EP3400588A1 - Systèmes et procédés pour permettre un entraînement à la soudure - Google Patents

Systèmes et procédés pour permettre un entraînement à la soudure

Info

Publication number
EP3400588A1
EP3400588A1 EP17701393.5A EP17701393A EP3400588A1 EP 3400588 A1 EP3400588 A1 EP 3400588A1 EP 17701393 A EP17701393 A EP 17701393A EP 3400588 A1 EP3400588 A1 EP 3400588A1
Authority
EP
European Patent Office
Prior art keywords
weld
welding
user
processor
instructions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP17701393.5A
Other languages
German (de)
English (en)
Inventor
Bruce Patrick Albrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Priority claimed from PCT/US2017/012563 external-priority patent/WO2017120491A1/fr
Publication of EP3400588A1 publication Critical patent/EP3400588A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/24Use of tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • Weld training systems are used to provide training to welders who are unfamiliar with welding and/or with certain aspects of welding.
  • Conventional weld training systems include suites of sensors and/or have very precise positioning requirements to ensure proper tracking of training.
  • FIG. 1 is a block diagram of an example implementation of a computing device configured to implement a weld training system, in accordance with aspects of this disclosure.
  • FIG. 2 illustrates a view displayed by the example weld training system of FIG. 1 to enable a user to design a weld procedure using the input device(s) of the weld training system by selecting weld parameters.
  • FIG. 3A illustrates a view displayed by the example weld training system of FIG. 1 to enable a user to simulate setting up a simulated physical welding environment using the input device(s) of the weld training system.
  • FIG. 3B illustrates a view displayed by the example weld training system of FIG. 1 to enable a user to simulate configuring welding equipment using the input device(s) of the weld training system.
  • FIG. 3C illustrates a view displayed by the example weld training system of FIG. 1 to enable a user to simulate making electrical connections between one or more welding torches/clamps and welding equipment using the input device(s) of the weld training system.
  • FIG. 4 illustrates a welding presentation interface displayed by the example weld training system of FIG. 1 to display a simulation animation of a welding operation on the display device(s).
  • FIG. 5 illustrates a view displayed by the example weld training system of FIG. 1 to display the modeled result of the weld on the display device(s) using an image of a surface of a weld bead and/or a cross- section of the weld bead and the workpiece.
  • FIG. 6 is a flowchart representative of machine readable instructions which may be executed to implement the weld training system of FIG. 1 to demonstrate to a user an effect of a combination of welding-related variables.
  • FIG. 7 is a flowchart representative of machine readable instructions which may be executed to implement the weld training system of FIG. 1 to enable a user to simulate setting up a welding environment using an input device of the weld training system.
  • FIG. 8 is a flowchart representative of machine readable instructions which may be executed to implement the weld training system of FIG. 1 to simulate a welding operation on a simulated workpiece to determine a modeled result of the welding operation.
  • Example weld training systems disclosed herein familiarize a user with welding environments, without necessarily providing the user with the opportunity to physically perform or mimic a welding operation.
  • Weld training systems disclosed herein enable the user to navigate one or more three-dimensional welding environments, select equipment and/or materials, manipulate the user interfaces of welding equipment, physically set up a welding operation, and/or any other activities involved with performing welding.
  • real-time refers to performance of a process or other action relating to a system in which input data is processed substantially immediately (e.g., within milliseconds, as soon as possible, etc.) so that the result of processing is available virtually immediately as feedback.
  • real-time is used on contradistinction to postprocessing.
  • a weld cell refers to a site at which welding occurs (e.g., simulated or actual welding).
  • a simulated weld cell refers to a weld cell in which a simulated weld may occur, and may include a simulated power supply, simulated gas supply, simulated utility power access, a simulated wire feeder, a simulated weld torch, a simulated work clamp, a simulated fixture, simulated parts, and/or any other appropriate simulated objects.
  • Disclosed example weld training devices include a display device, an input device, a processor, and a machine readable storage device storing machine readable instructions.
  • the machine readable instructions may be executed the processor to demonstrate to a user an effect of a combination of welding-related variables.
  • the processor executes the instructions to enable the user to design a weld procedure using the input device by selecting weld parameters including weld current and weld voltage, and to enable the user to simulate setting up a simulated physical welding environment using the input device.
  • the processor executes the instructions to simulate a welding operation on a simulated workpiece using the selected weld parameters in a welding model and a setup of the simulated physical welding environment to determine a modeled result of the welding operation.
  • the processor executes the instructions to display a simulation animation of the welding operation on the display device according to the simulation, and to display the modeled result of the weld on the display device using at least one of an image of a surface of a weld bead or a cross-section of the weld bead and the simulated workpiece.
  • Disclosed example non-transitory machine readable storage media store machine readable instructions which may be executed by a processor to demonstrate to a user an effect of a combination of welding-related variables.
  • the processor executes the instructions to enable a user to design a weld procedure using an input device by selecting weld parameters including weld current and weld voltage, simulate, a welding operation on a simulated workpiece using the selected weld parameters in a welding model to determine a physical result of the welding operation, display a simulation animation of the welding operation on a display device according to the simulation, and displaying the physical result of the weld on the display device using at least one of an image of a surface of a weld bead or a cross-section of the weld bead and the simulated workpiece.
  • the instructions cause the processor to enable the user to select a welding power supply model, and to simulate the welding operation based on the selection of the welding power supply model. In some examples, the instructions cause the processor to enable the user to select a wire feed speed, and to simulate the welding operation based on the selection of the wire feed speed. In some examples, the instructions cause the processor to enable the user to select at least one of a workpiece material or a filler type, and to simulate the welding operation based on the selection of the workpiece material or the selection of the filler type.
  • the instructions cause the processor to enable the user to select a torch travel speed, and to simulate the welding operation based on the selection of the selection of the torch travel speed. In some such examples, the instructions cause the processor to enable the user to control the torch travel speed during the simulation using the input device, and to update the simulation of the welding operation based on changes in the torch travel speed. In some examples, the instructions cause the processor to enable the user to add variation to at least one of a torch travel speed or a contact tip to work distance.
  • the modeled result includes a visual representation of at least one of a weld puddle, slag generated by the welding operation, spatter generated by the welding operation, or burn through generated by the welding operation.
  • the simulation animation includes a visual representation of at least one of a weld puddle, slag generated by the welding operation, spatter generated by the welding operation, or burn through generated by the welding operation.
  • the weld training device comprises a personal computer, a laptop computer, a server, a tablet computer, or a smartphone.
  • the input device is at least one of a keyboard, a mouse, or a touchscreen.
  • the instructions cause the processor to enable the user to change at least one of the weld current, the weld voltage, or a wire feed speed during the simulation, and to update the simulation of the welding operation based on changes in the weld current, the weld voltage, or the wire feed speed.
  • the instructions cause the processor to enable the user to specify at least one of a welding gas type, a gas flow rate, or an ambient airflow, and to simulate the welding operation based on the selection of the welding gas type or the selection of the gas flow rate, or the ambient airflow.
  • the instructions cause the processor to display information about an anomaly present in the weld determined based on the simulation.
  • the information about the anomaly includes at least one of a cause of the anomaly, a suggested change in one or more of the welding-related variables to avoid the anomaly, or a location of the anomaly in the image of the weld bead or in the cross-section of the weld bead.
  • the instructions cause the processor to simulate is performed without further user input after the selection of the weld procedure is accepted.
  • the instructions cause the processor to include at least one of an operator or a robot in the simulation animation.
  • the instructions cause the processor to enable the user to simulate setting up the simulated physical welding environment by at least one of: selecting a welding task from a plurality of welding tasks, reviewing a selecting a welding gas from a plurality of welding gas bottles in the weld cell, selecting at least one of a wire type or a gas, or going through set up procedure using hard goods and gas.
  • the instructions cause the processor to enable the user to simulate the setting up of the simulated physical welding environment by simulating an interface to enable the user to at least one of: check a welding gas bottle for connection problems; check electrical connections for electrical issues; load a filler reel into a wire feeder; installing a contact tip, a diffuser, and a nozzle; installing a wire liner; attaching a gas supply to welding equipment; installing an electrode reel; connecting a work clamp to a workpiece; preparing the workpiece; or connecting a power supply to the wire feeder.
  • the instructions cause the processor to simulate the simulated physical welding environment by including virtual representations of one or more of: a welding gas bottle, a gas regulator, a gas hose, a wire feeder, welding electrodes, a drive roll, access to utility power, a torch, a contact tip, a work clamp, a fume extraction mechanism, a liquid torch cooler, and welding protective equipment.
  • the instructions cause the processor to download welding parameters configured by the user using the input device to a real physical environment or a real work cell.
  • the instructions are to cause the processor to download a weld procedure specification configured by the user using the input device to a quality system.
  • FIG. 1 is a block diagram of an example implementation of a computing device configured to implement a weld training system 100 in accordance with aspects of this disclosure.
  • the example weld training system 100 of FIG. 1 may be any type of system that uses a microcontroller or microprocessor to provide one or more features by executing software, firmware, and/or any other machine readable code.
  • Example computing devices include a personal computer, a laptop computer, a server, a tablet computer, or a smartphone.
  • the example weld training system 100 of FIG. 1 includes a processor 102.
  • the example processor 102 may be any specialized or general-purpose microcontroller, such as a system-on-a-chip (SoC), graphics processing unit, and/or digital signal processor, from any manufacturer.
  • SoC system-on-a-chip
  • the processor 102 executes machine readable instructions 104 that may be stored locally at the processor (e.g., in an included cache), in a random access memory 106 (or other volatile memory), in a read only memory 108 (or other non-volatile memory such as FLASH memory), and/or in a mass storage device 110.
  • the example mass storage device 110 may be a hard drive, a solid state storage drive, a hybrid drive, a RAID array, and/or any other mass data storage device.
  • a bus 112 enables communications between the processor 102, the RAM 106, the ROM 108, the mass storage device 110, a network interface 114, and/or an input/output interface 116.
  • the example network interface 114 includes hardware, firmware, and/or software to connect the weld training system 100 to a communications network 118 such as the Internet.
  • the network interface 114 may include IEEE 802.X-compliant wireless and/or wired communications hardware for transmitting and/or receiving communications.
  • the example I/O interface 116 of FIG. 1 includes hardware, firmware, and/or software to connect one or more input/output devices 120 to the processor 102 for providing input to the processor 102 and/or providing output from the processor 102.
  • the I/O interface 116 may include a graphics processing unit for interfacing with a display device, a universal serial bus port for interfacing with one or more USB-compliant devices, a FireWire, a field bus, and/or any other type of interface.
  • the example weld training system 100 of FIG. 1 includes one or more input device(s) 124 as an input device and one or more display device(s) 126 as an output device.
  • Example input device(s) include keyboard, a mouse, and/or a touchscreen.
  • the I/O device(s) 120 may also include a keyboard, a keypad, a mouse, a trackball, a pointing device, a microphone, an audio speaker, an optical media drive, a multi-touch touch screen, a gesture recognition interface, a magnetic media drive, and/or any other type of input and/or output device.
  • the example weld training system 100 may access a non-transitory machine readable medium 122 via the I/O interface 116 and/or the I/O device(s) 120. Examples of the machine readable medium 122 of FIG.
  • optical discs e.g., compact discs (CDs), digital versatile/video discs (DVDs), Blu-ray discs, etc.
  • magnetic media e.g., floppy disks
  • portable storage media e.g., portable flash drives, secure digital (SD) cards, etc.
  • SD secure digital
  • one or more of the processor 102, the random access memory 106, the read-only memory 108, the mass storage device 110, the bus 112, the network interface 114, and/or the I/O interface 116 may be implemented in a single package.
  • the weld training system 100 may be implemented on a computing device as, for example, a welding simulator "game” or other three-dimensional simulator to enable users (e.g., players) to familiarize themselves with welding-type environments.
  • the weld training system 100 may enable the user to navigate one or more three-dimensional welding environments, select equipment and/or materials, manipulate the user interfaces of welding equipment, physically set up a welding operation, and/or any other activities involved with performing welding.
  • the weld training system 100 enables the user to design a weld procedure using the input device(s) 124 by selecting weld parameters including weld current and weld voltage.
  • weld parameters including weld current and weld voltage.
  • the user may be provided with an interface to specify a particular weld to be performed.
  • Such a specification may be set by one or more external objectives, such as a project specified by a supervisor, which may or may not require the user to interpret the objectives to design the specification.
  • the weld training system 100 enables the user to simulate setting up a simulated physical welding environment using the input device(s) 124.
  • the simulation of a physical welding environment may be based on the designed weld procedure, and/or may take place in one or more general and/or specialized welding environments. Examples of such environments include a hobbyist's garage, an automotive repair shop, a manufacturing facility, a robotic weld cell, a construction site (e.g., a pipeline construction site, a building construction site, a shipyard, etc.), and/or any other physical welding environment.
  • Different welding environments may appear differently to the user in the simulation, may be laid out differently for the purposes of virtually traversing the physical environment, may include different welding equipment and/or materials for selection by the user, and/or may have other differences.
  • the simulating of setting up the physical welding environment may include, for example, selecting welding equipment (e.g., welding power supply, wire feeder, welding torch, induction heating unit, etc.) and/or materials (e.g., shielding gas, welding electrode, etc.).
  • the simulation may include physically configuring the welding equipment and/or materials, such as moving the welding equipment and/or the materials to the work site, connecting the relevant pieces of equipment to one another, supplying consumable material to the welding equipment.
  • the simulation may include manipulating the interface(s) of the equipment, such as the user interfaces of a welding power supply or a wire feeder, to configure the equipment for the appropriate settings.
  • the weld training system 100 simulates a welding operation on a simulated workpiece using the selected weld parameters in a welding model and a setup of the simulated physical welding environment to determine a modeled result of the welding operation.
  • the user initiates the simulation and is then presented with a view of a weld operator performing the welding operation without further input from the user.
  • the weld training system 100 enables the user to make adjustments to one or more parameters during the welding operation to observe the effects on the welding operation. In either case, the weld training system 100 performs the simulation based on the previous performance and/or configuration by the user.
  • the weld training system 100 simulates the welding operation using the configuration (even if incorrect or not preferred, such as configuring the welding equipment as DCEP when DCEN or AC is a preferred mode of operation).
  • the weld training system 100 displays a simulation animation of the welding operation on the display device(s) 126 according to the simulation.
  • the simulation animation is presented concurrently with the simulation to enable the user to make real-time adjustments to the parameters.
  • the weld training system 100 continues the simulation of the welding operation with the modified parameters. For example, if a user changes the weld voltage from 18VDC to 24VDC halfway into the welding simulation, the first half of the welding simulation remains a simulation at 18VDC and the remaining portions of the welding simulation are simulated using 24VDC (absent further changes by the user).
  • the weld training system 100 displays the modeled result of the weld on the display device(s) 126 using at least one of an image of a surface of a weld bead or a cross-section of the weld bead and the workpiece. In this manner, the user may review the results of the weld completed using the selected equipment and/or materials and the configuration of the welding operation. In this manner, the weld training system 100 may familiarize a user with welding concepts separately from the user performing actual welding.
  • Such a system can reduce expensive training time for new welders by providing an inexpensive method of becoming accustomed to the welding environment, thereby enabling more expensive training time (e.g., with welding instructors) to be focused more directly on actual welding technique instead of spending the more expensive training time on familiarizing the new welders with the welding concepts.
  • more expensive training time e.g., with welding instructors
  • the weld training system 100 may enable the user to simulate setting up a simulated physical welding environment by one or more of: selecting a welding task from a plurality of welding tasks, reviewing a selecting a welding gas from a plurality of welding gas bottles in the weld cell, selecting at least one of a wire type or a gas, and/or going through set up procedure using hard goods and gas.
  • the weld training system 100 simulates the setting up of the simulated physical welding environment by simulating an interface to enable the user to at least one of: check a welding gas bottle for connection problems; check electrical connections for electrical issues; load a filler reel into a wire feeder; installing a contact tip, a diffuser, and a nozzle; installing a wire liner; attaching a gas supply to welding equipment; such as attaching a gas supply hose, installing or replacing an electrode reel, installing or replacing a wire liner, connecting a work clamp to a workpiece, preparing a workpiece, and/or connecting a power supply to a wire feeder.
  • FIG. 2 illustrates a view 200 displayed by the example weld training system 100 of FIG. 1 (e.g., the display device(s) 126) to enable a user to design a weld procedure using the input device(s) 124 of the weld training system by selecting weld parameters.
  • the view 200 may be presented on the display device(s) 126 during a welding environment simulation. For instance, the user of the weld training system 100 may select a weld procedure interface to bring up the view 200.
  • the example view 200 includes information relevant to creating a weld procedure, such as a weld procedure specification (WPS).
  • WPS weld procedure specification
  • the view 200 includes multiple selection objects, such as drop-down boxes having relevant selectable items, to select the data for entry into the weld procedure. Examples of such information illustrated in FIG.
  • a welding standard 202 or welding code e.g., American Welding Society, etc.
  • a product type 204 e.g., a weld type 206
  • a welding process 208 e.g., GMAW, GTAW, SMAW, SAW, FCAW, etc.
  • a base material type 210 e.g., steel, aluminum, etc.
  • a base material thickness 212 e.g., steel, aluminum, etc.
  • a base material thickness 212 e.g., steel, aluminum, etc.
  • a base material diameter 214 e.g., a root pass base material 216
  • a filler pass base material 218, a welding position 220 e.g., horizontal, vertical, overhead, etc.
  • a shielding gas type 222 e.g., C02, Argon, etc.
  • a shielding gas flow rate 224 e.g., fillet, square, V joint, etc.
  • the example interface illustrated in FIG. 2 also enables a user to specify a set of information for each of multiple passes.
  • the user may specify the pass number 232 and, for each selected pass number 232, specify a heat input 234 (e.g., in Joules/inch or similar metric), a transfer mode 236 (e.g., spray, pulse, etc.), a process type 238 (e.g., GMAW, GTAW, SMAW, SAW, FCAW, etc.), a filler material type 240, a diameter type 242, a weld current 244, a weld voltage 246, a polarity 248, a wire feed speed 250, and/or a travel speed 252.
  • a heat input 234 e.g., in Joules/inch or similar metric
  • a transfer mode 236 e.g., spray, pulse, etc.
  • a process type 238 e.g., GMAW, GTAW, SMAW, SAW, FCAW,
  • parameters may be added, removed, modified, and/or replaced. Furthermore, one or more parameters may be omitted.
  • the weld training system 100 may perform a check of a proposed final welding procedure (e.g., when the user selects an "OK" button 254) to avoid incompatible parameters from being set.
  • FIG. 3A illustrates a view 300 displayed by the example weld training system 100 of FIG. 1 to enable a user to simulate setting up a simulated physical welding environment using the input device(s) 124 of the weld training system 100.
  • the example view 300 may be displayed on the display device(s) 126 of the weld training system 100 as a set scene and/or in response to user navigation of a three-dimensional environment presented by the weld training system 100.
  • an area of a welding environment 302 includes welding equipment and materials for selection by the user.
  • the welding environment 302 includes a shelf 304 containing multiple filler materials 306a-306d (e.g., spools of different electrode wires).
  • the welding environment 302 also includes multiple bottles 308a-308c of welding gases that may be selected.
  • the welding environment 302 further includes one or more welding power supplies 310a, 310b, a cart 312, one or more portable wire feeders 314, one or more welding torches 316a, 316b, and a ground cable 318.
  • the environment 302 may include protective equipment for selection by the user.
  • the user controls a cursor 320, which represents the user's hand, for the selection of objects.
  • the user may control a weld operator via a first-person or third-person view. Selecting an object 304-318 via the cursor 320 may trigger an animation or other indication that the user has selected the corresponding object.
  • the user may also use the cursor 320 to replace an object in the weld environment 302.
  • FIG. 3B illustrates a view 322 displayed by the example weld training system 100 of FIG. 1 to enable a user to simulate configuring welding equipment using the input device(s) 126 of the weld training system 100.
  • the example view 322 includes a simulated user interface 324 of welding equipment such as a welding power supply.
  • the weld training system 100 may display the view 322 in response to a user selection to interact with a piece of welding equipment having the user interface 324.
  • the weld training system 100 enables the user to manipulate objects on the simulated user interface 324 (e.g., via the cursor 320) to adjust welding parameters.
  • the weld training system 100 may select from multiple simulated user interfaces depending on which of multiple welding power supplies the user selected from the welding environment 302. For example, different makes and/or models of welding equipment typically have different features on the user interface 324, which may be reflected on the display device(s) 126 as different user interface inputs and/or outputs to provide the user with a representative view of a piece of welding equipment.
  • the user interface 324 of FIG. 3B includes a screen 326, software-controlled adjustment knobs 326a, 326b, a process selector 328, a material selector 330, a material thickness selector 332, and an auto-set selection button 334.
  • FIG. 3C illustrates a view 336 displayed by the example weld training system 100 of FIG. 1 to enable a user to simulate making electrical connections between one or more welding torches/clamps 338, 340, 342 and welding equipment (e.g., the welding power supply 310a) using the input device(s) 126 of the weld training system 100.
  • the example view 336 includes electrical connections 344, 346, 348 corresponding to welding equipment such as a welding power supply.
  • the weld training system 100 may display the view 336 in response to a user selection to interact with a piece of welding equipment having the electrical connections.
  • the weld training system 100 enables the user to manipulate objects on the welding equipment (e.g., via the cursor 320) to virtually perform physical configuration of the welding equipment.
  • the physical configuration performed by the user via the weld training system 100 may affect the resulting welding operation, if the user chooses to simulate the welding operation.
  • the selection of the weld torch and/or the work cable, and/or the connection of the weld torch and/or the work cable to respective ones of the electrical connections 344, 346, 348 may determine the polarity of the electrode during the weld, which in turn determines the heat input to the weld and/or the heat at the electrode during the welding operation.
  • selection of the proper weld torch and connection to the appropriate one of the electrical connection 344, 346, 348 determines the welding process type, among other things.
  • the user may virtually perform physical configurations such as attaching a gas supply hose, installing or replacing an electrode reel, installing or replacing a wire liner, connecting a work clamp to a workpiece, preparing a workpiece (e.g., cleaning the workpiece), connecting a power supply to a wire feeder, and/or any other physical activities or configuration involved in preparing for a welding operation.
  • the weld training system 100 enables a user to perform workpiece preparation such as preheating with an induction heating system or other known preheating method such as a blowtorch.
  • Workpiece preparation may be simulated in a similar manner as the welding simulation described herein, with corresponding physical configuration, parameter configuration, equipment selection, and/or environment navigation being performed by the user.
  • FIG. 4 illustrates a welding presentation interface 400 displayed by the example weld training system 100 of FIG. 1 to display a simulation animation 402 of a welding operation on the display device(s) 126.
  • the weld training system 100 displays the simulation animation 402 in response to initiation of the welding operation by the user, and is based on the simulation of the weld using the performance and/or parameters determined by the user's interactions with the weld training system 100 prior to the simulation.
  • the example weld training system 100 displays a first animation 404 of a virtual weld operator 406 (e.g., a user's avatar), a workpiece 408 (e.g., based on the workpiece selection and/or configuration by the user), and/or welding equipment (e.g., based on the equipment selection and/or configuration by the user).
  • the weld training system 100 displays a second animation 410 that illustrates a weld bead 412, an arc 414, and a weld puddle 416.
  • the first animation 404 provides a view of the posture and technique of the weld operator 406 for the particular welding operation.
  • the second animation provides a more detailed view of the torch travel speed, the behavior of the weld puddle 416 and the resulting weld bead 412.
  • the simulation animation 410 may include a visual representation of at least one of a weld puddle, slag generated by the welding operation, spatter generated by the welding operation, and/or burn through generated by the welding operation.
  • the weld training system 100 enables the user to effect changes to one or more weld parameters during the welding operation being simulated.
  • the welding presentation interface 400 includes adjustment buttons for torch travel speed 418, weld current 420, weld voltage 422, and/or contact tip to work distance 424.
  • the weld training system 100 updates the parameters used to simulate the welding operation in response to changes in the weld parameters during the welding operation.
  • the weld training system 100 includes a pause/resume button to enable the user to pause at a particular point in the simulation to provide time to make one or more parameter changes via the buttons 418-424, and then resume the welding operation with the new parameters.
  • the user may download welding parameters configured using the input device(s) 124 and the welding training system 100 to a real physical environment or a real work cell. In this manner, the user may simulate one or more sets of parameters in the weld training system 100 and then transfer one or more of the sets of parameters to welding equipment to practice actual welding.
  • FIG. 5 illustrates a view 502 displayed by the example weld training system 100 of FIG. 1 to display the modeled result of the weld on the display device(s) 126 using an image 504 of a surface of a weld bead (e.g., the weld bead 412 of FIG. 4) and/or a cross-section 506 of the weld bead 412 and the workpiece (e.g., the workpiece 408 of FIG. 4).
  • the modeled result of the weld in the view 502 may indicate anomalies in the modeled result and/or enable the user to more closely visually inspect the modeled result.
  • the modeled result may indicate a cause of an anomaly, a suggested change in one or more of the welding-related variables to avoid the anomaly, or a location of the anomaly in the images of the weld bead or in the cross-section of the weld bead.
  • the modeled result includes a visual representation of at least one of a weld puddle, slag generated by the welding operation, spatter generated by the welding operation, and/or burn through generated by the welding operation.
  • FIG. 6 is a flowchart representative of machine readable instructions 600 which may be executed to implement the weld training system 100 of FIG. 1 to demonstrate to a user an effect of a combination of welding-related variables.
  • the example instructions 600 may be executed by the processor 102 of FIG 1.
  • the processor 102 loads a welding simulator.
  • the welding simulator may be stored locally and/or downloaded from an external network.
  • the processor 102 enables a user to design a weld procedure using the input device(s) 124 by selecting weld parameters include weld current and weld voltage.
  • the processor 102 may generate and display the weld procedure design interface illustrated in FIG. 3 on the display device(s) 126.
  • the processor 102 stores the weld procedure information input by the user via the input device(s) 124.
  • the processor 102 enables the user to simulate setting up a simulated physical welding environment using the input device(s) 124.
  • the processor 102 enables the user to navigate a physical welding environment (e.g., FIG. 3A), select weld equipment and/or material (e.g., FIG. 3A), simulate configuring weld equipment (e.g., FIG. 3B), and/or physically setting up welding equipment and/or material (e.g., FIG. 3C).
  • Example instructions to implement block 606 are described below with reference to FIG. 7.
  • the processor 102 determines whether the weld is to be simulated. For example, the user may initiate the weld via a "Weld! button when the welding operation is sufficiently configured. If the weld is not to be simulated (block 608), control returns to block 604 for the user to continue configuration.
  • the processor 102 simulates a welding operation on a simulated workpiece using the selected weld parameters in a welding model and a setup of the simulated physical welding environment to determine a modeled result of the welding operation.
  • Example instructions to implement block 610 are described below with reference to FIG. 8.
  • the processor 102 displays a simulation animation of the welding operation on the display device(s) 126 according to the simulation of block 610.
  • blocks 610 and 612 iterate for multiple portions of the simulation.
  • the processor 102 displays a modeled result of the welding operation on the display device(s) 126 using at least one of an image of a surface of a weld bead or a cross- section of the weld bead and the workpiece.
  • the processor 102 determines whether to return to the welding environment. For example, the user may select to exit the welding simulation and return to the virtual welding environment to modify one or more configurations and/or parameters. If the processor 102 is to return to the welding environment (block 616), control returns to block 604. When the user selects not to return to the welding environment (block 616) (e.g., to exit the welding simulation program), the example instructions 600 end.
  • FIG. 7 is a flowchart representative of machine readable instructions 700 which may be executed to implement the weld training system 100 of FIG. 1 to enable a user to simulate setting up a welding environment using an input device of the weld training system 100.
  • the example instructions 700 may be executed by the processor 102 of FIG. 1 to implement 606 of FIG. 6 to simulate setting up a simulated physical welding environment.
  • the processor 102 navigates a welding environment (e.g., the welding environment 302 of FIG. 3A) based on user inputs from the input device(s) 126.
  • a welding environment e.g., the welding environment 302 of FIG. 3A
  • the processor 102 If the user (e.g., via a user avatar) is in an equipment selection area of the welding environment 302 (block 704), at block 706 the processor 102 enables the user to select welding equipment and/or materials via the input device(s) 126. If the processor 102 detects a selection of welding equipment and/or materials (block 708), at block 710 the processor 102 updates simulation parameters based on the selection of welding equipment and/or materials.
  • the processor 102 determines if the user has requested a physical equipment setup interface (e.g., the view 322 of FIG. 3B). For example, the user may request the physical equipment setup interface corresponding to a particular piece of welding equipment. If the user has requested a physical equipment setup interface (block 712), the processor 102 enables the user to virtually modify a physical setup of welding equipment and/or materials via the input device(s) 126.
  • a physical equipment setup interface e.g., the view 322 of FIG. 3B.
  • the processor 102 enables the user to virtually modify a physical setup of welding equipment and/or materials via the input device(s) 126.
  • the processor 102 determines whether a physical setup (e.g., of the welding equipment) has changed (e.g., by action of the user). For example, the user may manipulate the input device(s) 126 to virtually perform a set up procedure using the selected welding equipment and/or the selected materials, such as attaching a gas supply hose, installing or replacing an electrode reel, installing or replacing a wire liner, connecting a work clamp to a workpiece, preparing a workpiece (e.g., cleaning the workpiece), connecting a power supply to a wire feeder, and/or any other physical activities or configuration involved in preparing for a welding operation.
  • a physical setup e.g., of the welding equipment
  • the user may manipulate the input device(s) 126 to virtually perform a set up procedure using the selected welding equipment and/or the selected materials, such as attaching a gas supply hose, installing or replacing an electrode reel, installing or replacing a wire liner, connecting a work clamp to a workpiece, preparing a workpiece (e.g
  • the processor 102 updates the simulation parameters based on the changes to the physical setup.
  • the processor 102 determines if the user has requested to perform configuration via an equipment interface. For example, the user may select welding equipment for configuration via a virtualized user interface on the welding equipment. If the user selects the equipment interface configuration (block 720), at block 722 the processor 102 enables the user to configure the selected equipment using a simulated interface of the selected equipment.
  • the processor 102 determines whether the user changed the equipment configuration via the equipment interface. If the equipment configuration has been changed via the interface (block 724), the processor 102 updates the simulation parameters based on the equipment configurations.
  • the processor 102 determines whether the user has selected to perform the simulation. If performance of the simulation has been selected (block 728), the example instructions 700 may end and return control to a calling function such as block 606 of FIG. 6.
  • FIG. 8 is a flowchart representative of machine readable instructions 800 which may be executed to implement the weld training system 100 of FIG. 1 to simulate a welding operation on a simulated workpiece to determine a modeled result of the welding operation.
  • the example instructions 800 may be executed by the processor 102 of FIG. 1 to implement 610 of FIG. 6 to simulate a welding operation.
  • the processor 102 loads equipment and/or material selections, physical configurations, equipment configurations, and/or selected parameters.
  • the equipment and/or material selections, physical configurations, equipment configurations, and/or selected parameters are based on the user's prior performance in the welding environment.
  • the processor 102 displays a welding presentation interface (e.g., the interface 400 of FIG. 4).
  • the processor 102 simulates a portion of a welding operation according to the loaded information. For example, the processor 102 may simulate one or more time segments and/or weld distances.
  • the processor 102 generates and displays image(s) (e.g., in the welding presentation interface 400) of a weld operator performance the welding operation, the weld puddle, and/or representative data based on the simulated portion of the welding operation.
  • image(s) e.g., in the welding presentation interface 400
  • the processor 102 determines whether the welding operation is complete (e.g., whether the final portion of the welding operation has been simulated).
  • the processor 102 determines whether changes to the welding parameter(s) have been received (e.g., via the welding presentation interface 400). For example, the processor 102 may determine if the user has made changes to the welding parameters (e.g., via the buttons 418-424). If changes to the welding parameter(s) have not been made (block 812), control returns to block 806.
  • the processor 102 updates selected parameters for the welding operation. After updating the selected parameters (block 814), control returns to block 806 to simulate the next portion of the welding operation using the updated parameters.
  • circuits and circuitry refer to physical electronic components (i.e. hardware) and any software and/or firmware ("code") which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware.
  • code software and/or firmware
  • a particular processor and memory may comprise a first "circuit” when executing a first one or more lines of code and may comprise a second "circuit” when executing a second one or more lines of code.
  • and/or means any one or more of the items in the list joined by “and/or”.
  • x and/or y means any element of the three- element set ⁇ (x), (y), (x, y) ⁇ .
  • x and/or y means “one or both of x and y”.
  • x, y, and/or z means any element of the seven-element set ⁇ (x), (y), (z), (x, y), (x, z), (y, z), (x, y, z) ⁇ .
  • x, y and/or z means “one or more of x, y and z”.
  • exemplary means serving as a non-limiting example, instance, or illustration.
  • the terms "e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations.
  • circuitry is "operable" to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled or not enabled (e.g., by a user-configurable setting, factory trim, etc.).
  • the present method and/or system may be realized in hardware, software, or a combination of hardware and software.
  • the present methods and/or systems may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited.
  • a typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein.
  • Another typical implementation may comprise an application specific integrated circuit or chip.
  • Some implementations may comprise a non-transitory machine-readable (e.g., computer readable) medium (e.g., FLASH drive, optical disk, magnetic storage disk, or the like) having stored thereon one or more lines of code executable by a machine, thereby causing the machine to perform processes as described herein.
  • a non-transitory machine-readable (e.g., computer readable) medium e.g., FLASH drive, optical disk, magnetic storage disk, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Signal Processing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)
  • User Interface Of Digital Computer (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

L'invention concerne des procédés et un appareil pour un entraînement à la soudure. Un système d'entraînement à la soudure à titre d'exemple comprend un dispositif d'affichage, un dispositif d'entrée, un processeur et un dispositif de stockage lisible par machine comprenant des instructions lisibles par machine. Les instructions peuvent être exécutées par le processeur pour : permettre à l'utilisateur de concevoir une procédure de soudure par sélection de paramètres de soudure; permettre à l'utilisateur de simuler la configuration d'un environnement de soudage physique simulé; simuler une opération de soudage sur une pièce à usiner simulée à l'aide des paramètres de soudure sélectionnés dans un modèle de soudage et d'une configuration de l'environnement de soudage physique simulé pour déterminer un résultat modélisé de l'opération de soudage; afficher une animation de simulation de l'opération de soudage sur le dispositif d'affichage selon la simulation; et afficher le résultat modélisé sur le dispositif d'affichage à l'aide d'au moins l'une d'une image d'une surface d'un cordon de soudure ou d'une section transversale du cordon de soudure et de la pièce à usiner.
EP17701393.5A 2016-01-08 2017-01-06 Systèmes et procédés pour permettre un entraînement à la soudure Ceased EP3400588A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662276290P 2016-01-08 2016-01-08
PCT/US2017/012563 WO2017120491A1 (fr) 2016-01-08 2017-01-06 Systèmes et procédés pour permettre un entraînement à la soudure

Publications (1)

Publication Number Publication Date
EP3400588A1 true EP3400588A1 (fr) 2018-11-14

Family

ID=63721220

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17701393.5A Ceased EP3400588A1 (fr) 2016-01-08 2017-01-06 Systèmes et procédés pour permettre un entraînement à la soudure
EP17701391.9A Active EP3400587B1 (fr) 2016-01-08 2017-01-06 Systèmes et procédés pour assurer l'apprentissage de la soudure

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17701391.9A Active EP3400587B1 (fr) 2016-01-08 2017-01-06 Systèmes et procédés pour assurer l'apprentissage de la soudure

Country Status (3)

Country Link
EP (2) EP3400588A1 (fr)
CN (2) CN108713223B (fr)
DE (1) DE202017007399U1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537409A1 (fr) * 2018-03-07 2019-09-11 Seabery North America, S.L. Systèmes et procédés pour simuler des opérations d'assemblage
CN109759751B (zh) * 2018-12-28 2021-01-05 中国核工业二三建设有限公司 一种辐射环境下焊接件的焊接质量检测方法
US11521512B2 (en) 2019-02-19 2022-12-06 Illinois Tool Works Inc. Systems for simulating joining operations using mobile devices
US11806814B2 (en) 2019-02-19 2023-11-07 Illinois Tool Works Inc. Welding location and order monitoring in welding systems
US11322037B2 (en) * 2019-11-25 2022-05-03 Illinois Tool Works Inc. Weld training simulations using mobile devices, modular workpieces, and simulated welding equipment
US11721231B2 (en) * 2019-11-25 2023-08-08 Illinois Tool Works Inc. Weld training simulations using mobile devices, modular workpieces, and simulated welding equipment
CN111168211A (zh) * 2020-02-24 2020-05-19 夸夫曼(上海)智能科技发展有限公司 智能虚拟焊接实训装置及方法
CN111451605A (zh) * 2020-03-31 2020-07-28 北京博清科技有限公司 焊接控制方法及装置、焊接系统
CN111785116B (zh) * 2020-07-02 2022-07-15 深圳市爱达思技术有限公司 电弧焊机培训方法、设备及系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431862B2 (en) * 2005-08-25 2013-04-30 Lincoln Global, Inc. Torch for electric arc welding system
CN100463013C (zh) * 2006-06-09 2009-02-18 西安交通大学 手工电弧焊焊接操作模拟培训装置
US9352411B2 (en) * 2008-05-28 2016-05-31 Illinois Tool Works Inc. Welding training system
CN201364652Y (zh) * 2008-07-08 2009-12-16 深圳市华普电子技术有限公司 一触即红的电容触摸感应按键学习机
US9483959B2 (en) * 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9280913B2 (en) * 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US8957835B2 (en) * 2008-09-30 2015-02-17 Apple Inc. Head-mounted display apparatus for retaining a portable electronic device with display
CN101419755B (zh) * 2008-12-17 2010-08-18 纪瑞星 多功能焊接模拟训练装置
CN101587659B (zh) * 2009-06-29 2011-02-09 西安交通大学 手工电弧焊运条操作模拟训练装置及电弧焊运条检测方法
US20110006047A1 (en) * 2009-07-08 2011-01-13 Victor Matthew Penrod Method and system for monitoring and characterizing the creation of a manual weld
CN202210364U (zh) * 2011-08-02 2012-05-02 南京多伦科技股份有限公司 限宽门考试用检测装置
ES2438440B1 (es) * 2012-06-13 2014-07-30 Seabery Soluciones, S.L. Dispositivo avanzado para la formacion en soldadura basado en simulacion con realidad aumentada y actualizable en remoto
CN107731079B (zh) * 2012-07-06 2019-11-22 林肯环球股份有限公司 用于表征人工焊接操作的系统
US9767712B2 (en) * 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
CN202741926U (zh) * 2012-08-29 2013-02-20 中国石油天然气第一建设公司 一种焊接操作模拟培训设备
CN110264833A (zh) * 2013-03-11 2019-09-20 林肯环球股份有限公司 在实时仿真的虚拟现实焊接环境中提供增强的使用者体验的系统和方法
CN107016893B (zh) * 2013-03-11 2020-03-06 林肯环球股份有限公司 使用虚拟现实焊接系统导入和分析外部数据
CN105209207B (zh) * 2013-03-11 2018-12-14 林肯环球股份有限公司 虚拟现实轨道管焊接仿真器及设置
CN203338594U (zh) * 2013-07-08 2013-12-11 步步高教育电子有限公司 多功能点读笔及其点读机
US20150122781A1 (en) * 2013-11-04 2015-05-07 Illinois Tool Works Inc. System and method for selecting weld parameters
US10056010B2 (en) * 2013-12-03 2018-08-21 Illinois Tool Works Inc. Systems and methods for a weld training system
US9589481B2 (en) * 2014-01-07 2017-03-07 Illinois Tool Works Inc. Welding software for detection and control of devices and for analysis of data
CN103942903B (zh) * 2014-03-04 2016-08-17 Quasion股份有限公司 一种具有防盗功能的数据采集处理装置、系统及方法
CN103996322B (zh) * 2014-05-21 2016-08-24 武汉湾流科技股份有限公司 一种基于增强现实的焊接操作训练模拟方法及系统
US10665128B2 (en) * 2014-06-27 2020-05-26 Illinois Tool Works Inc. System and method of monitoring welding information
CN105149823B (zh) * 2015-01-24 2017-03-22 江苏丰信航空设备制造有限公司 跟踪焊缝位置的焊炬位移控制系统
CN104708174A (zh) * 2015-02-27 2015-06-17 北京竞业达沃凯森教育科技有限公司 模拟焊接训练器

Also Published As

Publication number Publication date
CN108701427A (zh) 2018-10-23
CN108713223A (zh) 2018-10-26
CN108701427B (zh) 2021-07-23
DE202017007399U1 (de) 2021-03-04
EP3400587B1 (fr) 2021-04-07
CN108713223B (zh) 2022-03-29
EP3400587A1 (fr) 2018-11-14

Similar Documents

Publication Publication Date Title
US11961417B2 (en) Systems and methods to provide weld training
CN108701427B (zh) 提供焊接训练的系统和方法
US10720074B2 (en) Welding simulator
JP6449422B2 (ja) 仮想現実オービタルパイプ溶接シミュレータ及びセットアップ
US20190266915A1 (en) Learning management system for a real-time simulated virtual reality welding training environment
US9928755B2 (en) Virtual reality GTAW and pipe welding simulator and setup
US20150248845A1 (en) Portable virtual welding system
CN104620304A (zh) 虚拟现实管焊接仿真器及设置
CA3129903A1 (fr) Marquages virtuels dans des systemes de soudage
EP3928307A1 (fr) Surveillance de l'emplacement et de l'ordre de soudage dans des systèmes de soudage
EP4065303A1 (fr) Simulations de formation en soudure utilisant des dispositifs mobiles, des pièces modulaires et de l'équipement de soudure simulé
US11403962B2 (en) System and method for weld training
JP7489593B1 (ja) アーク溶接装置、溶接作業訓練方法及び溶接作業訓練補助プログラム
WO2022045068A1 (fr) Système de soudage robotisé, terminal d'actionnement de robot, et programme d'apprentissage de robot de soudage
US11557223B2 (en) Modular and reconfigurable chassis for simulated welding training

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: G09B 19/24 20060101ALI20190710BHEP

Ipc: H04N 13/302 20180101AFI20190710BHEP

Ipc: H04N 13/204 20180101ALI20190710BHEP

17Q First examination report despatched

Effective date: 20190807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20201201