EP3393903A1 - Procede de pilotage d'un propulseur d'un vehicule marin - Google Patents

Procede de pilotage d'un propulseur d'un vehicule marin

Info

Publication number
EP3393903A1
EP3393903A1 EP16819935.4A EP16819935A EP3393903A1 EP 3393903 A1 EP3393903 A1 EP 3393903A1 EP 16819935 A EP16819935 A EP 16819935A EP 3393903 A1 EP3393903 A1 EP 3393903A1
Authority
EP
European Patent Office
Prior art keywords
propeller
axis
propellers
thruster
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16819935.4A
Other languages
German (de)
English (en)
Other versions
EP3393903B1 (fr
Inventor
Christophe Borel
Jean-Philippe Brunet
Benoît THECKES
Cyril BOUYER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3393903A1 publication Critical patent/EP3393903A1/fr
Application granted granted Critical
Publication of EP3393903B1 publication Critical patent/EP3393903B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/16Control of attitude or depth by direct use of propellers or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/002Propeller-blade pitch changing with individually adjustable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • B63H2025/425Propulsive elements, other than jets, substantially used for steering or dynamic anchoring only, with means for retracting, or otherwise moving to a rest position outside the water flow around the hull

Definitions

  • the present invention relates to the propulsion and maneuvering of marine vehicles comprising a thruster comprising two propellers.
  • the invention is particularly applicable to underwater vehicles comprising a vector propeller with two propellers.
  • a propellant is called vector when it can be controlled so as to produce a thrust or rotational propulsion force on 4 ⁇ steradian.
  • the so-called vector propulsion of an underwater vehicle is opposed to the conventional propulsion in which the orientation of control surfaces causes a change in the lift generated by the flow of fluid surrounding the control surfaces.
  • the force generated by the fluid on the control surfaces makes it possible to orient the vehicle in the desired direction.
  • a well-known limitation of this form of propulsion is the need to generate a significant flow of fluid around the vehicle to cause a change in lift control surfaces allowing a change of attitude of the vehicle, that is to say to allow maneuvering the underwater vehicle.
  • control surfaces decreases in inverse ratio of the square of the speed of the flow until becoming zero for a flow rate of zero.
  • the control surfaces generate a drag proportional to the square of the speed which opposes the displacement and which therefore consumes energy and all the more so that the control surfaces are solicited.
  • the control method of a vector propulsion presented in this patent allows the vehicle to dispense with conventional rudders, and thus significantly reduce the hydrodynamic drag of the vehicle.
  • Vector propulsion of the two-helix type has many theoretical advantages, including increased mobility, simplification of the architecture (eg by eliminating the control surfaces), increased vehicle endurance (by reducing the hydrodynamic drag).
  • This lack of steering other than the propeller blades facilitates the realization of a hydrodynamic vehicle called "flush", that is to say, no appendix exceeds, which allows him for example to easily hold in a tube and avoids to damage the control surfaces during a docking.
  • the piloting of a propeller with two propellers encounters however many difficulties, especially at low speeds.
  • An object of the invention is to provide a method for controlling a propeller with two propellers to maneuver the vehicle efficiently and stable at low speed.
  • the subject of the invention is a method for controlling a propulsion engine of a marine vehicle at least partially immersed in a liquid comprising a body and the propellant mounted on said body, the propellant comprising two propellers, each propeller comprising blades for rotating about an axis of rotation of said propeller.
  • the method comprises a low-speed maneuvering control step, during which the thruster is piloted so that each helix generates a flow directed towards the flow generated by the other propeller and reaching the flow generated by the propeller. other propeller.
  • each helix generates a non-zero flow and directed in the same direction, along the axis of the helix, over most of the revolution of the blades of the propeller, in the liquid around the axis of rotation of the helix; 'propeller,
  • At least one helix generates a flow whose direction, along the x axis, varies on the revolution of the blades of the helix in the liquid around the axis of rotation of the helix,
  • each helix is directed towards a point of the other helix, called the center of the other helix, located substantially on the axis of rotation of the other propeller,
  • the thruster is piloted so that each helix generates a flow directed towards the flow generated by the other helix and reaching the flow generated by the other helix whatever the motion printed on the vehicle by the thruster,
  • the distance between the helices is between a non-zero threshold distance and three times the diameter of the largest of the two propellers
  • the low-speed maneuvering control step is implemented only when the flows generated by the two propellers meet between the two propellers at a distance from the two propellers,
  • the low speed maneuvering control step is implemented irrespective of the movement of the vehicle provided that the fluxes generated by the two propellers meet between the two propellers at a distance from the two propellers,
  • the two propellers comprise an upstream helix and a downstream propeller along a reference axis in a predetermined direction, and in which during the low speed maneuvering control step, for the thruster to exert a thrust having a non-zero component along the reference axis and in said direction, the thruster is piloted so that the upstream thrust force resulting from the upstream flow generated by the upstream propeller has an axial component of intensity greater than that of the axial component of the force downstream thrust resulting from the downstream flow generated by the downstream propeller,
  • the thruster is piloted so that the combined flow resulting from the combination of the fluxes generated by the two propellers, between the two propellers, or with a symmetry of revolution about the reference axis,
  • the thruster of the thruster is so that the combined flow resulting from the combination of the fluxes generated by the two propellers between the two propellers is not symmetrical of revolution about the reference axis,
  • the thruster exerts a thrust force having a non-zero radial component
  • the thruster is piloted so that at least one propeller generates a flux that is not with symmetry of revolution around the reference axis
  • the thruster is piloted so that the thrust force generated by the thruster is applied to the thruster.
  • the thruster is a thruster comprising two contrarotative propellers with variable cyclic and collective pitch, a reference axis being an axis of the helices which is an axis connecting centers of the two propellers which are points on the axes of rotation of the respective propellers.
  • the axes of rotation of the two propellers are substantially coincidental and coincident with the reference axis
  • the thruster generates a thrust having a radial component acting in a radial direction forming, around the reference axis, a first angle ⁇ with a direction of reference
  • the cyclic pitch of the helices is adjusted so that the cyclic angle ⁇ of the helices is given by the following formula or so that the cyclic angle ⁇ of one of the two helices is given substantially by the following formula, another propeller with a neutral cyclic pitch:
  • cyclic phase ⁇ is the angle formed, around the reference axis, between the thrust generated by the helices and the cyclic angle ⁇ of the helices or of one of the propellers, the cyclic phase ⁇ being predetermined, the cyclic angle of a helix being the angle formed around the reference axis between the direction in which the cyclic pitch angle of the helix is maximum and the reference direction.
  • the invention also relates to a marine vehicle intended to be at least partially immersed in a liquid comprising a body and a propellant comprising two propellers, each propeller comprising blades intended to rotate about an axis of rotation of said propeller, characterized in that it comprises a control device configured to be able to implement the method according to the invention, the control device comprising a controller which receives an instruction setpoint of the low speed maneuvering control step is configured to compute a low speed configuration so that each helix generates a stream directed to the stream generated by the other helix and reaching the flow generated by the other propeller, the control device further comprising an actuator configured to control the propeller so as to put it in said low speed configuration.
  • the implementation instruction of the low speed maneuvering control step comprises a thrust command, the thruster calculating a low speed configuration of the thruster such that the thruster generates a thrust in the direction of the thrust instruction.
  • the invention also relates to the control device and to a propulsion system comprising the control device and the thruster.
  • the control method makes it possible to drive the underwater vehicle stably and effectively at low speed even when the vehicle speed is negative or zero and when the mass of the vehicle is important. That is to say that this solution allows the vehicle to be maneuvering even in fixed point or in reverse. It allows precise control of the attitude and position of the underwater vehicle in relation to a fixed reference system.
  • FIG. 1 shows schematically in plan view an underwater vehicle at equilibrium
  • FIG. 2 diagrammatically shows a top view of a submarine vehicle moving along the x-axis towards the front
  • FIG. 3 schematically represents a top view of a submarine vehicle moving along the x axis towards the rear
  • FIG. 4 is a diagrammatic plan view of an underwater vehicle on which the thruster exerts a non-zero radial thrust
  • FIG. 5 schematically represents, in a radial plane, the direction of thrust exerted by the thruster as a function of the cyclic angle
  • FIG. 6 schematically shows a propulsion system according to the invention.
  • the invention proposes a method for controlling a thruster of a marine vehicle.
  • the method is particularly applicable to submarine vehicles intended to move completely immersed in a liquid, including water.
  • the invention also applies to surface vehicles intended to move on the surface of a liquid being partially immersed in the liquid.
  • Marine vehicles may be autonomous vehicles with pilots (humans) on board, or unmanned drones on board such as remotely piloted vehicles or ROVs in reference to the English expression "remotely operated vehicle” or marine vehicles such as autonomous underwater vehicles or AUV with reference to the Anglo-Saxon term "Autonomous Underwater Vehicle". Therefore, the control method, that is to say control, according to the invention can be implemented by an operator (pilot) on board or remotely or by an autonomous control device.
  • the two propellers are mounted on the body of the marine vehicle so as to be arranged or able to be arranged so that each propeller, taken among these two propellers, can generate a flow of water (or more generally liquid) directed towards the flow generated by the other helix, taken from the two helices.
  • These propellers are advantageously arranged so that the flow generated by each propeller, taken from the two propellers, regardless of the speed of the vehicle relative to the liquid along a reference axis, at least as long as this speed is below a threshold of predetermined speed, can reach the flow generated by the other propeller, taken among the two propellers.
  • the streams must be able to reach in a time less than a predetermined reaction time. This Reaction time is the acceptable reaction time for the maneuver. This makes it possible to guarantee the formation of the combined or radial flow.
  • a propeller with variable cyclic and collective pitch is a propeller whose blade pitch angle is controllable collectively to adjust the thrust along the axis of rotation of the propeller.
  • the collective pitch is defined by a collective pitch angle of the blades. In other words, all blades have the same collective pitch angle over the entire revolution of the blades around the axis of rotation of the propeller.
  • the pitch angle of the blades of a helix is the angle formed between the rope of the blade and the plane of rotation of the helix according to the chosen reference.
  • the plane of rotation of the helix is a plane of the helix perpendicular to the axis of rotation of the helix.
  • the angle of adjustment is also cyclically adjustable to direct the thrust perpendicular to the axis of rotation of the propeller.
  • the cyclic pitch angle of the blades varies cyclically, ie during a revolution around the axis of rotation of the helix, as a function of the angular positions of the blades around the axis of rotation. rotation of the propeller.
  • the cyclic pitch is defined by a differential cyclic stall angle during a revolution of the blades as well as by a cyclic angle.
  • the differential cyclic stall angle is defined as the difference between the maximum cyclic stall angle and the minimum stall angle of a blade during a revolution.
  • the collective pitch is the average cyclic stall angle.
  • the cyclic angle is the angle formed around the axis of rotation of the helix between the direction in which the blade pitch angle is maximum and a reference direction connected to the body of the vehicle.
  • the pitch angle of the blades for which the propeller rotates about its axis of rotation exerts a zero thrust, according to its axis of rotation, is called a collective neutral pitch.
  • the neutral cyclic pitch is that for which the blades exert a thrust whose component perpendicular to the axis of rotation of the helix is zero.
  • Vector propellers are especially known formed of two coaxial counter-rotating propellers, that is to say whose axes of rotation are substantially merged.
  • coaxial propellers whose axes of rotation are substantially parallel to the main axis of movement of the vehicle.
  • the main axis of movement of the vehicle is the axis, linked to the body of the vehicle, according to which the vehicle is mainly intended to move.
  • axis connected to the body of the vehicle is meant that the orientation and the position of the body of the vehicle in a plane perpendicular to the axis are fixed.
  • This type of thruster has the advantage of being able to be driven so as to have a good energy efficiency at high speed.
  • the two propellers generate a thrust naturally oriented along the main axis of movement of the vehicle.
  • the main axis of movement of the vehicle is the roll axis of the vehicle.
  • the yaw and pitch axes are radial axes, that is, perpendicular to the main axis, passing through the main axis.
  • the axes of rotation of the propellers are fixed relative to the vehicle.
  • the method is also applicable to thrusters of the type comprising two contrarotating propellers or not variable cyclic and collective propellers whose axes of rotation of the helices are distinct and substantially parallel and those having propellers whose axes of rotation are not parallel.
  • the axes of rotation of the helices form any respective angles different from 90 ° with this axis which is for example the main axis of movement of the vehicle.
  • the axes of rotation of the propellers are substantially parallel to the main axis of movement of the vehicle, which makes it possible to improve the propulsion efficiency during the progression in a straight line along this axis.
  • the rotational speed of the blades of the propeller around its axis of rotation (called rotational speed of the propeller) is independently or collectively adjustable for both propellers.
  • the method according to the invention also applies to thrusters comprising two orientable propellants with finger-jointed connection also called "gimbal propellers" in English terminology.
  • These thrusters each have a propeller comprising blades whose pitch is not adjustable.
  • Each of the propellers is connected by a finger ball joint connection to the body of the marine vehicle, for example made by means of a Cardan mounting so that the plane of rotation (or the axis of rotation) of each of the propellers can pivot, relative to the body of the vehicle, around two axes perpendicular to each other.
  • the orientation of the propellers with respect to the body of the vehicle is modifiable.
  • the speed of rotation of each of the helices around its axis of rotation is also adjustable, preferably independently of one another.
  • a single propellant of the "gimbal propeller" type has a more limited yield than propellers with contra-rotating propellers with variable cyclic and collective pitch and have an action limited to a given angular sector of opening less than 360 °.
  • the propellers may have the same diameter (as in the figures) or a different diameter, the same number of blades or a different number of blades.
  • a reference axis connected to the body of the vehicle is defined.
  • axis connected to the body of the vehicle is meant that the orientation and the position of the body of the vehicle in a plane perpendicular to the axis are fixed.
  • An axis oriented perpendicular to the reference axis passing through this axis is called the radial axis and defines a radial direction.
  • Radial component of a vector means the component of the vector along a radial axis perpendicular to the reference axis.
  • Axial component of a vector means the component of the vector along the reference axis.
  • a radial thrust is defined which is the radial component of the thrust and the axial thrust which is the axial component of the thrust.
  • the control method according to the invention comprises a propellant control step called, in the following document, low-speed maneuvering control step.
  • the method comprises a control step, that is to say control, of low speed maneuvering during which the propeller is piloted, that is to say, controlled so that each helix, among the two helices, generates a flow directed to the flow generated by the other helix, among the two helices, and reaching the flow generated by the other helix.
  • a control step that is to say control, of low speed maneuvering during which the propeller is piloted, that is to say, controlled so that each helix, among the two helices, generates a flow directed to the flow generated by the other helix, among the two helices, and reaching the flow generated by the other helix.
  • each propeller during the low speed maneuvering control step, each propeller generates a non-zero flow and directed in the same direction, along the axis of rotation of the helix, on the whole the revolution of the blades of the propeller in the liquid around the axis of rotation of the propeller.
  • the axial component of the flow has the same sign on the entire revolution of blades of the helix in the liquid around the axis of rotation of the helix. This means that the flow lines generated by the helix in each radial angular sector, fixed relative to the body of the vehicle and swept by the helix, are oriented in the same direction, along the axis of rotation of the helix.
  • each flow has essentially the same direction over the entire revolution of the blades of the propeller in the liquid around the axis of rotation avoids the creation of vortices between the propellers which would have the effect of destabilizing the vehicle.
  • At least one helix generates a stream directed in one direction, along the axis of rotation of the helix, which varies on the revolution of the blades of the helix in the liquid around the axis of rotation of the helix. propeller.
  • the propellers are mounted on the body of the marine vehicle so as to be arranged or able to be arranged so that each propeller can generate a flow of water (or more generally liquid) directed towards the other propeller.
  • a helix generates a flow directed towards another helix when the volume swept by the other helix (when it is rotated about the axis of rotation) is at least partially located at the other end.
  • cylinder interior whose axis is the main axis of the flow generated by the propeller and whose diameter is the diameter of the propeller.
  • the main axis of the flow generated by each helix passes into the volume swept by the other helix during a revolution of the blades of the other helix around the axis of rotation of the other helix.
  • the direction of the main axis is defined relative to the body of the vehicle.
  • the volume swept by a helix includes the axis of rotation of the helix.
  • main axis of the flow generated by a helix is meant the axis passing through a center of the helix and whose direction is the direction of the flow generated by the helix.
  • center of a helix is meant a predetermined point of the helix located substantially on the axis of rotation of the helix and inside the volume that can sweep the propeller during a revolution of the blades of the propeller. helix around the axis of rotation of the helix.
  • the center of a propeller can advantageously be defined as the center of mass of the blades.
  • the planes of rotation of the propellers must be non-coplanar or must be able to be arranged in a non-coplanar manner.
  • the flow directed by each of the two propellers is directed towards the center of the other propeller taken from the two propellers. This is done to generate a thrust that does not have a radial component.
  • the direction of the flow generated by a helix being defined by the main axis of the flow, the main axis of the flow generated by each helix passes through said center of the other helix.
  • the oscillations of the vehicle being all the more controlled that the flow generated by a helix is directed near the center of the other helix.
  • the trajectory of the vehicle is more stable and easy to control because on a revolution of the blades of the propeller around the axis of rotation of the propeller, all the blades meet the same flow, especially when the flow of the propellers meet near one of the propellers.
  • the pitch angle of the blades of the other propeller is not disturbed by the flow generated by the propeller. If the flow is off-center, all the blades do not meet a homogeneous flow. The pitch angle of the blades is disturbed by the flow generated by the propeller.
  • the low speed maneuvering control step is implemented regardless of the movement printed by the thruster to the vehicle when the vehicle speed module is below a predetermined threshold that may be zero.
  • a vector propeller can print to a submarine vehicle movements in 6 degrees of freedom.
  • the movement of a building surface can be adjusted by its thruster with 2 degrees of freedom in translation and 1 degree of freedom in rotation.
  • the low speed operation control step can be implemented regardless of the rotational movement around an axis perpendicular to the reference axis and / or whatever the translation movement along the reference axis and / or whatever the translational movement along an axis perpendicular to the reference axis printed at vehicle by the thruster. If this method is implemented when the vehicle speed module is greater than the predetermined threshold then the vehicle will slow by itself simply by the application of the method to return to a speed below the threshold.
  • FIGS. 1 to 4 show a submarine vehicle comprising a vector propeller of the type with two counter-rotating propellers with variable cyclic and collective pitch. But what is described later is also applicable to surface vessels and other types of thrusters described above.
  • Figures 1 to 4 show schematically in plan view a submarine vehicle 1 having a body 2 and a vector thruster 3 mounted on the body of the underwater vehicle 1.
  • This thruster 3 is of the vector propellant type comprising two AV propellers, counter-rotating ARs with variable cyclic and collective pitch. These propellers are coaxial. In other words, they are intended to rotate about axes of rotation substantially merged.
  • the reference axis x is the axis of the helices, that is to say the axis connecting the center of the two propellers.
  • this axis is the main axis of movement of the vehicle which is here the roll axis of the vehicle.
  • the main axis of movement of the vehicle x is oriented in the preferred direction of movement of the vehicle when the vehicle has a preferred direction of movement.
  • the front and the back are defined with respect to the reference axis x in the direction of the reference axis.
  • the propellers comprise a front propeller AV and a rear propeller AR, the forward propeller being located in front of the rear propeller.
  • the blades of each propeller AV, AR are mounted on the body 2 of the vehicle 1 to rotate about the axis of rotation of the corresponding propeller AV, AR.
  • the blades of a helix are secured in rotation around the axis of rotation of the helix.
  • each blade is connected by an axis to a hub rotatably mounted on the body 2 of the underwater vehicle 1 about the axis of rotation of the propeller generally defined by a shaft.
  • the water flow lines between the two propellers are represented by arrows.
  • a flow generated by a propeller represents the speed water through the propeller.
  • the module or flux intensity, expressed in kg. m. s "1 is a flow rate of water flow through the surface of the propeller.
  • the thrust forces generated by the respective propellers are also represented by simple arrows.
  • the thrust force generated by the propeller is represented when it is not zero, by a double arrow For clarity, this arrow is shown on the rear of the vehicle but the thrust advantageously applies between the two propellers on a point of the axis of roll .
  • the two propellers AV, AR are installed at the rear of the vehicle, that is to say on the rear half of the body of the vehicle along the reference axis x.
  • these two propellers are installed at the front of the body of the vehicle or one at the front and one at the rear of the body of the vehicle.
  • the rotational planes of the propellers are not arranged in symmetrical planes from each other with respect to a plane containing the center of mass of the body 2 of the underwater vehicle 1.
  • each helix generates a flow directed towards the other helix.
  • the forward propeller AV generates a flow to the rear propeller AR which itself generates a stream directed to the propeller before AV.
  • Each stream has a non-zero component with the same sign along the axis of rotation of the helix x, over most of the revolution of the blades of the corresponding helix around the axis of rotation of the helix x, and preferably over the entire revolution of the blades of the helix around the axis of rotation of the helix.
  • these flows combine to form between the propellers, at a distance from the propellers, a flow called combined or radial flow as visible in the figures.
  • the combined flow generally has a non-zero and positive radial component in each radial angular sector of a fixed disk relative to the body 2 and perpendicular to the reference axis even when the vehicle is not moving.
  • the combined flow moves away from the reference axis all around the reference axis. This makes it possible to obtain a balanced thrust force in all radial directions even when the vehicle is not moving along the axis of the propellers.
  • the nonzero radial components of the combined flow make it possible to ensure efficient radial maneuverability of the vehicle at zero speed along the reference axis and also at non-zero speed when the thruster produces a thrust to move the vehicle axially. This maximizes the thrust generated by the thruster. Indeed, the flow of the helices being generated towards each other, the flow generated by each helix can not reach the other helix, it is deflected by the flow generated by the other helix. These flows do not suck each other which maximizes the radial thrust effect.
  • the reference axis is advantageously the axis of the propellers, the radial flow is then substantially centered on the axis of rotation of the propellers.
  • the generation by the two propellers of flow oriented towards each other and by reaction of opposing thrusts, stabilizes the vehicle and control the maneuver of the vehicle.
  • the vehicle driven by means of the method according to the invention is insensitive to external disturbances.
  • the two helices do not disturb one another.
  • the flow generated by one helix does not disturb the angle of incidence of the other propeller for a given wedging angle of the blades.
  • the angle of incidence is defined relative to the flow of liquid that passes through it.
  • the vehicle is stabilized at a speed of travel or rotation with respect to the water depending solely on the adjustment of the propellers and if a disturbance is generated which tends to slow down or accelerate the underwater vehicle, this disturbance generates a variation of speed of the water at the level of the propellers which results by a variation of the angle of attack (or incidence) of the blades of the propellers which generates a variation of thrust which opposes the movement of the external disturbance.
  • the good maneuverability and stability of the vehicle at low speed and at zero speed do not require the integration of additional maneuvering systems or elements generating a hydrodynamic drag, which is costly in energy, particularly when the vehicle will want to move.
  • the method according to the invention is anti-intuitive because the generation of flows directed towards each other by the propellers is highly energy consuming, especially since these flows have the same sign on the whole revolution of the volume swept by the blades of the propeller around the rotation of the propeller.
  • the low speed maneuvering control step is advantageously used to maneuver the vehicle around a fixed point.
  • the combined flow that is derived from the flow deflection due to the meeting of these two flows is radial, that is to say perpendicular to the x-axis and all around the x-axis.
  • the combined stream has a generally annular shape.
  • the thruster generates a thrust force F whose axial component is zero.
  • the position of the vehicle 1 in translation in the axial direction x with respect to a reference system remains fixed, for example the liquid.
  • the thruster 3 is piloted so that the thrust forces resulting from the fluxes generated by the two propellers have axial components of the same intensity (or module). .
  • the thruster is piloted so that the fluxes generated by the two propellers have the same module along the x axis and opposite directions along the x axis. This is done during the generation of the streams towards each other.
  • the thruster does not generate axial thrust. To achieve this, one plays on the cyclic steps and / or the speeds of rotation of the propellers. In FIG.
  • the thruster generates a thrust force F whose radial component is zero.
  • the vehicle can not be rotated about an axis perpendicular to the x-axis in this configuration.
  • the combination of the speed of rotation and the collective pitch angle (also called collective pitch) of each propeller is such that the propeller generates a flow towards the other propeller and resulting in a thrust equal and opposite to that generated by the other helix.
  • the modulus of the force of the thrust Fav resulting from the forward flow is greater than that of the thrust force Far resulting from the backflow.
  • the thruster generates a thrust force F whose axial component is positive.
  • the modulus of this thrust is substantially equal to the modulus of the sum of the axial components of the thrust forces generated by the two propellers.
  • the vehicle is driven in a translational motion along the x-axis forward. This translation changes the relative angle of attack of the blades of the front propeller and tends to reduce forward thrust. Quickly the speed of advance equilibrates to a value such that the two thrusts are in equilibrium.
  • the thruster 3 is piloted so that the forward thrust force Fav resulting from the forward flow has an axial component of intensity greater than that of the axial component of the Far thrust force resulting from the rear flow generated by the rear prop AR.
  • the front and rear flows are unbalanced so that the combined flow is directed towards the rear.
  • the module of the axial component of the generated flow by the forward propeller to the rear must be greater than the modulus of the axial component of the flow generated by the forward propeller.
  • the rotation / collective pitch combination of each propeller is adjusted so that the propellers produce a different thrust.
  • this is achieved by increasing the collective pitch before and reducing the collective pitch back without changing the rotational speeds compared to the situation of FIG. 1. It is better to play on the collective rather than modify the rotation speeds of the propellers because too great a difference in vorticity of the generated flows can lead to instability and also generates a roll torque.
  • the thruster In FIG. 2, the combined flow being symmetrical of revolution about the x axis, the thruster generates a thrust force F whose radial component is zero.
  • the vehicle does not rotate about an axis perpendicular to the x-axis in this configuration.
  • the modulus of the force of the thrust Fav resulting from the forward flow is less than that of the thrust force Far resulting from the backflow.
  • the thruster generates a thrust force F whose axial component is negative.
  • the vehicle is moved in a translational motion along the x-axis backward.
  • the vehicle moves back along the x axis.
  • This translation modifies the angle of attack of the blades of the rear propeller and tends to reduce the rear thrust. Rapidly the speed of recoil equilibrates to a value such that the two thrusts are in equilibrium.
  • the thruster 3 is piloted so that the thrust force before Fav resulting from the forward flow generated by the forward propeller AV has an axial component of intensity less than that of the axial component of the rear thrust force Far resulting from the rear flow generated by the rear propeller AR.
  • the modulus of the axial component of the flow generated by the forward propeller must be less than the modulus of the axial component of the flow generated by the rear propeller to the rear.
  • the thruster In FIG. 3, the combined flow being at a symmetry of revolution about the x axis, the thruster generates a thrust force F whose radial component is zero.
  • the vehicle does not rotate about an axis perpendicular to the x axis in this configuration.
  • the pure axial displacement of FIG. 3 is obtained, further using neutral cyclic pitches.
  • the thruster 3 in order to move the vehicle along the x axis in a predetermined direction relative to the liquid, the thruster 3 is piloted so that each helix generates a flow directed towards and reaching the flow generated by the other helix and so that the upstream thrust force resulting from the upstream flow has an axial component of intensity greater than that of the axial component of the downstream thrust force resulting from the downstream flow generated by the downstream propeller.
  • Upstream propeller means the propeller located forwardly in the direction of movement of the vehicle along the x-axis and the downstream propeller, the propeller situated aft in the direction of travel of the vehicle according to the x axis.
  • the vehicle is moving forward or backward following a controlled imbalance of the flows of the two propellers.
  • the method according to the invention makes it possible to always further produce a radial force making it possible to maneuver the vehicle.
  • the thruster remains maneuvering perpendicular to the reference axis when it produces a thrust to move the vehicle axially.
  • the front and rear flows are unbalanced along the x-axis, the vehicle moves forward or backward with respect to the liquid, accelerating to a limit speed of advance or recoil, respectively, depending on the thrust resulting from the two thrusters. (ie rotational speeds, collective incidence and cyclical incidence of both propellers).
  • the maximum speed of advance of the vehicle relative to the liquid is the maximum speed that can take the speed limit advance. This speed is reached when the forward flow directed towards the rear is at its maximum of thrust and the backward flow directed towards the front is with minimum of push compatible with the fact that it remains directed towards the propeller before AV. In other words, the rear propeller generates a flow forward and this flow is not then deflected backwards by the forward propeller. .. As there is a maximum speed of advance, there is a maximum speed of recoil reached when the backward flow directed forward is at its maximum thrust and the forward flow directed to the rear is at a minimum. thrust compatible with the fact that it remains directed to the rear propeller AR. In other words, the rear propeller generates a flow backwards and this flow is not then deflected forward by the flow generated by the rear propeller.
  • the two propellers generate flows that meet between the two propellers at a distance from the two propellers. Outside this range, flows are not encountered between the two propellers.
  • the speed of movement of the vehicle along the x-axis is a speed of movement of the vehicle relative to a predetermined fixed reference, for example the liquid or the terrestrial reference.
  • the speed of movement of the vehicle relative to the liquid is the speed of the vehicle relative to the liquid located in the vicinity of the vehicle outside the flow generated by the thruster.
  • the speed threshold up to which the low speed pilot stage is implemented is predetermined and fixed for a given position of the axis of the propellers with respect to the body of the vehicle and for a given direction of movement. This threshold is chosen less than or equal to the maximum speed of advance or recoil of the vehicle along this axis in this direction. This threshold is advantageously non-zero.
  • the low-speed driving step is advantageously implemented only when the following speed condition is verified: the standard of the vehicle speed along the x-axis is less than or equal to a first predetermined threshold speed which is less than or equal to a maximum recoil speed, when the vehicle is moving backward along the x-axis, and the vehicle speed standard along the x-axis is less than or equal to a second threshold speed that is less than or equal to equal to a maximum speed of advance when the vehicle is moving forward along the x-axis.
  • the low speed operation control step is implemented only when the flows generated by the two propellers meet between the two propellers at a distance from the two propellers. This avoids energy losses at high speed and ensures good maneuverability of the vehicle at low speed.
  • the point-of-intersection condition between the two propellers sets limit speeds for forward and reverse along the x-axis.
  • the low speed operation control step is implemented as long as the speed condition is verified.
  • the low speed maneuvering control step is implemented regardless of the movement of the vehicle provided that the flows generated by the two propellers meet between the two propellers at a distance from the two propellers. This ensures a good maneuverability of the vehicle in this speed range.
  • the method advantageously comprises a verification step to check whether the speed condition is verified and whether, yes, the low speed maneuvering step is implemented.
  • the verification step can be implemented iteratively and the low speed maneuvering step is carried out as long as the speed condition is verified.
  • the flows generated by the two propellers are directed towards each other but are not directed along the x axis.
  • the main axis of flux generated by each helix is not parallel to the x axis. Indeed, these flows are not symmetrical of revolution around the x axis.
  • the flow generated port is greater than the flux generated starboard for each of the propellers which deviates the main axis of the flow generated by each of these propellers relative to the x axis.
  • the axial components of the thrust forces before Fav and rear Far resulting respectively from the forward flow (generated by the front propeller towards the rear propeller) and the rear flow (generated by the rear propeller towards the front propeller) have the same intensity.
  • the combined flow is mainly perpendicular to the x-axis, all around the x-axis.
  • the thruster generates a thrust force F whose axial component is zero.
  • the position of the vehicle 1 in translation in the axial direction x with respect to a terrestrial reference is fixed.
  • the combined flux is not symmetrical of revolution around the axis x, because the fluxes generated by the two propellers are not in symmetry of revolution around the two helices.
  • the combined flow generally has the shape of an asymmetrical ring having a lower flow to starboard than port on the example of Figure 4.
  • the thruster generates a thrust force F having a non-zero radial component which allows rotate the vehicle around an axis perpendicular to the x-axis or move the vehicle along an axis perpendicular to the x-axis.
  • the modulus of the force of the radial component of the thrust is not the sum of the radial component pushes of thrusts generated by the two thrusters because a significant part of this thrust comes from an interaction of the flow with the vehicle.
  • the thruster 3 is piloted so that the combined stream is not symmetrical about the x axis.
  • at least one helix generates a flux that is not symmetrical about the x axis.
  • the propeller is piloted so that at least one propeller generates a flow whose main direction forms a non-zero angle with the axial direction, this propeller generating a radial thrust.
  • the thruster To rotate the ship about an axis of rotation perpendicular to the axis of the propellers which is the axis of roll of the object and passing through the center of mass of the object, for example the yaw axis or pitch, the thruster must be adjusted so that the thrust force exerted by the thruster is applied away from the center of mass of the vehicle. Preferably, the thrust is applied between the two propellers.
  • the cyclic pitch of the two helices is modified so that the cyclic pitch of the two helices are equal (same calibration angle / same cyclic angle) for identical propellers rotating at the same speed of rotation.
  • the cyclic angle is maximum on the port side for the two propellers.
  • the thruster 3 is controlled so that the helices generate fluxes that are not symmetrical about the x axis but have the same intensity in respective radial sectors, linked to the body of the vehicle, having the same angular size and forming, around the x-axis, the same angle with the reference direction.
  • the cyclic pitch of the front propeller is larger than that of the rear propeller and the helix angle is arbitrary.
  • a cyclic differential pitch angle of cyclic angle of opposite sign to the other helix is used.
  • the low speed maneuvering control step can be implemented when performing at least one of the movements described above, for example when the speed module of the vehicle with respect to a predetermined reference frame (for example terrestrial or the liquid) along the axis of the helices is less than a predetermined threshold.
  • the low speed piloting step can be implemented continuously during the execution of all the movements described above when the speed modulus is less than the speed threshold.
  • the low speed driving step according to the invention can be implemented only when the speed of the vehicle is below the predetermined threshold or even when the vehicle has a value greater than this threshold. In the latter case it will lead to a rapid braking of the vehicle which will stabilize at the speed corresponding to the adjustment of the propellers as described in the analysis of Figure 2.
  • the thrust generated by the thruster may also include axial thrust. This step is advantageously implemented when the axes of the two helices are coincident with the reference axis.
  • the thrust angle is different from the cyclic angle of the propellers.
  • the radial thrust generated by the thruster is directed in a radial direction dr forming, around the reference axis, an angle called cyclic phase (with the direction in which the cyclic pitch angles of the helices are maximal.)
  • This cyclic phase ⁇ is symmetrical, independent of the direction of the radial thrust generated by the thruster.
  • the cyclic pitch of the helices is adjusted so that their cyclic angles ⁇ are given by the following formula or the cyclic angle of one of the two helices is given by the following formula, the other helix having a neutral cyclic pitch:
  • the corrected radial direction of, according to which the cyclic pitch angle of the blades is maximum, forms around the reference axis, an angle ⁇ with the reference direction dref.
  • the cyclic phase ⁇ is advantageously determined during a preliminary calibration step.
  • This calibration step comprises a measuring step comprising a first step of measuring forces and torques exerted by the vehicle on a test stand integral with the vehicle for several cyclic steps of one or more propellers and / or a second measurement step of the direction of movement of the vehicle immersed in the liquid in an unobstructed area for several cyclic pitch of one or more propellers by means of gyrometers and accelerometers of the direction of movement of the underwater vehicle as a function of the cyclic pitch of the propellers.
  • the calibration step further comprises a step of calculating the cyclic phase from measurements made during the measuring step.
  • the distance between the helices is between a non-zero threshold value and three times the diameter D of the larger of the two helices.
  • This limited distance between the propellers makes it possible to ensure a convergence of the flows and an interaction between them.
  • the distance between the propellers does not depend on the length of the vehicle.
  • the limited distance between the propellers makes it possible to obtain flows that converge between the propellers regardless of the length of the vehicle.
  • the thrust generated by the thruster is the sum of the thrusts generated by the two propellers and a force resulting from the interaction between the flows and the body of the vehicle.
  • the interaction between the flows and the body of the vehicle generates, when at least one of the flows is not symmetrical about the x-axis, a pressure field between the two helices that is not homogeneous on the revolution around the x axis.
  • This pressure gradient generates a lateral thrust which is added to the thrusts generated by the thrusters.
  • the short distance between the propellers maximizes this force and the energy efficiency of the process.
  • An advantage brought is an efficiency of the phenomenon of radial thrust (if the propellers are too far away, the fluxes will lose kinetic energy by the point of meeting).
  • the output flow of each helix is disturbed by its environment.
  • the condition of distance between the propellers thus allows an effective control of the location of the meeting point of the two opposite flows (if the propellers are too far apart, the location of the meeting point is too approximate, if the propellers are too close, the two flow will disrupt each other at the blades).
  • the threshold distance is greater than or equal to 20% of the diameter D of the smaller of the two helices. Below this threshold, the interaction between the two propellers is too disturbed.
  • the invention also relates to a marine vehicle 2 as described above comprising a propulsion system 63 as shown in FIG. 6.
  • the propulsion system 63 comprises a control or control device 62 configured to be able to implement the process according to the invention as well as the propellant according to the invention.
  • the invention also relates to the propulsion system and the steering device
  • the control or control device 62 comprises a control member 60 which receives an implementation instruction of the low speed maneuvering control step is configured to calculate a low speed configuration in which the thruster must be placed so that each helix generates a flow directed to the flow generated by the other helix taken from the two helices and reaching the flow generated by the other helix.
  • each helix generates a non-zero flow and directed essentially in the same direction over the entire revolution of the blades of the helix in the liquid around the axis of rotation of the helix, and so that each propeller taken from the two propellers generates a flow
  • the controller comprises for example an analog computing device such as an operational amplifier mounted in weighted summation, or a programmable logic component or a processor and an associated memory containing a program configured to determine the configuration.
  • the processor and the memory can be grouped together in the same component often called a microcontroller.
  • the control device 62 further comprises an actuating device or actuator 61 configured to control the thruster so as to put it in said calculated low-speed configuration, when it receives said low-speed configuration in the form of a command which is sent by the control organ.
  • the actuator may comprise cylinders, for example electric or hydraulic or a motor actuating cables or chains and to move the point on which they apply their force or even in principle rack.
  • the actuator is configured to tilt and / or move the cyclic and collective trays.
  • the implementation instruction of the low speed maneuvering control step comprises a thrust command, the thruster calculating a low speed configuration of the thruster such that the thruster generates a desired thrust, in particular a thrust in the direction of thrust. the thrust instruction.
  • the configuration obtained comprises a collective pitch, a cyclic pitch and possibly a rotational speed of each propeller and the actuator (s) allow to regulate the collective and cyclic steps of the two propellers.
  • the configuration is a configuration of the propellers and the actuator is used to configure the propellers. This is for example a magnetic device or a motorized device for adjusting the cyclic and collective steps. In a nonlimiting manner, this device comprises cyclic and collective trays.
  • the configuration includes the orientations of the axes of rotation of the propellers.
  • the actuating device makes it possible to actuate the universal joints so as to modify the orientations of the axes of rotation of the propellers.
  • the instruction can be generated on board the vehicle (autonomous vehicle) or on the outside of the vehicle (remotely controlled vehicle).

Abstract

Procédé de pilotage d'un propulseur d'un véhicule marin (1) au moins partiellement immergé dans un liquide comprenant un corps (2) et un propulseur (3) comprenant deux hélices (AV, AR), chaque hélice comprenant des pales destinées à tourner autour d'un axe de rotation de ladite hélice, le procédé comprenant une étape de pilotage de manœuvre à basse vitesse, lors de laquelle on pilote le propulseur de façon que chaque hélice (AV, AR) génère un flux dirigé vers le flux généré par l'autre hélice et atteignant le flux généré par l'autre hélice.

Description

PROCEDE DE PILOTAGE D'UN PROPULSEUR D'UN VEHICULE MARIN
La présente invention se rapporte à la propulsion et à la manœuvre des véhicules marins comprenant un propulseur comprenant deux hélices.
L'invention s'applique tout particulièrement aux véhicules sous-marins comprenant un propulseur vectoriel à deux hélices. Un propulseur est dit vectoriel lorsqu'il peut être piloté de manière à produire une poussée ou force de propulsion orientable sur 4π stéradian. La propulsion dite vectorielle d'un véhicule sous-marin s'oppose à la propulsion conventionnelle dans laquelle l'orientation de gouvernes entraine une modification de la portance générée par le flux de fluide entourant les gouvernes. La force générée par le fluide sur les gouvernes permet d'orienter le véhicule dans la direction recherchée. Une limite bien connue de cette forme de propulsion est la nécessité de générer un flux de fluide significatif autour du véhicule pour entraîner une évolution de portance des gouvernes permettant un changement d'attitude du véhicule, c'est-à-dire pour permettre de manœuvrer le véhicule sous- marin. Si ce flux est trop faible alors l'efficacité des gouvernes diminue en raison inverse du carré de la vitesse du flux jusqu'à devenir nulle pour une vitesse de flux nulle. Autrement dit, il n'est pas possible par la propulsion conventionnelle d'orienter le véhicule dans une direction recherchée sans un déplacement significatif du véhicule, lorsque le flux de fluide est nul. De plus les gouvernes génèrent une traînée proportionnelle au carré de la vitesse qui s'oppose au déplacement et qui consomme donc de l'énergie et cela d'autant plus que les gouvernes sont sollicitées. Le procédé de pilotage d'une propulsion vectorielle présentée dans le présent brevet permet au véhicule de se dispenser des gouvernes de direction conventionnelles, et donc de réduire de manière significative la traînée hydrodynamique du véhicule. La propulsion vectorielle du type à deux hélices présente de nombreux avantages théoriques, notamment une mobilité accrue, une simplification de l'architecture (e.g. par suppression des gouvernes), une augmentation de l'endurance du véhicule (par réduction de la traînée hydrodynamique). Cette absence de gouverne autre que les pales des hélices facilite la réalisation d'un véhicule hydrodynamique dit « flush », c'est-à-dire dont aucun appendice ne dépasse, ce qui lui permet par exemple de tenir aisément dans un tube et évite d'abimer les gouvernes lors d'un accostage. Le pilotage d'un propulseur à deux hélices se heurte toutefois à de nombreuses difficultés notamment à basse vitesse.
Un but de l'invention est de proposer un procédé de pilotage d'un propulseur à deux hélices permettant de manœuvrer le véhicule de manière efficace et stable à basse vitesse.
A cet effet l'invention a pour objet un procédé de pilotage d'un propulseur d'un véhicule marin au moins partiellement immergé dans un liquide comprenant un corps et le propulseur monté sur ledit corps, le propulseur comprenant deux hélices, chaque hélice comprenant des pales destinées à tourner autour d'un axe de rotation de ladite hélice. Selon l'invention, le procédé comprend une étape de pilotage de manœuvre à basse vitesse, lors de laquelle on pilote le propulseur de façon que chaque hélice génère un flux dirigé vers le flux généré par l'autre hélice et atteignant le flux généré par l'autre hélice.
Le procédé selon l'invention présente avantageusement au moins une des caractéristiques suivantes prises seules ou en combinaison :
- chaque hélice génère un flux non nul et dirigé dans le même sens, selon l'axe de l'hélice, sur l'essentiel de la révolution des pales de l'hélice, dans le liquide autour de l'axe de rotation de l'hélice,
- au moins une hélice génère un flux-dont le sens, selon l'axe x, varie sur la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice,
- lors de l'étape de pilotage de manœuvre à basse vitesse, le flux généré par chaque hélice est dirigé vers un point de l'autre hélice, appelé centre de l'autre hélice, situé sensiblement sur l'axe de rotation de l'autre hélice,
- lors de l'étape de pilotage de manœuvre à basse vitesse on pilote le propulseur de façon que chaque hélice génère un flux dirigé vers le flux généré par l'autre hélice et atteignant le flux généré par l'autre hélice quel que soit le mouvement imprimé au véhicule par le propulseur,
- la distance entre les hélices est comprise entre une distance seuil non nulle et le triple du diamètre de la plus grande des deux hélices,
- la distance entre les hélices est supérieure ou égale à 20% du diamètre de la plus petite des deux hélices, - l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre uniquement lorsque les flux générés par les deux hélices se rencontrent entre les deux hélices à distance des deux hélices,
- l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre quel que soit le mouvement du véhicule à condition que les flux générés par les deux hélices se rencontrent entre les deux hélices à distance des deux hélices,
- les deux hélices comprennent une hélice amont et une hélice aval selon un axe de référence dans un sens prédéterminé, et dans lequel lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur exerce une poussée présentant une composante non nulle selon l'axe de référence et dans ledit sens, on pilote le propulseur de façon que la force de poussée amont résultant du flux amont généré par l'hélice amont présente une composante axiale d'intensité supérieure à celle de la composante axiale de la force de poussée aval résultant du flux aval généré par l'hélice aval,
- lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur génère une force de poussée présentant une composante radiale nulle selon un axe radial situé dans un plan perpendiculaire à un axe de référence, on pilote le propulseur de façon que le flux combiné résultant de la combinaison des flux générés par les deux hélices, entre les deux hélices, soit à symétrie de révolution autour de l'axe de référence,
- lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur exerce une force de poussée présentant une composante radiale non nulle selon un axe radial situé dans un plan perpendiculaire à l'axe de référence, on pilote le propulseur de façon que le flux combiné résultant de la combinaison des flux générés par les deux hélices entre les deux hélices ne soit pas à symétrie de révolution autour de l'axe de référence,
- lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur exerce une force de poussée présentant une composante radiale non nulle, on pilote le propulseur de façon qu'au moins une hélice génère un flux qui n'est pas à symétrie de révolution autour de l'axe de référence,
- lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le véhicule tourne autour d'un axe perpendiculaire à l'axe de référence, on pilote le propulseur de façon que la force de poussée générée par le propulseur s'applique sur un point distant du centre de masse du véhicule,
- lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le véhicule se translate selon un axe perpendiculaire à l'axe de référence, on pilote le propulseur de façon que la force de poussée générée par le propulseur s'applique sur le centre de masse du véhicule,
- le propulseur est un propulseur comprenant deux hélices contrarotatives à pas cyclique et collectif variables, un axe de référence étant un axe des hélices qui est un axe reliant des centres des deux hélices qui sont des point situés sur les axes de rotation des hélices respectives.,
- les axes de rotation des deux hélices sont sensiblement confondus et confondus avec l'axe de référence,
- lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur génère une poussée présentant une composante radiale s'exerçant selon une direction radiale formant, autour de l'axe de référence, un premier angle a avec une direction de référence, on règle les pas cycliques des hélices de façon que l'angle cyclique Θ des hélices soit donné par la formule suivante ou de façon que l'angle cyclique Θ d'une des deux hélices soit donné sensiblement par la formule suivante, l'autre hélice présentant un pas cyclique neutre :
Θ = a— φ où la phase cyclique φ est l'angle formé, autour de l'axe de référence, entre la poussée générée par les hélices et l'angle cyclique Θ des hélices ou respectivement d'une des hélices, la phase cyclique φ étant prédéterminée, l'angle cyclique d'une hélice étant l'angle formé autour de l'axe de référence entre la direction selon laquelle l'angle de calage cyclique de l'hélice est maximal et la direction de référence.
L'invention se rapporte également à un véhicule marin destiné à être au moins partiellement immergé dans un liquide comprenant un corps et un propulseur comprenant deux hélices, chaque hélice comprenant des pales destinées à tourner autour d'un axe de rotation de ladite hélice, caractérisé en ce qu'il comprend un dispositif de pilotage configuré pour pouvoir mettre en œuvre le procédé selon l'invention, le dispositif de pilotage comprenant un organe de commande qui recevant une consigne de mise en œuvre de l'étape de pilotage de manœuvre à basse vitesse est configuré pour calculer une configuration basse vitesse pour que chaque hélice génère un flux dirigé vers le flux généré par l'autre hélice et atteignant le flux généré par l'autre hélice, le dispositif de pilotage comprenant en outre un dispositif d'actionnement configuré pour contrôler le propulseur de façon à le mettre dans ladite configuration basse vitesse.
Avantageusement, la consigne de mise en œuvre de l'étape de pilotage de manœuvre à basse vitesse comprend une consigne de poussée, le propulseur calculant une configuration basse vitesse du propulseur telle que le propulseur génère une poussée selon la direction de la consigne de poussée.
L'invention se rapporte également au dispositif de pilotage et à un système de propulsion comprenant le dispositif de pilotage et le propulseur.
Le procédé de pilotage permet de piloter le véhicule sous-marin de manière stable et efficace à basse vitesse même lorsque la vitesse du véhicule est négative ou nulle et lorsque la masse du véhicule est importante. C'est-à-dire que cette solution permet au véhicule d'être manœuvrant même en point fixe ou en marche arrière. Il permet un contrôle précis de l'attitude et de la position du véhicule sous-marin par rapport à un référentiel fixe.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 représente schématiquement en vue de dessus un véhicule sous-marin à l'équilibre;
- la figure 2 représente schématiquement en vue de dessus un véhicule sous-marin se déplacement selon l'axe x vers l'avant,
- la figure 3 représente schématiquement en vue de dessus un véhicule sous-marin se déplacement selon l'axe x vers l'arrière,
- la figure 4 représente schématiquement en vue de dessus un véhicule sous-marin sur lequel le propulseur exerce une poussée radiale non nulle, - la figure 5 représente schématiquement, dans un plan radial, la direction de la poussée exercée par le propulseur en fonction de l'angle cyclique,
- la figure 6 représente schématiquement un système de propulsion selon l'invention.
D'une figure à l'autre, les mêmes éléments sont repérés par les mêmes références. L'invention propose un procédé de pilotage d'un propulseur d'un véhicule marin. Le procédé s'applique tout particulièrement aux véhicules sous-marins destinés à se déplacer totalement immergés dans un liquide, notamment de l'eau. L'invention s'applique également aux véhicules de surface destinés à se déplacer à la surface d'un liquide en étant partiellement immergé dans le liquide. Les véhicules marins peuvent être des véhicules autonomes avec pilotes (humains) à bord, ou des drones sans pilote à bord tels que les véhicules pilotés à distance ou ROV en référence à l'expression anglo-saxonne « remotely operated véhicule » ou des véhicules marins autonomes tels que les véhicules sous-marins autonomes ou AUV en référence à l'expression anglo-saxonne « Autonomous Underwater Vehicle ». Par conséquent, le procédé de pilotage, c'est-à-dire de commande, selon l'invention peut être mis en œuvre par un opérateur (pilote) à bord ou à distance ou par un dispositif de pilotage autonome.
Avantageusement, les deux hélices sont montées sur le corps du véhicule marin de façon à être agencées ou pouvoir être agencées de façon que chaque hélice, prise parmi ces deux hélices, puisse générer un flux d'eau (ou plus généralement de liquide) dirigé vers le flux généré par l'autre hélice, prise parmi les deux hélices. Ces hélices sont avantageusement disposées de façon que le flux généré par chaque hélice, prise parmi les deux hélices, quel que soit la vitesse du véhicule par rapport au liquide selon un axe de référence, au moins tant que cette vitesse est inférieure à un seuil de vitesse prédéterminé, puisse atteindre le flux généré par l'autre hélice, prise parmi les deux hélices. Avantageusement, les flux doivent pouvoir s'atteindre en un temps inférieur à un temps de réaction prédéterminé. Ce temps de réaction est le temps de réaction acceptable pour la manœuvre. Cela permet de garantir la formation du flux combiné ou radial.
Ce procédé s'applique aux véhicules comprenant un propulseur vectoriel comprenant deux hélices contrarotatives dites à pas cycliques et collectifs variables. Une hélice à pas cyclique et collectif variables est une hélice dont l'angle de calage des pales est contrôlable de façon collective permettant de régler la poussée selon l'axe de rotation de l'hélice. Le pas collectif est défini par un angle de calage collectif des pales. Autrement dit, toutes les pales présentent le même angle de calage collectif sur toute la révolution des pales autour de l'axe de rotation de l'hélice. Pour rappel, l'angle de calage des pales d'une hélice est l'angle formé entre la corde de la pale et le plan de rotation de l'hélice selon la référence choisie. Le plan de rotation de l'hélice est un plan de l'hélice perpendiculaire à l'axe de rotation de l'hélice. L'angle de calage est également réglable de façon cyclique permettant d'orienter la poussée perpendiculairement à l'axe de rotation de l'hélice. L'angle de calage cyclique des pales varie de façon cyclique c'est-à- dire au cours d'une révolution autour de l'axe de rotation de l'hélice, en fonction des positions angulaires des pales autour de l'axe de rotation de l'hélice. Le pas cyclique est défini par un angle de calage cyclique différentiel lors d'une révolution des pales ainsi que par un angle cyclique. L'angle de calage cyclique différentiel est défini comme la différence entre l'angle de calage cyclique maximum et l'angle de calage cyclique minimum d'une pale au cours d'une révolution. Le pas collectif est l'angle de calage cyclique moyen. L'angle cyclique est l'angle formé, autour de l'axe de rotation de l'hélice, entre la direction selon laquelle l'angle de calage des pales est maximal et une direction de référence liée au corps du véhicule. On appelle pas collectif neutre l'angle de calage des pales pour lequel l'hélice en rotation autour de son axe de rotation exerce une poussée nulle, selon son axe de rotation. Le pas cyclique neutre est celui pour lequel les pales exercent une poussée dont la composante perpendiculaire à l'axe de rotation de l'hélice est nulle. Un pilotage coordonné des deux hélices permet de maîtriser l'orientation de la poussée sur 4π stéradian. On connaît en particulier des propulseurs vectoriels formés de deux hélices contrarotatives coaxiales, c'est à dire dont les axes de rotation sont sensiblement confondus. On connaît par exemple des hélices coaxiales dont les axes de rotation sont sensiblement parallèles à l'axe de principal de déplacement du véhicule. L'axe principal de déplacement du véhicule est l'axe, lié au corps du véhicule, selon lequel le véhicule est principalement destiné à se déplacer. Par axe lié au corps du véhicule, on entend que l'orientation et la position du corps du véhicule dans un plan perpendiculaire à l'axe sont fixes. Ce type de propulseur présente l'avantage de pouvoir être piloté de façon à présenter un bon rendement énergétique à vitesse élevée. Ainsi les deux hélices génèrent une poussée naturellement orientée selon l'axe principal de déplacement du véhicule. De façon classique mais non limitative, l'axe principal de déplacement du véhicule est l'axe de roulis du véhicule. Les axes de lacet et de tangage sont des axes radiaux, c'est-à-dire perpendiculaires à l'axe principal, passant par l'axe principal. Les axes de rotation des hélices sont fixes par rapport au véhicule.
Le procédé est aussi applicable à des propulseurs du type comprenant deux hélices contrarotatives ou non à pas cycliques et collectifs variables dont les axes de rotation des hélices sont distincts et sensiblement parallèles et à ceux présentant des hélices dont les axes de rotation ne sont pas parallèles. Avantageusement, pour un véhicule destiné à se déplacer principalement selon un axe principal, les axes de rotation des hélices forment des angles respectifs quelconques différents de 90° avec cet axe qui est par exemple l'axe principal de déplacement du véhicule. De manière plus avantageuse, les axes de rotation des hélices sont sensiblement parallèles à l'axe principal de déplacement du véhicule ce qui permet d'améliorer le rendement de propulsion lors de la progression en ligne droite selon cet axe. La vitesse de rotation des pales de l'hélice autour de son axe de rotation (appelée vitesse de rotation de l'hélice) est réglable de façon indépendante ou de façon collective pour les deux hélices.
Le procédé selon l'invention s'applique aussi à des propulseurs comprenant deux propulseurs orientables à liaison rotule à doigt aussi appelés « gimbal propellers » en terminologie anglo-saxonne. Ces propulseurs présentent chacun une hélice comprenant des pales dont le pas n'est pas réglable. Chacune des hélices est reliée par une liaison rotule à doigt au corps du véhicule marin, réalisée par exemple au moyen d'un montage à Cardan de façon que le plan de rotation (ou l'axe de rotation) de chacune des hélices puisse pivoter, par rapport au corps du véhicule, autour de deux axes perpendiculaires entre eux. Autrement dit, l'orientation des hélices par rapport au corps du véhicule est modifiable. La vitesse de rotation de chacune des hélices autour de son axe de rotation est aussi réglable, de préférence, indépendamment l'une de l'autre. Un unique propulseur du type « gimbal propeller » présente un rendement plus limité que les propulseurs à hélices contrarotatives à pas cyclique et collectif variables et présentent une action limitée à un secteur angulaire donné d'ouverture inférieure à 360°.
Les hélices peuvent présenter le même diamètre (comme sur les figures) ou un diamètre différent, le même nombre de pales ou un nombre de pales différent.
Dans la suite de la description, on définit un axe de référence lié au corps du véhicule. Par axe lié au corps du véhicule, on entend que l'orientation et la position du corps du véhicule dans un plan perpendiculaire à l'axe sont fixes. Un axe orienté perpendiculaire à l'axe de référence passant par cet axe est appelé axe radial et définit une direction radiale. Par composante radiale d'un vecteur, on entend la composante du vecteur selon un axe radial perpendiculaire à l'axe de référence. Par composante axiale d'un vecteur, on entend la composante du vecteur selon l'axe de référence. Dans la présente demande de brevet, pour une poussée, on définit une poussée radiale qui est la composante radiale de la poussée et la poussée axiale qui est la composante axiale de la poussée.
Le procédé de pilotage selon l'invention comprend une étape de pilotage du propulseur appelée, dans la suite du document, étape de pilotage de manœuvre à basse vitesse.
Selon l'invention, le procédé comprend une étape de pilotage, c'est-à- dire de commande, de manœuvre à basse vitesse lors de laquelle on pilote, c'est-à-dire on commande, le propulseur de façon que chaque hélice, parmi les deux hélices, génère un flux dirigé vers le flux généré par l'autre hélice, parmi les deux hélices, et atteignant le flux généré par l'autre hélice. Cela suppose que les deux hélices génèrent un flux d'eau, c'est-à-dire tournent par rapport au corps du véhicule marin autour de leurs axes de rotation d'hélice respectifs, et aient un angle de calage collectif non neutre. Cela permet de générer un flux combiné, issu de la combinaison des flux générés par les deux hélices, qui présente une composante radiale non nulle et qui permet de commander le véhicule de façon stable et d'obtenir une bonne manœuvrabilité du véhicule.
Par ailleurs, sur la réalisation des figures, lors de l'étape de pilotage de manœuvre à basse vitesse, chaque hélice génère un flux non nul et dirigé dans le même sens, selon l'axe de rotation de l'hélice, sur la totalité de la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice. Autrement dit, la composante axiale du flux présente le même signe sur la totalité de la révolution de pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice. Cela signifie que les lignes de flux générées par l'hélice dans chaque secteur angulaire radial, fixe par rapport au corps du véhicule et balayé par l'hélice, sont orientées dans le même sens, selon l'axe de rotation de l'hélice. Cela permet de générer un flux combiné, issu de la combinaison des flux générés par les deux hélices, qui présente une composante radiale non nulle tout autour de l'axe de référence lorsque l'axe de référence passe dans le volume où se combinent les flux entre les deux hélices lorsque les axes de rotation des hélices ne sont pas perpendiculaires à cet axe de référence.
Le fait que chaque flux présente essentiellement le même sens sur toute la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation permet d'éviter la création de tourbillons entre les hélices qui auraient pour effet de déstabiliser le véhicule.
En variante, au moins une hélice génère un flux dirigé dans un sens, selon l'axe de rotation de l'hélice, qui varie sur la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice.
Avantageusement, les hélices sont montées sur le corps du véhicule marin de façon à être agencées ou pouvoir être agencées de façon que chaque hélice puisse générer un flux d'eau (ou plus généralement de liquide) dirigé vers l'autre hélice. Dans la présente demande de brevet, on considère qu'une hélice génère un flux dirigé vers une autre hélice lorsque le volume balayé par l'autre hélice (lors de sa rotation autour de l'axe de rotation) est au moins partiellement situé à l'intérieur du cylindre dont l'axe est l'axe principal du flux généré par l'hélice et dont le diamètre est le diamètre de l'hélice. Avantageusement, l'axe principal du flux généré par chaque hélice passe dans le volume balayé par l'autre hélice lors d'une révolution des pales de l'autre hélice autour de l'axe de rotation de l'autre hélice. La direction de l'axe principal est définie par rapport au corps du véhicule. Le volume balayé par une hélice comprend l'axe de rotation de l'hélice. Par axe principal du flux généré par une hélice, on entend l'axe passant par un centre de l'hélice et dont la direction est la direction du flux généré par l'hélice. Par centre d'une hélice, on entend un point prédéterminé de l'hélice situé sensiblement sur l'axe de rotation de l'hélice et à l'intérieur du volume que peut balayer l'hélice lors d'une révolution des pales de l'hélice autour de l'axe de rotation de l'hélice. Le centre d'une hélice peut avantageusement être défini comme le centre de masse des pales.Avantageusement, les plans de rotation des hélices doivent être non coplanaires ou doivent pouvoir être disposés de façon non coplanaire Avantageusement, le flux dirigé par chacune des deux hélices est dirigé vers le centre de l'autre hélice prise parmi les deux hélices. Cela est réalisé pour générer une poussée ne présentant pas de composante radiale. Dans ce cas, la direction du flux généré par une hélice étant définie par l'axe principal du flux, l'axe principal du flux généré par chaque hélice passe par ledit centre de l'autre hélice. Cela permet d'éviter des oscillations du véhicule. Les oscillations du véhicule étant d'autant plus maîtrisées que le flux généré par une hélice est dirigé près du centre de l'autre hélice. Dans cette configuration la trajectoire du véhicule est plus stable et facile à maîtriser car sur une révolution des pales de l'hélice autour de l'axe de rotation de l'hélice, toutes les pales rencontrent un même flux, notamment lorsque les flux des hélices se rencontrent à proximité d'une des hélice. L'angle de calage des pales de l'autre hélice n'est donc pas perturbé par le flux généré par l'hélice. Si le flux est décentré, toutes les pales ne rencontrent pas un flux homogène. L'angle de calage des pales est donc perturbé par le flux généré par l'hélice.
Avantageusement, l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre quel que soit le mouvement imprimé par le propulseur au véhicule lorsque le module de la vitesse du véhicule est inférieure à un seuil prédéterminé pouvant être nul. Un propulseur vectoriel peut imprimer à un véhicule sous-marin des mouvements selon 6 degrés de liberté. Par le même procédé, le mouvement d'un bâtiment de surface peut être réglé par son propulseur selon 2 degrés de liberté en translation et 1 degré de liberté en rotation.
De manière générale, l'étape de pilotage de manœuvre à basse vitesse peut être mise en œuvre quel que soit le mouvement de rotation autour d'un axe perpendiculaire à l'axe de référence et/ou quel que soit le mouvement de translation selon l'axe de référence et/ou quel que soit le mouvement de translation selon un axe perpendiculaire à l'axe de référence imprimé au véhicule par le propulseur. Si ce procédé est mis en œuvre lorsque le module de la vitesse du véhicule est supérieur au seuil prédéterminé alors le véhicule ralentira de lui-même du simple fait de l'application du procédé pour revenir à une vitesse inférieure au seuil.
Ce procédé est illustré par les figures 1 à 4 représentant un véhicule sous-marin comprenant un propulseur vectoriel du type à deux hélices contrarotatives à pas cycliques et collectifs variables. Mais ce qui est décrit par la suite est aussi applicable aux bâtiments de surface et aux autres types de propulseurs décrits précédemment.
Les figures 1 à 4 représentent schématiquement en vue de dessus un véhicule sous-marin 1 présentant un corps 2 et un propulseur vectoriel 3 monté sur le corps du véhicule sous-marin 1 . Ce propulseur 3 est du type propulseur vectoriel comprenant deux hélices AV, AR contrarotatives à pas cycliques et collectifs variables. Ces hélices sont coaxiales. Autrement dit, elles sont destinées à tourner autour d'axes de rotation sensiblement confondus. Sur ces figures, l'axe de référence x est l'axe des hélices, c'est-à- dire l'axe reliant les centre des deux hélices. Par ailleurs, cet axe est l'axe principal de déplacement du véhicule qui est ici l'axe de roulis du véhicule. L'axe principal de déplacement du véhicule x est orienté dans le sens de déplacement privilégié du véhicule lorsque le véhicule présente un sens de déplacement privilégié. Dans la présente demande de brevet, l'avant et l'arrière sont définis par rapport à l'axe de référence x dans le sens de l'axe de référence. Les hélices comprennent une hélice avant AV et une hélice arrière AR, l'hélice avant étant située en avant de l'hélice arrière. Les pales de chaque hélice AV, AR sont montées sur le corps 2 du véhicule 1 à rotation autour de l'axe de rotation de l'hélice correspondante AV, AR. Les pales d'une hélice sont solidaires en rotation autour de l'axe de rotation de l'hélice. Par exemple, chaque pale est reliée par un axe à un moyeu monté à rotation sur le corps 2 du véhicule sous-marin 1 autour de l'axe de rotation de l'hélice généralement défini par un arbre.
Les lignes de flux d'eau entre les deux hélices sont représentées par des flèches. Pour rappel, un flux généré par une hélice représente la vitesse de l'eau au travers de l'hélice. Le module ou intensité du flux, exprimé en kg. m. s"1 est un débit de quantité de mouvement de l'eau à travers la surface de l'hélice. Les forces de poussée générées par les hélices respectives sont également représentées par des flèches simples. La force de poussée générée par le propulseur est représentée, lorsqu'elle n'est pas nulle, par une double flèche. Pour plus de clarté, cette flèche est représentée sur l'arrière du véhicule mais la poussée s'applique avantageusement entre les deux hélices sur un point de l'axe de roulis.
Sur la réalisation des figures, les deux hélices AV, AR sont installées à l'arrière du véhicule, c'est-à-dire sur la moitié arrière du corps du véhicule selon l'axe de référence x. En variante, ces deux hélices sont installées à l'avant du corps du véhicule ou une à l'avant et une à l'arrière du corps du véhicule. Pour pouvoir faire tourner le véhicule, c'est-à-dire déplacer le véhicule en générant une poussée présentant une composante radiale (perpendiculaire à l'axe x) non nulle, les plans de rotation des hélices ne sont pas disposés dans des plans symétriques l'un de l'autre par rapport à un plan contenant le centre de masse du corps 2 de l'engin sous-marin 1 .
Dans chacune des situations représentées sur les figures, chaque hélice génère un flux dirigé vers l'autre hélice. Autrement dit, l'hélice avant AV génère un flux vers l'hélice arrière AR qui elle-même génère un flux dirigé vers l'hélice avant AV. Chaque flux présente une composante non nulle et de même signe selon l'axe de rotation de l'hélice x, sur l'essentiel de la révolution des pales de l'hélice correspondante autour de l'axe de rotation de l'hélice x, et de préférence sur toute la révolution des pales de l'hélice autour de l'axe de rotation de l'hélice. Par conséquent, les flux générés par les deux hélices viennent se rencontrer et se dévier l'un l'autre tout autour de l'axe x. Autrement dit, ces flux se combinent pour former entre les hélices, à distance des hélices, un flux appelé flux combiné ou radial comme visible sur les figures. Sur la réalisation des figures, le flux combiné présente globalement une composante radiale non nulle et positive dans chaque secteur angulaire radial d'un disque fixe par rapport au corps 2 et perpendiculaire à l'axe de référence même lorsque le véhicule ne se déplace pas. Le flux combiné s'éloigne de l'axe de référence tout autour de l'axe de référence. Cela permet d'obtenir une force de poussée équilibrée dans toutes les directions radiales même lorsque le véhicule ne se déplace pas selon l'axe des hélices. Les composantes radiales non nulles du flux combiné permettent d'assurer une manœuvrabilité radiale efficace du véhicule à vitesse nulle selon l'axe de référence et aussi à vitesse non nulle lorsque le propulseur produit une poussée pour déplacer axialement le véhicule. Cela permet de maximiser la poussée générée par le propulseur. En effet, les flux des hélices étant générées l'un vers l'autre, le flux généré par chaque hélice ne peut pas atteindre l'autre hélice, il est dévié par le flux généré par l'autre hélice. Ces flux ne s'aspirent pas l'un l'autre ce qui maximise l'effet de poussée radiale. L'axe de référence est avantageusement l'axe des hélices, le flux radial est alors sensiblement centré sur l'axe de rotation des hélices.
La génération, par les deux hélices de flux orientés l'un vers l'autre et par réaction des poussées opposées, permet de stabiliser le véhicule et de bien maîtriser la manœuvre du véhicule.
Le véhicule piloté au moyen du procédé selon l'invention est peu sensible aux perturbations extérieures. Comme déjà évoqué, du fait que le flux généré par chaque hélice ne peut pas atteindre l'autre hélice, les deux hélices ne se perturbent pas l'une et l'autre. Autrement dit, le flux généré par une hélice ne perturbe pas l'angle d'incidence de l'autre hélice pour un angle de calage donné des pales. L'angle d'incidence est défini par rapport au flux de liquide qui la traverse. Par conséquent, en créant le flux combiné radial, lorsque l'on règle ensuite le pas cyclique et le pas collectif des hélices pour faire avancer, reculer et/ou pour faire pivoter le véhicule, on stabilise le véhicule à une vitesse de déplacement ou de rotation par rapport à l'eau dépendant du seul réglage des hélices et si on génère une perturbation qui tend à ralentir ou accélérer l'engin sous-marin, cette perturbation génère une variation de vitesse de l'eau au niveau des hélices qui se traduit par une variation de l'angle d'attaque (ou d'incidence) des pales des hélices ce qui génère une variation de poussée qui s'oppose au mouvement de la perturbation extérieure.
Par ailleurs, la bonne manœuvrabilité et la stabilité du véhicule à faible vitesse et à vitesse nulle ne nécessitent pas l'intégration de systèmes de manœuvre supplémentaires ou d'éléments générant une traînée hydrodynamique, coûteuse en énergie particulièrement lorsque le véhicule voudra se déplacer. Il faut noter que le procédé selon l'invention est anti-intuitif car la génération de flux dirigés l'un vers l'autre par les hélices est fortement consommateur d'énergie et ce, d'autant plus que ces flux présentent le même signe sur toute la révolution du volume balayé par les pales de l'hélice autour de rotation de l'hélice.
L'étape de pilotage de manœuvre à basse vitesse est avantageusement mise en œuvre pour manœuvrer le véhicule autour d'un point fixe.
Nous allons maintenant décrire plus précisément les situations représentées sur chacune des figures.
Sur la figure 1 , le véhicule est immobile. Les flux générés par les deux hélices sont dirigés l'un vers l'autre selon l'axe x. Cela signifie que chacun de ces flux est à symétrie de révolution autour de l'axe x. Autrement dit, ils sont homogènes sur toute la révolution des pales des hélices respectives autour de l'axe x. Par ailleurs, les flux générés par les deux hélices présentent la même intensité. Les forces de poussée avant Fav et arrière Far résultant respectivement du flux avant (généré par l'hélice avant vers l'hélice arrière) et du flux arrière (généré par l'hélice arrière vers l'hélice avant) présentent donc la même intensité. Par conséquent, le flux combiné qui est issu de la déviation des flux du fait de la rencontre de ces deux flux est radial, c'est-à- dire perpendiculaire à l'axe x et ce, tout autour de l'axe x. Le flux combiné présente une forme globalement annulaire. Le propulseur génère une force de poussée F dont la composante axiale est nulle. La position du véhicule 1 en translation selon la direction axiale x par rapport à un référentiel reste fixe par exemple le liquide.
Par conséquent, pour que le véhicule ne se déplace pas selon l'axe x des hélices, on pilote le propulseur 3 de façon que les forces de poussées résultant des flux générés par les deux hélices présentent des composantes axiales de même intensité (ou module). Autrement dit, on pilote le propulseur de façon que les flux générés par les deux hélices présentent le même module selon l'axe x et des sens contraires selon l'axe x. Cela est réalisé pendant la génération des flux l'un vers l'autre. Le propulseur ne génère pas de poussée axiale. Pour obtenir cela, on joue sur les pas cycliques et/ou les vitesses de rotation des hélices. Sur la figure 1 , le flux combiné étant à symétrie de révolution autour de l'axe x, le propulseur génère une force de poussée F dont la composante radiale est nulle. On ne peut pas orienter le véhicule par rotation autour d'un axe perpendiculaire à l'axe x dans cette configuration. Pour obtenir cette configuration, la combinaison de la vitesse de rotation et de l'angle de calage collectif (également appelé pas collectif) de chaque hélice est telle que l'hélice génère un flux en direction de l'autre hélice et résultant en une poussée égale et opposée à celle générée par l'autre hélice.
Sur la figure 2, les flux générés par les deux hélices sont dirigés l'un vers l'autre et selon l'axe x. Chacun de ces flux est à symétrie de révolution autour de l'axe x. En revanche, les forces de poussée avant Fav et arrière Far résultant respectivement du flux avant (généré par l'hélice avant AV vers l'hélice arrière AR) et du flux arrière (généré par l'hélice arrière AR vers l'hélice avant AV) ont des modules différents. Par conséquent, le flux combiné est incliné par rapport à l'axe x et globalement à symétrie de révolution autour de l'axe x. Le flux combiné présente une forme tronconique au voisinage du véhicule. Le flux avant généré par l'hélice avant AV étant plus important que le flux arrière généré par l'hélice arrière AR, le module de la force de la poussée Fav résultant du flux avant est supérieur à celui de la force de poussée Far résultant du flux arrière. Le propulseur génère une force de poussée F dont la composante axiale est positive. Le module de cette poussée est sensiblement égal au module de la somme des composantes axiales des forces de poussée générées par les deux hélices. Le véhicule est animé d'un mouvement de translation selon l'axe x vers l'avant. Cette translation modifie l'angle d'attaque relatif des pales de l'hélice avant et tend à réduire la poussée avant. Rapidement la vitesse d'avance s'équilibre à une valeur telle que les deux poussées soient en équilibre.
Par conséquent, pour déplacer le véhicule selon l'axe x des hélices vers l'avant AV, on pilote le propulseur 3 de façon que la force de poussée avant Fav résultant du flux avant présente une composante axiale d'intensité supérieure à celle de la composante axiale de la force de poussée arrière Far résultant du flux arrière généré par l'hélice arrière AR. Autrement dit, pour obtenir un déplacement du véhicule selon la direction axiale vers l'avant, on déséquilibre les flux avant et arrière de façon que le flux combiné soit orienté vers l'arrière. Le module de la composante axiale du flux généré par l'hélice avant vers l'arrière doit être supérieur au module de la composante axiale du flux généré par l'hélice arrière vers l'avant. Pour obtenir ce déplacement axial, on ajuste la combinaison vitesse de rotation/pas collectif de chaque hélice afin que les hélices produisent une poussée différente. Par exemple, cela est réalisé en augmentant le pas collectif avant et en réduisant le pas collectif arrière sans modifier les vitesses de rotation par rapport à la situation de la figure 1 . Il est préférable de jouer sur le pas collectif plutôt que sur de modifier les vitesses de rotation des hélices car une trop grande différence de vorticité des flux générés peut conduire à une instabilité et génère par ailleurs un couple en roulis.
Sur la figure 2, le flux combiné étant à symétrie de révolution autour de l'axe x, le propulseur génère une force de poussée F dont la composante radiale est nulle. Le véhicule ne se met pas en rotation autour d'un axe perpendiculaire à l'axe x dans cette configuration.
Le déplacement obtenu est purement axial.
Sur la figure 3, les flux générés par les deux hélices sont dirigés l'un vers l'autre et selon l'axe x. Cela signifie que chacun de ces flux est à symétrie de révolution autour de l'axe x. En revanche, les forces de poussée avant Fav et arrière Far résultant respectivement du flux avant (généré par l'hélice avant AV vers l'hélice arrière AR) et du flux arrière (généré par l'hélice arrière AR vers l'hélice avant AV) ont des modules différents. Par conséquent, le flux combiné est incliné par rapport à l'axe x et globalement à symétrie de révolution autour de l'axe x. Le flux combiné présente une forme tronconique au voisinage du véhicule. Le flux avant généré par l'hélice avant AV étant plus faible que le flux arrière généré par l'hélice arrière AR, le module de la force de la poussée Fav résultant du flux avant est inférieur à celui de la force de poussée Far résultant du flux arrière. Le propulseur génère une force de poussée F dont la composante axiale est négative. Le véhicule est animé d'un mouvement de translation selon l'axe x vers l'arrière. Le véhicule recule selon l'axe x. Cette translation modifie l'angle d'attaque des pales de l'hélice arrière et tend à réduire la poussée arrière. Rapidement la vitesse de recul s'équilibre à une valeur telle que les deux poussées soient en équilibre.
Par conséquent, pour déplacer le véhicule selon l'axe x des hélices vers l'arrière, on pilote le propulseur 3 de façon que la force de poussée avant Fav résultant du flux avant généré par l'hélice avant AV présente une composante axiale d'intensité inférieure à celle de la composante axiale de la force de poussée arrière Far résultant du flux arrière généré par l'hélice arrière AR. Autrement dit, pour obtenir un déplacement du véhicule selon la direction axiale vers l'arrière, on déséquilibre les flux avant et arrière de façon que le flux combiné soit orienté vers l'avant. Le module de la composante axiale du flux généré par l'hélice avant doit être inférieur au module de la composante axiale du flux généré par l'hélice arrière vers l'arrière. Pour obtenir cette configuration, on peut faire tourner les deux hélices de la figure 1 à même vitesse de rotation avec des pas cycliques neutres et des combinaisons de vitesse de rotation et de pas collectifs choisis afin que la poussée arrière soit supérieure à la poussée avant. Comme dans le cas de la figure 2, et pour les mêmes raisons on privilégie l'action sur les pas collectifs plutôt que l'action sur la vitesse de rotation des hélices.
Sur la figure 3, le flux combiné étant à symétrie de révolution autour de l'axe x, le propulseur génère une force de poussée F dont la composante radiale est nulle. Le véhicule n'entre pas en rotation autour d'un axe perpendiculaire à l'axe x dans cette configuration. On obtient le déplacement axial pur de la figure 3, en utilisant en outre des pas cycliques neutres.
De manière générale, pour déplacer le véhicule selon l'axe x, dans un sens prédéterminé, par rapport au liquide, on pilote le propulseur 3 de façon que chaque hélice génère un flux dirigé vers et atteignant le flux généré par l'autre hélice et de façon que la force de poussée amont résultant du flux amont présente une composante axiale d'intensité supérieure à celle de la composante axiale de la force de poussée aval résultant du flux aval généré par l'hélice aval. Par hélice amont, on entend l'hélice située vers l'avant dans le sens de déplacement du véhicule selon l'axe x et l'hélice aval, l'hélice située vers l'arrière dans le sens de déplacement du véhicule selon l'axe x.
Lors du pilotage de manœuvre à basse vitesse, le pilotage du propulseur peut être un pilotage des hélices. Lorsque le propulseur est du type comprenant deux hélices contrarotatives à pas cycliques et collectifs variables, pour obtenir une composante axiale de la force de poussée exercée par le propulseur à vitesse de rotation des hélices fixe, on fait varier le pas collectif (calage collectif) d'au moins une hélice de façon à obtenir la poussée souhaitée. Pour tous les mouvements, dans le cas des hélices contrarotatives à pas cycliques et collectifs variables, on règle la vitesse de rotation des hélices et/ou le pas cyclique des hélices et/ou le pas collectif des hélices de façon à obtenir la poussée souhaitée. Si le propulseur est un propulseur à Cardan, on règle l'orientation d'au moins une hélice de façon à obtenir la poussée souhaitée. Cela est valable quel que soit la poussée souhaitée. La configuration du dispositif de pilotage peut être choisie en fonction d'une poussée souhaitée par calibration. Une phase préalable de mesure du flux ou de la poussée générée par le véhicule en fonction de différents réglages du propulseur permet ensuite déterminer les réglages en fonction de la poussée souhaitée.
On constate sur les figures 2 et 3, que le véhicule avance ou recule, suite à un déséquilibre contrôlé des flux des deux hélices. Le procédé selon l'invention permet de toujours produire en outre un effort radial permettant de manœuvrer le véhicule. Autrement dit, le propulseur reste manœuvrant perpendiculairement à l'axe de référence lorsqu'il produit une poussée pour déplacer axialement le véhicule. Lorsque l'on déséquilibre les flux avant et arrière selon l'axe x, le véhicule avance ou recule, par rapport au liquide en accélérant jusqu'à atteindre une vitesse limite d'avance ou respectivement de recul fonction de la poussée résultante des deux propulseurs (c'est-à-dire fonction des vitesses de rotation, incidence collective et incidence cyclique des deux hélices). La vitesse maximale d'avance du véhicule par rapport au liquide est la vitesse maximale que peut prendre la vitesse limite d'avance. Cette vitesse est atteinte lorsque le flux avant dirigé vers l'arrière est à son maximum de poussée et le flux arrière dirigé vers l'avant est au minimum de poussée compatible avec le fait qu'il reste dirigé vers l'hélice avant AV. Autrement dit, l'hélice arrière génère un flux vers l'avant et ce flux n'est pas ensuite dévié vers l'arrière par l'hélice avant. .. De même qu'il existe une vitesse maximale d'avance, il existe une vitesse maximale de recul atteinte lorsque le flux arrière dirigé vers l'avant est à son maximum de poussée et le flux avant dirigé vers l'arrière est au minimum de poussée compatible avec le fait qu'il reste dirigé vers l'hélice arrière AR. Autrement dit, l'hélice arrière génère un flux vers l'arrière et ce flux n'est pas ensuite dévié vers l'avant par le flux généré par l'hélice arrière.
En d'autres termes, entre la vitesse de recul maximal et la vitesse d'avance maximale, les deux hélices génèrent des flux qui se rencontrent entre les deux hélices à distance des deux hélices. En dehors de cet intervalle, les flux ne se rencontrent pas entre les deux hélices.
Cette vitesse peut être obtenue par des essais pour un véhicule donné, un axe donné lié au corps du véhicule et un sens donné selon cet axe. Elle est conditionnée par la capacité de chacune des hélices à générer un flux plus ou moins intense.
La vitesse de déplacement du véhicule selon l'axe x est une vitesse de déplacement du véhicule par rapport à un référentiel fixe prédéterminé, par exemple le liquide ou le référentiel terrestre. La vitesse de déplacement du véhicule par rapport au liquide est la vitesse du véhicule par rapport au liquide situé au voisinage du véhicule en dehors du flux généré par le propulseur. Avantageusement, le seuil de vitesse jusqu'auquel on met en œuvre l'étape de pilote à basse vitesse est prédéterminé et fixe pour une position de l'axe des hélices donnée par rapport au corps du véhicule et pour un sens de déplacement donné. Ce seuil est choisi inférieur ou égal à la vitesse maximale d'avance ou de recul du véhicule selon cet axe dans ce sens. Ce seuil est avantageusement non nul.
Autrement dit, l'étape de pilotage à basse vitesse est avantageusement mise en œuvre uniquement lorsque la condition de vitesse suivante est vérifiée : la norme de la vitesse du véhicule selon l'axe x est inférieure ou égale à une première vitesse seuil prédéterminée qui est inférieure ou égale à une vitesse maximale de recul, lorsque le véhicule se déplace vers l'arrière selon l'axe x, et la norme de la vitesse du véhicule selon l'axe x est inférieure ou égale une deuxième vitesse seuil qui est inférieure ou égale à une vitesse maximale d'avance lorsque le véhicule se déplace vers l'avant selon l'axe x. En d'autres termes, l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre uniquement lorsque les flux générés par les deux hélices se rencontrent entre les deux hélices à distance des deux hélices. Cela permet d'éviter des pertes d'énergie à vitesse élevée et permet d'assurer une bonne manœuvrabilité du véhicule à basse vitesse. La condition de point de rencontre situé entre les deux hélices définit des vitesses limites d'avance et de recul selon l'axe x.
Avantageusement, l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre tant que la condition de vitesse est vérifiée. Autrement dit, l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre quelque soit le mouvement du véhicule à condition que les flux générés par les deux hélices se rencontrent entre les deux hélices à distance des deux hélices. Cela permet de garantir une bonne manœuvrabilité du véhicule dans cet intervalle de vitesse.
Le procédé comprend avantageusement une étape de vérification pour vérifier si la condition de vitesse est vérifiée et si, oui, l'étape de manœuvre à basse vitesse est mise en œuvre. L'étape de vérification peut être mise en œuvre de façon itérative et l'étape de manœuvre à basse vitesse est mise en œuvre tant que la condition de vitesse est vérifiée.
Sur la figure 4, les flux générés par les deux hélices sont dirigés l'un vers l'autre mais ne sont pas dirigés selon l'axe x. Autrement dit, l'axe principal de flux généré par chaque hélice n'est pas parallèle à l'axe x. En effet, ces flux ne sont pas à symétrie de révolution autour de l'axe x. Le flux généré à bâbord est supérieur au flux généré à tribord pour chacune des hélices ce qui dévie l'axe principal du flux généré par chacune de ces hélices par rapport à l'axe x. En revanche, les composantes axiales des forces de poussée avant Fav et arrière Far résultant respectivement du flux avant (généré par l'hélice avant vers l'hélice arrière) et du flux arrière (généré par l'hélice arrière vers l'hélice avant) ont la même intensité. Par conséquent, le flux combiné est principalement perpendiculaire à l'axe x et ce, tout autour de l'axe x. Le propulseur génère une force de poussée F dont la composante axiale est nulle. La position du véhicule 1 en translation selon la direction axiale x par rapport à un référentiel terrestre est fixe. En revanche, le flux combiné n'est pas à symétrie de révolution autour de l'axe x, car les flux générés par les deux hélices ne sont pas à symétrie de révolution autour des deux hélices. Le flux combiné présente globalement la forme d'un anneau asymétrique présentant un débit plus faible à tribord qu'à bâbord sur l'exemple de la figure 4. Le propulseur génère une force de poussée F présentant une composante radiale non nulle ce qui permet d'orienter le véhicule par rotation autour d'un axe perpendiculaire à l'axe x ou de déplacer le véhicule selon un axe perpendiculaire à l'axe x. En revanche, le module de la force de la composante radiale de la poussée n'est pas la somme des poussées composantes radiales de poussées générées par les deux propulseurs car une partie non négligeable de cette poussée provient d'une interaction du flux avec le véhicule.
Par conséquent, pour exercer une poussée F présentant une composante radiale non nulle, on pilote le propulseur 3 de façon que le flux combiné ne soit pas à symétrie de révolution autour de l'axe x. Autrement dit, au moins une hélice génère un flux qui n'est pas à symétrie de révolution autour de l'axe x. Autrement dit, on pilote le propulseur de façon qu'au moins une hélice génère un flux dont la direction principale forme un angle non nul avec la direction axiale, cette hélice générant une poussée radiale.
Pour faire tourner le navire autour d'un axe de rotation perpendiculaire à l'axe des hélices qui est l'axe de roulis de l'objet et passant par le centre de masse de l'objet, par exemple l'axe de lacet ou de tangage, le propulseur doit être réglé de façon que la force de poussée exercée par le propulseur s'applique à distance du centre de masse du véhicule. De préférence, la poussée s'applique entre les deux hélices.
Pour passer de la situation représentée sur la figure 1 à la situation représentée sur la figure 4, on modifie le pas cyclique des deux hélices de façon que les pas cycliques des deux hélices soient égaux (même angle de calage/ même angle cyclique) pour des hélices identiques tournant à la même vitesse de rotation. Sur l'exemple de la figure 4, l'angle cyclique est maximum à bâbord pour les deux hélices. Autrement dit, le propulseur 3 est piloté de façon que les hélices génèrent des flux qui ne sont pas à symétrie de révolution autour de l'axe x mais qui présentent la même intensité dans des secteurs angulaires radiaux respectifs, liés au corps du véhicule, ayant une même taille angulaire et formant, autour de l'axe x, un même angle avec la direction de référence. Cela permet d'obtenir une poussée maximale selon une direction radiale donnée. La façon d'obtenir cette direction est décrite par la figure 5 que nous expliquons plus loin. Pour faire avancer le véhicule selon la direction axiale comme sur la figure 2 tout en exerçant une force radiale comme sur la figure 4, on peut en modifier le pas collectif d'au moins une des hélices par rapport à la configuration de la figure 4 de façon à générer une poussée F présentant une composante axiale non nulle. Pour déplacer le véhicule en translation selon un axe perpendiculaire à l'axe de référence, par exemple selon l'axe de lacet ou de tangage, le propulseur doit être piloté de façon à générer une poussée radiale appliquée au centre de masse de l'objet. Par exemple, le pas cyclique de l'hélice avant est plus important que celui de l'hélice arrière et l'angle d'hélice est quelconque. Avantageusement, on utilise un angle de calage cyclique différentiel d'angle cyclique de signe opposé à l'autre hélice. Ainsi, il est possible de décaler le point d'application de la force au-delà du segment formé par les centres des deux hélices. Si le point d'application est décalé jusqu'à coïncider avec le centre de gravité du véhicule, le procédé permet d'obtenir un déplacement latéral pur.
Pour obtenir une rotation du véhicule autour de l'axe x dans la situation de la figure 1 , on pilote les vitesses de rotation des hélices autour de l'axe de rotation de façon à générer un couple de rotation non nul autour de l'axe x.
L'étape de pilotage de manœuvre à basse vitesse peut être mise en œuvre lors de la réalisation d'au moins un des mouvements décrits ci- dessus, par exemple lorsque le module de vitesse du véhicule par rapport à un référentiel prédéterminé (par exemple terrestre ou le liquide) selon l'axe des hélices est inférieure à un seuil prédéterminé. En variante, l'étape pilotage à basse vitesse peut être mise en œuvre en permanence pendant la réalisation de tous les mouvements décrits ci-dessus lorsque le module de la vitesse est inférieur au seuil de vitesse. L'étape pilotage à basse vitesse selon l'invention peut être mise en œuvre uniquement lorsque la vitesse du véhicule est inférieure au seuil prédéterminé ou même lorsque le véhicule présente une valeur supérieure à ce seuil. Dans ce dernier cas elle conduira à un freinage rapide du véhicule qui se stabilisera à la vitesse correspondant au réglage des hélices tel que décrit lors de l'analyse de la figure 2.
Nous allons maintenant décrire, en référence à la figure 5, une étape particulière pour régler le propulseur pour obtenir une poussée radiale selon une direction radiale prédéterminée dr formant, autour de l'axe de référence, un angle dit de poussée a prédéterminé avec une direction de référence dref, dans un repère lié au corps du véhicule. La poussée générée par le propulseur peut aussi comprendre une poussée axiale. Cette étape est avantageusement mise en œuvre lorsque les axes des deux hélices sont confondus avec l'axe de référence.
L'angle de poussée est différent de l'angle cyclique des hélices. La poussée radiale générée par le propulseur est dirigée selon une direction radiale dr formant, autour de l'axe de référence, un angle appelé phase cyclique ( avec la direction de selon laquelle les angles de calage cycliques des hélices sont maximaux. Cette phase cyclique φ est par symétrie, indépendante de la direction de la poussée radiale générée par le propulseur.
Pour obtenir la poussée radiale souhaitée, on règle les pas cycliques des hélices de façon que leurs angles cycliques Θ soient donnés par la formule suivante ou que l'angle cyclique d'une des deux hélices soit donné par la formule suivante, l'autre hélice présentant un pas cyclique neutre :
Θ = a— φ
La direction radiale corrigée de, selon laquelle l'angle de calage cyclique des pales est maximal, forme autour de l'axe de référence, un angle Θ avec la direction de référence dref.
La phase cyclique φ est avantageusement déterminée lors d'une étape de calibration préalable. Cette étape de calibration comprend une étape de mesure comprenant une première étape de mesure de forces et couples exercés par le véhicule sur un banc de test solidaire du véhicule pour plusieurs pas cycliques d'une ou des hélices et/ou une deuxième étape de mesure de la direction du mouvement du véhicule immergé dans le liquide dans une zone dégagée pour plusieurs pas cyclique d'une ou des hélices au moyen de gyromètres et d'accéléromètres de la direction du mouvement du véhicule sous-marin en fonction du pas cyclique des hélices. L'étape de calibration comprend en outre une étape de calcul de la phase cyclique à partir de mesures réalisées lors de l'étape de mesure.
Avantageusement, la distance entre les hélices, c'est-à-dire entre les centres des hélices, est comprise entre une valeur seuil non nulle et le triple du diamètre D de la plus grande des deux hélices. Cette distance limitée entre les hélices permet d'assurer une convergence des flux et une interaction entre eux. La distance entre les hélices ne dépend pas de la longueur du véhicule. La distance limitée entre les hélices permet d'obtenir des flux qui convergent entre les hélices quelle que soit la longueur du véhicule. Ainsi le rendement énergétique est élevé. La poussée générée par le propulseur est la somme des poussées générées par les deux hélices et d'une force résultant de l'interaction entre les flux et le corps du véhicule. L'interaction entre les flux et le corps du véhicule génère, lorsqu'au moins un des flux n'est pas à symétrie de révolution autour de l'axe x, un champ de pression entre les deux hélices qui n'est pas homogène sur la révolution autour de l'axe x. Ce gradient de pression génère une poussée latérale qui s'ajoute aux poussées générées par les propulseurs. La faible distance entre les hélices permet de maximiser cette force et le rendement énergétique du procédé. Un avantage apporté est une efficacité du phénomène de poussée radiale (si les hélices sont trop éloignées, les flux vont perdre en énergie cinétique d'ici le point de rencontre). Le flux en sortie de chaque hélice est perturbé par son environnement. La condition de distance entre les hélices permet donc un contrôle efficace de la localisation du point de rencontre des deux flux opposés (si les hélices sont trop éloignées, la localisation du point de rencontre est trop approximative; si les hélices sont trop proches, les deux flux vont se perturber l'un l'autre au niveau des pales).
Avantageusement, la distance seuil est supérieure ou égale à 20% du diamètre D de la plus petite des deux hélices. En dessous de ce seuil, l'interaction entre les deux hélices est trop perturbée.
L'invention se rapporte également à un véhicule marin 2 tel que décrit précédemment comprenant un système de propulsion 63 tel que représenté sur la figure 6. Le système de propulsion 63 comprend un dispositif de pilotage ou de commande 62 configuré pour pouvoir mettre en œuvre le procédé selon l'invention ainsi que le propulseur selon l'invention. L'invention se rapporte également au système de propulsion et au dispositif de pilotage
Le dispositif de pilotage ou de commande 62 comprend un organe de commande 60 qui recevant une consigne de mise en œuvre de l'étape de pilotage de manœuvre à basse vitesse est configuré pour calculer une configuration basse vitesse dans laquelle doit être mis le propulseur pour que chaque hélice génère un flux dirigé vers le flux généré par l'autre hélice prise parmi les deux hélices et atteignant le flux généré par l'autre hélice. Avantageusement, chaque hélice génère un flux non nul et dirigé essentiellement dans le même sens sur toute la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice, et de façon que chaque hélice prise parmi les deux hélices génère un flux
L'organe de commande comprend par exemple un organe de calcul analogique comme un amplificateur opérationnel monté en sommateur pondéré, ou un composant logique programmable ou un processeur et une mémoire associée contenant un programme configuré pour déterminer la configuration. Le processeur et la mémoire peuvent être regroupés au sein d'un même composant souvent appelé microcontrôleur.
Le dispositif de pilotage 62 comprend en outre un dispositif d'actionnement ou actionneur 61 configuré pour contrôler le propulseur de façon à le mettre dans ladite configuration basse vitesse calculée, lorsqu'il reçoit ladite configuration basse vitesse sous forme d'une commande qui lui est envoyée par l'organe de commande.
L'actionneur peut comprendre des vérins, par exemple électriques ou hydrauliques ou un moteur actionnant des câbles ou chaînes et permettant de déplacer le point sur lequel ils appliquent leur force ou bien encore en principe de crémaillère. L'actionneur est configuré pour incliner et/ou déplacer les plateaux cycliques et collectifs. Avantageusement, la consigne de mise en œuvre de l'étape de pilotage de manœuvre à basse vitesse comprend une consigne de poussée, le propulseur calculant une configuration basse vitesse du propulseur telle que le propulseur génère une poussée souhaitée, notamment une poussée selon la direction de la consigne de poussée.
Lorsque le propulseur est un propulseur du type à deux hélices contrarotatives à pas cycliques et collectifs variables, la configuration obtenue comprend un pas collectif, un pas cyclique et éventuellement une vitesse de rotation de chaque hélice et le (ou les) actionneur(s) permettent de régler les pas collectifs et cycliques des deux hélices. La configuration est une configuration des hélices et le dispositif d'actionnement permet de configurer les hélices. Il s'agit par exemple d'un dispositif magnétique ou d'un dispositif motorisé permettant de régler les pas cycliques et collectifs. De façon non limitative, ce dispositif comprend des plateaux cycliques et collectifs. Dans le cas d'un propulseur comprenant deux propulseurs à Cardan, la configuration comprend les orientations des axes de rotation des hélices. Le dispositif d'actionnement permet d'actionner les articulations à Cardan de façon à modifier les orientations des axes de rotation des hélices.
La consigne peut être générée à bord du véhicule (véhicule autonome) ou à l'extérieur du véhicule (véhicule piloté à distance).

Claims

REVENDICATIONS
Procédé de pilotage d'un propulseur d'un véhicule marin (1 ) au moins partiellement immergé dans un liquide comprenant un corps (2) et le propulseur (3), le propulseur comprenant deux hélices (AV, AR), chaque hélice comprenant des pales destinées à tourner autour d'un axe de rotation de ladite hélice, caractérisé en ce que, le procédé comprend une étape de pilotage de manœuvre à basse vitesse, lors de laquelle on pilote le propulseur de façon que chaque hélice génère un flux dirigé vers le flux généré par l'autre hélice et atteignant le flux généré par l'autre hélice.
Procédé de pilotage selon la revendication précédente, dans lequel chaque hélice (AV, AR) génère un flux non nul et dirigé dans le même sens, selon l'axe de rotation de l'hélice, sur l'essentiel de la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice,
Procédé de pilotage selon la revendication 1 , dans lequel au moins une hélice génère un flux dont le sens, selon l'axe x, varie sur la révolution des pales de l'hélice dans le liquide autour de l'axe de rotation de l'hélice,
Procédé de pilotage selon l'une quelconque des revendications précédentes, dans lequel la distance entre les hélices est comprise entre une distance seuil non nulle et le triple du diamètre de la plus grande des deux hélices.
Procédé de pilotage selon la revendication précédente, dans lequel la distance entre les hélices est supérieure ou égale à 20% au diamètre de la plus petite des deux hélices.
6. Procédé de pilotage selon l'une quelconque des revendications précédentes, dans lequel l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre uniquement lorsque les flux générés par les deux hélices se rencontrent entre les deux hélices à distance des deux hélices.
Procédé de pilotage selon la revendication précédente, dans lequel l'étape de pilotage de manœuvre à basse vitesse est mise en œuvre quel que soit le mouvement du véhicule à condition que les flux générés par les deux hélices se rencontrent entre les deux hélices à distance des deux hélices.
Procédé de pilotage selon l'une quelconque des revendications précédentes, dans lequel les deux hélices comprennent une hélice amont et une hélice aval selon un axe de référence dans un sens prédéterminé, et dans lequel lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur (3) exerce une poussée non nulle selon l'axe de référence et dans ledit sens, on pilote le propulseur (3) de façon que la force de poussée amont résultant du flux amont généré par l'hélice amont présente une composante axiale d'intensité supérieure à celle de la composante axiale de la force de poussée aval résultant du flux aval généré par l'hélice aval.
Procédé de pilotage selon l'une quelconque des revendications précédentes, dans lequel, lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur (3) génère une force de poussée présentant une composante radiale nulle selon un axe radial situé dans un plan perpendiculaire à un axe de référence, on pilote le propulseur (3) de façon que le flux combiné résultant de la combinaison des flux générés par les deux hélices (AV, AR), entre les deux hélices, soit à symétrie de révolution autour de l'axe de référence. 10. Procédé de pilotage selon l'une quelconque des revendications précédentes, dans lequel, lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur (3) exerce une poussée présentant une composante radiale non nulle selon un axe radial situé dans un plan perpendiculaire à un axe de référence, on pilote le propulseur (3) de façon que le flux combiné résultant de la combinaison des flux générés par les deux hélices (AV, AR) entre les deux hélices (AV, AR) ne soit pas à symétrie de révolution autour de l'axe de référence. 1 1 . Procédé de pilotage selon la revendication précédente, dans lequel lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le propulseur (3) exerce une poussée présentant une composante radiale non nulle, on pilote le propulseur de façon qu'au moins une hélice génère un flux qui n'est pas à symétrie de révolution autour de l'axe de référence.
12. Procédé selon l'une quelconque des revendications 10 à 1 1 , dans lequel, lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le véhicule tourne autour d'un axe perpendiculaire à l'axe de référence, on pilote le propulseur de façon que la force de poussée générée par le propulseur (3) s'applique sur un point distant du centre de masse du véhicule.
13. Procédé selon l'une quelconque des revendications 10 à 1 1 , dans lequel, lors de l'étape de pilotage de manœuvre à basse vitesse, pour que le véhicule (1 ) se translate selon un axe perpendiculaire à l'axe de référence, on pilote le propulseur (3) de façon que la force de poussée générée par le propulseur (3) s'applique sur le centre de masse du véhicule.
14. Procédé de pilotage selon l'une quelconque des revendications précédentes, dans lequel le propulseur est un propulseur comprenant deux hélices contrarotatives à pas cyclique et collectif variables, un axe de référence étant un axe reliant des centres des deux hélices qui sont des points situés sur les axes de rotation des hélices respectives.
15. Procédé de pilotage selon la revendication précédente, dans lequel les axes de rotation des deux hélices sont sensiblement confondus avec l'axe de référence.
16. Dispositif de pilotage permettant de piloter un propulseur comprenant deux hélices, chaque hélice comprenant des pales destinées à tourner autour d'un axe de rotation de ladite hélice, le dispositif de pilotage étant apte à mettre en œuvre le procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que le dispositif de pilotage comprend un organe de commande qui, recevant une consigne de mise en œuvre de l'étape de pilotage de manœuvre à basse vitesse, est configuré pour calculer une configuration basse vitesse dans laquelle doit être mis le propulseur pour que chaque hélice (AV, AR) génère un flux dirigé vers le flux généré par l'autre hélice et atteignant le flux généré par l'autre hélice, le dispositif de pilotage comprenant en outre un actionneur configuré pour contrôler le propulseur de façon à le mettre dans ladite configuration basse vitesse. 17. Dispositif de pilotage selon la revendication précédente, dans lequel la consigne de mise en œuvre de l'étape de pilotage de manœuvre à basse vitesse comprend une consigne de poussée, le propulseur calculant une configuration basse vitesse du propulseur telle que le propulseur génère une poussée selon la direction de la consigne de poussée.
18. Système de propulsion comprenant un dispositif de pilotage selon l'une quelconque des revendications 16 à 17, comprenant un propulseur (3) comprenant deux hélices, chaque hélice comprenant des pales destinées à tourner autour d'un axe de rotation de ladite hélice, caractérisé en ce qu'il comprend un dispositif de pilotage apte à piloter ledit propulseur.
19. Système de propulsion selon la revendication précédente, dans lequel la distance entre les deux hélices est comprise entre une distance seuil non nulle et le triple du diamètre maximal des hélices.
20. Véhicule marin destiné à être au moins partiellement immergé dans un liquide comprenant un corps (2), et un système de propulsion selon l'une quelconque des revendications 18 à 19.
EP16819935.4A 2015-12-23 2016-12-22 Systeme et procede de pilotage d'un propulseur d'un vehicule marin Active EP3393903B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502683A FR3046132B1 (fr) 2015-12-23 2015-12-23 Procede de pilotage d'un propulseur d'un vehicule marin
PCT/EP2016/082505 WO2017109148A1 (fr) 2015-12-23 2016-12-22 Procede de pilotage d'un propulseur d'un vehicule marin

Publications (2)

Publication Number Publication Date
EP3393903A1 true EP3393903A1 (fr) 2018-10-31
EP3393903B1 EP3393903B1 (fr) 2021-11-10

Family

ID=55806403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16819935.4A Active EP3393903B1 (fr) 2015-12-23 2016-12-22 Systeme et procede de pilotage d'un propulseur d'un vehicule marin

Country Status (7)

Country Link
US (1) US10723426B2 (fr)
EP (1) EP3393903B1 (fr)
AU (1) AU2016375035B2 (fr)
CA (1) CA3009568C (fr)
FR (1) FR3046132B1 (fr)
SG (1) SG11201805437VA (fr)
WO (1) WO2017109148A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE544401C2 (en) * 2020-09-17 2022-05-10 Saab Ab A watercraft vehicle and a method of manoeuvring the vehicle
AU2022352594A1 (en) * 2021-09-21 2024-03-21 Tiburon Subsea Inc. Vector control assemblies for underwater vehicles
CN115140280B (zh) * 2022-09-05 2022-11-11 常州科德水处理成套设备股份有限公司 一种污水处理用定时取样装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3101066A (en) * 1961-07-14 1963-08-20 Frederick R Haselton Submarine hydrodynamic control system
EP0117881B1 (fr) 1983-03-03 1986-06-18 Licentia Patent-Verwaltungs-GmbH Installation de propulsion marine à hélices principale et supplémentaire
US4648345A (en) * 1985-09-10 1987-03-10 Ametek, Inc. Propeller system with electronically controlled cyclic and collective blade pitch
FI951261A (fi) 1995-03-17 1996-09-18 Aquamaster Rauma Oy Automaattinen ohjausjärjestelmä kääntyvillä potkurilaitteilla varustetussa aluksessa
FI116129B (fi) * 2003-04-07 2005-09-30 Waertsilae Finland Oy Vesialuksen propulsioyksikkö
FI20030556A0 (fi) 2003-04-11 2003-04-11 Abb Oy Menetelmä ja laitteisto laivan ohjaamiseksi
US9022738B1 (en) * 2011-12-23 2015-05-05 The United States Of America As Represented By The Secretary Of The Navy Marine propulsion-and-control system implementing articulated variable-pitch propellers
US8919274B1 (en) * 2013-05-21 2014-12-30 The United States Of America As Represented By The Secretary Of The Navy Submersible vehicle with high maneuvering cyclic-pitch postswirl propulsors

Also Published As

Publication number Publication date
CA3009568C (fr) 2023-03-28
US10723426B2 (en) 2020-07-28
US20190009871A1 (en) 2019-01-10
FR3046132A1 (fr) 2017-06-30
WO2017109148A1 (fr) 2017-06-29
AU2016375035B2 (en) 2021-05-13
EP3393903B1 (fr) 2021-11-10
AU2016375035A1 (en) 2018-08-09
CA3009568A1 (fr) 2017-06-29
FR3046132B1 (fr) 2018-12-07
SG11201805437VA (en) 2018-07-30

Similar Documents

Publication Publication Date Title
EP1897799B1 (fr) Dispositif de stabilisation dynamique d'un engin sous-marin
CA2502145C (fr) Procede d`aide au decollage d`un aeronef
EP3393903B1 (fr) Systeme et procede de pilotage d'un propulseur d'un vehicule marin
WO2008142258A2 (fr) Système de commande d'un giravion
FR2929591A1 (fr) Avion a controle en tangage et en lacet par un ensemble propulsif.
EP0385827A1 (fr) Dispositif de propulsion pour véhicule sous-marin
EP1680648A1 (fr) Controle d attitude de satellites en particulier agiles a nombre reduit de gyrodynes
FR2974760A1 (fr) Plate-forme mobile telecommandee apte a evoluer dans un milieu tel que l'eau et l'air
FR3006294A3 (fr) Aeronef a voilure tournante et a soufflante canalisee appartenant aux categories des mini et micro drones
WO2016131850A1 (fr) Système de stabilisation d'un navire
FR3049575B1 (fr) Dispositif propulsif a portance active
EP2767794A1 (fr) Projectile à gouvernes orientables et procédé de commande des gouvernes d'un tel projectile
Amini et al. Theoretical and experimental investigation of propeller shaft loads in transient conditions
EP3393902A1 (fr) Procede de pilotage d'un propulseur d'un vehicule marin
KR101159205B1 (ko) 선박용 방향타 및 이를 포함하는 선박
CA3059098A1 (fr) Systeme carene et aeronef
EP2668100B1 (fr) Procédé et système de pilotage d'un engin volant à propulseur arrière
EP3728019B1 (fr) Vehicule apte a etre immerge comprenant un mat
KR101491668B1 (ko) 선박
KR20170128512A (ko) 횡축 로터
KR101378953B1 (ko) 러더 및 이를 포함하는 선박
FR3057851A1 (fr) Dispositif propulsif a portance active a manoeuvrabilite amelioree
FR3040367A1 (fr) Helice aerienne a pales librement pivotantes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1445864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016066112

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20211110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1445864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016066112

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231127

Year of fee payment: 8

Ref country code: NO

Payment date: 20231212

Year of fee payment: 8

Ref country code: IT

Payment date: 20231128

Year of fee payment: 8

Ref country code: FR

Payment date: 20231122

Year of fee payment: 8

Ref country code: DE

Payment date: 20231114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110