner oder gleich 5°C, zur Bildung des Kaltluftvolumenstroms, der unmittelbar von dem Diagonallüfter 2 angesaugt wird.The heat exchanger 3 cools the air volume flow to a conveyor temperature of less than or equal to 15 ° C, in particular less than or equal to 5 ° C, to form the cold air volume flow, which is sucked directly from the diagonal fan 2.

Die erfindungsgemäße Ventilationseinheit 1 gemäß Figur 3 mit dem Diagonallüfter 2 ist gegenüber der in Figur 1 gezeigten Ausführung mit einem Axiallüfter 10 in einer Weise auslegbar, wie es in Figur 4 anhand eines Diagramms der geförderten Luftmenge qv [m3/h] gegenüber dem Druck psf [Pa] aufgezeigt ist. Darin sind die Lüfterkennlinien 11', 2' des Axiallüfters 11 aus Figur 1 und des Diagonallüfters 2 aus Figur 3 sowie drei sich aufgrund unterschiedlicher Vereisungszustände des Wärmeübertragers 3 ergebende Widerstandskennlinien A, B, C eingezeichnet.The ventilation unit 1 according to the invention FIG. 3 with the diagonal fan 2 is opposite to in FIG. 1 shown embodiment with an axial fan 10 in a manner interpretable, as in FIG. 4 is shown on the basis of a graph of the amount of air delivered qv [m 3 / h] against the pressure psf [Pa]. Therein, the fan characteristics 11 ', 2' of the axial fan 11 are made FIG. 1 and the diagonal fan 2 off FIG. 3 and three due to different conditions of icing of the heat exchanger 3 resulting resistance characteristics A, B, C located.

Der Durchströmungswiderstand des Wärmeübertragers 3 steigt im Betrieb durch fortschreitende Vereisung von einem Ausgangsströmungswiderstand mit einer ersten Widerstandskennlinie A für den Diagonallüfter zu einem Vereisungswiderstand mit einer zweiten Widerstandskennlinie B an. Im Zustand der zweiten Widerstandskennlinie wird ein Abtauprozess des Wärmeübertragers 3 eingeleitet. Der Diagonallüfter 2 ist hingegen durch seine diagonale Ausblasrichtung so ausgelegt, seinen höchsten Wirkungsgradbereich in einem Bereich der dritten Widerstandskennlinie C des Wärmeübertragers 3 aufzuweisen, wobei die dritte Widerstandskennlinie C zwischen der ersten und zweiten Widerstandskennlinie A, B liegt. Die Widerstandskennlinien A, B, C sind durch einen über eine geförderte Luftmenge qv [m3/h] ansteigenden Gegendruck psf [Pa] gekennzeichnet.The flow resistance of the heat exchanger 3 increases in operation by progressive icing of an output flow resistance with a first resistance characteristic A for the diagonal fan to a glacial resistance with a second resistance curve B. In the state of the second resistance characteristic, a defrosting process of the heat exchanger 3 is initiated. By contrast, the diagonal blower 2 is designed, by its diagonal blow-off direction, to have its highest efficiency range in a region of the third resistance characteristic C of the heat exchanger 3, the third resistance characteristic C lying between the first and second resistance characteristics A, B. The resistance characteristics A, B, C are characterized by a backpressure psf [Pa] which increases over a conveyed air volume qv [m 3 / h].

Die erfindungsgemäße Ventilationseinheit 1 mit dem Diagonallüfter 2 kann im Vergleich zu einem Aufbau mit dem Axiallüfter 11, der nur im Bereich der Widerstandskennlinie A auslegungsgemäß funktioniert, über einen längeren Zeitraum und mit höherem Wirkungsgrad im Bereich der Widerstandskennlinie C bei entsprechend gleich großer Fördermenge betrieben werden. Der absolute Unterschied ist durch die Lüfterkennlinien 11', 2' der Axiallüfter 11 und Diagonallüfter 2 im Diagramm gekennzeichnet.The ventilation unit 1 according to the invention with the diagonal fan 2 can be operated over a longer period of time and with higher efficiency in the region of the resistance characteristic C with a correspondingly large flow rate in comparison with a construction with the axial fan 11, which works only in the area of the resistance characteristic A. The absolute difference is characterized by the fan characteristics 11 ', 2' of the axial fan 11 and diagonal fan 2 in the diagram.

Claims (12)

Ventilationseinheit (1) ausgebildet zum Einsatz und zur Anordnung an einer Kälteanlage, mit einem Lüfter und einem zu dem Lüfter in Reihe angeordneten Wärmeübertrager (3), wobei der Lüfter ausgebildet und gegenüber dem Wärmeübertrager (3) angeordnet ist, im Betrieb einen Luftvolumenstrom durch den Wärmeübertrager (3) hindurch und aus der Ventilationseinheit heraus zu fördern, dadurch gekennzeichnet, dass der Lüfter als Diagonallüfter (2) ausgebildet ist und den Luftvolumenstrom im Betrieb axial ansaugt und diagonal in einem Winkel gegenüber seiner Rotationsachse (RA) ausbläst, wobei der Wärmeübertrager (3) ausgebildet ist, den Luftvolumenstrom auf eine Fördermitteltemperatur von ≤ 15°C zur Bildung eines Kaltluftvolumenstroms abzukühlen, und wobei der Kaltluftvolumenstrom unmittelbar von dem Diagonallüfter (2) ansaugbar und ausblasbar ist.Ventilation unit (1) designed for use and for mounting on a refrigeration system, with a fan and a heat exchanger (3) arranged in series with the fan, wherein the fan is designed and arranged opposite to the heat exchanger (3), during operation an air volume flow through the Heat exchanger (3) through and out of the ventilation unit to promote, characterized in that the fan is designed as a diagonal fan (2) and the air volume flow during operation axially draws and blows diagonally at an angle to its axis of rotation (RA), wherein the heat exchanger ( 3) is designed to cool the air volume flow to a conveyor temperature of ≤ 15 ° C to form a cold air volume flow, and wherein the cold air volume flow directly from the diagonal fan (2) can be sucked and blown. Ventilationseinheit nach Anspruch 1 dadurch gekennzeichnet, dass der Diagonallüfter (2) ausgebildet ist, den Luftvolumenstrom axial anzusagen und diagonal in einem Winkel von 10 - 80°, insbesondere einem Winkel von 25 - 60° gegenüber seiner Rotationsachse (RA) auszublasen.Ventilation unit according to claim 1, characterized in that the diagonal fan (2) is designed to announce the air flow axially and diagonally at an angle of 10 - 80 °, in particular an angle of 25 - 60 ° with respect to its axis of rotation (RA) to blow. Ventilationseinheit nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Diagonallüfter (2) ausgebildet und in der Ventilationseinheit (1) angeordnet ist, den Luftvolumenstrom durch den Wärmeübertrager (3) anzusaugen und aus der Ventilationseinheit (1) heraus in eine freie Umgebung auszublasen.Ventilation unit according to one of the preceding claims, characterized in that the diagonal fan (2) is formed and arranged in the ventilation unit (1) to suck the air volume flow through the heat exchanger (3) and blow out of the ventilation unit (1) out into a free environment. Ventilationseinheit nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertrager (3) für den Diagonallüfter (2) im Betrieb durch fortschreitende Vereisung einen sich von einem Ausgangsströmungswiderstand mit einer ersten Widerstandskennlinie (A) zu einem Vereisungswiderstand mit einer zweiten Widerstandskennlinie (B) erhöhenden Durchströmungswiderstand erzeugt und der Diagonallüfter (2) ausgelegt ist, seinen höchsten Wirkungsgradbereich in einem Bereich einer dritten Widerstandskennlinie (C) des Wärmeübertragers (3) aufzuweisen, wobei die dritte Widerstandskennlinie (C) zwischen der ersten und der zweiten Widerstandskennlinie (A, B) liegt, und wobei die Widerstandskennlinien (A, B, C) durch einen über eine geförderte Luftmenge qv [m3/h] ansteigenden Gegendruck psf [Pa] gekennzeichnet sind.Ventilation unit according to one of the preceding claims, characterized in that the heat exchanger (3) for the diagonal fan (2) in operation by progressive icing from a Ausgangsströmungswiderstand with a first resistance characteristic (A) is generated to an icing resistance with a second resistance characteristic (B) increasing flow resistance and the diagonal fan (2) is designed to have its highest efficiency range in a range of a third resistance characteristic (C) of the heat exchanger (3), wherein the third resistance characteristic (C) between the first and second resistance characteristic lines (A, B), and wherein the resistance characteristic curves (A, B, C) are characterized by a backpressure psf [Pa] rising over a conveyed air quantity qv [m 3 / h]. Ventilationseinheit nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Diagonallüfter (2) und der Wärmeübertrager (3) durch ein Gehäuse (5) miteinander verbunden sind, das einen geschlossenen Strömungskanal für den Luftvolumenstrom bildet.Ventilation unit according to one of the preceding claims, characterized in that the diagonal fan (2) and the heat exchanger (3) by a housing (5) are interconnected, which forms a closed flow channel for the air flow. Ventilationseinheit nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass sie als integrale Baueinheit zur ganzheitlichen Anordnung und Befestigung an der Kälteanlage ausgebildet ist.Ventilation unit according to one of the preceding claims, characterized in that it is designed as an integral unit for the holistic arrangement and attachment to the refrigeration system. Ventilationseinheit nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertrager (3) als Verdampfer ausgebildet ist.Ventilation unit according to one of the preceding claims, characterized in that the heat exchanger (3) is designed as an evaporator. Ventilationseinheit nach einem der vorigen Ansprüche, ferner umfassend eine Leiteinrichtung, welche in einem Ausblasabschnitt des Diagonallüfters (2) angeordnet und ausgebildet ist, den von dem Diagonallüfter (2) in diagonaler Richtung ausgeblasenen Luftvolumenstrom in eine axiale Richtung umzulenken.A ventilation unit according to any one of the preceding claims, further comprising a guide disposed in a blow-out portion of the diagonal fan (2) and adapted to redirect the air volume flow discharged from the diagonal fan (2) in the diagonal direction in an axial direction. Ventilationseinheit nach dem vorigen Anspruch, dadurch gekennzeichnet, dass die Leiteinrichtung einteilig an dem Diagonallüfter (2) ausgebildet ist.Ventilation unit according to the preceding claim, characterized in that the guide device in one piece on the diagonal fan (2) is formed. Ventilationseinheit nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Leiteinrichtung ausgebildet ist, einen Drall des von dem Diagonallüfter (2) erzeugten Luftvolumenstroms teilweise in statischen Druck umzuwandeln.Ventilation unit according to one of claims 8 or 9, characterized in that the guide device is designed to partially convert a twist of the air volume flow generated by the diagonal fan (2) into static pressure. Ventilationseinheit nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Diagonallüfters (2) eine mitrotierende Deckscheibe aufweist.Ventilation unit according to one of the preceding claims, characterized in that the diagonal fan (2) has a co-rotating cover disc. Ventilationseinheit nach einem der vorigen Ansprüche 5 bis 11, dadurch gekennzeichnet, dass das Gehäuse (5) eine Luftführung für den von dem Diagonallüfter (2) erzeugten Luftvolumenstrom bildet.Ventilation unit according to one of the preceding claims 5 to 11, characterized in that the housing (5) forms an air duct for the air volume flow generated by the diagonal fan (2).
EP18172026.9A 2017-05-19 2018-05-14 Ventilation unit for refrigeration systems Active EP3404268B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017111001.1A DE102017111001A1 (en) 2017-05-19 2017-05-19 Ventilation unit for refrigeration systems

Publications (2)

Publication Number Publication Date
EP3404268A1 true EP3404268A1 (en) 2018-11-21
EP3404268B1 EP3404268B1 (en) 2023-02-01

Family

ID=61497789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18172026.9A Active EP3404268B1 (en) 2017-05-19 2018-05-14 Ventilation unit for refrigeration systems

Country Status (6)

Country Link
US (1) US20180335244A1 (en)
EP (1) EP3404268B1 (en)
CN (1) CN207050304U (en)
DE (1) DE102017111001A1 (en)
DK (1) DK3404268T3 (en)
ES (1) ES2942180T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211808A1 (en) * 2018-07-16 2020-01-16 Ziehl-Abegg Se Fan and control device for a fan
DE102018132002A1 (en) * 2018-12-12 2020-06-18 Ebm-Papst Mulfingen Gmbh & Co. Kg Ventilation unit
US11371761B2 (en) * 2020-04-13 2022-06-28 Haier Us Appliance Solutions, Inc. Method of operating an air conditioner unit based on airflow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106742A (en) * 2001-10-01 2003-04-09 Toshiba Corp Refrigerator
EP2679920A2 (en) * 2012-06-28 2014-01-01 Samsung Electronics Co., Ltd Indoor unit of air conditioner and method of controlling the air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163261U (en) * 1974-11-13 1976-05-18
DE3914242C2 (en) * 1989-04-29 1994-01-27 Gea Happel Klimatechnik Device for heating and / or cooling rooms
KR100471444B1 (en) * 2002-08-14 2005-03-08 엘지전자 주식회사 The axial flow fan with turbo blades
US7632073B2 (en) * 2005-06-08 2009-12-15 Dresser-Rand Company Impeller with machining access panel
WO2010070889A1 (en) * 2008-12-15 2010-06-24 ダイキン工業株式会社 Air conditioning indoor unit embedded in ceiling
US9086075B2 (en) * 2011-07-07 2015-07-21 Pentair Water Pool And Spa, Inc. Impeller assembly and method
DE102015207800A1 (en) * 2015-04-28 2016-11-03 Ziehl-Abegg Se Diagonal or centrifugal fan, guide for such a fan and system with such a fan or with several such fans
KR102403728B1 (en) * 2015-10-07 2022-06-02 삼성전자주식회사 Turbofan for air conditioning apparatus
US10514046B2 (en) * 2015-10-09 2019-12-24 Carrier Corporation Air management system for the outdoor unit of a residential air conditioner or heat pump
DE102016111136A1 (en) * 2016-06-17 2017-12-21 Güntner Gmbh & Co. Kg Air cooler for cooling the air in rooms, especially in walk-in storage or cold storage rooms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106742A (en) * 2001-10-01 2003-04-09 Toshiba Corp Refrigerator
EP2679920A2 (en) * 2012-06-28 2014-01-01 Samsung Electronics Co., Ltd Indoor unit of air conditioner and method of controlling the air conditioner

Also Published As

Publication number Publication date
DE102017111001A1 (en) 2018-11-22
CN207050304U (en) 2018-02-27
ES2942180T3 (en) 2023-05-30
US20180335244A1 (en) 2018-11-22
EP3404268B1 (en) 2023-02-01
DK3404268T3 (en) 2023-04-03

Similar Documents

Publication Publication Date Title
EP3404268B1 (en) Ventilation unit for refrigeration systems
WO2017041997A1 (en) Turbo ventilator with heat sink
EP2333348B1 (en) Radial ventilator housing
DE10336291B4 (en) blower fan
DE60309973T2 (en) Centrifugal fan with cooling scoop
DE112015001472T5 (en) diffuser ring
EP2292935B1 (en) Radial ventilator housing
DE202017101353U1 (en) An air guide
EP2275687A2 (en) Radial ventilator housing
EP3592987B1 (en) Half-spiral housing
EP3682119A1 (en) Diffuser for a radial compressor
EP1797333B1 (en) Fan comprising a fan wheel
DE202017103054U1 (en) Ventilation unit for refrigeration systems
EP2177769A2 (en) Radial fan casing
EP3880966A1 (en) Diagonal fan having swirl reduction at the diagonal impeller
DE202016105308U1 (en) Workroom cooler
EP3278427A1 (en) Electric motor comprising pressing cooling air conveyance and method for cooling components of the electric motor
EP0143235B2 (en) Axial ventilator without guide ring, especially for ventilating heat exchangers
DE202015101683U1 (en) Electric motor with pressing cooling air delivery
EP2388159B1 (en) Motor vehicle air conditioning
DE102011107523B4 (en) System for injecting a fluid, compressor and turbomachine
DE202016104423U1 (en) Air cooler arrangement
DE102005035540A1 (en) Device for active gap control for a turbomachine
WO2024074177A1 (en) Fan and cooling structure for a fan
DE102015104914A1 (en) Compressor system for generating compressed air and method for operating a compressed air generating compressor system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190516

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200821

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/28 20060101ALN20220824BHEP

Ipc: F24F 11/43 20180101ALI20220824BHEP

Ipc: F24F 1/0025 20190101ALI20220824BHEP

Ipc: F25D 17/06 20060101ALI20220824BHEP

Ipc: F04D 29/58 20060101ALI20220824BHEP

Ipc: F04D 17/06 20060101AFI20220824BHEP

INTG Intention to grant announced

Effective date: 20220915

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1547008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011533

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230331

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2942180

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230530

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 6

Ref country code: IT

Payment date: 20230530

Year of fee payment: 6

Ref country code: FR

Payment date: 20230526

Year of fee payment: 6

Ref country code: DK

Payment date: 20230524

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230509

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230522

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 6

Ref country code: ES

Payment date: 20230726

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011533

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230724

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230201

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531