EP3390470B1 - Method of manufacturing fluoroelastomers - Google Patents
Method of manufacturing fluoroelastomers Download PDFInfo
- Publication number
- EP3390470B1 EP3390470B1 EP16809420.9A EP16809420A EP3390470B1 EP 3390470 B1 EP3390470 B1 EP 3390470B1 EP 16809420 A EP16809420 A EP 16809420A EP 3390470 B1 EP3390470 B1 EP 3390470B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- per
- group
- formula
- weight
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001973 fluoroelastomer Polymers 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000203 mixture Substances 0.000 claims description 55
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims description 46
- 239000004816 latex Substances 0.000 claims description 44
- 229920000126 latex Polymers 0.000 claims description 44
- 239000000178 monomer Substances 0.000 claims description 44
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 36
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 31
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 29
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 24
- 229910003202 NH4 Inorganic materials 0.000 claims description 23
- 239000003999 initiator Substances 0.000 claims description 23
- 239000006085 branching agent Substances 0.000 claims description 22
- -1 perfluoro-2-propoxy-propyl Chemical group 0.000 claims description 20
- 238000003860 storage Methods 0.000 claims description 20
- 239000012986 chain transfer agent Substances 0.000 claims description 18
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 18
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 18
- 239000004094 surface-active agent Substances 0.000 claims description 18
- 229910052731 fluorine Inorganic materials 0.000 claims description 17
- 229910052708 sodium Inorganic materials 0.000 claims description 17
- 125000001153 fluoro group Chemical group F* 0.000 claims description 15
- 229910052700 potassium Inorganic materials 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 14
- 150000001336 alkenes Chemical class 0.000 claims description 11
- 239000000839 emulsion Substances 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 10
- 230000000379 polymerizing effect Effects 0.000 claims description 9
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 claims description 8
- QMIWYOZFFSLIAK-UHFFFAOYSA-N 3,3,3-trifluoro-2-(trifluoromethyl)prop-1-ene Chemical group FC(F)(F)C(=C)C(F)(F)F QMIWYOZFFSLIAK-UHFFFAOYSA-N 0.000 claims description 8
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 8
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052794 bromium Inorganic materials 0.000 claims description 8
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 claims description 8
- 229910052740 iodine Inorganic materials 0.000 claims description 8
- 239000011630 iodine Substances 0.000 claims description 8
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 125000001033 ether group Chemical group 0.000 claims description 6
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 150000003839 salts Chemical group 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 claims description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 2
- WFLOTYSKFUPZQB-OWOJBTEDSA-N (e)-1,2-difluoroethene Chemical group F\C=C\F WFLOTYSKFUPZQB-OWOJBTEDSA-N 0.000 claims description 2
- NDMMKOCNFSTXRU-UHFFFAOYSA-N 1,1,2,3,3-pentafluoroprop-1-ene Chemical group FC(F)C(F)=C(F)F NDMMKOCNFSTXRU-UHFFFAOYSA-N 0.000 claims description 2
- HFNSTEOEZJBXIF-UHFFFAOYSA-N 2,2,4,5-tetrafluoro-1,3-dioxole Chemical class FC1=C(F)OC(F)(F)O1 HFNSTEOEZJBXIF-UHFFFAOYSA-N 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- 230000001588 bifunctional effect Effects 0.000 claims description 2
- 125000001246 bromo group Chemical group Br* 0.000 claims description 2
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 150000002430 hydrocarbons Chemical group 0.000 claims description 2
- 150000002825 nitriles Chemical class 0.000 claims description 2
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 13
- 150000003254 radicals Chemical class 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 9
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 9
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 9
- 150000002978 peroxides Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical class S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000003643 water by type Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 229920002313 fluoropolymer Polymers 0.000 description 3
- 239000004811 fluoropolymer Substances 0.000 description 3
- 239000008246 gaseous mixture Substances 0.000 description 3
- 150000004965 peroxy acids Chemical class 0.000 description 3
- 230000004584 weight gain Effects 0.000 description 3
- 235000019786 weight gain Nutrition 0.000 description 3
- 0 *C1=C(*)OC(N)(N)O1 Chemical compound *C1=C(*)OC(N)(N)O1 0.000 description 2
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- BUACSMWVFUNQET-UHFFFAOYSA-H dialuminum;trisulfate;hydrate Chemical compound O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BUACSMWVFUNQET-UHFFFAOYSA-H 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- CVMIVKAWUQZOBP-UHFFFAOYSA-L manganic acid Chemical compound O[Mn](O)(=O)=O CVMIVKAWUQZOBP-UHFFFAOYSA-L 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- AOSFMYBATFLTAQ-UHFFFAOYSA-N 1-amino-3-(benzimidazol-1-yl)propan-2-ol Chemical compound C1=CC=C2N(CC(O)CN)C=NC2=C1 AOSFMYBATFLTAQ-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- MKTOIPPVFPJEQO-UHFFFAOYSA-N 4-(3-carboxypropanoylperoxy)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OOC(=O)CCC(O)=O MKTOIPPVFPJEQO-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- PDAVOLCVHOKLEO-UHFFFAOYSA-N acetyl benzenecarboperoxoate Chemical compound CC(=O)OOC(=O)C1=CC=CC=C1 PDAVOLCVHOKLEO-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229940044197 ammonium sulfate Drugs 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000005604 azodicarboxylate group Chemical group 0.000 description 1
- ZJRXSAYFZMGQFP-UHFFFAOYSA-N barium peroxide Chemical compound [Ba+2].[O-][O-] ZJRXSAYFZMGQFP-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- IWTBWSGPDGPTIB-UHFFFAOYSA-N butanoyl butaneperoxoate Chemical compound CCCC(=O)OOC(=O)CCC IWTBWSGPDGPTIB-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 229940093914 potassium sulfate Drugs 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- KOPQZJAYZFAPBC-UHFFFAOYSA-N propanoyl propaneperoxoate Chemical compound CCC(=O)OOC(=O)CC KOPQZJAYZFAPBC-UHFFFAOYSA-N 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 229940001474 sodium thiosulfate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/262—Tetrafluoroethene with fluorinated vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
- C08F214/222—Vinylidene fluoride with fluorinated vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F259/00—Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
- C08F259/08—Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/02—Low molecular weight, e.g. <100,000 Da.
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/03—Narrow molecular weight distribution, i.e. Mw/Mn < 3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/21—Rubbery or elastomeric properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
Definitions
- aqueous emulsion of step (a) comprises at least one surfactant (FS), as above detailed, and at least one fluid (F), as above detailed. More specifically, embodiments which are preferred because of their ability to provide for improved reaction rate and for a latex (P) comprising particles of nanometric size are those wherein the aqueous emulsion of step (a) includes:
- the aqueous emulsion polymerization of step (a) may be carried out at a temperature between 10 to 150°C, preferably 20°C to 110°C, preferably of 50 to 90°C and the pressure is typically between 2 and 30 bar, in particular 15 to 30 bar.
- the said so polymerized pre-polymer is generally a low molecular weight fluoropolymer having a branched structure and comprising iodinated and/or brominated chain ends, because of the use of branching agent and chain transfer agent, as above detailed.
- the aqueous emulsion polymerization of step (d) may be carried out at a temperature between 10 to 150°C, preferably 20°C to 110°C, preferably of 50 to 90°C and the pressure is typically between 2 and 30 bar, in particular 15 to 30 bar.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Description
- The invention pertains to a method for the manufacture of (per)fluoroelastomers.
- Vulcanized (per)fluoroelastomers are materials with excellent heat-resistance and chemical-resistance characteristics, which are generally used in the manufacture of technical articles such as sealing parts, pipes, oil seals and O-rings in which the leaktightness, the mechanical properties and the resistance to substances such as mineral oils, hydraulic fluids, solvents or chemical agents of diverse nature must be ensured over a wide range of working temperatures, from low to high temperatures.
- For ensuring compliance with all these requirements, (per)fluoroelastomers are recognized to be endowed with very complex molecular structures, including controls in branching, in chain ends, in nature, distribution in the chain and type of cure-sites: these structural requirements are achieved following complex polymerization recipes and procedures, notably necessitating polymerizing required monomers in controlled pressure conditions, in controlled aqueous media, in the presence of several modifiers/adjuvants, and notably with controlled metering of all required ingredients.
- Hence, reactor vessels which are designed for ensuring such controlled polymerization reactions are pressure vessel equipped with multiple reagent inlets, multiple flow controls, wherein each of the parts is such to resist corrosion by HF/fluorides which may be formed during polymerization. Significant capital expenditures are hence needed for providing a plant layout, and more specifically, a reactor system enabling manufacture of (per)fluoroelastomers.
- The present invention hence addresses the problem of providing (per)fluoroelastomers of complex microstructure, providing a method which minimize the cost of equipment's at given througput.
WO2011073344 discloses a method for manufacturing fluoroelastomers. - The invention thus concerns a method for manufacturing a (per)fluoroelastomer [fluoroelastomer (A)] comprising the following steps:
- step (a): polymerizing in an aqueous emulsion in the presence of a surfactant by feeding in a first reactor comprising feeding the following ingredients:
- (i) a monomer mixture [mixture (M1)] comprising at least one fluoromonomer [monomer (F)]
- (ii) at least one iodinated and/or brominated chain-transfer agent(s),
- (iii) at least one branching agent possessing at least two ethylenic unsaturations; and
- (iv) at least one radical initiator,
so as to obtain a pre-polymer latex [latex (P)];
- step (b): recovering the said latex (P) from the said first reactor and storing the same in a storage tank; and
- step (c): feeding the said latex (P) from the said storage tank to a second reactor;
- step (d): polymerizing in the said second reactor at least a second monomer mixture [mixture (M2)] comprising at least one monomer (F) in the presence of a radical initiator, so as to obtain a final latex [latex (F)]; and
- step (e): recovering the fluoroelastomer (A) from the said latex (F).
- The Applicant has found that complex molecular structures can be obtained in this multistep process, which necessitate of a complex reactor vessel solely for the manufacture of a pre-polymer, by introducing all modifiers (chain transfer agent, branching agent...) in a pre-polymer latex, which can be stored indefinitively in appropriate conditions, and which can be further grown by restarting polymerization until achievement of target molecular weight/conversion in a second polymerization step in a basic pressure vessel, obtaining in this manner a material which has substantially same microstructure, and more importantly, substantially same performances/properties, of a fluoroelastomer which has been entirely manufactured in a complex reactor. For a given throughput, this solution is significantly beneficial for lowering equipment cost.
- For the purposes of this invention, the term "(per)fluoroelastomer" [fluoroelastomer (A)] is intended to designate a fluoropolymer resin serving as a base constituent for obtaining a true elastomer, said fluoropolymer resin comprising more than 10 % wt, preferably more than 30 % wt, of recurring units derived from at least one ethylenically unsaturated monomer comprising at least one fluorine atom (hereafter, (per)fluorinated monomer) and, optionally, recurring units derived from at least one ethylenically unsaturated monomer free from fluorine atom (hereafter, hydrogenated monomer) .
- True elastomers are defined by the ASTM, Special Technical Bulletin, No. 184 standard as materials capable of being stretched, at room temperature, to twice their intrinsic length and which, once they have been released after holding them under tension for 5 minutes, return to within 10 % of their initial length in the same time.
- Step (a) comprises polymerizing by feeding a first monomer mixture (M1), which comprises at least one fluoromonomer. Monomer mixtures comprising more than one fluoromonomer are generally employed in the method of the present invention.
- The expression "fluoromonomer" or monomer (F) is used herein according to its usual meaning, that is to say for designating an ethylenically unsaturated monomer comprising at least one fluorine atom.
- The monomer (F) is selected generally from the group consisting of:
- C2-C8 perfluoroolefins, such as tetrafluoroethylene (TFE), hexafluoropropene (HFP);
- C2-C8 hydrogen-containing fluoroolefins, such as vinyl fluoride, 1,2-difluoroethylene, vinylidene fluoride (VDF), trifluoroethylene (TrFE),, pentafluoropropylene, and hexafluoroisobutylene (HFIB);
- (per)fluoroalkylethylenes complying with formula CH2=CH-Rf0, in which R f0 is a C1-C6 (per)fluoroalkyl or a C1-C6 (per)fluorooxyalkyl having one or more ether groups ;
- chloro- and/or bromo- and/or iodo-C2-C6 fluoroolefins, like chlorotrifluoroethylene (CTFE);
- fluoroalkylvinylethers complying with formula CF2=CFORf1 in which Rf1 is a C1-C6 fluoro- or perfluoroalkyl, e.g. -CF3, -C2F5, -C3F7 ;
- hydrofluoroalkylvinylethers complying with formula CH2=CFORf1 in which Rf1 is a C1-C6 fluoro- or perfluoroalkyl, e.g. -CF3, -C2F5, -C3F7 ;
- fluoro-oxyalkylvinylethers complying with formula CF2=CFOX0, in which X0 is a C1-C12 oxyalkyl, or a C1-C12 (per)fluorooxyalkyl having one or more ether groups, like perfluoro-2-propoxy-propyl;
- fluoroalkyl-methoxy-vinylethers complying with formula CF2=CFOCF2OR f2 in which Rf2 is a C1-C6 fluoro- or perfluoroalkyl, e.g. -CF3, -C2F5, -C3F7 or a C1-C6 (per)fluorooxyalkyl having one or more ether groups, like -C2F5 -O-CF3;
- functional fluoro-alkylvinylethers complying with formula CF2=CFOY0, in which Y0 is a C1-C12 alkyl or (per)fluoroalkyl, or a C1-C12 oxyalkyl or a C1 -C12 (per)fluorooxyalkyl, said Y0 group comprising a carboxylic or sulfonic acid group, in its acid, acid halide or salt form;
- fluorodioxoles, of formula :
- The mixture (M1) may comprise at least one additional monomer different from monomer (F), that is to say a monomer free from fluorine, otherwise generally referred to as a hydrogenated monomer. Examples of hydrogenated monomers are notably C2-C8 non-fluorinated olefins (OI), in particular C2-C8 non-fluorinated alpha-olefins (OI), including ethylene, propylene, 1-butene; diene monomers; styrene monomers; with alpha-olefins, as above detailed, being typically used.
- For the manufacture of the fluoroelastomer (A), the mixture (M1) generally comprises a combination of at least two monomers (F), as above detailed.
- Particular combinations of monomers (F) which can be used as mixtures (M1) in the method of the present invention, in particular for manufacturing fluoroelastomers, are preferably:
- (1) vinylidene fluoride (VDF) containing monomers mixtures, in which VDF is mixed with at least one comonomer different from VDF and selected from the group consisting of :
- (a) C2-C8 perfluoroolefins , such as tetrafluoroethylene (TFE), hexafluoropropylene (HFP);
- (b) hydrogen-containing C2-C8 fluoro-olefins, such as vinyl fluoride (VF), trifluoroethylene (TrFE), hexafluoroisobutylene (HFIB), perfluoroalkyl ethylenes of formula CH2 = CH-Rf, wherein Rf is a C1-C6 perfluoroalkyl group;
- (c) C2-C8 chloro and/or bromo and/or iodo-fluoroolefins such as chlorotrifluoroethylene (CTFE);
- (d) (per)fluoroalkylvinylethers (PAVE) of formula CF2 = CFORf, wherein Rf is a C1-C6 (per)fluoroalkyl group, e.g. CF3, C2F5, C3F7;
- (e) (per)fluoro-oxy-alkylvinylethers of formula CF2 = CFOX, wherein X is a C1-C12 ((per)fluoro)-oxyalkyl comprising catenary oxygen atoms, e.g. the perfluoro-2-propoxypropyl group;
- (f) (per)fluorodioxoles having formula :
- (g) (per)fluoro-methoxy-vinylethers (MOVE, hereinafter) having formula:
CFX2 = CX2OCF2OR"f
wherein R"f is selected among C1-C6 (per)fluoroalkyls , linear or branched; C5-C6 cyclic (per)fluoroalkyls; and C2-C6 (per)fluorooxyalkyls, linear or branched, comprising from 1 to 3 catenary oxygen atoms, and X2 = F, H; preferably X2 is F and R"f is -CF2CF3 (MOVE1); -CF2CF2OCF3 (MOVE2); or -CF3 (MOVE3); - (h) C2-C8 non-fluorinated olefins (Ol), for example ethylene and propylene;
- (i) ethylenically unsaturated compounds comprising nitrile (-CN) groups, possibly (per)fluorinated; and
- (2) tetrafluoroethylene (TFE) containing monomers mixtures, in which TFE is mixed with at least one comonomer different from TFE and selected from the group consisting of monomers of classes (a), (c), (d), (e), (f), (g), and (i), as above detailed.
- The following mixtures (M1) can be advantageously used (in mol %) :
- (i) vinylidene fluoride (VDF) 35-85 %, hexafluoropropene (HFP) 10-45 %, tetrafluoroethylene (TFE) 0-30 %, perfluoroalkyl vinyl ethers (PAVE) 0-15 %;
- (ii) vinylidene fluoride (VDF) 50-80 %, perfluoroalkyl vinyl ethers (PAVE) 5-50 %, tetrafluoroethylene (TFE) 0-20 %;
- (iii) vinylidene fluoride (VDF) 20-30 %, C2-C8 non-fluorinated olefins (Ol) 10-30 %, hexafluoropropene (HFP) and/or perfluoroalkyl vinyl ethers (PAVE) 18-27 %, tetrafluoroethylene (TFE) 10-30 ;
- (iv) tetrafluoroethylene (TFE) 50-80 %, perfluoroalkyl vinyl ethers (PAVE) 20-50 %;
- (v) tetrafluoroethylene (TFE) 45-65 %, C2-C8 non-fluorinated olefins (Ol) 20-55 %, vinylidene fluoride 0-30 %;
- (vi) tetrafluoroethylene (TFE) 32-60 % mol %, C2-C8 non-fluorinated olefins (Ol) 10-40 %, perfluoroalkyl vinyl ethers (PAVE) 20-40 %, fluorovinyl ethers (MOVE) 0-30 ;
- (vii) tetrafluoroethylene (TFE) 33-75 %, perfluoroalkyl vinyl ethers (PAVE) 15-45 %, vinylidene fluoride (VDF) 5-30 %, hexafluoropropene HFP 0-30 ;
- (viii) vinylidene fluoride (VDF) 35-85 %, fluorovinyl ethers (MOVE) 5-40 %, perfluoroalkyl vinyl ethers (PAVE) 0-30 %, tetrafluoroethylene (TFE) 0-40 %, hexafluoropropene (HFP) 0-30 ;
- (ix) tetrafluoroethylene (TFE) 20-70 %, fluorovinyl ethers (MOVE) 30-80 %, perfluoroalkyl vinyl ethers (PAVE) 0-50 %.
- In step (a), monomers mixture (M1) is generally fed continuously, i.e. in a constant manner during the polymerization until reaching the targeted converted/polymerized amount of the said mixture (M1), so as to maintain a constant pressure in the rector.
- As said, step (a) comprises polymerizing the mixture (M1) in an aqueous emulsion in the presence of a surfactant.
- The surfactant used in the method of the invention is generally a fluorinated surfactant. More specifically, fluorinated surfactant [surfactant (FS)] of formula :
Rf§(X-)j(M+)j
wherein Rf§ is a C3-C30 (per)fluoroalkyl chain, which can possibly be linear, cyclic of branched, a C3-C30 (per)fluoro(poly)oxyalkylenic chain, which can possibly be linear, cyclic of branched, X- is -COO-, -PO3 - or -SO3 -, M+ is selected from H+, NH4 +, an alkaline metal ion and j can be 1 or 2, can be used. - As non limitative example of surfactants (FS), mention may be made of ammonium and/or sodium perfluorocarboxylates, and/or (per)fluoropolyoxyalkylenes having one or more carboxylic end groups.
- Other examples of fluorinated surfactants are (per)fluorooxyalkylenic surfactants described in
US 2007015864 (3M INNOVATIVE PROPERTIES) 1/8/2007,US 2007015865 (3M INNOVATIVE PROPERTIES CO) 1/18/2007,US 2007015866 (3M INNOVATIVE PROPERTIES CO) 1/18/2007,US 2007025902 (3M INNOVATIVE PROPERTIES CO) 2/1/2007. - More preferably, the surfactant (FS) selected from the group consisting of:
- CF3(CF2)n1COOM', in which n1 is an integer ranging from 4 to 10, preferably from 5 to 7, and more preferably being equal to 6 ; M' represents H, NH4, Na, Li or K, preferably NH4 ;
- T(C3F6O)n0(CFXO)m0CF2COOM" [formula (FS1)], in which T represents Cl or a perfluoroalkoxyde group of formula CkF2k+1O with k is an integer from 1 to 3, one F atom being optionally substituted by a Cl atom ; n0 is an integer ranging from 1 to 6 ; m0 is an integer ranging from 0 to 6 ; M" represents H, NH4, Na, Li or K ; X represents F or CF3 ;
- F-(CF2-CF2)n2-CH2-CH2-RO3M'", in which R is P or S, preferably S, M'" represents H, NH4, Na, Li or K, preferably H ; n2 is an integer ranging from 2 to 5, preferably n2=3 ;
- A-Rf-B bifunctional fluorinated surfactants, in which A and B, equal to or different from each other, are -(O)pCFX-COOM* ; M* represents H, NH4, Na, Li or K, preferably M* represents NH4 ; X = F or CF3 ; p is an integer equal to 0 or 1; Rf is a linear or branched perfluoroalkyl chain, or a (per)fluoropolyether chain such that the number average molecular weight of A-Rf-B is in the range 300 to 3,000, preferably from 500 to 2,000;
- R'f-O-(CF2)r-O-L-COOM', wherein R'f is a linear or branched perfluoroalkyl chain, optionally comprising catenary oxygen atoms, M' is H, NH4, Na, Li or K, preferably M' represents NH4 ; r is 1 to 3; L is a bivalent fluorinated bridging group, preferably -CF2CF2- or -CFX-, X = F or CF3 ;
- R"f-(OCF2)u-O-(CF2)v-COOM", wherein R"f is a linear or branched perfluoroalkyl chain, optionally comprising catenary oxygen atoms, M" is H, NH4, Na, Li or K, preferably M" represents NH4 ; u and v are integers from 1 to 3;
- R"'f-(O)t-CHQ-L-COOM'", wherein R'"f is a linear or branched perfluoroalkyl chain, optionally comprising catenary oxygen atoms, Q = F or CF3, t is 0 or 1, M'" is H, NH4, Na, Li or K, preferably M'" is NH4; L is a bivalent fluorinated bridging group, preferably -CF2CF2- or -CFX-, X = F or CF3 ;
- cyclic fluorocompounds of the following formula (I):
WO 2010/003929 - and mixtures thereof.
- In certain particularly preferred embodiments of the method of the invention, the aqueous emulsion of step (a) further advantageously includes an additional non-functional fluorinated fluid (i.e. a non-reactive fluoro-containing fluid).
- This technique is particularly advantageous as the addition of certain particular non-functional fluorinated fluid(s) [fluid (F)] can provide for an emulsion comprising dispersed droplets of said fluid having an average size of preferably less than 50 nm, more preferably of less than 40 nm, even more preferably of less than 30 nm. Said nanometric size of droplets is particularly advantageous in that it ensure higher polymerization rates and small particles of pre-polymer in the latex (P).
- Said non-functional fluorinated fluid which can be used according to this embodiment are preferably (per)fluoropolyethers comprising recurring units (R1), said recurring units comprising at least one ether linkage in the main chain and at least one fluorine atom (fluoropolyoxyalkene chain), and possessing fluoro(halo)alkyl end groups.
- Preferably the recurring units R1 of the (per)fluoropolyether are selected from the group consisting of :
- (I) -CFX-O-, wherein X is -F or -CF3; and
- (II) -CF2-CFX-O-, wherein X is -F or -CF3; and
- (III) -CF2-CF2-CF2-O-; and
- (IV) -CF2-CF2-CF2-CF2-O-; and
- (V) -(CF2)j-CFZ-O- wherein j is an integer chosen from 0 and 1 and Z is a fluoropolyoxyalkene chain comprising from 1 to 10 recurring units chosen among the classes (I) to (IV) here above; and mixtures thereof.
- Should the (per)fluoropolyether comprise recurring units R1 of different types, advantageously said recurring units are randomly distributed along the fluoropolyoxyalkene chain.
- Preferably the (per)fluoropolyether is a compound complying with formula (I-p) here below :
T'1-(CFX)p-O-Rf-(CFX)p'-T'2 (I-p)
wherein : - each of X is independently F or CF3;
- p and p', equal or different each other, are integers from 0 to 3;
- Rf is a fluoropolyoxyalkene chain comprising repeating units R°, said repeating units being chosen among the group consisting of :
- (i) -CFXO-, wherein X is F or CF3,
- (ii) -CF2CFXO-, wherein X is F or CF3,
- (iii) -CF2CF2CF2O-,
- (iv) -CF2CF2CF2CF2O-,
- (v) -(CF2)j-CFZ-O- wherein j is an integer chosen from 0 and 1 and Z is a group of general formula -ORf'T3, wherein Rf' is a fluoropolyoxyalkene chain comprising a number of repeating units from 0 to 10, said recurring units being chosen among the followings : -CFXO- , -CF2CFXO-, -CF2CF2 CF2O-, -CF2CF2CF2CF2O-, with each of each of X being independently F or CF3; and T3 is a C1 - C3 perfluoroalkyl group, and mixtures thereof;
- T'1 and T'2, the same or different each other, are H, halogen atoms, C1 - C3 fluoroalkyl groups, optionally comprising one or more H or halogen atoms different from fluorine.
- Particularly preferred embodiments are those wherein the aqueous emulsion of step (a) comprises at least one surfactant (FS), as above detailed, and at least one fluid (F), as above detailed. More specifically, embodiments which are preferred because of their ability to provide for improved reaction rate and for a latex (P) comprising particles of nanometric size are those wherein the aqueous emulsion of step (a) includes:
- at least one surfactant (FS) of formula (FS1): T(C3F6O)n0(CFXO)m0CF2COOM", as above detailed; and
- at least one fluid (F) of formula (I-p) T1-(CFX)p-O-Rf-(CFX)p'-T2 (I-p) as above detailed.
- As mentioned above, the first polymerizing step (step (a)) to provide the latex (P) notably comprises feeding at least a chain transfer agent, as above detailed.
- Typically, the iodinated and/or brominated chain-transfer agent(s) are those of formula Rf(I)x(Br)y, in which Rf is a (per)fluoroalkyl or a (per)fluorochloroalkyl containing from 1 to 8 carbon atoms, while x and y are integers between 0 and 2, with 1 ≤ x+y ≤ 2 (see, for example, patents
US 4243770 (DAIKIN IND LTD) 1/6/1981 andUS 4943622 (NIPPON MEKTRON KK) 7/24/1990). - A particularly effective class of transfer agents is represented by alpha, omega-diiodofluoroalkanes having 1 to 8 carbon atoms, and more specifically, compounds of formula I-R"f-I, wherein R"f is a divalent perfluoroalkylene group or containing from 1 to 8 carbon atoms.
- The amount of iodinated and/or brominated chain-transfer agent(s) fed during Step (a) is adjusted in order to tune the molecular weight target of the pre-polymer and the amount of iodinated and/or brominated cure sites comprised therein. Generally, the said amount is of advantageously at least 1.0 weight part per 100 weight parts of pre-polymer manufactured in Step (a) and/or is of advantageously at most 4.0 weight parts per 100 weight parts of pre-polymer manufactured in Step (a).
- Step (a) further notably comprises feeding at least one branching agent possessing at least two ethylenic unsaturations.
- Generally, the branching agent is fed progressively during the polymerization; it may be fed continuously or step-wise, i.e. by addition of pre-defined amounts at each pre-defined progress in conversion of monomer mixture (M1).
- This branching agent is generally a bis-olefin [bis-olefin (OF)] having general formula :
EP 661304 A - The bis-olefin (OF) is preferably selected from the group consisting of those complying with formulae (OF-1), (OF-2) and (OF-3) :
- (OF-1)
- (OF-2)
- (OF-3)
- A particularly preferred bis-olefin (OF) is a bis-olefin (OF-1), as above detailed, wherein all of R1, R2, R3, R4 are H, and wherein j is an integer from 2 to 8.
- The amount of branching agent possessing at least two ethylenic unsaturations fed in Step (a) is generally of at most 1 % wt, preferably at most 0.5 % wt, more preferably at most 0.3 % wt, with respect to the total weight of pre-polymer obtained in Step (a). Lower boundary is not particularly critical and is generally adjusted in order to ensure a sufficiently branched structure to provide more than two iodinated and/or brominated end chain per molecule of pre-polymer.
- Step (a) further comprises feeding at least one radical initiator. The radical initiator includes any of the initiators known for initiating a free radical polymerization of fluorinated monomers. Suitable initiators include peroxides and azo compounds and redox based initiators. Specific examples of peroxide initiators include hydrogen peroxide, sodium or barium peroxide, diacylperoxides such as diacetylperoxide, disuccinyl peroxide, dipropionylperoxide, dibutyrylperoxide, dibenzoylperoxide, benzoylacetylperoxide, diglutaric acid peroxide and dilaurylperoxide, and further per-acids and salts thereof such as e.g. ammonium, sodium or potassium salts. Examples of per-acids include peracetic acid. Esters of the peracid can be used as well and examples thereof include tert.-butylperoxyacetate and tert.-butylperoxypivalate. Examples of inorganic include for example ammonium-alkali- or earth alkali salts of persulfates, permanganic or manganic acid or manganic acids. A persulfate initiator, e.g. ammonium persulfate (APS), can be used on its own or may be used in combination with a reducing agent. Suitable reducing agents include bisulfites such as for example ammonium bisulfite or sodium metabisulfite, thiosulfates such as for example ammonium, potassium or sodium thiosulfate, hydrazines, azodicarboxylates and azodicarboxyldiamide (ADA). Further reducing agents that may be used include sodium formaldehyde sulfoxylate (Rongalit) or fluoroalkyl sulfinates, e.g. as disclosed in
US 5285002 . The reducing agent typically reduces the half-life time of the persulfate initiator. Additionally, a metal salt catalyst such as for example copper, iron or silver salts may be added. - The initiator can be metered in step (a) in one shot at the onset of the polymerization, or can be added continuously or step-wise; embodiments wherein the initiator is a persulfate (e.g. ammonium persulfate) generally provide for the said persulfate to be fed in its entirety at the onset of the polymerization.
- The aqueous emulsion polymerization of step (a) may be carried out at a temperature between 10 to 150°C, preferably 20°C to 110°C, preferably of 50 to 90°C and the pressure is typically between 2 and 30 bar, in particular 15 to 30 bar.
- As mentioned above, Step (a) comprises feeding (i) mixture (M1), (ii) iodinated and/or brominated chain-transfer agent(s),(iii) branching agent possessing ; and (iv) radical initiator; generally, all these ingredients are fed to the first reactor each from a separated inlet metering port.
- Step (a) provides for a pre-polymer latex [latex (P)] which comprises hence particles of the so polymerized pre-polymer dispersed in an aqueous emulsion comprising the surfactant, as above detailed.
- The said so polymerized pre-polymer is generally a low molecular weight fluoropolymer having a branched structure and comprising iodinated and/or brominated chain ends, because of the use of branching agent and chain transfer agent, as above detailed.
- The pre-polymer obtained from Step (a) generally has a number-averaged molecular weight of advantageously at least 1000, preferably at least 5000, more preferably at least 10000 and/or advantageously at most 40000, preferably at most 30000, more preferably at most 20000.
-
-
- The pre-polymer obtained from Step (a) generally has a PDI of advantageously at least 1.2, preferably at least 1.3 and more preferably at least 1.5 and/or of advantageously at most 3.5, preferably at most 3.0 and more preferably at most 2.8.
- The pre-polymer obtained from Step (a) generally has a iodine and/or bromine content of advantageously at least 0.5 %, preferably at least 1.0 % wt, more preferably at least 1.2 % wt, with respect to the weight of the pre-polymer and/or of advantageously at most 3.0 %, preferably at most 2.5 % wt, more preferably at most 2.0 % wt, with respect to the weight of the pre-polymer.
- In step (b), the said latex (P) is recovered from the said first reactor; this generally implies cooling the same to room temperature in the said first reactor, and venting off from the same residual amounts of gaseous unreacted monomers. Any storage tank having suitable corrosion resistance can be used. Storage time is not particularly limited; storage tank comprising latex (P) can be moved within different locations so as to enable transfer of the latex (P) from different sections of same plant, or from a plant to another plant. Generally, a storage time of at least 1 hour, preferably of at least 1 day lapses before step (c), as below detailed.
- While use is made of the expression "storage tank" in the singular, the present invention encompasses embodiment's wherein the latex (P) is stored in a plurality of storage tanks, or is moved, during storage time, from a first storage tank (or from a first plurality of storage tanks) to a second storage tank (or a second plurality of storage tanks), and/or to any further storage tank (or plurality thereof).
- In step (c), the said latex (P) is fed from the said storage tank to a second reactor.
- The second reactor is generally different from the first reactor, although the process may be carried out using reactors of same type and/or feeding back to first reactor.
- Generally, nevertheless, the second step is carried out in a second reactor which is different from the first reactor. In particular, the second reactor, while equipped for the introduction of the latex (P), of radical initiator and of monomer mixture (M2), is not equipped for metering branching agent and/or for metering iodinated and/or brominated chain transfer agent.
- In step (d) a second monomer mixture [mixture (M2)] comprising at least one monomer (F) is polymerized in the presence of a radical initiator, so as to obtain final latex [latex (F)], from which fluoroelastomer (A) is recovered.
- The Applicant has surprisingly found that, despite interruption of polymerization and storage of pre-polymer, the reaction can be re-initiated for re-starting chain growth. Further, despite refraining from feeding iodinated and/or brominated chain transfer agent and branching agent in second reactor, it has been demonstrated that it is possible matching with appropriate recipes of pre-polymer and second polymerizations step, properties and structure of (per)fluoroelastomers of similar monomeric compositions, manufactured in one step.
- The features of mixture (M2) are those described herein above for mixture (M1). The mixture (M2) may be equal (both in components and related concentrations) to mixture (M1) as above detailed, or may differ from mixture (M1) in relation to the components thereof and/or their respective amounts.
- The radical initiator used in step (d) possesses the same features as described above in relation to the radical initiator used in step (a). Generally same initiator can be used in both steps, without this being mandatory.
- Similarly as per step (a), the aqueous emulsion polymerization of step (d) may be carried out at a temperature between 10 to 150°C, preferably 20°C to 110°C, preferably of 50 to 90°C and the pressure is typically between 2 and 30 bar, in particular 15 to 30 bar.
- Similarly as in step (a), monomers mixture (M2) can be continuously fed in step (d) so as to maintain a constant pressure.
- Typically, in step (d), no branching agent is added.
- Similarly, embodiments wherein in step (d) no iodinated and/or brominated chain transfer agent is added are preferred.
- Yet, more preferably, no branching agent and no iodinated and/or brominated chain transfer agent are added in step (d).
- The amount of mixture (M2) converted in Step (d) is not particularly limited; generally, the weight ratio between the amount of mixture (M2) converted in Step (d) (or in other terms, the chain growth/weight gain of fluoroelastomer (A) in latex (F)) and the amount of pre-polymer fed to the second reactor as latex (P) is generally of advantageously at least 2, preferably at least 3, more preferably at least 5 weight parts of mixture (M2) converted per weight part of pre-polymer, and/or advantageously at most 20, preferably at most 15 of mixture (M2) converted per weight part of pre-polymer.
- In other terms, the weight fraction of fluoroelastomer (A) produced in Step (a) (or otherwise said, the weight fraction of pre-polymer) is generally less than 33 % weight, preferably less than 25 % weight, more preferably less than 18 % weight, with respect to the total weight of fluoroelastomer (A).
- By adjusting in this manner the weight ratio between pre-polymer manufactured by controlled polymerization technique in complex reactor comprising multiple feeding ports and the overall weight of fluoroelastomer (A) is advantageously possible to achieve high throughput of the dual reactors manufacturing train, while minimizing capital expenditure, as most of the material produced is obtained in a basic reactor tank, with simplified and cheaper layout.
- In Step (e), the fluoroelastomer (A) can be recovered from the latex (F) using standard techniques. Coagulation technique which can be used includes coagulation by addition of electrolytes, freeze-taw coagulation, and coagulation under high shear. Generally, the fluoroelastomer is separated from the aqueous phase by any of filtration, decantation, centrifugation, and other traditional solid/liquid separation techniques.
- Generally, recovery further involves drying the fluoroelastomer (A) for removal of residual moisture.
- The fluoroelastomer (A) possesses a molecular weight higher that the pre-polymer obtained from Step (A).
- More specifically, fluoroelastomer (A) possesses a number-averaged molecular weight of advantageously at least 40000, preferably at least 50000, more preferably at least 60000, even more preferably at least 80000; and/or of advantageously at most 150000, preferably at most 130000, more preferably at most 120000.
- This chain growth may be or may be not associated to a broadening in the PDI, which will ranges from at least 1.5 to at most 9.0; nevertheless, chain growth can be suitably ensured to provide for fluoroelastomer (A) wherein the PDI is maintained at values of advantageously at most 3.5, preferably at most 3.0 and more preferably at most 2.8.
- Because the chain growth in Step (d) is generally practiced in the absence of added iodinated and/or brominated chain transfer agent, the iodine and/or bromine content of the fluoroelastomer (A) is consequently decreased with respect to the iodine and/or bromine content of the pre-polymer.
- Generally, hence, the iodine and/or bromine content is reduced consistently to the chain growth/weight gain achieved in Step (d). In other terms, the iodine and/or bromine content is reduced by a factor equal to the weight of fluoroelastomer (A) over the weight of pre-polymer obtained from Step (a).
- The fluoroelastomer (A) obtained from Step (d) generally has a iodine and/or bromine content of advantageously at least 0.05 %, preferably at least 0.1 % wt, more preferably at least 0.15 % wt, with respect to the weight of the fluoroelastomer (A) and/or of advantageously at most 1.5 %, preferably at most 1.2 % wt, more preferably at most 1.0 % wt, with respect to the weight of the fluoroelastomer (A).
- Similarly, because the chain growth in Step (d) is generally practiced in the absence of added branching agent, the branching agent content in the fluoroelastomer (A) is consequently decreased with respect to the branching agent content of the pre-polymer.
- Generally, hence, the branching agent content is reduced consistently to the chain growth/weight gain achieved in Step (d). In other terms, the branching agent content is reduced by a factor equal to the weight of fluoroelastomer (A) over the weight of pre-polymer obtained from Step (a).
- The fluoroelastomer (A) so obtained can be shaped into final parts and cross-linked using traditional curing and molding techniques.
- Generally, the fluoroelastomer (A) is suitable for peroxide curing, i.e. is suitable for being cross-linked in the presence of a peroxide and a polyunsaturated cross-linking agent (e.g. triallylisocyanurate).
- In a 10 liters reactor equipped with a mechanical stirrer operating at 545 rpm, 5.4 l of demineralized water and 175 ml of a microemulsion, previously obtained by mixing 38.5 ml of a perfluoropolyoxyalkylene having acidic end groups of formula: CF2ClO(CF2-CF(CF3)O)n(CF2O)mCF 2COOH, wherein n/m = 10, having average molecular weight of 600, 24.6 ml of a 30 % v/v NH4OH aqueous solution, 87.7 ml of demineralized water and 24.2 ml of GALDEN® D02 perfluoropolyether of formula: CF3O(CF2 CF(CF3)O)n(CF2O)mCF3 with n/m = 20, having average molecular weight of 450, were introduced.
- The reactor was heated and maintained at a set-point temperature of 80°C; a mixture of vinylidene fluoride (VDF) (78.5% moles) and hexafluoropropene (HFP) (21.5%moles) was then added to reach a final pressure of 25 bar. Then 102 g of 1,4-diiodioperflurobutane (C4F8I2) as chain transfer agent were introduced, and 2.0 g of ammonium persulfate (APS) as initiator were introduced. Pressure was maintained at set-point of 25 bar by continuous feeding of a gaseous mixture of vinylidene fluoride (VDF) (78.5% moles) and hexafluoropropene (HFP) (21.5%moles) up to a total of 3150 g. Simultaneously, 6.8 g of CH2=CH-(CF2)6-CH=CH2 were fed to the reactor in a controlled manner following the consumption of monomers, by 20 identical step-wise additions at the onset of the polymerization and at each 5% increase in target conversion. Then the reactor was cooled, vented and the latex recovered and stored in a tank for duration of more than 1 day. A specimen of this pre-polymer was taken for analytical/mechanical determinations
- In a 21 liters reactor equipped with a magnetic stirrer operating at 60 rpm, 12.9 l of demineralized water and 1776 g of latex produced in Example 1, having a solids content of about 36 % wt, were introduced.
- The reactor was heated and maintained at a set-point temperature of 80°C; a mixture of vinylidene fluoride (VDF) (78.5% moles) and hexafluoropropene (HFP) (21.5%moles) was then added to reach a final pressure of 25 bar. 2.6 g of ammonium persulfate (APS) as initiator were then introduced. Pressure was maintained at set-point of 25 bar by continuous feeding of a gaseous mixture of vinylidene fluoride (VDF) (78.5% moles) and hexafluoropropene (HFP) (21.5%moles) up to a total of 4170 g. Then the reactor was cooled, vented and the latex recovered. The latex was coagulated by addition of aluminum sulphate; coagulated fluoroelastomer was separated from the aqueous phase, washed with demineralized water and dried in a convection oven at 90°C for 16 hours.
- Raw polymer characterization data are reported in Table 1 and 2.
- In a 10 liters reactor equipped with a mechanical stirrer operating at 545 rpm, 5.4 l of demineralized water and 40 ml of a microemulsion, previously obtained by mixing 8.8 ml of a perfluoropolyoxyalkylene having acidic end groups of formula: CF2ClO(CF2-CF(CF3)O)n(CF2O)mCF2COOH, wherein n/m = 10, having average molecular weight of 600, 5.6 ml of a 30 % v/v NH4OH aqueous solution, 20.0 ml of demineralized water and 5.5 ml of GALDEN® D02 perfluoropolyether of formula: CF3O(CF2CF(CF3)O)n(CF2 O)mCF3 with n/m = 20, having average molecular weight of 450, were introduced.
- The reactor was heated and maintained at a set-point temperature of 80°C; a mixture of vinylidene fluoride (VDF) (78.5% moles) and hexafluoropropene (HFP) (21.5%moles) was then added to reach a final pressure of 25 bar. Then 13.5 g of 1,4-diiodioperflurobutane (C4F8I2) as chain transfer agent were introduced, and 2.0 g of ammonium persulfate (APS) as initiator were introduced. Pressure was maintained at set-point of 25 bar by continuous feeding of a gaseous mixture of vinylidene fluoride (VDF) (78.5% moles) and hexafluoropropene (HFP) (21.5%moles) up to a total of 3150 g. Moreover, 1.2 g of CH2=CH-(CF2)6-CH=CH2, fed in 20 equivalent portions, at the onset of the polymerization and then each 5% increase in conversion, were introduced. Then the reactor was cooled, vented and the latex recovered. The latex was treated with aluminum sulphate, separated from the aqueous phase, washed with demineralized water and dried in a convection oven at 90°C for 16 hours. Raw polymer characterization data are reported in Table 1 and 2.
- Fluoroelastomers were characterized by GPC using instrumentation and conditions as detailed in the Table 1 below, and relevant parameters were determined based on polystyrene standards, taking into account polymer/solvent Mark-Houwink parameters for relevant standard and for fluoroelastomers.
Table 6 Mobile phase Tetrahydrofuran (THF) Flow rate 1.0 mL/min Temperature 35 °C Injection system Autosampler mod. Waters 717plus Injection volume 200 mL Pump Waters mod. 515 HPLC Column set Precolumn + 4 Waters Styragel HR: 106, 105, 104 and 103 Å Detector Waters Refractive Index mod. 2414 Software for data acquisition and processing Waters Empower 3 Table 1 Example Reaction time Composition % mol Molecular weight distribution N° min VDF HFP Mn PDI 1a 148 78.9 21.1 12734 2.1 1b 107 78.9 21.1 91966 2.8 2C 122 79.0 21.0 98997 2.8 Table 2 Ex. -I [%g/gpol] Other chain ends [mmol/kg of polymer] N° -CF2H -CF2CH3 -CF2CH2OH 1a 1.55 20 4 1 1b 0.20 29 10 1 2C 0.21 31 10 1 - Fluoroelastomer of Example 1 (final fluoroelastomer from Ex.1b) and comparative fluoroelastomer of Example 2 were pre-compounded using a Brabender mixer with the crosslinking ingredients as listed in the table:
Table 5 Compound recipe [phr] Polymer 100 Drimix® TAIC 75 - Finco(*) 3.0 Luperox® 101XL 45 peroxide - Atofina (**) 1.5 VULCAN 1391 - Cabot(***) 10.0 ZnO 3.0 (*): TAIC: Drimix® TAIC 75: triallylisocyanurate 75 % wt dispersion in silica; (**) Luperox 101 XL 45 peroxide is a 45 % dispersion of 2,5 Dimethyl 2,5 Di(tert-butylperoxyl) hexane in calcium carbonate; (***) Carbon Black - Cure behaviour was determined according to ASTM D-6601, at a temperature of 170°C for 12 minutes, by determining the following properties:
- ML = Minimum torque (lb*in)
- MH = Maximum torque (lb*in)
- t'90 = Time to 90% state of cure (sec)
- Mooney viscosity (MU) of raw rubbers has been determined according to ASTM D1646-07 as ML (1+10) at 121°C.
- Plaques and O-rings (size class = 214) have been cured in a pressed mould for 10 minutes at 170°C and then post-treated in an air circulating oven ((1+4)h at 230°C)
- The tensile properties have been determined on specimens punched out from the plaques, according to the DIN 53504 Standard.
- M100 is the modulus in MPa at an elongation of 100 %;
- T.S. is the tensile strength in MPa;
- E.B. is the elongation at break in %.
- The Shore A hardness (3") (HDS) has been determined on 3 pieces of plaque piled according to the ASTM D 2240 method.
Table 6 Example MU ML [lb*in] MH [lb*in] ΔM [lb*in] t90 [sec] 1 44 0.9 13.1 12.2 305 2C 48 0.9 12.7 11.8 293 Table 7 Example T.S. [MPa] E.B. [%] M100 [Mpa] HDS [Shore A] 1 32.3 503 2.1 63 2C 31.8 460 2.2 63
Claims (15)
- A method for manufacturing a (per)fluoroelastomer [fluoroelastomer (A)] comprising the following steps:step (a): polymerizing in an aqueous emulsion in the presence of a surfactant by feeding in a first reactor comprising feeding the following ingredients:(i) a monomer mixture [mixture (M1)] comprising at least one fluoromonomer [monomer (F)](ii) at least one iodinated and/or brominated chain-transfer agent(s),(iii) at least one branching agent possessing at least two ethylenic unsaturations; and(iv) at least one radical initiator,so as to obtain a pre-polymer latex [latex (P)] ;step (b): recovering the said latex (P) from the said first reactor and storing the same in a storage tank; andstep (c): feeding the said latex (P) from the said storage tank to a second reactor;step (d): polymerizing in the said second reactor at least a second monomer mixture [mixture (M2)] comprising at least one monomer (F) in the presence of a radical initiator, so as to obtain a final latex [latex (F)] ; andstep (e): recovering the fluoroelastomer (A) from the said latex (F).
- The method of Claim 1, wherein monomer mixture (M1) comprises at least one fluoromonomer selected from the group consisting of:- C2-C8 perfluoroolefins, such as tetrafluoroethylene (TFE), hexafluoropropene (HFP);- C2-C8 hydrogen-containing fluoroolefins, such as vinyl fluoride, 1,2-difluoroethylene, vinylidene fluoride (VDF), trifluoroethylene (TrFE), , pentafluoropropylene, and hexafluoroisobutylene (HFIB);- (per)fluoroalkylethylenes complying with formula CH2=CH-Rf0, in which Rf0 is a C1-C6 (per)fluoroalkyl or a C1-C6 (per)fluorooxyalkyl having one or more ether groups ;- chloro- and/or bromo- and/or iodo-C2-C6 fluoroolefins, like chlorotrifluoroethylene (CTFE);- fluoroalkylvinylethers complying with formula CF2=CFORf1 in which Rf1 is a C 1-C6 fluoro- or perfluoroalkyl, e.g. -CF3, -C2F5, -C3F7 ;- hydrofluoroalkylvinylethers complying with formula CH2=CFORf1 in which Rf1 is a C1-C6 fluoro- or perfluoroalkyl, e.g. -CF3, -C2F5, -C3F7 ;- fluoro-oxyalkylvinylethers complying with formula CF2=CFOX0, in which X0 is a C1-C12 oxyalkyl, or a C1-C12 (per)fluorooxyalkyl having one or more ether groups, like perfluoro-2-propoxy-propyl;- fluoroalkyl-methoxy-vinylethers complying with formula CF2=CFOCF2ORf2 in which Rf2 is a C1-C6 fluoro- or perfluoroalkyl, e.g. -CF3, -C2F5, -C3F7 or a C1-C 6 (per)fluorooxyalkyl having one or more ether groups, like -C2F5-O-CF3;- functional fluoro-alkylvinylethers complying with formula CF2=CFOY0, in which Y0 is a C1-C12 alkyl or (per)fluoroalkyl, or a C1-C12 oxyalkyl or a C1-C12 (per)fluorooxyalkyl, said Y0 group comprising a carboxylic or sulfonic acid group, in its acid, acid halide or salt form;
- The method of Claim 2, wherein mixture (M1) is selected from the group consisting of:(1) vinylidene fluoride (VDF) containing monomers mixtures, in which VDF is mixed with at least one comonomer different from VDF and selected from the group consisting of:(a) C2-C8 perfluoroolefins , such as tetrafluoroethylene (TFE), hexafluoropropylene (HFP);(b) hydrogen-containing C2-C8 fluoro-olefins, such as vinyl fluoride (VF), trifluoroethylene (TrFE), hexafluoroisobutylene (HFIB), perfluoroalkyl ethylenes of formula CH2 = CH-Rf, wherein Rf is a C1-C6 perfluoroalkyl group;(c) C2-C8 chloro and/or bromo and/or iodo-fluoroolefins such as chlorotrifluoroethylene (CTFE);(d) (per)fluoroalkylvinylethers (PAVE) of formula CF2 = CFORf, wherein Rf is a C1-C6 (per)fluoroalkyl group, e.g. CF3, C2F5, C3F7;(e) (per)fluoro-oxy-alkylvinylethers of formula CF2 = CFOX, wherein X is a C1 -C12 ((per)fluoro)-oxyalkyl comprising catenary oxygen atoms, e.g. the perfluoro-2-propoxypropyl group;(f) (per)fluorodioxoles having formula :(g) (per)fluoro-methoxy-vinylethers (MOVE, hereinafter) having formula:
CFX2 = CX2OCF2OR"f
wherein R"f is selected among C1-C6 (per)fluoroalkyls , linear or branched; C5 -C6 cyclic (per)fluoroalkyls; and C2-C6 (per)fluorooxyalkyls, linear or branched, comprising from 1 to 3 catenary oxygen atoms, and X2 = F, H; preferably X2 is F and R"f is -CF2CF3 (MOVE1); -CF2CF2OCF3 (MOVE2); or -CF3 (MOVE3);(h) C2-C8 non-fluorinated olefins (Ol), for example ethylene and propylene;(i) ethylenically unsaturated compounds comprising nitrile (-CN) groups, possibly (per)fluorinated; and(2) tetrafluoroethylene (TFE) containing monomers mixtures, in which TFE is mixed with at least one comonomer different from TFE and selected from the group consisting of monomers of classes (a), (c), (d), (e), (f), (g), and (i), as above detailed. - The method according to anyone of the preceding claims, wherein step (a) comprises polymerizing the mixture (M1) in an aqueous emulsion in the presence of a fluorinated surfactant [surfactant (FS)] selected from the group consisting of:- CF3(CF2)n1COOM', in which n1 is an integer ranging from 4 to 10, preferably from 5 to 7, and more preferably being equal to 6 ; M' represents H, NH4, Na, Li or K, preferably NH4 ;- T(C3F6O)n0(CFXO)m0CF2COOM" [formula (FS1)], in which T represents Cl or a perfluoroalkoxyde group of formula CkF2k+1O with k is an integer from 1 to 3, one F atom being optionally substituted by a Cl atom ; n0 is an integer ranging from 1 to 6 ; m0 is an integer ranging from 0 to 6 ; M" represents H, NH 4, Na, Li or K ; X represents F or CF3 ;- F-(CF2-CF2)n2-CH2-CH2-RO3M"', in which R is P or S, preferably S, M'" represents H, NH4, Na, Li or K, preferably H ; n2 is an integer ranging from 2 to 5, preferably n2=3 ;- A-Rf-B bifunctional fluorinated surfactants, in which A and B, equal to or different from each other, are -(O)pCFX-COOM* ; M* represents H, NH4, Na, Li or K, preferably M* represents NH4 ; X = F or CF3 ; p is an integer equal to 0 or 1; Rf is a linear or branched perfluoroalkyl chain, or a (per)fluoropolyether chain such that the number average molecular weight of A-Rf-B is in the range 300 to 3,000, preferably from 500 to 2,000;- R'f-O-(CF2)r-O-L-COOM', wherein R'f is a linear or branched perfluoroalkyl chain, optionally comprising catenary oxygen atoms, M' is H, NH4, Na, Li or K, preferably M' represents NH4 ; r is 1 to 3; L is a bivalent fluorinated bridging group, preferably -CF2CF2- or -CFX-, X = F or CF3 ;- R"f-(OCF2)u-O-(CF2)v-COOM", wherein R"f is a linear or branched perfluoroalkyl chain, optionally comprising catenary oxygen atoms, M" is H, NH 4, Na, Li or K, preferably M" represents NH4 ; u and v are integers from 1 to 3;- R"'f-(O)t-CHQ-L-COOM)'", wherein R"'f is a linear or branched perfluoroalkyl chain, optionally comprising catenary oxygen atoms, Q = F or CF3, t is 0 or 1, M'" is H, NH4, Na, Li or K, preferably M'" is NH4; L is a bivalent fluorinated bridging group, preferably -CF2CF2- or -CFX-, X = F or CF3 ;- cyclic fluorocompounds of the following formula (I):- and mixtures thereof.
- The method of Claim 4, wherein the aqueous emulsion of step (a) further includes an additional non-functional fluorinated fluid selected from (per)fluoropolyethers complying with formula (I-p) here below :
T'1-(CFX)p-O-Rf-(CFX)p'-T'2 (I-p)
wherein :- each of X is independently F or CF3;- p and p', equal or different each other, are integers from 0 to 3;- Rf is a fluoropolyoxyalkene chain comprising repeating units R°, said repeating units being chosen among the group consisting of :(i) -CFXO-, wherein X is F or CF3,(ii) -CF2CFXO-, wherein X is F or CF3,(iii) -CF2CF2CF2O-,(iv) -CF2CF2CF2CF2O-,(v) -(CF2)j-CFZ-O- wherein j is an integer chosen from 0 and 1 and Z is a group of general formula -ORf'T3, wherein Rf' is a fluoropolyoxyalkene chain comprising a number of repeating units from 0 to 10, said recurring units being chosen among the followings : -CFXO- , -CF2CFXO-, -CF2CF2CF2O-, -CF2CF 2CF2CF2O-, with each of each of X being independently F or CF3; and T3 is a C1 - C3 perfluoroalkyl group, and mixtures thereof;- T'1 and T'2, the same or different each other, are H, halogen atoms, C1-C3 fluoroalkyl groups, optionally comprising one or more H or halogen atoms different from fluorine. - The method according to anyone of the preceding Claims, wherein the iodinated and/or brominated chain-transfer agent is selected from the group consisting of those of formula Rf(I)x(Br)y, in which Rf is a (per)fluoroalkyl or a (per)fluorochloroalkyl containing from 1 to 8 carbon atoms, while x and y are integers between 0 and 2, with 1 ≤ x+y ≤ 2 and wherein the amount of iodinated and/or brominated chain-transfer agent(s) fed during Step (a) is of at least 1.0 weight part per 100 weight parts of pre-polymer manufactured in Step (a) and/or is of at most 4.0 weight parts per 100 weight parts of pre-polymer manufactured in Step (a).
- The method according to anyone of the preceding Claims, wherein the branching agent possessing at least two ethylenic unsaturations is a bis-olefin [bis-olefin (OF)] having general formula :
- The method according to anyone of the preceding claims, wherein Step (a) provides for a pre-polymer latex [latex (P)] which comprises particles of a pre-polymer having a number-averaged molecular weight (determined with GPC) of at least 1000, preferably at least 5000, more preferably at least 10000 and/or advantageously at most 40000, preferably at most 30000, more preferably at most 20000, and/or having a PDI of advantageously at least 1.2, preferably at least 1.3 and more preferably at least 1.5 and/or of advantageously at most 3.5, preferably at most 3.0 and more preferably at most 2.8.
- The method according to anyone of the preceding claims, wherein Step (a) provides for a pre-polymer latex [latex (P)] which comprises particles of a pre-polymer having a iodine and/or bromine content of at least 0.5 %, preferably at least 1.0 % wt, more preferably at least 1.2 % wt, with respect to the weight of the pre-polymer and/or of at most 3.0 %, preferably at most 2.5 % wt, more preferably at most 2.0 % wt, with respect to the weight of the pre-polymer.
- The method according to anyone of the preceding claims, wherein in step (b), the said latex (P) is recovered from the said first reactor in a storage tank for a storage time of at least 1 hour, preferably of at least 1 day.
- The method according to anyone of the preceding claims, wherein the second reactor is different from the first reactor, which is not equipped for metering branching agent and/or for metering iodinated and/or brominated chain transfer agent.
- The method according to anyone of the preceding claims, wherein monomer mixture [mixture (M2)] comprises at least one fluoromonomer as defined in Claim 2 and/or is selected from the mixtures defined in Claim 3.
- The method according to anyone of the preceding claims, wherein the weight ratio between the amount of mixture (M2) converted in Step (d) and the amount of pre-polymer fed to the second reactor as latex (P) is of at least 2, preferably at least 3, more preferably at least 5 weight parts of mixture (M2) converted per weight part of pre-polymer, and/or advantageously at most 20, preferably at most 15 of mixture (M2) converted per weight part of pre-polymer and/or wherein the weight fraction of fluoroelastomer (A) produced in Step (a) is less than 33 % weight, preferably less than 25 % weight, more preferably less than 18 % weight, with respect to the total weight of fluoroelastomer (A).
- The method according to anyone of the preceding claims, wherein fluoroelastomer (A) possesses a number-averaged molecular weight of advantageously at least 40000, preferably at least 50000, more preferably at least 60000, even more preferably at least 80000; and/or of at most 150000, preferably at most 130000, more preferably at most 120000.
- The method according to anyone of the preceding claims, wherein the iodine and/or bromine content of the fluoroelastomer (A) is reduced by a factor equal to the weight of fluoroelastomer (A) over the weight of pre-polymer obtained from Step (a) and/or wherein the branching agent content in the fluoroelastomer (A) is reduced by a factor equal to the weight of fluoroelastomer (A) over the weight of pre-polymer obtained from Step (a).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15199930 | 2015-12-14 | ||
PCT/EP2016/080956 WO2017102820A1 (en) | 2015-12-14 | 2016-12-14 | Method of manufacturing fluoroelastomers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3390470A1 EP3390470A1 (en) | 2018-10-24 |
EP3390470B1 true EP3390470B1 (en) | 2020-05-13 |
Family
ID=55077346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16809420.9A Active EP3390470B1 (en) | 2015-12-14 | 2016-12-14 | Method of manufacturing fluoroelastomers |
Country Status (6)
Country | Link |
---|---|
US (1) | US10882935B2 (en) |
EP (1) | EP3390470B1 (en) |
JP (1) | JP7008625B2 (en) |
KR (1) | KR20180093016A (en) |
CN (1) | CN108699190B (en) |
WO (1) | WO2017102820A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112748850B (en) | 2019-10-29 | 2024-04-19 | 伊姆西Ip控股有限责任公司 | Method, apparatus and computer program product for storage management |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53125491A (en) | 1977-04-08 | 1978-11-01 | Daikin Ind Ltd | Fluorine-containing polymer easily curable and its curable composition |
JPS63304009A (en) | 1987-06-04 | 1988-12-12 | Nippon Mektron Ltd | Production of peroxide-curable fluorine-containing elastomer |
US5231154A (en) * | 1992-09-25 | 1993-07-27 | E. I. Dupont De Nemours And Company | Iodine containing chain transfer angents for fluoropolymer polymerizations |
US5285002A (en) | 1993-03-23 | 1994-02-08 | Minnesota Mining And Manufacturing Company | Fluorine-containing polymers and preparation and use thereof |
IT1265461B1 (en) | 1993-12-29 | 1996-11-22 | Ausimont Spa | FLUOROELASTOMERS INCLUDING MONOMERIC UNITS ARISING FROM A BIS-OLEPHINE |
IT1269513B (en) * | 1994-05-18 | 1997-04-01 | Ausimont Spa | FLUORINATED THERMOPLASTIC ELASTOMERS EQUIPPED WITH IMPROVED MECHANICAL AND ELASTIC PROPERTIES, AND THE RELATED PREPARATION PROCESS |
JP3718850B2 (en) * | 1994-12-06 | 2005-11-24 | ダイキン工業株式会社 | Fluorine-containing elastic copolymer excellent in moldability, its production method and vulcanizing composition excellent in moldability |
US6509429B1 (en) * | 1998-07-07 | 2003-01-21 | Daikin Industries, Ltd. | Process for preparing fluorine-containing polymer |
ITMI20012164A1 (en) * | 2001-10-18 | 2003-04-18 | Ausimont Spa | FLUORO-ELASTOMERS |
US20060135716A1 (en) | 2004-12-20 | 2006-06-22 | Ming-Hong Hung | Fluoroelastomers having low glass transition temperature |
GB0514398D0 (en) | 2005-07-15 | 2005-08-17 | 3M Innovative Properties Co | Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant |
US20070015937A1 (en) | 2005-07-15 | 2007-01-18 | 3M Innovative Properties Company | Process for recovery of fluorinated carboxylic acid surfactants from exhaust gas |
GB0514387D0 (en) | 2005-07-15 | 2005-08-17 | 3M Innovative Properties Co | Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant |
AU2006203400B2 (en) | 2005-08-19 | 2011-09-08 | Rohm And Haas Company | Aqueous dispersion of polymeric particles |
AU2006203398B2 (en) | 2005-08-19 | 2011-09-29 | Rohm And Haas Company | Aqueous dispersion of polymeric particles |
CN102089335B (en) | 2008-07-08 | 2015-04-01 | 索维索莱克西斯公开有限公司 | Method for manufacturing fluoropolymers |
RU2497838C2 (en) * | 2009-01-16 | 2013-11-10 | Асахи Гласс Компани, Лимитед | Fluorinated elastic copolymer, method for production thereof and article made from cross-linked rubber |
EP2455408B1 (en) * | 2009-07-16 | 2014-10-08 | Daikin Industries, Ltd. | Process for production of fluorine-containing block copolymer |
US9260543B2 (en) | 2009-12-18 | 2016-02-16 | Solvay Specialty Polymers Italy S.P.A. | Method for manufacturing fluoroelastomers |
GB201012944D0 (en) | 2010-08-02 | 2010-09-15 | 3M Innovative Properties Co | Peroxide curable fluoroelastomers containing modifiers and iodine or bromine endgroups |
WO2012049093A1 (en) * | 2010-10-15 | 2012-04-19 | Solvay Specialty Polymers Italy S.P.A. | Fluoroelastomers |
WO2012150256A1 (en) * | 2011-05-03 | 2012-11-08 | Solvay Specialty Polymers Italy S.P.A. | Method for manufacturing fluoroelastomers |
-
2016
- 2016-12-14 EP EP16809420.9A patent/EP3390470B1/en active Active
- 2016-12-14 KR KR1020187019224A patent/KR20180093016A/en not_active Application Discontinuation
- 2016-12-14 JP JP2018530679A patent/JP7008625B2/en active Active
- 2016-12-14 WO PCT/EP2016/080956 patent/WO2017102820A1/en active Application Filing
- 2016-12-14 US US16/061,965 patent/US10882935B2/en active Active
- 2016-12-14 CN CN201680081506.7A patent/CN108699190B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US10882935B2 (en) | 2021-01-05 |
CN108699190B (en) | 2021-10-12 |
CN108699190A (en) | 2018-10-23 |
KR20180093016A (en) | 2018-08-20 |
WO2017102820A1 (en) | 2017-06-22 |
EP3390470A1 (en) | 2018-10-24 |
JP7008625B2 (en) | 2022-01-25 |
JP2018537571A (en) | 2018-12-20 |
US20180371135A1 (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3143054B1 (en) | Method for the controlled polymerization of fluoromonomers | |
EP2705061B1 (en) | Method for manufacturing fluoroelastomers | |
RU2342403C2 (en) | Polymerisation in aqueous emulsion without emulsifiers to obtain copolymers of fluorated olefin and hydrocarbon olefin | |
EP2373734B1 (en) | (per)fluoroelastomer composition | |
JP6908604B2 (en) | A composition containing an amorphous fluoropolymer and fluoroplastic particles and a method for producing the same. | |
EP2513172B1 (en) | Method for manufacturing fluoroelastomers | |
JP2000239470A (en) | Fluoroelastomer composition | |
JP6371295B2 (en) | Peroxide curable fluoropolymer compositions containing solvents and methods of use thereof | |
JP2018531316A6 (en) | Composition comprising amorphous fluoropolymer and fluoroplastic particles and method for producing the same | |
WO2015173194A1 (en) | Fluoroelastomers | |
US20200017620A1 (en) | Method for making fluoropolymers | |
CN111247176B (en) | Method for synthesizing fluoropolymers | |
WO2018167190A1 (en) | Method for making fluoropolymers | |
EP3390470B1 (en) | Method of manufacturing fluoroelastomers | |
JP7345484B2 (en) | Fluoroelastomer curable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180716 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191211 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016036487 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1270174 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200913 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200814 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1270174 Country of ref document: AT Kind code of ref document: T Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016036487 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201214 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211115 Year of fee payment: 6 Ref country code: NL Payment date: 20211116 Year of fee payment: 6 Ref country code: GB Payment date: 20211104 Year of fee payment: 6 Ref country code: DE Payment date: 20211102 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016036487 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221214 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |