EP3390833B1 - Compressor rotor blade and method for profiling said blade - Google Patents

Compressor rotor blade and method for profiling said blade Download PDF

Info

Publication number
EP3390833B1
EP3390833B1 EP17700921.4A EP17700921A EP3390833B1 EP 3390833 B1 EP3390833 B1 EP 3390833B1 EP 17700921 A EP17700921 A EP 17700921A EP 3390833 B1 EP3390833 B1 EP 3390833B1
Authority
EP
European Patent Office
Prior art keywords
profile
compressor
chord
suction side
side region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17700921.4A
Other languages
German (de)
French (fr)
Other versions
EP3390833A1 (en
Inventor
Christian Cornelius
Christoph Starke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3390833A1 publication Critical patent/EP3390833A1/en
Application granted granted Critical
Publication of EP3390833B1 publication Critical patent/EP3390833B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D21/00Pump involving supersonic speed of pumped fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/302Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor characteristics related to shock waves, transonic or supersonic flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/305Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the pressure side of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/306Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the suction side of a rotor blade

Definitions

  • the invention relates to a compressor blade and a method of profiling the compressor blade.
  • An axial-flow compressor has at least one blade ring with a plurality of compressor blades for compressing a working fluid.
  • the compressor blade has a radially inner subsonic section, in which the compression takes place by means of a deflection of the flow of the working medium. Furthermore, the compressor blade on a transonic section, in which the compression takes place for the most part by means of a compression shock, in which the working fluid is delayed from supersonic to subsonic speed.
  • Losses in the flow of the working fluid in the transonic section arise, for example, in the compression shock and by separation of the boundary layer on the compressor blade in the region of the compression shock. The losses cause a reduction in the efficiency of the compressor.
  • FR 2 551 145 A1 discloses a compressor blade according to the preamble of claim 1.
  • the object of the invention is therefore to provide a compressor blade, a compressor with the compressor blade and a method for profiling the compressor blade, with which an increase in the efficiency of the compressor blade having the compressor can be achieved.
  • the compressor blade according to the invention for a compressor in axial construction has a blade profile having a transonic section, and extending in the transonic section profile section of Blade profile having on its suction side a concave suction side region and a convex suction side region which is disposed downstream of the concave suction side region, and which has on its pressure side a convex pressure side region and a concave pressure side region which is arranged downstream of the convex pressure side region, wherein a curvature of the pressure side of the profile section and a curvature profile on the suction side of the profile section are applied continuously over a chord of the profile section, the positions of the minimum values of the curvature curves do not differ from each other by more than 10% of the length of the chord and the positions of the maximum values of the curvature curves are no longer than 10% of the chord length, the minimum values multiplied by the chord length from -1.2 to -0.5 and the maximum values multiplied by the chord length from 1.5 to 4.
  • the inventive method for profiling a compressor blade for a compressor for compressing an axial working fluid having a blade row with the compressor blades, the compressor blades having a blade profile with a transonic section comprises the steps of providing a geometric model of the blade profile Blade profile has a profile section, which extends in the transonic section, and the blade row is set, that set at a nominal operating condition of the compressor, a compression shock in which the working fluid is delayed from supersonic to subsonic speed; Determining boundary conditions for a flow around the blade that occurs at the rated operating condition; Changing the profile section such that the suction side has a concave suction side portion and a convex suction side portion disposed downstream of the concave suction side portion and having on its pressure side a convex pressure side portion and a concave pressure side portion downstream The curve of the convex pressure side region is arranged, wherein a curvature course on the pressure side of the profile section and a curvature on the suction side of the profile section each applied over
  • the compressor with the compressor blade according to the invention and / or with the compressor blade profiled with the method according to the invention has a higher efficiency with at least the same operating range than a compressor with the conventional compressor blade.
  • the Mach numbers on the suction side of the compressor blade according to the invention prior to the compression shock are lower than on the suction side of the conventional compressor blade.
  • detachments of the flow on the suction side of the compressor blade according to the invention are less likely than in the conventional compressor blade.
  • the compressor blade according to the invention can be performed with a shorter length of chord profile than is the case with the conventional compressor blade, without thereby sacrificing efficiency or a reduction of the working area.
  • the curvature multiplied by the length of the chord has a maximum value which is from 2 to 4 and in the concave pressure side region the curvature multiplied by the length of the chord has a maximum value ranging from 1.5 to 2.5.
  • the point of the concave suction side region with the minimum curvature when projecting perpendicularly onto the chord of the profile section on this prescribes a projection point which is from the leading edge of the profile section of 40% to 80%, in particular 60% to 75% Length of the chord is removed. It is preferred that the point of the convex suction side region with the maximum curvature when projecting perpendicularly onto the chord of the profile section on this prescribes a projection point which is from the leading edge of the profile section of 70% to 95%, in particular 80% to 90% Length of the chord is removed.
  • Each of these measures can further increase the efficiency of the compressor.
  • the thickness of the profile section at all points of the profile section perpendicular to the chord is shorter than 2.5% of the length of the chord.
  • the compressor according to the invention for compressing a working medium comprising a blade row having the compressor blades, wherein the blade row is set that at a nominal operating condition of the compressor precompression of the working medium upstream of a compression shock, wherein the working fluid is delayed from supersonic to subsonic speed, and upstream of a flow channel defined by two adjacent compressor blades.
  • the profile section on a cylindrical surface, whose axis coincides with the axis of the compressor, on a conical surface whose axis coincides with the axis of the Compressor coincides is located on an S 1 flow area of the compressor or in a tangential plane of the compressor.
  • the S 1 flow area extends in the circumferential direction and in the axial direction of the axial flow machine and describes a surface that follows an idealized flow.
  • the profile section is changed such that in the convex suction side area, the curve of the curve has a maximum value larger than the maximum value of the curve of the curve in the corresponding area of the conventional compressor blade.
  • the profile section is preferably changed in such a way that in the convex suction side region the course of the curvature multiplied by the length of the chord has a maximum value which is from 2 to 4 and in the concave pressure side region the course of the curve multiplied by the length of the chord has a maximum value which is from 1.5 to 2.5.
  • the blade row is designed such that at the nominal operating conditions there is a maximum isentropic advance Mach number of 1.4, in particular of at most 1.3.
  • the profile cut is changed so that the point of the concave suction side region with the minimum curvature when projecting perpendicularly to the chord of the profile section on this one projection point, which is from the leading edge of the profile section of 40% to 80% of the length of the Chord is removed.
  • a compressor blade 1 for a compressor in axial construction on a blade profile has a radially inner subsonic section and a radially outer transonic section, wherein FIGS. 1 and 3 only the transonic section is shown.
  • the blade profile has a profile section 21 which extends in the transonic section.
  • the profile section 21 is located on a cylindrical surface whose axis coincides with the axis of the compressor, on a conical surface whose axis coincides with the axis of the compressor, on an S 1 flow area of the compressor or in a tangential plane of the compressor.
  • the profile section 21 has a front edge 2, a trailing edge 3, a pressure side 4 and a suction side 5.
  • a chord 22 is shown, which is as straight line from the leading edge 2 to the trailing edge 3 extends.
  • a skeleton line 23 which extends from the front edge 2 to the trailing edge 3 and is always located in a direction perpendicular to the chord 22 midway between the pressure side 4 and the suction side 5.
  • FIG. 1 shows a two-dimensional flow distribution of a working medium flowing in the compressor in a region of the compressor.
  • a blade row 15 with the compressor blades 1, a blade row 15 downstream blade row 16 and a blade row 15 upstream blade row 17 are shown.
  • the profile section 21 has on its suction side 5 a concave suction side region 10, which is arranged at least partially upstream of a compression joint 18, which has an adjusting in the compressor at a nominal operating condition of the compressor flow.
  • the compression shock 18 is in FIG. 1 arranged in the areas of flow in which the Mach number decreases from higher than 1 to lower than 1.
  • FIG. 1 shows FIG. 1 in that, in the nominal operating condition of the compressor, precompression of the working medium occurs upstream of the compression surge 18 and upstream of a flow channel bounded by two adjacent compressor blades 1.
  • the compression shock 18 is located downstream of a compression shock relative to the length of the chord 22, which would have a flow which in a conventional compressor blade, which may differ from the compressor blade 1, is exclusive to its suction side 5 convex, and set at the nominal operating condition.
  • FIG. 2 shows a comparison of the Mach number curves on the compressor blade 1 and the Machiereverstructure on the conventional compressor blade.
  • Reference numeral 6 designates Machiereverlauf on the pressure side of the conventional compressor blade
  • the reference numeral 7 is the Machiereverlauf on the suction side of the conventional compressor blade
  • the reference numeral 8 is the Machiereverlauf on the pressure side 4 of the compressor blade 1
  • the reference numeral 9 the Machiereverlauf on the suction side 5 of the compressor blade 1 denotes.
  • FIG. 5 shows the Machiereverrough FIG. 2
  • the Machressverlauf the compressor blade 1 has been scaled such that the leading edge 2 and the trailing edge 3 of the compressor blade 1 coincide with the leading edge and the trailing edge of the conventional compressor blade.
  • FIG. 2 It can be seen that the Machiereverlauf 9 on the suction side 5 of the compressor blade 1 immediately upstream of the compression shock 18 lower supersonic Mach numbers than the Machiereverlauf 7 on the suction side of the conventional compressor blade immediately upstream of the compression shock. These lower supersonic Mach numbers are maintained over a longer extent along the chord 22 than in the conventional compressor blade. Due to the lower supersonic Mach numbers before the compression shock 18 losses are reduced. By keeping the supersonic Mach numbers over the longer extent, the total profile load correlated with the Mach number difference on the pressure side 4 and the suction side 5 is comparably high in the subsonic region downstream of the compression stroke 18 as in the conventional compressor blade. Moreover, it is off FIG.
  • the compression stroke 18 is arranged obliquely, which means that with increasing distance from the suction side 5, the compression shock 18 moves upstream. This also leads to a reduction of losses.
  • the FIG. 2 It can be seen that the profile load on the compressor blade 1 after the compression stroke 18 is significantly higher than in the conventional compressor blade. Due to the reduced losses and higher profile load in the subsonic region, a higher efficiency can be achieved with the compressor rotor blade 1 than with the conventional compressor rotor blade. Due to the higher efficiency, the compressor blade 1, as it is in FIG. 2 is shown to be shorter than the conventional compressor blade, whereby losses due to friction of the working fluid on the compressor blade 1 can be reduced.
  • Concave suction side areas and convex pressure side areas are characterized by a negative sign of the curvature.
  • Convex suction side regions and concave pressure side regions are characterized by a positive sign of the curvature.
  • the curve of the curvature multiplied by the length of the chord 22 has a minimum value that is from -1.2 to -0.5.
  • the profile section 21 has on its suction side 5 a first convex suction side region 11, which is located downstream of the concave suction side region 10.
  • the profile section 21 has on its suction side 5 a second convex suction side region 12, which is arranged upstream of the concave suction side region 10.
  • the curve of curvature has a maximum value greater than the maximum value of the curve of the curvature in the corresponding region of the conventional compressor blade.
  • the curve of the curvature multiplied by the length of the chord 22 has a maximum value which is from 2 to 4.
  • the profile section 21 has on its pressure side 4 a convex pressure side region 14, which is arranged in a region which is arranged opposite the concave suction side region 10.
  • the compressor blade 1 is to be profiled as follows: providing a geometric model of the blade profile, wherein the blade profile has a profile section 21 which extends in the transonic section and on a surface of revolution, whose axis coincides with the axis of the compressor, on a conical surface whose Axis coincides with the axis of the compressor, is located on an S 1 flow area of the compressor or in a tangential plane of the compressor, and the blade row 15 is arranged that sets at a nominal operating condition of the compressor, a compression shock 18, in which the working medium is delayed from supersonic speed to subsonic speed; - Setting boundary conditions for a flow around the blade 14, 15, which occurs at the nominal operating condition; Changing the profile section 21 such that only the skeleton line is displaced and the suction side 5 has a concave suction side region 10 and a convex suction side region 11, which is arranged downstream of the concave suction side region 10, and which has a convex pressure side region 14 and a concave one
  • Whether the compaction shock 18 shifts downstream by changing the profile section can be determined by calculation, in particular by a finite volume method, or experimentally.

Description

Die Erfindung betrifft eine Verdichterlaufschaufel und ein Verfahren zum Profilieren der Verdichterlaufschaufel.The invention relates to a compressor blade and a method of profiling the compressor blade.

Ein Verdichter in Axialbauweise weist zur Verdichtung eines Arbeitsmediums mindestens einen Laufschaufelkranz mit einer Mehrzahl an Verdichterlaufschaufeln auf. Die Verdichterlaufschaufel weist einen radial innen liegenden subsonischen Abschnitt auf, in dem die Verdichtung mittels einer Umlenkung der Strömung des Arbeitsmediums erfolgt. Weiterhin weist die Verdichterlaufschaufel einen transsonischen Abschnitt auf, in dem die Verdichtung zum überwiegenden Teil mittels eines Verdichtungsstoßes erfolgt, bei dem das Arbeitsmedium von Überschallgeschwindigkeit auf Unterschallgeschwindigkeit verzögert wird.An axial-flow compressor has at least one blade ring with a plurality of compressor blades for compressing a working fluid. The compressor blade has a radially inner subsonic section, in which the compression takes place by means of a deflection of the flow of the working medium. Furthermore, the compressor blade on a transonic section, in which the compression takes place for the most part by means of a compression shock, in which the working fluid is delayed from supersonic to subsonic speed.

Verluste in der Strömung des Arbeitsmediums in dem transsonischen Abschnitt entstehen beispielsweise in dem Verdichtungsstoß und durch Ablösungen der Grenzschicht an der Verdichterlaufschaufel im Bereich des Verdichtungsstoßes. Die Verluste bewirken eine Verminderung des Wirkungsgrades des Verdichters.Losses in the flow of the working fluid in the transonic section arise, for example, in the compression shock and by separation of the boundary layer on the compressor blade in the region of the compression shock. The losses cause a reduction in the efficiency of the compressor.

FR 2 551 145 A1 offenbart eine Verdichterlaufschaufel gemäß dem Oberbegriff des Anspruchs 1. FR 2 551 145 A1 discloses a compressor blade according to the preamble of claim 1.

Aufgabe der Erfindung ist es daher eine Verdichterlaufschaufel, einen Verdichter mit der Verdichterlaufschaufel und ein Verfahren zum Profilieren der Verdichterlaufschaufel zu schaffen, mit denen eine Erhöhung des Wirkungsgrades des die Verdichterlaufschaufel aufweisenden Verdichters erreichbar ist.The object of the invention is therefore to provide a compressor blade, a compressor with the compressor blade and a method for profiling the compressor blade, with which an increase in the efficiency of the compressor blade having the compressor can be achieved.

Die erfindungsgemäße Verdichterlaufschaufel für einen Verdichter in Axialbauweise, weist ein Schaufelprofil, das einen transsonischen Abschnitt aufweist, und einen sich in dem transsonischen Abschnitt erstreckenden Profilschnitt des Schaufelprofils auf, der an seiner Saugseite einen konkaven Saugseitenbereich und einen konvexen Saugseitenbereich aufweist, der stromab des konkaven Saugseitenbereichs angeordnet ist, und der an seiner Druckseite einen konvexen Druckseitenbereich und einen konkaven Druckseitenbereich aufweist, der stromab des konvexen Druckseitenbereichs angeordnet ist, wobei ein Krümmungsverlauf an der Druckseite des Profilschnitts und ein Krümmungsverlauf an der Saugseite des Profilschnitts jeweils aufgetragen über eine Profilsehne des Profilschnitts stetig sind, die Lagen der Minimalwerte der Krümmungsverläufe um nicht mehr als 10 % der Länge der Profilsehne voneinander abweichen sowie die Lagen der Maximalwerte der Krümmungsverläufe um nicht mehr als 10 % der Länge der Profilsehne voneinander abweichen, die Minimalwerte multipliziert mit der Länge der Profilsehne von -1,2 bis -0,5 und die Maximalwerte multipliziert mit der Länge der Profilsehne von 1,5 bis 4 sind.The compressor blade according to the invention for a compressor in axial construction, has a blade profile having a transonic section, and extending in the transonic section profile section of Blade profile having on its suction side a concave suction side region and a convex suction side region which is disposed downstream of the concave suction side region, and which has on its pressure side a convex pressure side region and a concave pressure side region which is arranged downstream of the convex pressure side region, wherein a curvature of the pressure side of the profile section and a curvature profile on the suction side of the profile section are applied continuously over a chord of the profile section, the positions of the minimum values of the curvature curves do not differ from each other by more than 10% of the length of the chord and the positions of the maximum values of the curvature curves are no longer than 10% of the chord length, the minimum values multiplied by the chord length from -1.2 to -0.5 and the maximum values multiplied by the chord length from 1.5 to 4.

Das erfindungsgemäße Verfahren zum Profilieren einer Verdichterlaufschaufel für einen Verdichter zum Verdichten eines Arbeitsmediums in Axialbauweise, der eine Laufschaufelreihe mit den Verdichterlaufschaufeln aufweist, wobei die Verdichterlaufschaufeln ein Schaufelprofil mit einem transsonischen Abschnitt aufweisen, weist die Schritte auf: Bereitstellen eines geometrischen Modells des Schaufelprofils, wobei das Schaufelprofil einen Profilschnitt aufweist, der sich in dem transsonischen Abschnitt erstreckt, und die Laufschaufelreihe eingerichtet ist, dass sich bei einer Nennbetriebsbedingung des Verdichters ein Verdichtungsstoß einstellt, bei dem das Arbeitsmedium von Überschallgeschwindigkeit auf Unterschallgeschwindigkeit verzögert wird; Festlegen von Randbedingungen für eine die Schaufel umströmende Strömung, die bei der Nennbetriebsbedingung auftritt; Verändern des Profilschnitts derart, dass die Saugseite einen konkaven Saugseitenbereich und einen konvexen Saugseitenbereich aufweist, der stromab des konkaven Saugseitenbereichs angeordnet ist, und der an seiner Druckseite einen konvexen Druckseitenbereich und einen konkaven Druckseitenbereich aufweist, der stromab des konvexen Druckseitenbereichs angeordnet ist, wobei ein Krümmungsverlauf an der Druckseite des Profilschnitts und ein Krümmungsverlauf an der Saugseite des Profilschnitts jeweils aufgetragen über eine Profilsehne des Profilschnitts stetig sind, die Lagen der Minimalwerte der Krümmungsverläufe um nicht mehr als 10 % der Länge der Profilsehne voneinander abweichen sowie die Lagen der Maximalwerte der Krümmungsverläufe um nicht mehr als 10 % der Länge der Profilsehne voneinander abweichen, die Minimalwerte multipliziert mit der Länge der Profilsehne von -1,2 bis -0,5 und die Maximalwerte multipliziert mit der Länge der Profilsehne von 1,5 bis 4 sind, wobei der konvexe Saugseitenbereich zumindest teilweise stromauf eines Verdichtungsstoßes angeordnet ist, den eine sich in dem Verdichter bei den Randbedingungen einstellende Strömung aufweist, wodurch der Verdichtungsstoß bezogen auf die Länge der Profilsehne stromab eines Verdichtungsstoßes angeordnet ist, den eine Strömung aufweisen würde, die sich bei dem geometrischen Modell vor dem Verändern des Profilschnitts und bei der Nennbetriebsbedingung einstellen würde.The inventive method for profiling a compressor blade for a compressor for compressing an axial working fluid having a blade row with the compressor blades, the compressor blades having a blade profile with a transonic section, comprises the steps of providing a geometric model of the blade profile Blade profile has a profile section, which extends in the transonic section, and the blade row is set, that set at a nominal operating condition of the compressor, a compression shock in which the working fluid is delayed from supersonic to subsonic speed; Determining boundary conditions for a flow around the blade that occurs at the rated operating condition; Changing the profile section such that the suction side has a concave suction side portion and a convex suction side portion disposed downstream of the concave suction side portion and having on its pressure side a convex pressure side portion and a concave pressure side portion downstream The curve of the convex pressure side region is arranged, wherein a curvature course on the pressure side of the profile section and a curvature on the suction side of the profile section each applied over a chord of the profile section are continuous, the positions of the minimum values of the curvature curves do not differ from each other by more than 10% of the length of the chord and the positions of the maximum values of the curvatures do not deviate from one another by more than 10% of the length of the chord, the minimum values multiplied by the length of the chord from -1.2 to -0.5 and the maximum values multiplied by the length of the chord of Figure 1, 5 to 4, wherein the convex suction side portion is at least partially upstream of a compression stroke, which has a set in the compressor at the boundary conditions flow, whereby the compression shock is arranged with respect to the length of the chord downstream of a compression shock, the flow would occur, which would occur in the geometric model before changing the profile section and at the nominal operating condition.

Es wurde gefunden, dass der Verdichter mit der erfindungsgemäßen Verdichterlaufschaufel und/oder mit der mit dem erfindungsgemäßen Verfahren profilierten Verdichterlaufschaufel einen höheren Wirkungsgrad bei mindestens gleichem Betriebsbereich hat als ein Verdichter mit der herkömmlichen Verdichterlaufschaufel. Zudem sind die Machzahlen an der Saugseite der erfindungsgemäßen Verdichterlaufschaufel vor dem Verdichtungsstoß geringer als an der Saugseite der herkömmlichen Verdichterlaufschaufel. Damit sind Ablösungen der Strömung an der Saugseite der erfindungsgemäßen Verdichterlaufschaufel weniger wahrscheinlich als bei der herkömmlichen Verdichterlaufschaufel. Zudem kann die erfindungsgemäße Verdichterlaufschaufel mit einer kürzeren Länge ihrer Profilsehne ausgeführt werden als es bei der herkömmlichen Verdichterlaufschaufel der Fall ist, ohne dadurch Einbußen des Wirkungsgrades oder eine Verkleinerung des Arbeitsbereichs hinzunehmen.It has been found that the compressor with the compressor blade according to the invention and / or with the compressor blade profiled with the method according to the invention has a higher efficiency with at least the same operating range than a compressor with the conventional compressor blade. In addition, the Mach numbers on the suction side of the compressor blade according to the invention prior to the compression shock are lower than on the suction side of the conventional compressor blade. Thus, detachments of the flow on the suction side of the compressor blade according to the invention are less likely than in the conventional compressor blade. In addition, the compressor blade according to the invention can be performed with a shorter length of chord profile than is the case with the conventional compressor blade, without thereby sacrificing efficiency or a reduction of the working area.

Es ist bevorzugt, dass in dem konvexen Saugseitenbereich der Krümmungsverlauf multipliziert mit der Länge der Profilsehne einen Maximalwert hat, der von 2 bis 4 ist und in dem konkaven Druckseitenbereich der Krümmungsverlauf multipliziert mit der Länge der Profilsehne einen Maximalwert hat, der von 1,5 bis 2,5 ist.It is preferable that in the convex suction side region, the curvature multiplied by the length of the chord has a maximum value which is from 2 to 4 and in the concave pressure side region the curvature multiplied by the length of the chord has a maximum value ranging from 1.5 to 2.5.

Es ist bevorzugt, dass der Punkt des konkaven Saugseitenbereichs mit der minimalen Krümmung bei senkrechter Projektion auf die Profilsehne des Profilschnitts auf dieser einen Projektionspunkt vorgibt, der von der Vorderkante des Profilschnitts von 40 % bis 80 %, insbesondere von 60 % bis 75 %, der Länge der Profilsehne entfernt ist. Es ist bevorzugt, dass der Punkt des konvexen Saugseitenbereichs mit der maximalen Krümmung bei senkrechter Projektion auf die Profilsehne des Profilschnitts auf dieser einen Projektionspunkt vorgibt, der von der Vorderkante des Profilschnitts von 70 % bis 95 %, insbesondere von 80 % bis 90 %, der Länge der Profilsehne entfernt ist. Durch jede der genannten Maßnahmen lässt sich der Wirkungsgrad des Verdichters weiter steigern.It is preferred that the point of the concave suction side region with the minimum curvature when projecting perpendicularly onto the chord of the profile section on this prescribes a projection point which is from the leading edge of the profile section of 40% to 80%, in particular 60% to 75% Length of the chord is removed. It is preferred that the point of the convex suction side region with the maximum curvature when projecting perpendicularly onto the chord of the profile section on this prescribes a projection point which is from the leading edge of the profile section of 70% to 95%, in particular 80% to 90% Length of the chord is removed. Each of these measures can further increase the efficiency of the compressor.

Es ist bevorzugt, dass die Dicke des Profilschnitts an allen Stellen des Profilschnitts senkrecht zur Profilsehne kürzer als 2,5 % der Länge der Profilsehne ist.It is preferred that the thickness of the profile section at all points of the profile section perpendicular to the chord is shorter than 2.5% of the length of the chord.

Der erfindungsgemäße Verdichter zum Verdichten eines Arbeitsmediums, weist eine Laufschaufelreihe auf, die die Verdichterlaufschaufeln aufweist, wobei die Laufschaufelreihe eingerichtet ist, dass sich bei einer Nennbetriebsbedingung des Verdichters eine Vorkompression des Arbeitsmediums stromauf eines Verdichtungsstoßes, bei dem das Arbeitsmedium von Überschallgeschwindigkeit auf Unterschallgeschwindigkeit verzögert wird, und stromauf eines von zwei benachbarten Verdichterlaufschaufeln begrenzten Strömungskanals erfolgt.The compressor according to the invention for compressing a working medium, comprising a blade row having the compressor blades, wherein the blade row is set that at a nominal operating condition of the compressor precompression of the working medium upstream of a compression shock, wherein the working fluid is delayed from supersonic to subsonic speed, and upstream of a flow channel defined by two adjacent compressor blades.

Es ist bevorzugt, dass der Profilschnitt auf einer Zylinderfläche, deren Achse mit der Achse des Verdichters zusammenfällt, auf einer Kegelfläche, deren Achse mit der Achse des Verdichters zusammenfällt, auf einer S1-Strömungsfläche des Verdichters oder in einer tangentialen Ebene des Verdichters liegt. Die S1-Strömungsfläche erstreckt sich in Umfangsrichtung und in Axialrichtung der Axialströmungsmaschine und beschreibt eine Fläche, der eine idealisierte Strömung folgt.It is preferred that the profile section on a cylindrical surface, whose axis coincides with the axis of the compressor, on a conical surface whose axis coincides with the axis of the Compressor coincides, is located on an S 1 flow area of the compressor or in a tangential plane of the compressor. The S 1 flow area extends in the circumferential direction and in the axial direction of the axial flow machine and describes a surface that follows an idealized flow.

Beim Verändern des Profilschnitts wird bevorzugt dessen Skelettlinie verschoben, insbesondere wird nur die Skelettlinie verschoben. Dadurch wird vorteilhaft erreicht, dass die Breite des Kanals zwischen zwei in einem Laufschaufelkranz benachbart angeordneten Verdichterlaufschaufeln unverändert bleibt. Es ist bevorzugt, dass das geometrische Modell vor dem Verändern des Profilschnitts an dessen Druckseite ausschließlich konkav ausgebildet und/oder an dessen Saugseite ausschließlich konvex ausgebildet ist.When changing the profile section whose skeleton line is preferably moved, in particular only the skeleton line is moved. As a result, it is advantageously achieved that the width of the channel between two compressor blades arranged adjacent in a rotor blade ring remains unchanged. It is preferred that the geometric model before the modification of the profile section on its pressure side exclusively concave and / or formed exclusively convex on the suction side.

Es ist bevorzugt, dass der Profilschnitt derart verändert wird, dass in dem konvexen Saugseitenbereich der Verlauf der Krümmung einen Maximalwert hat, der größer ist als der Maximalwert des Verlaufs der Krümmung im entsprechenden Bereich der herkömmlichen Verdichterlaufschaufel. Der Profilschnitt wird bevorzugt derart verändert, dass in dem konvexen Saugseitenbereich der Verlauf der Krümmung multipliziert mit der Länge der Profilsehne einen Maximalwert hat, der von 2 bis 4 ist und in dem konkaven Druckseitenbereich der Verlauf der Krümmung multipliziert mit der Länge der Profilsehne einen Maximalwert hat, der von 1,5 bis 2,5 ist. Es ist bevorzugt, dass die Laufschaufelreihe derart ausgelegt wird, dass sich bei den Nennbetriebsbedingungen eine maximale isentrope Vorstoß-Machzahl von 1,4, insbesondere von maximal 1,3, aufweist. Es ist bevorzugt, dass der Profilschnitt derart verändert wird, dass der Punkt des konkaven Saugseitenbereichs mit der minimalen Krümmung bei senkrechter Projektion auf die Profilsehne des Profilschnitts auf dieser einen Projektionspunkt vorgibt, der von der Vorderkante des Profilschnitts von 40 % bis 80 % der Länge der Profilsehne entfernt ist. Durch jede der genannten Maßnahmen lässt sich der Wirkungsgrad des Verdichters weiter steigern.It is preferable that the profile section is changed such that in the convex suction side area, the curve of the curve has a maximum value larger than the maximum value of the curve of the curve in the corresponding area of the conventional compressor blade. The profile section is preferably changed in such a way that in the convex suction side region the course of the curvature multiplied by the length of the chord has a maximum value which is from 2 to 4 and in the concave pressure side region the course of the curve multiplied by the length of the chord has a maximum value which is from 1.5 to 2.5. It is preferred that the blade row is designed such that at the nominal operating conditions there is a maximum isentropic advance Mach number of 1.4, in particular of at most 1.3. It is preferred that the profile cut is changed so that the point of the concave suction side region with the minimum curvature when projecting perpendicularly to the chord of the profile section on this one projection point, which is from the leading edge of the profile section of 40% to 80% of the length of the Chord is removed. Each of these measures can further increase the efficiency of the compressor.

Im Folgenden wird anhand der beigefügten schematischen Zeichnungen und rechnerisch bestimmten Daten die Erfindung näher erläutert. Es zeigen

  • Figur 1 die erfindungsgemäße Verdichterlaufschaufel mit einem rechnerisch bestimmten Strömungsfeld,
  • Figur 2 Machzahlverläufe an der herkömmlichen Verdichterlaufschaufel und an der erfindungsgemäßen Verdichterlaufschaufel,
  • Figur 3 einen Profilschnitt der erfindungsgemäßen Verdichterlaufschaufel,
  • Figur 4 Krümmungsverläufe an der erfindungsgemäßen Verdichterlaufschaufel und
  • Figur 5 die Machzahlverläufe aus Figur 2 mit normierten Längen der Profilsehnen.
The invention will be explained in more detail below with reference to the accompanying schematic drawings and mathematically determined data. Show it
  • FIG. 1 the compressor blade according to the invention with a computationally determined flow field,
  • FIG. 2 Mach number curves on the conventional compressor blade and on the compressor blade according to the invention,
  • FIG. 3 a profile section of the compressor blade according to the invention,
  • FIG. 4 Curves of the compressor blade according to the invention and
  • FIG. 5 the Machzahlverläufe FIG. 2 with standardized lengths of the chords.

Wie es aus Figuren 1 und 3 ersichtlich ist, weist eine Verdichterlaufschaufel 1 für einen Verdichter in Axialbauweise ein Schaufelprofil auf. Das Schaufelprofil weist einen radial innen liegenden subsonischen Abschnitt und einen radial außen liegenden transsonischen Abschnitt auf, wobei in Figuren 1 und 3 nur der transsonische Abschnitt dargestellt ist. Das Schaufelprofil weist einen Profilschnitt 21 auf, der sich in dem transsonischen Abschnitt erstreckt. Beispielsweise liegt der Profilschnitt 21 auf einer Zylinderfläche, deren Achse mit Achse des Verdichters zusammenfällt, auf einer Kegelfläche, deren Achse mit der Achse des Verdichters zusammenfällt, auf einer S1-Strömungsfläche des Verdichters oder in einer tangentialen Ebene des Verdichters.Like it out FIGS. 1 and 3 As can be seen, a compressor blade 1 for a compressor in axial construction on a blade profile. The blade profile has a radially inner subsonic section and a radially outer transonic section, wherein FIGS. 1 and 3 only the transonic section is shown. The blade profile has a profile section 21 which extends in the transonic section. For example, the profile section 21 is located on a cylindrical surface whose axis coincides with the axis of the compressor, on a conical surface whose axis coincides with the axis of the compressor, on an S 1 flow area of the compressor or in a tangential plane of the compressor.

Der Profilschnitt 21 weist eine Vorderkante 2, eine Hinterkante 3, eine Druckseite 4 und eine Saugseite 5 auf. In Figur 3 ist zudem eine Profilsehne 22 eingezeichnet, die sich als gerade Linie von der Vorderkante 2 bis zu der Hinterkante 3 erstreckt. Weiterhin zeigt Figur 3 eine Skelettlinie 23, die sich von der Vorderkante 2 bis zu der Hinterkante 3 erstreckt und sich in einer Richtung senkrecht zu der Profilsehne 22 stets mittig zwischen der Druckseite 4 und der Saugseite 5 befindet.The profile section 21 has a front edge 2, a trailing edge 3, a pressure side 4 and a suction side 5. In FIG. 3 In addition, a chord 22 is shown, which is as straight line from the leading edge 2 to the trailing edge 3 extends. Further shows FIG. 3 a skeleton line 23 which extends from the front edge 2 to the trailing edge 3 and is always located in a direction perpendicular to the chord 22 midway between the pressure side 4 and the suction side 5.

Figur 1 zeigt eine zweidimensionale Strömungsverteilung eines in dem Verdichter strömenden Arbeitsmediums in einem Bereich des Verdichters. In Figur 1 ist eine Laufschaufelreihe 15 mit den Verdichterlaufschaufeln 1, eine der Laufschaufelreihe 15 stromabwärtige Leitschaufelreihe 16 und eine der Laufschaufelreihe 15 stromaufwärtige Leitschaufelreihe 17 dargestellt. Der Profilschnitt 21 weist an seiner Saugseite 5 einen konkaven Saugseitenbereich 10 auf, der zumindest teilweise stromauf eines Verdichtungsstoßes 18 angeordnet ist, den eine sich in dem Verdichter bei einer Nennbetriebsbedingung des Verdichters einstellende Strömung aufweist. Der Verdichtungsstoß 18 ist in Figur 1 in den Bereichen der Strömung angeordnet, in denen die Machzahl sich von höher als 1 auf niedriger als 1 vermindert. Zudem zeigt Figur 1, dass bei der Nennbetriebsbedingung des Verdichters eine Vorkompression des Arbeitsmediums stromauf des Verdichtungsstoßes 18 und stromauf eines von zwei benachbarten Verdichterlaufschaufeln 1 begrenzten Strömungskanals erfolgt. FIG. 1 shows a two-dimensional flow distribution of a working medium flowing in the compressor in a region of the compressor. In FIG. 1 1, a blade row 15 with the compressor blades 1, a blade row 15 downstream blade row 16 and a blade row 15 upstream blade row 17 are shown. The profile section 21 has on its suction side 5 a concave suction side region 10, which is arranged at least partially upstream of a compression joint 18, which has an adjusting in the compressor at a nominal operating condition of the compressor flow. The compression shock 18 is in FIG. 1 arranged in the areas of flow in which the Mach number decreases from higher than 1 to lower than 1. In addition shows FIG. 1 in that, in the nominal operating condition of the compressor, precompression of the working medium occurs upstream of the compression surge 18 and upstream of a flow channel bounded by two adjacent compressor blades 1.

Durch den konkaven Saugseitenbereich ist der Verdichtungsstoß 18 bezogen auf die Länge der Profilsehne 22 stromab eines Verdichtungsstoßes angeordnet, den eine Strömung aufweisen würde, die sich bei einer herkömmlichen Verdichterlaufschaufel, die sich von der Verdichterlaufschaufel 1 darin unterscheiden kann, dass sie an ihrer Saugseite 5 ausschließlich konvex ausgebildet ist, und bei der Nennbetriebsbedingung einstellen würde.Due to the concave suction side region, the compression shock 18 is located downstream of a compression shock relative to the length of the chord 22, which would have a flow which in a conventional compressor blade, which may differ from the compressor blade 1, is exclusive to its suction side 5 convex, and set at the nominal operating condition.

Figur 2 zeigt einen Vergleich der Machzahlverläufe an der Verdichterlaufschaufel 1 und der Machzahlverläufe an der herkömmlichen Verdichterlaufschaufel. Über der Horizontalachse 19 ist ein Punkt auf der Profilsehne 22 des Profilschnitts 21 und über der Vertikalachse 20 ist die Machzahl aufgetragen. Mit dem Bezugszeichen 6 ist der Machzahlverlauf an der Druckseite der herkömmlichen Verdichterlaufschaufel bezeichnet, mit dem Bezugszeichen 7 ist der Machzahlverlauf an der Saugseite der herkömmlichen Verdichterlaufschaufel bezeichnet, mit dem Bezugszeichen 8 ist der Machzahlverlauf an der Druckseite 4 der Verdichterlaufschaufel 1 und mit dem Bezugszeichen 9 ist der Machzahlverlauf an der Saugseite 5 der Verdichterlaufschaufel 1 bezeichnet. FIG. 2 FIG. 4 shows a comparison of the Mach number curves on the compressor blade 1 and the Machzahlverläufe on the conventional compressor blade. Above the horizontal axis 19 is a point on the chord 22 of the profile section 21 and over the vertical axis 20, the Mach number is plotted. Reference numeral 6 designates Machzahlverlauf on the pressure side of the conventional compressor blade, with the reference numeral 7 is the Machzahlverlauf on the suction side of the conventional compressor blade, with the reference numeral 8 is the Machzahlverlauf on the pressure side 4 of the compressor blade 1 and the reference numeral 9 the Machzahlverlauf on the suction side 5 of the compressor blade 1 denotes.

Figur 5 zeigt die Machzahlverläufe aus Figur 2 bezogen auf die Länge der Profilsehne 22. Dazu wurde der Machzahlverlauf der Verdichterlaufschaufel 1 derart skaliert, dass die Vorderkante 2 und die Hinterkante 3 der Verdichterlaufschaufel 1 mit der Vorderkante und der Hinterkante der herkömmlichen Verdichterlaufschaufel zusammenfallen. FIG. 5 shows the Machzahlverläufe FIG. 2 For this purpose, the Machzahlverlauf the compressor blade 1 has been scaled such that the leading edge 2 and the trailing edge 3 of the compressor blade 1 coincide with the leading edge and the trailing edge of the conventional compressor blade.

Aus Figur 2 ist ersichtlich, dass der Machzahlverlauf 9 an der Saugseite 5 der Verdichterlaufschaufel 1 unmittelbar stromauf des Verdichtungsstoßes 18 niedrigere supersonische Machzahlen hat als der Machzahlverlauf 7 an der Saugseite der herkömmlichen Verdichterlaufschaufel unmittelbar stromauf des Verdichtungsstoßes. Diese niedrigeren supersonischen Machzahlen werden über eine längere Erstreckung entlang der Profilsehne 22 als bei der herkömmlichen Verdichterlaufschaufel gehalten. Durch die niedrigeren supersonischen Machzahlen vor dem Verdichtungsstoß 18 werden Verluste vermindert. Dadurch, dass die supersonischen Machzahlen über die längere Erstreckung gehalten werden, ist die gesamte Profilbelastung, die mit der Differenz der Machzahlen an der Druckseite 4 und der Saugseite 5 korreliert, in dem subsonischen Bereich stromab des Verdichtungsstoßes 18 vergleichbar hoch wie bei der herkömmlichen Verdichterlaufschaufel. Zudem ist aus Figur 1 ersichtlich, dass der Verdichtungsstoß 18 schräg angeordnet ist, was bedeutet, dass mit zunehmendem Abstand von der Saugseite 5 sich der Verdichtungsstoß 18 stromaufwärts bewegt. Dies führt ebenfalls zu einer Verminderung von Verlusten. Des Weiteren kann der Figur 2 entnommen werden, dass die Profilbelastung bei der Verdichterlaufschaufel 1 nach dem Verdichtungsstoß 18 deutlich höher ist als bei der herkömmlichen Verdichterlaufschaufel. Durch die verminderten Verluste und durch höhere Profilbelastung in dem subsonischen Bereich ist mit der Verdichterlaufschaufel 1 ein höherer Wirkungsgrad als mit der herkömmlichen Verdichterlaufschaufel erzielbar. Durch den höheren Wirkungsgrad kann die Verdichterlaufschaufel 1, wie es in Figur 2 dargestellt ist, kürzer als die herkömmliche Verdichterlaufschaufel ausgeführt werden, wodurch Verluste durch Reibung des Arbeitsmediums an der Verdichterlaufschaufel 1 vermindert werden können.Out FIG. 2 It can be seen that the Machzahlverlauf 9 on the suction side 5 of the compressor blade 1 immediately upstream of the compression shock 18 lower supersonic Mach numbers than the Machzahlverlauf 7 on the suction side of the conventional compressor blade immediately upstream of the compression shock. These lower supersonic Mach numbers are maintained over a longer extent along the chord 22 than in the conventional compressor blade. Due to the lower supersonic Mach numbers before the compression shock 18 losses are reduced. By keeping the supersonic Mach numbers over the longer extent, the total profile load correlated with the Mach number difference on the pressure side 4 and the suction side 5 is comparably high in the subsonic region downstream of the compression stroke 18 as in the conventional compressor blade. Moreover, it is off FIG. 1 It can be seen that the compression stroke 18 is arranged obliquely, which means that with increasing distance from the suction side 5, the compression shock 18 moves upstream. This also leads to a reduction of losses. Of Further, the FIG. 2 It can be seen that the profile load on the compressor blade 1 after the compression stroke 18 is significantly higher than in the conventional compressor blade. Due to the reduced losses and higher profile load in the subsonic region, a higher efficiency can be achieved with the compressor rotor blade 1 than with the conventional compressor rotor blade. Due to the higher efficiency, the compressor blade 1, as it is in FIG. 2 is shown to be shorter than the conventional compressor blade, whereby losses due to friction of the working fluid on the compressor blade 1 can be reduced.

Figur 4 zeigt einen Krümmungsverlauf 27 entlang der Druckseite 4 und einen Krümmungsverlauf 28 entlang der Saugseite 5. Beide Krümmungsverläufe 27, 28 sind stetig. Über die Horizontalachse 25 ist die Länge der Profilsehne 22 und über die Vertikalachse 26 ist die Krümmung k multipliziert mit der Länge der Profilsehne 22 aufgetragen. Die Krümmung k ist definiert als k = lim Δ s 0 Δ α Δ s = ds ,

Figure imgb0001
wobei Δs die Länge eines Kreisbogens und Δα der Differenzwinkel zwischen den Tangenten an den Endpunkten des Kreisbogens ist. FIG. 4 shows a curvature 27 along the pressure side 4 and a curvature 28 along the suction side 5. Both curvature curves 27, 28 are continuous. About the horizontal axis 25, the length of the chord 22 and the vertical axis 26, the curvature k multiplied by the length of the chord 22 is applied. The curvature k is defined as k = lim Δ s 0 Δ α Δ s = d.alpha ds .
Figure imgb0001
where Δs is the length of a circular arc and Δα is the difference angle between the tangents at the end points of the circular arc.

Konkave Saugseitenbereiche und konvexe Druckseitenbereiche zeichnen sich durch ein negatives Vorzeichen der Krümmung aus. Konvexe Saugseitenbereiche und konkave Druckseitenbereiche zeichnen sich durch ein positives Vorzeichen der Krümmung aus.Concave suction side areas and convex pressure side areas are characterized by a negative sign of the curvature. Convex suction side regions and concave pressure side regions are characterized by a positive sign of the curvature.

In dem konkaven Saugseitenbereich 10 hat der Verlauf der Krümmung multipliziert mit der Länge der Profilsehne 22 einen Minimalwert, der von -1,2 bis -0,5 ist. Der Profilschnitt 21 weist an seiner Saugseite 5 einen ersten konvexen Saugseitenbereich 11 auf, der stromab des konkaven Saugseitenbereichs 10 angeordnet ist. Der Profilschnitt 21 weist an seiner Saugseite 5 einen zweiten konvexen Saugseitenbereich 12 auf, der stromauf des konkaven Saugseitenbereichs 10 angeordnet ist. In dem konvexen Saugseitenbereich 11 hat der Verlauf der Krümmung einen Maximalwert, der größer ist als der Maximalwert des Verlaufs der Krümmung im entsprechenden Bereich der herkömmlichen Verdichterlaufschaufel, insbesondere hat in dem konvexen Saugseitenbereich 11 der Verlauf der Krümmung multipliziert mit der Länge der Profilsehne 22 einen Maximalwert, der von 2 bis 4 ist.In the concave suction side region 10, the curve of the curvature multiplied by the length of the chord 22 has a minimum value that is from -1.2 to -0.5. The profile section 21 has on its suction side 5 a first convex suction side region 11, which is located downstream of the concave suction side region 10. The profile section 21 has on its suction side 5 a second convex suction side region 12, which is arranged upstream of the concave suction side region 10. In the convex suction side region 11, the curve of curvature has a maximum value greater than the maximum value of the curve of the curvature in the corresponding region of the conventional compressor blade. Specifically, in the convex suction side region 11, the curve of the curvature multiplied by the length of the chord 22 has a maximum value which is from 2 to 4.

Der Punkt des konkaven Saugseitenbereichs 10 mit der minimalen Krümmung bei senkrechter Projektion auf die Profilsehne 22 des Profilschnitts 21 gibt auf dieser einen Projektionspunkt 24 vor, der von der Vorderkante des Profilschnitts 21 von 40 % bis 80 % der Länge der Profilsehne 22 entfernt ist. Der Punkt des konvexen Saugseitenbereichs 11 mit der maximalen Krümmung bei senkrechter Projektion auf die Profilsehne 22 des Profilschnitts 21 gibt auf dieser einen Projektionspunkt 24 vor, der von der Vorderkante des 21 von 80 % bis 100% der Länge der Profilsehne 22 entfernt ist. Der Profilschnitt 21 weist an seiner Druckseite 4 einen konvexen Druckseitenbereich 14 auf, der in einem Bereich angeordnet ist, der dem konkaven Saugseitenbereich 10 gegenüberliegend angeordnet ist.The point of the concave suction side region 10 with the minimum curvature when projecting perpendicularly onto the chord 22 of the profile section 21 on this projecting point 24, which is from the leading edge of the profile section 21 of 40% to 80% of the length of the chord 22. The point of the convex suction side region 11 with the maximum curvature when projecting perpendicularly onto the chord 22 of the profile section 21 on this projecting point 24, which is from the leading edge of 21 of 80% to 100% of the length of the chord 22. The profile section 21 has on its pressure side 4 a convex pressure side region 14, which is arranged in a region which is arranged opposite the concave suction side region 10.

Die Verdichterlauschaufel 1 ist wie folgt zu profilieren: Bereitstellen eines geometrischen Modells des Schaufelprofils, wobei das Schaufelprofil einen Profilschnitt 21 aufweist, der sich in dem transsonischen Abschnitt erstreckt und auf einer Rotationsfläche, deren Achse mit der Achse des Verdichters zusammenfällt, auf einer Kegelfläche, deren Achse mit der Achse des Verdichters zusammenfällt, auf einer S1-Strömungsfläche des Verdichters oder in einer tangentialen Ebene des Verdichters liegt, und die Laufschaufelreihe 15 eingerichtet ist, dass sich bei einer Nennbetriebsbedingung des Verdichters ein Verdichtungsstoß 18 einstellt, bei dem das Arbeitsmedium von Überschallgeschwindigkeit auf Unterschallgeschwindigkeit verzögert wird; - Festlegen von Randbedingungen für eine die Schaufel 14, 15 umströmende Strömung, die bei der Nennbetriebsbedingung auftritt; - Verändern des Profilschnitts 21 derart, dass lediglich die Skelettlinie verschoben wird und die Saugseite 5 einen konkaven Saugseitenbereich 10 und einen konvexen Saugseitenbereich 11 aufweist, der stromab des konkaven Saugseitenbereichs 10 angeordnet ist, und der an seiner Druckseite 4 einen konvexen Druckseitenbereich 14 und einen konkaven Druckseitenbereich 13 aufweist, der stromab des konvexen Druckseitenbereichs 14 angeordnet ist, wobei ein Krümmungsverlauf 27 an der Druckseite 4 des Profilschnitts 21 und ein Krümmungsverlauf 28 an der Saugseite 5 des Profilschnitts 21 jeweils aufgetragen über eine Profilsehne 22 des Profilschnitts 21 stetig sind, die Lagen der Minimalwerte der Krümmungsverläufe 27, 28 um nicht mehr als 10 % der Länge der Profilsehne 22 voneinander abweichen sowie die Lagen der Maximalwerte der Krümmungsverläufe 27, 28 um nicht mehr als 10 % der Länge der Profilsehne 22 voneinander abweichen, die Minimalwerte multipliziert mit der Länge der Profilsehne (22) von -1,2 bis -0,5 und die Maximalwerte multipliziert mit der Länge der Profilsehne 22 von 1,5 bis 4 sind, wobei der konvexe Saugseitenbereich 11 zumindest teilweise stromauf eines Verdichtungsstoßes 18 angeordnet ist, den eine sich in dem Verdichter bei den Randbedingungen einstellende Strömung aufweist, wodurch der Verdichtungsstoß 18 bezogen auf die Länge der Profilsehne 22 stromab eines Verdichtungsstoßes angeordnet ist, den eine Strömung aufweisen würde, die sich bei dem geometrischen Modell vor dem Verändern des Profilschnitts und bei der Nennbetriebsbedingung einstellen würde.The compressor blade 1 is to be profiled as follows: providing a geometric model of the blade profile, wherein the blade profile has a profile section 21 which extends in the transonic section and on a surface of revolution, whose axis coincides with the axis of the compressor, on a conical surface whose Axis coincides with the axis of the compressor, is located on an S 1 flow area of the compressor or in a tangential plane of the compressor, and the blade row 15 is arranged that sets at a nominal operating condition of the compressor, a compression shock 18, in which the working medium is delayed from supersonic speed to subsonic speed; - Setting boundary conditions for a flow around the blade 14, 15, which occurs at the nominal operating condition; Changing the profile section 21 such that only the skeleton line is displaced and the suction side 5 has a concave suction side region 10 and a convex suction side region 11, which is arranged downstream of the concave suction side region 10, and which has a convex pressure side region 14 and a concave one on its pressure side 4 Pressure side region 13 which is disposed downstream of the convex pressure side region 14, wherein a curvature 27 on the pressure side 4 of the profile section 21 and a curvature 28 on the suction side 5 of the profile section 21 respectively applied via a chord 22 of the profile section 21 are continuous, the layers of Minimum values of the curvature courses 27, 28 differ by not more than 10% of the length of the chord 22 and the positions of the maximum values of the curvature courses 27, 28 do not deviate from one another by more than 10% of the length of the chord 22, the minimum values multiplied by the length of the chord profile Sehn e (22) is from -1.2 to -0.5 and the maximum values multiplied by the length of the chord 22 are from 1.5 to 4, the convex suction side region 11 being at least partially upstream of a compression shock 18, which is in adjusting the compressor at the boundary conditions, whereby the compression shock 18 is located downstream of a compression shock relative to the length of the chord 22, which would have a flow that would occur in the geometric model before changing the profile section and at the nominal operating condition.

Ob sich der Verdichtungsstoß 18 durch das Verändern des Profilschnitts stromab verschiebt, kann rechnerisch, insbesondere durch eine Finite Volumen Methode, oder experimentell bestimmt werden.Whether the compaction shock 18 shifts downstream by changing the profile section can be determined by calculation, in particular by a finite volume method, or experimentally.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen. Der Schutzumfang der Erfindung ist ausschließlich durch die Ansprüche definiert.Although the invention in detail by the preferred embodiment is more particularly illustrated and described, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention. The scope of the invention is defined solely by the claims.

Claims (14)

  1. Compressor rotor blade for a compressor of axial design, having a blade profile which has a transonic section, and a profile section (21) of the blade profile, which profile section (21) extends in the transonic section and, on its suction side (5), has a concave suction side region (10) and a convex suction side region (11) which is arranged downstream of the concave suction side region (10), and which, on its pressure side (4), has a convex pressure side region (14) and a concave pressure side region (13) which is arranged downstream of the convex pressure side region (14), characterized in that a curvature progression (27) on the pressure side (4) of the profile section (21) and a curvature progression (28) on the suction side (5) of the profile section (21) are constant in each case plotted over a profile chord (22) of the profile section (21), in that the positions of the minimum values of the curvature progressions (27, 28) differ from one another by no more than 10% of the length of the profile chord (22), and the positions of the maximum values of the curvature progressions (27, 28) differ from one another by no more than 10% of the length of the profile chord (22), and in that the minimum values multiplied by the length of the profile chord (22) are from - 1.2 to - 0.5, and the maximum values multiplied by the length of the profile chord (22) are from 1.5 to 4.
  2. Compressor rotor blade according to Claim 1, the curvature progression (28) multiplied by the length of the profile chord (22) having a maximum value which is from 2 to 4 in the convex suction side region (11), and the curvature progression (27) multiplied by the length of the profile chord (22) having a maximum value which is from 1.5 to 2.5 in the concave pressure side region (13).
  3. Compressor rotor blade according to Claim 1 or 2, the point of the concave suction side region (10) with the minimum curvature in the case of a perpendicular projection onto the profile chord (22) of the profile section (21) defining a projection point (24) on said profile chord (22), which projection point (24) is spaced apart from the front edge (2) of the profile section (21) by from 40% to 80% of the length of the profile chord (22).
  4. Compressor rotor blade according to one of Claims 1 to 3, the thickness of the profile section perpendicularly with respect to the profile chord (22) being shorter than 2.5% of the length of the profile chord (22).
  5. Compressor for compressing a working medium, having a rotor blade row (15) which has the compressor rotor blades (1) according to one of Claims 1 to 4, the rotor blade row (15) being set up such that, in the case of a nominal operating condition of the compressor, a precompression of the working medium takes place upstream of a compression shock (18), at which the working medium is retarded from supersonic speed to subsonic speed, and upstream of a flow duct which is delimited by two adjacent compressor rotor blades (1).
  6. Method for profiling a compressor rotor blade (1) for a compressor for compressing a working medium of axial design, which compressor has a rotor blade row (15) with the compressor rotor blades (1), the compressor rotor blades (1) having a blade profile with a transonic section, and the method having the following steps:
    - providing of a geometric model of the blade profile, the blade profile having a profile section (21) which extends in the transonic section, and the rotor blade row (15) being set up such that, in the case of a nominal operating condition of the compressor, a compression shock (18) sets in, at which the working medium is retarded from supersonic speed to subsonic speed;
    - fixing of boundary conditions for a flow which flows around the blade (14, 15) and occurs in the case of the nominal operating condition;
    - changing of the profile section (21) in such a way that the suction side (5) has a concave suction side region (10) and a convex suction side region (11) which is arranged downstream of the concave suction side region (10), and which, on its pressure side (4), has a convex pressure side region (14) and a concave pressure side region (13) which is arranged downstream of the convex pressure side region (14), a curvature progression (27) on the pressure side (4) of the profile section (21) and a curvature progression (28) on the suction side (5) of the profile section (21) being constant in each case plotted over a profile chord (22) of the profile section (21), the positions of the minimum values of the curvature progressions (27, 28) differing from one another by no more than 10% of the length of the profile chord (22), and the positions of the maximum values of the curvature progressions (27, 28) differing from one another by no more than 10% of the length of the profile chord (22), the minimum values multiplied by the length of the profile chord (22) being from - 1.2 to - 0.5, and the maximum values multiplied by the length of the profile chord (22) being from 1.5 to 4, the convex suction side region (11) being arranged at least partially upstream of a compression shock (18) which is exhibited by a flow which sets in in the compressor in the case of the boundary conditions, as a result of which, in relation to the length of the profile chord (22), the compression shock (18) is arranged downstream of a compression shock which would be exhibited by a flow which would set in in the case of the geometric model before the profile section is changed and in the case of the nominal operating condition.
  7. Method according to Claim 6, the profile section (21) lying on a cylindrical surface, the axis of which coincides with the axis of the compressor, on a conical surface, the axis of which coincides with the axis of the compressor, on a flow surface which extends in the circumferential direction and in the axial direction of the compressor and which describes a surface which follows an idealized flow (S1 flow surface), or in a tangential plane of the compressor.
  8. Method according to Claim 6 or 7, the camber line (23) of the profile section (21) being shifted when said profile section (21) is changed, in particular only the camber line (23) being shifted.
  9. Method according to one of Claims 6 to 8, the geometric model, before the change of the profile section (21), being of exclusively concave configuration on the pressure side (4) of said profile section (21) and/or being of exclusively convex configuration on the suction side (5) of said profile section (21) .
  10. Method according to one of Claims 6 to 9, the profile section (21) being changed in such a way that the progression of the curvature has a maximum value in the convex suction side region (11), which maximum value is greater than the maximum value of the progression of the curvature in the corresponding region of the conventional compressor rotor blade.
  11. Method according to one of Claims 6 to 10, the profile section being changed in such a way that the progression of the curvature multiplied by the length of the profile chord (22) has a maximum value which is from 2 to 4 in the convex suction side region (11), and the progression of the curvature multiplied by the length of the profile chord (22) has a maximum value which is from 1.5 to 2.5 in the concave pressure side region (13).
  12. Method according to one of Claims 6 to 11, the profile section (21) being changed in such a way that the point of the concave suction side region (10) with the minimum curvature in the case of a perpendicular projection onto the profile chord of the profile section defines a projection point (24) on said profile chord, which projection point (24) is spaced apart from the front edge of the profile section by from 40% to 80% of the length of the profile chord (22).
  13. Method according to one of Claims 6 to 12, the rotor blade row (15) being designed in such a way that it has a maximum isentropic Mach number of 1.4, in particular of at most 1.3, in the case of the nominal operating conditions.
  14. Method according to one of Claims 6 to 13, the profile section being designed in such a way that the thickness of the profile section perpendicularly with respect to the profile chord (22) is shorter than 2.5% of the length of the profile chord (22).
EP17700921.4A 2016-02-10 2017-01-11 Compressor rotor blade and method for profiling said blade Active EP3390833B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16155063.7A EP3205885A1 (en) 2016-02-10 2016-02-10 Compressor rotor blade and method for profiling said blade
PCT/EP2017/050453 WO2017137201A1 (en) 2016-02-10 2017-01-11 Compressor rotor blade, compressor, and method for profiling the compressor rotor blade

Publications (2)

Publication Number Publication Date
EP3390833A1 EP3390833A1 (en) 2018-10-24
EP3390833B1 true EP3390833B1 (en) 2019-09-04

Family

ID=55345743

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16155063.7A Withdrawn EP3205885A1 (en) 2016-02-10 2016-02-10 Compressor rotor blade and method for profiling said blade
EP17700921.4A Active EP3390833B1 (en) 2016-02-10 2017-01-11 Compressor rotor blade and method for profiling said blade

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16155063.7A Withdrawn EP3205885A1 (en) 2016-02-10 2016-02-10 Compressor rotor blade and method for profiling said blade

Country Status (6)

Country Link
US (1) US10837450B2 (en)
EP (2) EP3205885A1 (en)
JP (1) JP6715941B2 (en)
KR (1) KR102206204B1 (en)
CN (1) CN108603509B (en)
WO (1) WO2017137201A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156195B (en) * 2020-01-07 2023-11-17 哈尔滨工程大学 Compressor blade leading edge structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2934259A (en) * 1956-06-18 1960-04-26 United Aircraft Corp Compressor blading
FR2551145B1 (en) * 1980-07-30 1990-08-17 Onera (Off Nat Aerospatiale) BLADDER SUPERSONIC COMPRESSOR STAGE AND DETERMINATION METHOD
JPH08121390A (en) * 1994-10-25 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd Compressor vane shape for high speed fluid
US6116856A (en) * 1998-09-18 2000-09-12 Patterson Technique, Inc. Bi-directional fan having asymmetric, reversible blades
US7195456B2 (en) * 2004-12-21 2007-03-27 United Technologies Corporation Turbine engine guide vane and arrays thereof
JP5371578B2 (en) 2009-06-26 2013-12-18 三菱重工業株式会社 Turbine rotor
EP2299124A1 (en) * 2009-09-04 2011-03-23 Siemens Aktiengesellschaft Rotor blade for an axial compressor
FR2953571B1 (en) * 2009-12-07 2018-07-13 Valeo Systemes Thermiques FAN PROPELLER, ESPECIALLY FOR A MOTOR VEHICLE
JP5502695B2 (en) * 2010-10-14 2014-05-28 株式会社日立製作所 Axial flow compressor
EP2669475B1 (en) * 2012-06-01 2018-08-01 Safran Aero Boosters SA S-shaped profile blade of axial turbomachine compressor, corresponding compressor and turbomachine
DE102013209966A1 (en) 2013-05-28 2014-12-04 Honda Motor Co., Ltd. Profile geometry of a wing for an axial compressor
EP3088663A1 (en) * 2015-04-28 2016-11-02 Siemens Aktiengesellschaft Method for profiling a blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190048880A1 (en) 2019-02-14
KR20180110054A (en) 2018-10-08
US10837450B2 (en) 2020-11-17
EP3205885A1 (en) 2017-08-16
CN108603509A (en) 2018-09-28
CN108603509B (en) 2020-04-03
KR102206204B1 (en) 2021-01-22
EP3390833A1 (en) 2018-10-24
JP2019504962A (en) 2019-02-21
JP6715941B2 (en) 2020-07-01
WO2017137201A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
EP2473743B1 (en) Compressor blade for an axial compressor
EP2626515B1 (en) Tandem blade group assembly
EP1948939B1 (en) Radial compressor rotor
EP2478186B1 (en) Rotor of a turbomachine
EP2913478B1 (en) Tandem blades of a turbo-machine
DE102005025213A1 (en) Blade of an axial flow machine
DE102012206105A1 (en) IMPELLER AND FLOW MACHINE WITH THE IMPELLER
EP2947270B1 (en) Rotor series group
EP3404210A1 (en) Blade cascade segment for a turbomachine with non-axisymmetric platform surface, corresponding blade cascade, blade channel, platform, and turbomachine
EP2505851A2 (en) Stator stage of an axial compressor for a turbomachine
EP2410131B1 (en) Rotor of a turbomachine
EP3388626B1 (en) Contouring of a blade row platform
EP2696039B1 (en) Gas turbine stage
EP3390833B1 (en) Compressor rotor blade and method for profiling said blade
EP3401504A1 (en) Blade grid
EP3564483A1 (en) Blade base for a turbine blade
DE102014226689A1 (en) Rotor blade of an axial flow machine
DE102014224283A1 (en) Compressor with a sealing channel
EP3460256A1 (en) Throughflow assembly
EP2896788B1 (en) Extruded profile for producing a guide vane and fabrication method
EP3358135A1 (en) Contouring of a blade row platform
EP3431707A1 (en) Blade, blade ring, blade ring segment and fluid flow engine
EP3163019B1 (en) Rotor blade
EP3404211A1 (en) Blade cascade segment for a turbine with contoured platform surface, corresponding blade cascade, blade channel, platform, turbine and aircraft engine
EP3375977A1 (en) Contouring of a platform in an airfoil cascade

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017002213

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0019000000

Ipc: F04D0029320000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/32 20060101AFI20190417BHEP

Ipc: F04D 29/68 20060101ALI20190417BHEP

INTG Intention to grant announced

Effective date: 20190514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175733

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002213

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002213

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

26N No opposition filed

Effective date: 20200605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017002213

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220901 AND 20220907

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1175733

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230113

Year of fee payment: 7

Ref country code: CH

Payment date: 20230303

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230126

Year of fee payment: 7

Ref country code: GB

Payment date: 20230221

Year of fee payment: 7

Ref country code: DE

Payment date: 20220617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230109

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240125

Year of fee payment: 8