EP3401702B1 - Sensorsystem - Google Patents

Sensorsystem Download PDF

Info

Publication number
EP3401702B1
EP3401702B1 EP17170311.9A EP17170311A EP3401702B1 EP 3401702 B1 EP3401702 B1 EP 3401702B1 EP 17170311 A EP17170311 A EP 17170311A EP 3401702 B1 EP3401702 B1 EP 3401702B1
Authority
EP
European Patent Office
Prior art keywords
driverless transport
transport vehicle
sensor
driverless
ahead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17170311.9A
Other languages
English (en)
French (fr)
Other versions
EP3401702A1 (de
Inventor
Bernhard Feller
Stefan Mohr Dr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leuze Electronic GmbH and Co KG
Original Assignee
Leuze Electronic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leuze Electronic GmbH and Co KG filed Critical Leuze Electronic GmbH and Co KG
Priority to EP17170311.9A priority Critical patent/EP3401702B1/de
Publication of EP3401702A1 publication Critical patent/EP3401702A1/de
Application granted granted Critical
Publication of EP3401702B1 publication Critical patent/EP3401702B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9329Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles cooperating with reflectors or transponders

Definitions

  • the invention relates to a sensor system for an arrangement of driverless transport vehicles.
  • Driverless transport vehicles are used in automated production systems or systems in the field of conveyor and storage technology for the transport of goods. Such driverless transport vehicles automatically drive to predetermined stations, for example for loading and unloading goods.
  • a problem with such systems is that typically several driverless transport vehicles are in use at the same time. Then e.g. several driverless transport vehicles in columns one behind the other approach certain destinations. If the speed is not adapted, there is then the risk that a driverless transport vehicle runs into the driverless transport vehicle driving ahead.
  • bumpers as mechanical protective devices on the front sides and / or rear sides of the driverless transport vehicles.
  • the JP 2003-269914 A relates to a sensor arrangement for controlling autonomously driving vehicles.
  • Each vehicle has a marking in the rear area in the form of self-luminous labels and a sensor with a camera in the front area.
  • a vehicle's camera detects the marking of the vehicle ahead, which identifies the vehicle ahead. The distance between the vehicles can be estimated based on the size of the marking shown on the camera.
  • the US 2009/0062974 A1 concerns an autonomous mobile robot system.
  • a distance sensor is provided on a first robot.
  • Object identification can also take place with this.
  • the US 2014/0236414 A1 concerns an autonomous vehicle.
  • different sensors such as radar and Lindar sensors as well as GPS systems, are arranged on the vehicle.
  • a safe route for the vehicle is determined based on the signals from the sensors.
  • the US 9,221,396 B1 (D4) relates to an autonomous vehicle on which sensors in the form of laser sensors, cameras or radar sensors are arranged. These sensors determine distances to objects in the vicinity.
  • the invention is based on the object of providing a sensor system by means of which an effective control of a multiple arrangement of driverless transport vehicles is made possible.
  • the invention relates to a sensor system for an arrangement of driverless transport vehicles.
  • Each driverless transport vehicle has a label identifying it on its back.
  • Each driverless transport vehicle has sensor means on its front side which are designed to determine the identification and the distance of a driverless transport vehicle traveling ahead.
  • sensor signals generated by the sensor means are evaluated, by means of which the speed of the driverless transport vehicle is controlled.
  • the identification and the distance of the driverless transport vehicle driving ahead are recorded with the same sensor means.
  • the sensor means are formed by an optical sensor.
  • the optical sensor is designed for protective field monitoring.
  • a local control of the driverless transport vehicles can be carried out in such a way that the driving behavior of the driverless transport vehicles is coordinated in such a way that a driverless transport vehicle does not collide with a driverless transport vehicle driving ahead, so that this conditional standstills of the automated guided vehicles can be avoided.
  • This largely avoids manual interventions by the operating personnel to restart the driverless transport vehicles, thereby reducing downtimes that impair the productivity of the entire system.
  • An essential aspect of the invention is that the sensor means on the front of a driverless transport vehicle not only detect the distance to a driverless transport vehicle traveling ahead. Much more the identification of the driverless transport vehicle traveling ahead is also recognized with the sensor means, whereby it can be distinguished from other, in particular stationary objects.
  • the identification can have a simple structure, since the driverless transport vehicles do not have to be individually identified and differentiated from one another. Rather, based on the identification, the driverless transport vehicle only needs to be recognized as a vehicle and differentiated from other objects that are not vehicles.
  • a driverless transport vehicle driving ahead can be identified as such, so that the drive of the driverless transport vehicle is then adapted to the driverless transport vehicle driving ahead using the determined distances, in particular such that the distance to it is controlled.
  • the speed of the driverless transport vehicle is adapted to the speed of the driverless transport vehicle driving ahead, so that both driverless transport vehicles can drive one behind the other in a column without the driverless transport vehicle colliding with the driverless transport vehicle driving ahead.
  • This adaptation of the travel of a driverless transport vehicle to the driverless transport vehicle driving ahead can be expanded to include several driverless transport vehicles so that these drive in columns without collision, without the need for a complex central control system.
  • the identifications and the distance of the driverless transport vehicle traveling ahead are detected with the same sensor means.
  • the sensor means thus fulfills a double function, a particularly compact sensor system is obtained.
  • the sensor means are formed by an optical sensor.
  • the optical sensor can in principle be formed by a camera sensor with which distance measurements can also be carried out.
  • the sensor means are particularly advantageously formed by a surface distance sensor.
  • a surface distance sensor generally forms a scanning distance sensor, with light beams emitted by the distance sensor being periodically guided within a preferably two-dimensional monitoring area, so that the positions of objects can be determined with the surface distance sensor within the monitoring area.
  • flat markings can also be reliably recognized in their entirety by the flat distance sensor and therefore clearly identified.
  • the identifications of contour features of the driverless transport vehicle are formed by contrast patterns or reflectors.
  • the functionality of the optical sensor is further increased in that protective field monitoring is also carried out with it.
  • the optical sensor can thus be used in particular in safety-related applications.
  • the optical sensor is then used to monitor within a specified protective field whether a security-critical object such as a person is penetrating there. If this is the case, the optical sensor generates a safety-relevant signal, which leads to an emergency stop of the driverless transport vehicle, so that risks to people are avoided.
  • Figure 1 shows a first example of a sensor system.
  • a first sensor means is arranged on the front of each driverless transport vehicle 1, 1 ', by means of which the distance to the driverless transport vehicle 1' driving ahead is determined.
  • the sensor means is formed by a distance sensor 2, in particular an optical distance sensor 2.
  • a label 3 is attached to the rear of both driverless transport vehicles 1, 1 'with which the driverless transport vehicle 1, 1' can be identified.
  • the second sensor means is formed by an RFID reader 4 with which an identifier 3 in the form of a transponder is detected.
  • the first and second sensor means are connected to an evaluation unit, not shown, in which the signals from the two sensor means are evaluated and, as a function of this, control signals are generated by means of which the travel of the respective driverless transport vehicle 1, 1 'is controlled.
  • the in Figure 1 In the illustrated case, no further driverless transport vehicle 1 is arranged in front of the driverless transport vehicle 1 'traveling ahead, so that the driverless transport vehicle 1' ahead can travel unhindered at a speed v '.
  • the driverless transport vehicle 1 driving behind this driverless transport vehicle 1 'driving ahead detects the identification 3 in the form of the transponder by means of the RFID reader 4, so that the driverless transport vehicle 1' driving ahead is identified as a vehicle.
  • control signals are generated with which the driving behavior of the driverless transport vehicle 1 is adapted to the driverless transport vehicle 1' ahead.
  • the adaptation takes place in such a way that the driverless transport vehicle 1 follows the driverless transport vehicle 1 'traveling ahead without a collision.
  • a minimum distance between the driverless transport vehicle 1 and the driverless transport vehicle 1 'ahead is always maintained and the speed of the driverless transport vehicle 1 is adapted to the speed of the driverless transport vehicle 1' ahead.
  • the arrangement according to Figure 1 can of course be expanded to a larger number of driverless transport vehicles 1, the driving behavior of which is always adapted to the driverless transport vehicle 1 'ahead using the sensor signals of the sensor means of a driverless transport vehicle 1.
  • Figure 2 shows a second example of a sensor system.
  • a surface distance sensor 5 only one sensor means in the form of a surface distance sensor 5 is arranged on the front of a driverless transport vehicle 1, 1 ′.
  • This surface distance sensor 5 takes on both the determination of the distance to the preceding vehicle driverless transport vehicle 1 'as well as the detection of the identification 3 on the rear of the driverless transport vehicle 1' driving ahead, with two reflectors as identification 3 being provided on the rear of each driverless transport vehicle 1, 1 'in this case.
  • the markings 3 could be formed by contrast patterns or contour features of the driverless transport vehicle 1, 1 '.
  • the surface distance sensors 5 are generally optical sensors, the Figures 3 and 4 show two exemplary embodiments of areal distance sensors 5.
  • the surface distance sensor 5 is designed as a scanner.
  • the components of distance sensor 2 are arranged stationary in a housing 11.
  • a deflection unit 12 which has a deflecting mirror 13 that can be rotated about an axis of rotation, the transmitted light beams 6 are periodically deflected within a scanning area and guided out of the housing 11 through a window 14, so that the transmitted light beams 6 cover a flat monitoring area.
  • the received light beams 8 reflected back from the object are guided to the receiver 9 via the deflection unit 12.
  • the distance values determined with the distance sensor 2 are recorded as a function of the respective angular position.
  • the surface distance sensor 5 according to Figure 4 differs from the embodiment of the Figure 3 in that the housing 11 forms a rotating measuring head which is rotatably seated on a base 15. In this case, the deflection movement of the transmitted light beams 6 is obtained by rotating the entire distance sensor 2 with the measuring head.
  • the transmitted light beams 6 can be guided in a large angular range, which includes 180 °, for example.
  • Figure 5 shows an embodiment of the sensor system according to the invention.
  • the surface distance sensor 5 not only recognizes the identification 3 of the driverless transport vehicle 1 'driving ahead and measures the distance from the driverless transport vehicle 1' driving ahead. Rather, the area distance sensor 5 also monitors a protective field 16, the contour of which is stored in the evaluation unit of the area distance sensor 5.
  • the surface distance sensor 5 fulfills a safety-relevant function.
  • the evaluation unit has a redundant structure, preferably in the form of two computer units that monitor one another. If the intrusion of a safety-critical object, such as a person, is registered with the area distance sensor 5, the area distance sensor 5 generates a safety-relevant output signal with which an emergency stop of the driverless transport vehicle 1 is effected in order to avoid endangering people.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

  • Die Erfindung betrifft ein Sensorsystem für eine Anordnung von fahrerlosen Transportfahrzeugen.
  • Fahrerlose Transportfahrzeuge werden in automatisierten Fertigungsanlagen oder Anlagen im Bereich der Förder- und Lagertechnik zum Transport von Gütern eingesetzt. Derartige fahrerlose Transportfahrzeuge fahren selbsttätig vorgegebene Stationen an, beispielsweise zur Be- und Entladung von Gütern. Ein Problem bei derartigen Anlagen besteht darin, dass typischerweise mehrere fahrerlose Transportfahrzeuge gleichzeitig im Einsatz sind. Dann müssen z.B. mehrere fahrerlose Transportfahrzeuge in Kolonnen hintereinander bestimmte Ziele anfahren. Durch eine nicht angepasste Geschwindigkeit besteht dann die Gefahr, dass ein fahrerloses Transportfahrzeug auf das vorausfahrende fahrerlose Transportfahrzeug aufläuft.
  • Um in diesem Fall Beschädigungen der fahrerlosen Transportfahrzeuge zu vermeiden, ist es bekannt, an den Frontseiten und/oder Rückseiten der fahrerlosen Transportfahrzeuge Bumper als mechanische Schutzeinrichtungen vorzusehen.
  • Zwar wird mit den Bumpern eine Schutzwirkung erzielt, jedoch kann nicht vermieden werden, dass es durch das Auffahren eines fahrerlosen Transportfahrzeugs auf ein vorausfahrendes fahrerloses Transportfahrzeug zu einem Stillstand der fahrerlosen Transportfahrzeuge in der Kolonne kommt. Bei einem solchen Stillstand muss eine Bedienperson die Anlage betreten und die fahrerlosen Transportfahrzeuge neu starten. Mit einem solchen Kolonnenstillstand sind daher erhebliche Ausfallzeiten verbunden, die die Produktivität der gesamten Anlage erheblich reduzieren.
  • Die JP 2003-269914 A betrifft eine Sensoranordnung zur Steuerung von autonom fahrenden Fahrzeugen. Jedes Fahrzeug weist im Heckbereich eine Markierung in Form von selbstleuchtenden Etiketten und im Frontbereich einen Sensor mit einer Kamera auf. Die Kamera eines Fahrzeugs erfasst die Markierung des vorausfahrenden Fahrzeugs, wodurch das vorausfahrende Fahrzeug identifiziert wird. Anhand der Größe der auf der Kamera abgebildeten Markierung kann die Distanz zwischen den Fahrzeugen abgeschätzt werden.
  • Die US 2009/0062974 A1 betrifft ein autonomes mobiles Robotersystem. Um die Distanz zu einem zugeordneten Roboter zu bestimmen, ist auf einem ersten Roboter ein Distanzsensor vorgesehen. Mit diesem kann auch eine Objektidentifikation erfolgen.
  • Die US 2014/0236414 A1 betrifft ein autonomes Fahrzeug. Um ein autonomes Fahren zu ermöglichen sind auf dem Fahrzeug unterschiedliche Sensoren, wie zum Beispiel Radar- und Lindar-Sensoren sowie GPS-Systeme angeordnet. Anhand der Signale der Sensoren wird eine sichere Fahrtroute des Fahrzeugs bestimmt.
  • Die US 9,221,396 B1 (D4) betrifft ein autonomes Fahrzeug auf welchem Sensoren in Form von Lasersensoren, Kameras oder Radar-Sensoren angeordnet sind. Diese Sensoren bestimmen Distanzen zu Objekten in der Umgebung.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Sensorsystem bereitzustellen, mittels dessen eine effektive Steuerung einer Mehrfachanordnung von fahrerlosen Transportfahrzeugen ermöglicht wird.
  • Zur Lösung dieser Aufgabe sind die Merkmale des Anspruchs 1 vorgesehen. Vorteilhafte Ausführungsformen und zweckmäßige Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Die Erfindung betrifft ein Sensorsystem für eine Anordnung von fahrerlosen Transportfahrzeugen. Jedes fahrerlose Transportfahrzeug weist an seiner Rückseite eine diese kennzeichnende Kennzeichnung auf. Jedes fahrerlose Transportfahrzeug weist an seiner Frontseite Sensormittel auf, welche ausgebildet sind, die Kennzeichnung und den Abstand eines vorausfahrenden fahrerlosen Transportfahrzeugs zu ermitteln. In einer Auswerteeinheit werden von den Sensormitteln generierte Sensorsignale ausgewertet, mittels derer die Geschwindigkeit des fahrerlosen Transportfahrzeugs gesteuert wird. Die Kennzeichnung und der Abstand des vorausfahrenden fahrerlosen Transportfahrzeugs sind mit denselben Sensormitteln erfasst. Die Sensormittel sind von einem optischen Sensor gebildet. Der optische Sensor ist für eine Schutzfeldüberwachung ausgebildet.
  • Mit den Sensormitteln, die in jedem fahrerlosen Transportfahrzeug vorhanden sind, kann eine lokale Steuerung der fahrerlosen Transportfahrzeuge derart durchgeführt werden, dass das Fahrverhalten der fahrerlosen Transportfahrzeuge so aufeinander abgestimmt ist, dass ein Auffahren eines fahrerlosen Transportfahrzeug auf ein vorausfahrendes fahrerloses Transportfahrzeug vermieden wird, sodass dadurch bedingte Stillstände der fahrerlosen Transportfahrzeuge vermieden werden. Damit werden manuelle Eingriffe des Bedienpersonals zum Neustart der fahrerlosen Transportfahrzeuge weitgehend vermieden, wodurch Stillstandzeiten, die die Produktivität der gesamten Anlage beeinträchtigen, reduziert werden.
  • Ein wesentlicher Aspekt der Erfindung besteht darin, dass mit den Sensormitteln an der Frontseite eines fahrerlosen Transportfahrzeugs nicht nur der Abstand zu einem vorausfahrenden fahrerlosen Transportfahrzeugs erfasst wird. Vielmehr wird mit den Sensormitteln auch die Kennzeichnung des vorausfahrenden fahrerlosen Transportfahrzeugs erkannt, wodurch dieses von anderen, insbesondere stationären Gegenständen, unterschieden werden kann. Die Kennzeichnung kann dabei eine einfache Struktur aufweisen, da anhand dieser die fahrerlosen Transportfahrzeuge nicht einzeln identifiziert und voneinander unterschieden werden müssen. Vielmehr muss anhand der Kennzeichnung das fahrerlose Transportfahrzeug nur als Fahrzeug erkannt und zu anderen Objekten, die keine Fahrzeuge sind, unterschieden werden.
  • Durch die Erfassung der Kennzeichnung kann somit ein vorausfahrendes fahrerloses Transportfahrzeug als solches identifiziert werden, sodass dann anhand der ermittelten Abstände die Fahrt des fahrerlosen Transportfahrzeugs an das vorausfahrende fahrerlose Transportfahrzeug insbesondere derart angepasst wird, dass der Abstand zu diesem kontrolliert wird. Hierzu wird die Geschwindigkeit des fahrerlosen Transportfahrzeugs an die Geschwindigkeit des vorausfahrenden fahrerlosen Transportfahrzeugs angepasst, sodass beide fahrerlose Transportfahrzeuge in einer Kolonne hintereinander fahren können, ohne dass das fahrerlose Transportfahrzeug auf das vorausfahrende fahrerlose Transportfahrzeug auffährt.
  • Diese Anpassung der Fahrt eines fahrerlosen Transportfahrzeugs an das vorausfahrende fahrerlose Transportfahrzeug kann auf mehrere fahrerlose Transportfahrzeuge erweitert werden, sodass diese kollisionsfrei in Kolonnen fahren, ohne dass hierzu eine aufwändige zentrale Steuerung erforderlich ist. Erfindungsgemäß werden die Kennzeichnungen und der Abstand des vorausfahrenden fahrerlosen Transportfahrzeugs mit denselben Sensormitteln erfasst.
  • Da somit das Sensormittel eine Doppelfunktion erfüllt, wird ein besonders kompaktes Sensorsystem erhalten.
  • Dabei sind die Sensormittel von einem optischen Sensor gebildet.
  • Der optische Sensor kann dabei prinzipiell von einem Kamerasensor gebildet sein, mit dem auch Entfernungsmessungen durchgeführt werden können. Besonders vorteilhaft sind die Sensormittel von einem Flächendistanzsensor gebildet.
  • Ein Flächendistanzsensor bildet generell einen scannenden Distanzsensor, wobei vom Distanzsensor emittierte Lichtstrahlen periodisch innerhalb eines vorzugsweise flächigen Überwachungsbereich geführt sind, sodass mit dem Flächendistanzsensor innerhalb des Überwachungsbereichs die Positionen von Objekten bestimmt werden können. Durch die Ablenkbewegung der Lichtstrahlen können auch flächige Kennzeichnungen in ihrer Gesamtheit sicher vom Flächendistanzsensor erkannt und daher eindeutig identifiziert werden. Dabei sind beispielsweise die Kennzeichnungen von Konturmerkmalen des fahrerlosen Transportfahrzeugs von Kontrastmustern oder von Reflektoren gebildet.
  • Die Funktionalität des optischen Sensors ist weiter noch dadurch erhöht, dass mit diesem zusätzlich eine Schutzfeldüberwachung durchgeführt wird. Damit kann der optische Sensor insbesondere in sicherheitstechnischen Applikationen eingesetzt werden. Mit dem optischen Sensor wird dann innerhalb eines vorgegebenen Schutzfelds überwacht, ob dort ein sicherheitskritisches Objekt wie zum Beispiel eine Person eindringt. Ist dies der Fall, generiert der optische Sensor ein sicherheitsrelevantes Signal, welches zu einem Notstopp des fahrerlosen Transportfahrzeugs führt, sodass Gefährdungen von Personen vermieden werden.
  • Die Erfindung wird im Folgenden anhand der Zeichnung 5 erläutert. Es zeigen:
  • Figur 1:
    Erstes Beispiel eines Sensorsystems.
    Figur 2:
    Zweites Beispiel eines Sensorsystems.
    Figur 3:
    Erste Ausführungsform eines Flächendistanzsensors für das Sensorsystem gemäß Figur 2.
    Figur 4:
    Zweite Ausführungsform eines Flächendistanzsensors für das Sensorsystem gemäß Figur 2.
    Figur 5:
    Ausführungsbeispiel des erfindungsgemäßen Sensorsystems.
  • Figur 1 zeigt ein erstes Beispiel eines Sensorsystems. Dabei ist in Figur 1 ein fahrerloses Transportfahrzeug 1 und ein diesem vorausfahrendes fahrerloses Transportfahrzeug 1' dargestellt. An der Frontseite jedes fahrerlosen Transportfahrzeugs 1,1' ist ein erstes Sensormittel angeordnet, mittels dessen der Abstand zum vorausfahrenden fahrerlosen Transportfahrzeug 1' bestimmt wird. Im vorliegenden Fall ist das Sensormittel von einem Distanzsensor 2, insbesondere einem optischen Distanzsensor 2 gebildet. An beiden fahrerlosen Transportfahrzeugen 1,1' ist an der Rückseite eine Kennzeichnung 3 angebracht, mit der das fahrerlose Transportfahrzeug 1,1' identifiziert werden kann. An der Frontseite jedes fahrerlosen Transportfahrzeugs 1,1' befindet sich ein erstes Sensormittel, mit dem die Kennzeichnung 3 des jeweils vorausfahrenden fahrerlosen Transportfahrzeugs 1' erfasst werden kann. Im vorliegenden Fall ist das zweite Sensormittel von einem RFID-Lesegerät 4 gebildet, mit dem eine Kennzeichnung 3 in Form eines Transponders erfasst wird.
  • Das erste und zweite Sensormittel wird an eine nicht dargestellte Auswerteeinheit angeschlossen, in der die Signale der beiden Sensormittel ausgewertet werden und in Abhängigkeit hiervon Steuersignale generiert werden, mittels derer die Fahrt des jeweiligen fahrerlosen Transportfahrzeugs 1,1' gesteuert wird. Bei dem in Figur 1 dargestellten Fall ist vor dem vorausfahrenden fahrerlosen Transportfahrzeug 1' kein weiteres fahrerloses Transportfahrzeug 1 angeordnet, sodass das vorausfahrende fahrerlose Transportfahrzeug 1' ungehindert mit einer Geschwindigkeit v' fahren kann. Das hinter diesem vorausfahrenden fahrerlosen Transportfahrzeug 1' fahrende fahrerlose Transportfahrzeug 1 erkennt mittels des RFID-Lesegeräts 4 die Kennzeichnung 3 in Form des Transponders, sodass das vorausfahrende fahrerlose Transportfahrzeug 1' als Fahrzeug identifiziert ist. In Abhängigkeit der Sensorsignale des Distanzsensors 2, der den Abstand des vorausfahrenden fahrerlosen Transportfahrzeugs 1' fortlaufend erfasst, werden Steuersignale generiert, mit der das Fahrverhalten des fahrerlosen Transportfahrzeugs 1 an das vorausfahrende fahrerlose Transportfahrzeug 1' angepasst ist. Die Anpassung erfolgt derart, dass das fahrerlose Transportfahrzeug 1 ohne Kollision dem vorausfahrenden fahrerlosen Transportfahrzeug 1' folgt. Hierzu wird anhand der Steuersignale stets ein Mindestabstand des fahrerlosen Transportfahrzeugs 1 zum vorausfahrenden fahrerlosen Transportfahrzeug 1' eingehalten und die Geschwindigkeit des fahrerlosen Transportfahrzeugs 1 an die Geschwindigkeit des vorausfahrenden fahrerlosen Transportfahrzeugs 1' angepasst.
  • Die Anordnung gemäß Figur 1 kann natürlich auf eine größere Anzahl von fahrerlosen Transportfahrzeugen 1 erweitert sein, wobei stets anhand der Sensorsignale der Sensormittel eines fahrerlosen Transportfahrzeugs 1 deren Fahrverhalten an das jeweils vorausfahrende fahrerlose Transportfahrzeug 1' angepasst ist.
  • Figur 2 zeigt ein zweites Beispiel eines Sensorsystems.
  • In diesem Fall ist an der Frontseite eines fahrerlosen Transportfahrzeugs 1,1' nur ein Sensormittel in Form eines Flächendistanzsensors 5 angeordnet. Dieser Flächendistanzsensor 5 übernimmt sowohl die Distanzbestimmung zum vorausfahrenden fahrerlosen Transportfahrzeugs 1' als auch die Erfassung der Kennzeichnung 3 an der Rückseite des vorausfahrenden fahrerlosen Transportfahrzeugs 1', wobei an der Rückseite jedes fahrerlosen Transportfahrzeugs 1,1' in diesem Fall zwei Reflektoren als Kennzeichnung 3 vorgesehen sind. Alternativ könnten die Kennzeichnungen 3 von Kontrastmustern oder Konturmerkmalen des fahrerlosen Transportfahrzeugs 1,1' gebildet sein.
  • Die Flächendistanzsensoren 5 sind generell optische Sensoren, wobei die Figuren 3 und 4 zwei Ausführungsbeispiele von Flächendistanzsensoren 5 zeigen.
  • Der Flächendistanzsensor 5 gemäß Figur 3 ist als Scanner ausgebildet. Ein Sendelichtstrahlen 6 emittierender Sender 7 und ein Empfangslichtstrahlen 8 empfangender Empfänger 9, welchem eine Empfangsoptik 10 vorgeordnet ist, bilden einen Distanzsensor 2. Die Komponenten des Distanzsensors 2 sind stationär in einem Gehäuse 11 angeordnet. Über eine Ablenkeinheit 12, die einen um eine Drehachse drehbaren Umlenkspiegel 13 aufweist, werden die Sendelichtstrahlen 6 innerhalb eines Abtastbereichs periodisch abgelenkt und durch ein Fenster 14 aus dem Gehäuse 11 geführt, sodass mit den Sendelichtstrahlen 6 ein flächiger Überwachungsbereich erfasst wird. Die vom Objekt zurückreflektierten Empfangslichtstrahlen 8 werden über die Ablenkeinheit 12 zum Empfänger 9 geführt. In einer im Flächendistanzsensor integrierten Auswerteeinheit werden die mit dem Distanzsensor 2 ermittelten Distanzwerte abhängig von der jeweiligen Winkelstellung erfasst.
  • Der Flächendistanzsensor 5 gemäß Figur 4 unterscheidet sich von der Ausführungsform der Figur 3 dadurch, dass das Gehäuse 11 einen rotierenden Messkopf bildet, der drehbar auf einem Sockel 15 aufsitzt. In diesem Fall wird die Ablenkbewegung der Sendelichtstrahlen 6 dadurch erhalten, dass mit dem Messkopf der gesamte Distanzsensor 2 gedreht wird.
  • Mit beiden Flächendistanzsensoren 5 können die Sendelichtstrahlen 6 in einem großen Winkelbereich geführt werden, der beispielsweise 180° umfasst.
  • Wie Figur 2 zeigt, wird mit den in einem Teilwinkelbereich α geführten Sendelichtstrahlen 6 des Flächendistanzsensors 5 am fahrerlosen Transportfahrzeug 1 die Rückseite des vorausfahrenden fahrerlosen Transportfahrzeugs 1 erfasst. Bei dieser Ablenkbewegung werden mittels des Flächendistanzsensors 5 die Kennzeichnung 3 der vorausfahrenden fahrerlosen Transportfahrzeuge 1'erkannt und zugleich der Abstand zum vorausfahrenden fahrerlosen Transportfahrzeug 1' bestimmt. Anhand dieser Sensorsignale werden analog zur Ausführungsform gemäß Figur 1 Steuersignale generiert, mit denen das Fahrverhalten des fahrerlosen Transportfahrzeugs 1 an das vorausfahrende fahrerlose Transportfahrzeug 1' angepasst ist.
  • Figur 5 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Sensorsystems. Bei der Ausführungsform der Figur 5 erkennt der Flächendistanzsensor 5 nicht nur die Kennzeichnung 3 des vorausfahrenden fahrerlosen Transportfahrzeugs 1' und misst den Abstand vom vorausfahrenden fahrerlosen Transportfahrzeug 1'. Vielmehr erfolgt mit dem Flächendistanzsensor 5 auch eine Überwachung eines Schutzfelds 16, dessen Kontur in der Auswerteeinheit des Flächendistanzsensors 5 abgespeichert ist.
  • Mit der Schutzfeldüberwachung erfüllt der Flächendistanzsensor 5 eine sicherheitsrelevante Funktion. Zur Erfüllung der Anforderungen für den Einsatz im Bereich der Sicherheitstechnik weist die Auswerteeinheit einen redundanten Aufbau auf, vorzugsweise in Form zweier sich gegenseitig überwachenden Rechnereinheiten. Wird mit dem Flächendistanzsensor 5 ein Eindringen eines sicherheitskritischen Objekts, wie zum Beispiel einer Person registriert, so generiert der Flächendistanzsensor 5 ein sicherheitsrelevantes Ausgangssignal, mit dem ein Notstopp des fahrerlosen Transportfahrzeugs 1 bewirkt wird, um Gefährdungen von Personen zu vermeiden.
  • Bezugszeichenliste
  • (1)
    fahrerloses Transportfahrzeug
    (1')
    vorausfahrendes fahrerloses Transportfahrzeug
    (2)
    Distanzsensor
    (3)
    Kennzeichnung
    (4)
    RFID-Lesegerät
    (5)
    Flächendistanzsensor
    (6)
    Sendelichtstrahlen
    (7)
    Sender
    (8)
    Empfangslichtstrahlen
    (9)
    Empfänger
    (10)
    Empfangsoptik
    (11)
    Gehäuse
    (12)
    Ablenkeinheit
    (13)
    Umlenkspiegel
    (14)
    Fenster
    (15)
    Sockel
    (16)
    Schutzfeld

Claims (5)

  1. Sensorsystem für eine Anordnung von fahrerlosen Transportfahrzeugen (1) wobei jedes fahrerlose Transportfahrzeug (1) an seiner Rückseite eine dieses kennzeichnende Kennzeichnung (3) aufweist, und wobei jedes fahrerlose Transportfahrzeug (1) an seiner Frontseite Sensormittel aufweist, welche ausgebildet sind, die Kennzeichnung (3) und den Abstand eines vorausfahrenden fahrerlosen Transportfahrzeugs (1') zu ermitteln, und wobei in einer Auswerteeinheit von den Sensormitteln generierte Sensorsignale ausgewertet und in Abhängigkeit hiervon Steuersignale generiert sind, mittels derer die Geschwindigkeit des fahrerlosen Transportfahrzeugs (1) gesteuert ist, dadurch gekennzeichnet, dass die Kennzeichnung (3) und der Abstand des vorausfahrenden fahrerlosen Transportfahrzeugs (1') mit denselben Sensormitteln erfasst sind, dass die Sensormittel von einem optischen Sensor gebildet sind, und dass der optische Sensor für eine Schutzfeldüberwachung ausgebildet ist.
  2. Sensorsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Sensormittel von einem Flächendistanzsensor (5) gebildet sind.
  3. Sensorsystem nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Kennzeichnung (3) von Konturmerkmalen des fahrerlosen Transportfahrzeugs (1), von Kontrastmustern oder von Reflektoren gebildet sind.
  4. Sensorsystem nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass anhand der Steuersignale die Geschwindigkeit des fahrerlosen Transportfahrzeugs (1) an die Geschwindigkeit des vorausfahrenden fahrerlosen Transportfahrzeugs (1') angepasst ist.
  5. Sensorsystem nach einem der Ansprüche 1 - 4 dadurch gekennzeichnet, dass mittels der Steuersignale die Einhaltung eines Mindestabstands des fahrerlosen Transportfahrzeugs (1) am vorausfahrenden fahrerlosen Transportfahrzeug (1') kontrolliert ist.
EP17170311.9A 2017-05-10 2017-05-10 Sensorsystem Active EP3401702B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17170311.9A EP3401702B1 (de) 2017-05-10 2017-05-10 Sensorsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17170311.9A EP3401702B1 (de) 2017-05-10 2017-05-10 Sensorsystem

Publications (2)

Publication Number Publication Date
EP3401702A1 EP3401702A1 (de) 2018-11-14
EP3401702B1 true EP3401702B1 (de) 2020-10-14

Family

ID=58701454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17170311.9A Active EP3401702B1 (de) 2017-05-10 2017-05-10 Sensorsystem

Country Status (1)

Country Link
EP (1) EP3401702B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164798A1 (de) * 2019-02-12 2020-08-20 Sew-Eurodrive Gmbh & Co. Kg Verfahren und anlage zur durchführung eines verfahrens zum betreiben einer anlage, welche ein erstes und ein zweites, auf einer verfahrebene bewegbares mobilteil aufweist
EP3757443A1 (de) * 2019-06-25 2020-12-30 Leuze electronic GmbH + Co. KG Überwachungsvorrichtung und verfahren zur absicherung von gefahrenbereichen
FR3118213A1 (fr) * 2020-12-17 2022-06-24 Airbus Operations (S.A.S.) Système d’acquisition de l’image d’un aeronef meneur depuis un aeronef suiveur en luminosite reduite
CN114326667B (zh) * 2021-12-23 2023-08-08 水木东方(深圳)科技有限公司 在线交通流仿真与真实道路环境融合的无人驾驶测试方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533204B2 (ja) * 2002-03-13 2004-05-31 株式会社日立製作所 車両位置測定装置およびそれを搭載した車両
US20090062974A1 (en) * 2007-09-03 2009-03-05 Junichi Tamamoto Autonomous Mobile Robot System
US9221396B1 (en) * 2012-09-27 2015-12-29 Google Inc. Cross-validating sensors of an autonomous vehicle
US10347127B2 (en) * 2013-02-21 2019-07-09 Waymo Llc Driving mode adjustment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3401702A1 (de) 2018-11-14

Similar Documents

Publication Publication Date Title
EP3401702B1 (de) Sensorsystem
EP3373093B1 (de) Fahrerloses transportsystem
EP1788467B1 (de) Schutzeinrichtung
DE19917509C1 (de) Optoelektronische Vorrichtung
EP3791105B1 (de) Vorrichtung und verfahren zur sicherung eines maschinell oder automatisch gesteuerten beweglichen gerätes und sensorkachel
EP2428862B1 (de) Vorrichtung und Verfahren zur Sicherheitssteuerung eines Fahrzeuges
EP3330740B1 (de) Verfahren zur erfassung von objekten in einem erfassungsbereich
DE102004044973A1 (de) Kontrolle eines Überwachungsbereiches
DE10312972B3 (de) Optischer Sensor
EP1752702A1 (de) Verfahren und System zur Überwachung von Kollisionen zwischen Robotern und Personen
EP2302416A1 (de) Sicherheitsscanner
EP3587894B1 (de) Sensoranordnung und verfahren zum betrieb einer sensoranordnung
WO2021121854A1 (de) Verfahren und überwachungssystem zur ermittlung einer position eines schienenfahrzeugs
EP3457161A1 (de) Verfahren und anordnung zum lokalisieren und/oder bewegen eines objekts in einer umgebung
DE202020107300U1 (de) Sicherheitssystem
EP3910231B1 (de) Sicherheitssystem
EP3812863B1 (de) Bewegbare maschine
EP1826589B1 (de) Optischer Sensor zur Überwachung einer Schutzzone
EP3640522B1 (de) Überwachungsvorrichtung
DE202013000437U1 (de) Sensorvorrichtung für ein Fahrzeug
EP1914665A2 (de) Verfahren und Vorrichtung zur Identifizierung von mit RFID-Transpondern gekennzeichneten Objekten
EP3249476B1 (de) Sensor
EP3825731B1 (de) Optoelektronischer sicherheitssensor und verfahren zur sicheren bestimmung der eigenen position
EP3882505B1 (de) Überwachungseinrichtung und ein verfahren zum betrieb einer überwachungseinrichtung
EP3770708B1 (de) Überwachungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/931 20200101ALI20200508BHEP

Ipc: G01S 13/86 20060101ALI20200508BHEP

Ipc: G01S 13/74 20060101ALI20200508BHEP

Ipc: G01S 17/93 20200101ALI20200508BHEP

Ipc: G01S 13/93 20200101ALI20200508BHEP

Ipc: G01S 17/931 20200101ALI20200508BHEP

Ipc: G01S 17/42 20060101AFI20200508BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

RBV Designated contracting states (corrected)

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007713

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007713

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230525

Year of fee payment: 7