EP3387244A1 - Aircraft gas turbine having a variable outlet nozzle of a bypass flow channel - Google Patents
Aircraft gas turbine having a variable outlet nozzle of a bypass flow channelInfo
- Publication number
- EP3387244A1 EP3387244A1 EP16805124.1A EP16805124A EP3387244A1 EP 3387244 A1 EP3387244 A1 EP 3387244A1 EP 16805124 A EP16805124 A EP 16805124A EP 3387244 A1 EP3387244 A1 EP 3387244A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas turbine
- aircraft gas
- outlet nozzle
- ring element
- core engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 17
- 230000002349 favourable effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/06—Varying effective area of jet pipe or nozzle
- F02K1/08—Varying effective area of jet pipe or nozzle by axially moving or transversely deforming an internal member, e.g. the exhaust cone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/16—Aircraft characterised by the type or position of power plants of jet type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
- B64D31/02—Initiating means
- B64D31/06—Initiating means actuated automatically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/323—Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
Definitions
- the invention relates to an aircraft gas turbine according to the features of the preamble of claim 1.
- the invention relates to an aircraft gas turbine with a variable outlet nozzle of a bypass channel.
- the bypass duct surrounds the core engine as known in the art.
- Variable outlet nozzles of bypass ducts are particularly required in aircraft gas turbines with high bypass rates in order to optimize the efficiency of the fan.
- By changing the effective exit area of the outlet nozzle of the operating point of the fan can be adjusted so that there are favorable pressure conditions, which take into account the surge limit of the fan.
- adjustable outlet nozzles are previously known.
- the US 2009/0208328 A1 and US 8,850,824 B2 show constructions in which in the region of the outlet nozzle elements are arranged on the lining of the core engine, which can be curved.
- US 4,043,508 A shows a solution in which a multi-membered flap mechanism is used.
- three flaps are connected in series pivotally to each other, which can be pivoted to achieve different exit surfaces in different positions.
- Around the circumference of the outlet nozzle a plurality of such flap arrangements are provided.
- a further measure for changing the exit face of the outlet nozzle is shown in US Pat. Nos. US 2010/0043394 A1 and US Pat. No. 3,598,318 A. Individual flaps distributed around the circumference are provided, which are pivoted into the bypass channel at different flight conditions.
- the cross-section of the outlet nozzle can also be influenced according to US 2009/0067993 A1 by displacing an outer end region of the lining of the bypass channel in the axial direction.
- the invention has for its object to provide an aircraft gas turbine of the type mentioned above, which allows a simple design and simple, cost manufacturability effective and flow-optimized adjustment of the outlet nozzle of the bypass channel.
- a ring element is arranged, which is displaceable in the axial direction, wherein between the lining of the core engine and the ring member is formed by the displacement of the ring member variable annular channel.
- a preferably aerodynamically formed ring is used, which is axially displaceable as a function of the respective flight conditions or operating conditions of the aircraft gas turbine.
- the ring element is formed so that opens between the ring member and the outer lining of the core engine, an annular channel through which a portion of the flow of the bypass channel is passed. It is provided in a preferred embodiment of the invention that the annular channel opens when the ring member is moved in the axial direction to the rear.
- the term "axial direction" refers to the engine axis
- the annular channel by complete displacement of the ring element completely closed at the front.
- the effective outlet cross section of the outlet nozzle can be adapted to the operating conditions of the aircraft gas turbine in a simple manner and be adapted to the respective operating point of the fan, especially in aircraft gas turbines with a high bypass ratio.
- the displacement of the ring element is not limited to certain displacement positions, but rather it is possible to steplessly bring the ring element into any displacement position.
- the ring element according to the invention opens up the possibility of optimizing the flow conditions in the region of the outlet nozzle of the bypass channel in comparison with the constructions known from the prior art. Since the ring element extends around the entire circumference of the outlet nozzle, uniform flow conditions result around the entire circumference. This is not possible with the flap solutions known from the prior art, in which individual flaps are distributed separately around the circumference.
- a further, essential advantage of the invention is also that the mechanism for displacing the ring element can preferably be arranged and integrated on the core engine or the radially outer lining of the core engine such that the flow of the bypass channel itself is not disturbed. It is particularly advantageous if the ring element is displaceable by means of electrical or hydraulic actuators. There are thus no lever designs or the like required, as shown in the prior art.
- the ring element is aerodynamically designed and optimized in its cross section, so that there is a minimal pressure loss in the bypass channel. This also leads to an increase in the efficiency in the respective positions of the ring element.
- the ring element can be designed such that it merely opens or closes the additional annular channel during its axial displacement, while the outflow surface of the original outlet nozzle remains unchanged.
- the cross-sectional area of the original outlet nozzle is understood to be the cross-section which results radially outside the ring element between the ring element and the outer housing wall.
- the above-mentioned change or enlargement of effective exit area of the outlet nozzle thus comprises the effective area of the additionally provided annular channel plus the exit area of the actual, original outlet nozzle.
- the effective cross-sectional area thus results from an addition of the cross-sectional area of the additionally openable annular channel.
- the control of the displacement of the ring element can be done automatically by the electronic engine control, so that the respective engine conditions, such as maximum thrust during takeoff, end of the climb and cruise, are automatically taken into account.
- an additional oil cooler is arranged in the annular channel. This is installed, for example, on the lining of the core engine. By opening or closing the additional annular channel, the amount of air is determined, which is passed through the oil cooler.
- FIG. 1 is a schematic representation of a gas turbine engine according to the present invention
- Fig. 2 is an enlarged detail view of an embodiment in a first
- Fig. 3 is a representation, analogous to FIG. 2, in an operating position to the end of
- Fig. 4 is a representation in an operating position in cruising flight.
- the gas turbine engine 10 of FIG. 1 is a generally illustrated example of a turbomachine to which the invention may find application.
- the engine 10 is formed in a conventional manner and comprises one behind the other in the flow direction Air inlet 1 1, a circulating in a housing fan 12, a medium-pressure compressor 13, a high-pressure compressor 14, a combustion chamber 15, a high-pressure turbine 16, a medium-pressure turbine 17 and a low-pressure turbine 18 and an exhaust nozzle 19, all of which are arranged around a central engine axis 1.
- the intermediate pressure compressor 13 and the high pressure compressor 14 each include a plurality of stages, each of which includes a circumferentially extending array of fixed stationary vanes 20, commonly referred to as stator vanes, that radially inwardly from the core engine housing 21 into an annular flow passage through the compressors 13, 14 protrude.
- the compressors further include an array of compressor blades 22 projecting radially outwardly from a rotatable drum or disc 26 coupled to hubs 27 of high pressure turbine 16 and mid pressure turbine 17, respectively.
- the turbine sections 16, 17, 18 have similar stages, comprising an array of fixed vanes 23 projecting radially inward from the housing 21 into the annular flow passage through the turbines 16, 17, 18, and a downstream array of turbine rotor blades 24 projecting outwardly from a rotatable hub 27.
- the compressor drum or compressor disk 26 and the blades 22 disposed thereon and the turbine rotor hub 27 and the turbine rotor blades 24 disposed thereon rotate about the engine axis 1 during operation.
- FIG. 1 shows, in the case of an aircraft gas turbine only shown schematically, that a bypass duct 25 is formed between an outer housing wall 30 and a panel 29 of the core engine 10.
- the air flow conveyed by the fan 12 flows through the auxiliary passage 25 and exits through an exhaust nozzle 31, which is also referred to as a cold exhaust nozzle, as opposed to a hot exhaust nozzle 35 of the core engine.
- FIG. 1 shows in a highly simplified, schematic representation the arrangement and positioning of a ring element 32 according to the invention.
- FIGS. 2 to 4 each show enlarged and more precise detail views of the ring element 32 according to the invention.
- This ring is designed as an aerodynamically designed and flow-optimized ring which preferably extends around the entire circumference of the aircraft gas turbine.
- FIGS. 2 to 4 each show an end region of the outer housing wall 30 and an end region of the lining 29 of the core engine.
- a portion of the outlet cone 28 is shown.
- the outlet nozzle 35 of the core engine results.
- the arrows each show the direction of flow.
- the reference numeral 36 shows the cross-section of the outlet nozzle 31 in a simplified form.
- This exit surface of the cross section 36 forms the actual outlet nozzle 31, which can remain unchanged during a displacement of the ring element 32 according to the invention.
- the arrow shows the flow through the bypass duct 25.
- FIG 2 shows an operating state in which the ring element 32 according to the invention is displaced maximally to the rear, relative to the throughflow direction of the aircraft gas turbine.
- an annular channel 33 opens between the surface of the lining 29 of the core engine 10 and the ring element 32.
- An oil cooler 34 can be arranged in the annular channel 33.
- FIG. 2 shows an operating position in which the effective total area of the outlet nozzle 31 is increased in addition to the cross-section 36 by the cross-sectional area of the annular channel 33. This can be done to increase the total area of 10%.
- This position is provided at maximum take-off power (max take-off). Due to the higher overall effective cross-sectional area of the operating point of the fan 12 can be lowered, so that there is a greater overall performance of the aircraft gas turbine.
- FIG. 4 shows an operating state in cruise, in which the effective total area of the outlet nozzle 31 is determined by a partial opening of the annular channel 33 in such a way that a desired state is reached at which no change takes place. It should be pointed out again at this point that the effective total area of the outlet nozzle 31 results from the respective effective outflow surface of the annular channel 33 and the cross-sectional area 36 of the outlet nozzle 31 in the region of the bypass channel 25.
- the invention is not limited to the embodiment shown, but rather arise within the scope of the invention varied modification and modification options. These may relate both to the drive of the ring element, not shown in detail, as well as the cross-sectional design and aerodynamic design of the ring member 32 and the associated wall of the lining 29 of the core engine. ?
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Control Of Turbines (AREA)
Abstract
The invention relates to an aircraft gas turbine, comprising a core engine (10) and a bypass flow channel (25), which bypasses the core engine and which forms an outlet nozzle (31) together with a casing (29) of the core engine (10) and together with a radially outer housing wall (30), characterized in that a ring element (32), which can be displaced in the axial direction, is arranged in the region of the outlet nozzle (31), wherein a ring channel (33) that can be varied by the displacement of the ring element (32) is formed between the casing (29) of the core engine (10) and the ring element (32).
Description
Fluggasturbine mit variabler Austrittsdüse eines Nebenstromkanals Aircraft gas turbine with variable outlet nozzle of a bypass duct
Beschreibung Die Erfindung betrifft eine Fluggasturbine gemäß den Merkmalen des Oberbegriffs des Anspruchs 1 . The invention relates to an aircraft gas turbine according to the features of the preamble of claim 1.
Im Einzelnen bezieht sich die Erfindung auf eine Fluggasturbine mit einer variablen Austrittsdüse eines Nebenstromkanals. Der Nebenstromkanal umgibt, wie aus dem Stand der Technik bekannt, das Kerntriebwerk. Variable Austrittsdüsen von Nebenstromkanälen sind insbesondere bei Fluggasturbinen mit hohen Bypassraten erforderlich, um den Wirkungsgrad des Fans zu optimieren. Durch die Änderung der wirksamen Austrittsfläche der Austrittsdüse kann der Arbeitspunkt des Fans so verstellt werden, dass sich günstige Druckverhältnisse ergeben, welche die Pumpgrenze des Fans berücksichtigen. Aus dem Stand der Technik sind unterschiedlichste Ausgestaltungsformen von verstellbaren Austrittsdüsen vorbekannt. Die US 2009/0208328 A1 sowie die US 8,850,824 B2 zeigen Konstruktionen, bei welchen im Bereich der Austrittsdüse Elemente an der Verkleidung des Kerntriebwerks angeordnet sind, welche gewölbt werden können. Hierdurch ist es möglich, die Querschnittsfläche der Austrittsdüse zu verringern. Eine ähnliche Konstruktion zeigt die US 2008/0163606 A1 . Auch bei dieser wird ein Wandungselement gewölbt, welches an der äußeren Wandung der Austrittsdüse angeordnet ist und eine Ableitung eines Teilbetrags des Luftstroms zur Umgebung hin ermöglicht. In detail, the invention relates to an aircraft gas turbine with a variable outlet nozzle of a bypass channel. The bypass duct surrounds the core engine as known in the art. Variable outlet nozzles of bypass ducts are particularly required in aircraft gas turbines with high bypass rates in order to optimize the efficiency of the fan. By changing the effective exit area of the outlet nozzle of the operating point of the fan can be adjusted so that there are favorable pressure conditions, which take into account the surge limit of the fan. From the prior art a variety of embodiments of adjustable outlet nozzles are previously known. The US 2009/0208328 A1 and US 8,850,824 B2 show constructions in which in the region of the outlet nozzle elements are arranged on the lining of the core engine, which can be curved. This makes it possible to reduce the cross-sectional area of the outlet nozzle. A similar construction is shown in US 2008/0163606 A1. Also in this a wall element is curved, which is arranged on the outer wall of the outlet nozzle and allows a derivation of a partial amount of the air flow to the environment.
Die US 4,043,508 A zeigt eine Lösung, bei welcher ein mehrgliedriger Klappenmechanismus verwendet wird. Dabei sind drei Klappen in Serie schwenkbar zueinander verbunden, welche zur Erzielung unterschiedlicher Austrittsflächen in verschiedene Positionen geschwenkt werden können. Um den Umfang der Austrittsdüse sind mehrere derartige Klappenanordnungen vorgesehen.
Eine weitere Maßnahme zum Verändern der Austrittsfläche der Austrittsdüse zeigen die US- Schriften US 2010/0043394 A1 und US 3,598,318 A. Dabei sind um den Umfang verteilt einzelne Klappen vorgesehen, welche bei unterschiedlichen Flugzuständen in den Nebenstromkanal verschwenkt werden. Der Querschnitt der Austrittsdüse kann gemäß US 2009/0067993 A1 auch dadurch beeinflusst werden, dass ein äußerer Endbereich der Verkleidung des Nebenstromkanals in axialer Richtung verschoben wird. US 4,043,508 A shows a solution in which a multi-membered flap mechanism is used. In this case, three flaps are connected in series pivotally to each other, which can be pivoted to achieve different exit surfaces in different positions. Around the circumference of the outlet nozzle a plurality of such flap arrangements are provided. A further measure for changing the exit face of the outlet nozzle is shown in US Pat. Nos. US 2010/0043394 A1 and US Pat. No. 3,598,318 A. Individual flaps distributed around the circumference are provided, which are pivoted into the bypass channel at different flight conditions. The cross-section of the outlet nozzle can also be influenced according to US 2009/0067993 A1 by displacing an outer end region of the lining of the bypass channel in the axial direction.
Bei den beschriebenen Konstruktionen besteht insgesamt die Problematik, dass die gezeigten Mechanismen technisch aufwendig und damit in der Herstellung und in der Wartung kostenintensiv und zudem störungsanfällig sind. Ein weiterer Nachteil ergibt sich daraus, dass die Strömungsverhältnisse in dem Nebenstromkanal ungünstig beeinflusst werden können. In the constructions described there is a total problem that the mechanisms shown are technically complex and thus costly in production and maintenance and also prone to failure. Another disadvantage arises from the fact that the flow conditions in the bypass duct can be adversely affected.
Der Erfindung liegt die Aufgabe zugrunde, eine Fluggasturbine der eingangs genannten Art zu schaffen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit eine wirksame und strömungsoptimierte Verstellung der Austrittsdüse des Nebenstromkanals ermöglicht. The invention has for its object to provide an aircraft gas turbine of the type mentioned above, which allows a simple design and simple, cost manufacturability effective and flow-optimized adjustment of the outlet nozzle of the bypass channel.
Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung. According to the invention the object is achieved by the combination of features of claim 1, the dependent claims show further advantageous embodiments of the invention.
Erfindungsgemäß ist somit vorgesehen, dass im Bereich der Austrittsdüse ein Ringelement angeordnet ist, welches in Axialrichtung verschiebbar ist, wobei zwischen der Verkleidung des Kerntriebwerks und dem Ringelement ein durch die Verschiebung des Ringelements variabler Ringkanal ausgebildet ist. According to the invention it is thus provided that in the region of the outlet nozzle a ring element is arranged, which is displaceable in the axial direction, wherein between the lining of the core engine and the ring member is formed by the displacement of the ring member variable annular channel.
Erfindungsgemäß wird somit ein bevorzugterweise aerodynamisch ausgebildeter Ring verwendet, welcher in Abhängigkeit von den jeweiligen Flugzuständen oder Betriebsbedingungen der Fluggasturbine axial verschiebbar ist. Dabei ist das Ringelement so ausgebildet, dass sich zwischen dem Ringelement und der äußeren Verkleidung des Kerntriebwerks ein Ringkanal öffnet, durch welchen ein Teil der Strömung des Nebenstromkanals geleitet wird. Dabei ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, dass sich der Ringkanal öffnet, wenn das Ringelement in Axialrichtung nach hinten verschoben wird. Der Begriff „Axialrichtung" ist im Rahmen der Erfindung auf die Triebwerksachse bezogen. Bei einer Öffnung des zusätzlichen Ringkanals, welcher einen zusätzlichen Teil des Nebenstromkanals bildet, durch Verschiebung des Ringelements nach hinten, versteht es sich, dass der Ringkanal durch vollständiges Verschieben des Ringelements nach vorne vollständig geschlossen werden kann.
In günstiger Ausgestaltung der Erfindung ist es möglich, das Ringelement in unterschiedliche Verschiebepositionen zu verschieben und in diesen zu fixieren. Hierdurch kann der wirksame Austrittsquerschnitt der Austrittsdüse in einfacher Weise den Betriebsbedingungen der Fluggasturbine angepasst werden und insbesondere bei Fluggasturbinen mit einem hohen Bypassverhältnis dem jeweiligen Arbeitspunkt des Fans angepasst werden. Somit ist es möglich, die Leistung der Fluggasturbine und insbesondere des Fans zu optimieren. According to the invention, therefore, a preferably aerodynamically formed ring is used, which is axially displaceable as a function of the respective flight conditions or operating conditions of the aircraft gas turbine. In this case, the ring element is formed so that opens between the ring member and the outer lining of the core engine, an annular channel through which a portion of the flow of the bypass channel is passed. It is provided in a preferred embodiment of the invention that the annular channel opens when the ring member is moved in the axial direction to the rear. In the context of the invention, the term "axial direction" refers to the engine axis When opening the additional annular channel, which forms an additional part of the bypass channel, by displacing the ring element to the rear, it is understood that the annular channel by complete displacement of the ring element completely closed at the front. In a favorable embodiment of the invention, it is possible to move the ring element in different displacement positions and to fix in these. In this way, the effective outlet cross section of the outlet nozzle can be adapted to the operating conditions of the aircraft gas turbine in a simple manner and be adapted to the respective operating point of the fan, especially in aircraft gas turbines with a high bypass ratio. Thus, it is possible to optimize the performance of the aircraft gas turbine and in particular the fan.
Erfindungsgemäß ist die Verschiebung des Ringelements nicht auf bestimmte Verschiebepositionen beschränkt, vielmehr ist es möglich, das Ringelement stufenlos in beliebige Verschiebepositionen zu bringen. Durch das erfindungsgemäße Ringelement eröffnet sich die Möglichkeit, die Strömungsverhältnisse im Bereich der Austrittsdüse des Nebenstromkanals im Vergleich zu den aus dem Stand der Technik bekannten Konstruktionen zu optimieren. Da das Ringelement sich um den gesamten Umfang der Austrittsdüse erstreckt, ergeben sich um den gesamten Umfang gleichmäßige Strömungsverhältnisse. Dies ist bei den aus dem Stand bekannten Klappenlösungen, bei welchen einzelne Klappen separat um den Umfang verteilt werden, nicht möglich. According to the invention, the displacement of the ring element is not limited to certain displacement positions, but rather it is possible to steplessly bring the ring element into any displacement position. The ring element according to the invention opens up the possibility of optimizing the flow conditions in the region of the outlet nozzle of the bypass channel in comparison with the constructions known from the prior art. Since the ring element extends around the entire circumference of the outlet nozzle, uniform flow conditions result around the entire circumference. This is not possible with the flap solutions known from the prior art, in which individual flaps are distributed separately around the circumference.
Ein weiterer, wesentlicher Vorteil der Erfindung besteht auch darin, dass der Mechanismus zur Verschiebung des Ringelements bevorzugterweise so an dem Kerntriebwerk oder der radial äußeren Verkleidung des Kerntriebwerks angeordnet und integriert werden kann, dass die Strömung des Nebenstromkanals selbst nicht gestört wird. Dabei ist es besonders vorteilhaft, wenn das Ringelement mittels elektrischer oder hydraulischer Aktuatoren verschiebbar ist. Es sind somit keine Hebelkonstruktionen oder ähnliches erforderlich, so wie dies der Stand der Technik zeigt. A further, essential advantage of the invention is also that the mechanism for displacing the ring element can preferably be arranged and integrated on the core engine or the radially outer lining of the core engine such that the flow of the bypass channel itself is not disturbed. It is particularly advantageous if the ring element is displaceable by means of electrical or hydraulic actuators. There are thus no lever designs or the like required, as shown in the prior art.
In günstiger Ausgestaltung ist das Ringelement in seinem Querschnitt aerodynamisch ausgelegt und optimiert, so dass sich ein minimaler Druckverlust in dem Nebenstromkanal ergibt. Auch dies führt zu einer Steigerung des Wirkungsgrades in den jeweiligen Positionierungen des Ringelements. In a favorable embodiment, the ring element is aerodynamically designed and optimized in its cross section, so that there is a minimal pressure loss in the bypass channel. This also leads to an increase in the efficiency in the respective positions of the ring element.
Das Ringelement kann erfindungsgemäß so ausgebildet sein, dass es bei seiner axialen Verschiebung lediglich den zusätzlichen Ringkanal öffnet oder schließt, während die Ausströmfläche der ursprünglichen Austrittsdüse unverändert bleibt. Es ist jedoch auch möglich, das Ringelement in seinem Querschnitt so zu gestalten, dass sich der Austrittsquerschnitt der ursprünglichen Austrittsdüse ebenfalls ändert. Unter der Querschnittsfläche der ursprünglichen Austrittsdüse wird der Querschnitt verstanden, welcher sich radial außerhalb des Ringelements zwischen dem Ringelement und der äußeren Gehäusewandung ergibt. Die vorstehend erwähnte Änderung oder Vergrößerung der
wirksamen Austrittsfläche der Austrittsdüse umfasst somit die wirksame Fläche des zusätzlich vorgesehenen Ringkanals zuzüglich der Austrittsfläche der eigentlichen, ursprünglichen Austrittsdüse. Die wirksame Querschnittsfläche ergibt sich somit durch eine Addition der Querschnittsfläche des zusätzlich zu öffnenden Ringkanals. Die Steuerung der Verschiebung des Ringelements kann in automatischer Weise durch die elektronische Triebwerksregelung erfolgen, so dass die jeweiligen Triebwerksbedingungen, beispielsweise maximaler Schub während des Starts, Ende des Steigflugs und Reiseflug, automatisch berücksichtigt werden. According to the invention, the ring element can be designed such that it merely opens or closes the additional annular channel during its axial displacement, while the outflow surface of the original outlet nozzle remains unchanged. However, it is also possible to design the ring element in its cross section so that the outlet cross section of the original outlet nozzle also changes. The cross-sectional area of the original outlet nozzle is understood to be the cross-section which results radially outside the ring element between the ring element and the outer housing wall. The above-mentioned change or enlargement of effective exit area of the outlet nozzle thus comprises the effective area of the additionally provided annular channel plus the exit area of the actual, original outlet nozzle. The effective cross-sectional area thus results from an addition of the cross-sectional area of the additionally openable annular channel. The control of the displacement of the ring element can be done automatically by the electronic engine control, so that the respective engine conditions, such as maximum thrust during takeoff, end of the climb and cruise, are automatically taken into account.
Durch die Erfindung ist es somit möglich, die Fluggasturbine stets mit einer optimierten Fan- Arbeitslinie zu betreiben und damit den jeweiligen Arbeitspunkt des Fans in besonders einfacher und günstiger Weise zu berücksichtigen, da die unterschiedlichen, beliebig einstellbaren Verschiebepositionen des Ringelements zu unterschiedlichen Querschnitten des zusätzlichen Ringkanals führen, so dass die gesamte effektive Austrittsfläche der Austrittsdüse stufenlos optimiert werden kann. In besonders günstiger Weiterbildung der Erfindung ist vorgesehen, dass in dem Ringkanal ein zusätzlicher Ölkühler angeordnet ist. Dieser ist beispielsweise an der Verkleidung des Kerntriebwerks installiert. Durch die Öffnung oder das Schließen des zusätzlichen Ringkanals wird die Luftmenge bestimmt, welche durch den Ölkühler geleitet wird. Somit kann beispielsweise bei einer maximalen Startleistung der Fluggasturbine, bei welcher der zusätzliche Ringkanal, welcher sich durch die Verschiebung des Ringelements ergibt, vollständig geöffnet ist, eine optimierte Ölkühlung erfolgen. With the invention, it is thus possible to operate the aircraft gas turbine always with an optimized fan working line and thus to consider the respective operating point of the fan in a particularly simple and favorable manner, since the different, arbitrarily adjustable displacement positions of the ring element to different cross sections of the additional annular channel lead, so that the entire effective exit area of the outlet nozzle can be continuously optimized. In a particularly favorable development of the invention, it is provided that an additional oil cooler is arranged in the annular channel. This is installed, for example, on the lining of the core engine. By opening or closing the additional annular channel, the amount of air is determined, which is passed through the oil cooler. Thus, for example, at a maximum starting power of the aircraft gas turbine, in which the additional annular channel, which results from the displacement of the ring element, is completely open, an optimized oil cooling take place.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Dabei zeigt: In the following the invention will be described by means of an embodiment in conjunction with the drawing. Showing:
Fig. 1 eine schematische Darstellung eines Gasturbinentriebwerks gemäß der vorliegenden Erfindung, 1 is a schematic representation of a gas turbine engine according to the present invention,
Fig. 2 eine vergrößerte Detail-Darstellung eines Ausführungsbeispiels in einer ersten Fig. 2 is an enlarged detail view of an embodiment in a first
Betriebsstellung mit maximaler Startleistung, Operating position with maximum starting power,
Fig. 3 eine Darstellung, analog Fig. 2, in einer Betriebsstellung zum Ende des Fig. 3 is a representation, analogous to FIG. 2, in an operating position to the end of
Steigflugs, und Fig. 4 eine Darstellung in einer Betriebsstellung im Reiseflug. Rising flights, and Fig. 4 is a representation in an operating position in cruising flight.
Das Gasturbinentriebwerk 10 gemäß Fig. 1 ist ein allgemein dargestelltes Beispiel einer Turbomaschine, bei der die Erfindung Anwendung finden kann. Das Triebwerk 10 ist in herkömmlicher Weise ausgebildet und umfasst in Strömungsrichtung hintereinander einen
Lufteinlass 1 1 , einen in einem Gehäuse umlaufenden Fan 12, einen Mitteldruckkompressor 13, einen Hochdruckkompressor 14, eine Brennkammer 15, eine Hochdruckturbine 16, eine Mitteldruckturbine 17 und eine Niederdruckturbine 18 sowie eine Abgasdüse 19, die sämtlich um eine zentrale Triebwerksachse 1 angeordnet sind. Der Mitteldruckkompressor 13 und der Hochdruckkompressor 14 umfassen jeweils mehrere Stufen, von denen jede eine in Umfangsrichtung verlaufende Anordnung fester stationärer Leitschaufeln 20 aufweist, die allgemein als Statorschaufeln bezeichnet werden und die radial nach innen vom Kerntriebwerksgehäuse 21 in einen ringförmigen Strömungskanal durch die Kompressoren 13, 14 vorstehen. Die Kompressoren weisen weiter eine Anordnung von Kompressorlaufschaufeln 22 auf, die radial nach außen von einer drehbaren Trommel oder Scheibe 26 vorstehen, die mit Naben 27 der Hochdruckturbine 16 bzw. der Mitteldruckturbine 17 gekoppelt sind. The gas turbine engine 10 of FIG. 1 is a generally illustrated example of a turbomachine to which the invention may find application. The engine 10 is formed in a conventional manner and comprises one behind the other in the flow direction Air inlet 1 1, a circulating in a housing fan 12, a medium-pressure compressor 13, a high-pressure compressor 14, a combustion chamber 15, a high-pressure turbine 16, a medium-pressure turbine 17 and a low-pressure turbine 18 and an exhaust nozzle 19, all of which are arranged around a central engine axis 1. The intermediate pressure compressor 13 and the high pressure compressor 14 each include a plurality of stages, each of which includes a circumferentially extending array of fixed stationary vanes 20, commonly referred to as stator vanes, that radially inwardly from the core engine housing 21 into an annular flow passage through the compressors 13, 14 protrude. The compressors further include an array of compressor blades 22 projecting radially outwardly from a rotatable drum or disc 26 coupled to hubs 27 of high pressure turbine 16 and mid pressure turbine 17, respectively.
Die Turbinenabschnitte 16, 17, 18 weisen ähnliche Stufen auf, umfassend eine Anordnung von festen Leitschaufeln 23, die radial nach innen vom Gehäuse 21 in den ringförmigen Strömungskanal durch die Turbinen 16, 17, 18 vorstehen, und eine nachfolgende Anordnung von Turbinenrotorschaufeln 24, die nach außen von einer drehbaren Nabe 27 vorstehen. Die Kompressortrommel oder Kompressorscheibe 26 und die darauf angeordneten Schaufeln 22 sowie die Turbinenrotornabe 27 und die darauf angeordneten Turbinenrotorschaufeln 24 drehen sich im Betrieb um die Triebwerksachse 1 . Die Fig. 1 zeigt bei einer nur schematisch wiedergegebenen Fluggasturbine, dass zwischen einer äußeren Gehäusewandung 30 und einer Verkleidung 29 des Kerntriebwerks 10 ein Nebenstromkanal 25 ausgebildet ist. Die durch den Fan 12 geförderte Luftströmung strömt durch den Nebenkanal 25 und tritt durch eine Austrittsdüse 31 aus, welche auch als kalte Austrittsdüse bezeichnet wird, im Gegensatz zu einer heißen Austrittsdüse 35 des Kerntriebwerks. The turbine sections 16, 17, 18 have similar stages, comprising an array of fixed vanes 23 projecting radially inward from the housing 21 into the annular flow passage through the turbines 16, 17, 18, and a downstream array of turbine rotor blades 24 projecting outwardly from a rotatable hub 27. The compressor drum or compressor disk 26 and the blades 22 disposed thereon and the turbine rotor hub 27 and the turbine rotor blades 24 disposed thereon rotate about the engine axis 1 during operation. FIG. 1 shows, in the case of an aircraft gas turbine only shown schematically, that a bypass duct 25 is formed between an outer housing wall 30 and a panel 29 of the core engine 10. The air flow conveyed by the fan 12 flows through the auxiliary passage 25 and exits through an exhaust nozzle 31, which is also referred to as a cold exhaust nozzle, as opposed to a hot exhaust nozzle 35 of the core engine.
Die Fig. 1 zeigt in stark vereinfachter, schematischer Darstellung die Anordnung und Positionierung eines erfindungsgemäßen Ringelements 32. FIG. 1 shows in a highly simplified, schematic representation the arrangement and positioning of a ring element 32 according to the invention.
Die Fig. 2 bis 4 zeigen jeweils vergrößerte und präzisierte Detailansichten des erfindungsgemäßen Ringelements 32. Dieses ist als aerodynamisch ausgestalteter und strömungsoptimierter Ring ausgebildet, welcher sich bevorzugterweise um den ganzen Umfang der Fluggasturbine erstreckt. Die Fig. 2 bis 4 zeigen jeweils einen Endbereich der äußeren Gehäusewandung 30 sowie einen Endbereich der Verkleidung 29 des Kerntriebwerks. Zusätzlich ist ein Teilbereich des Auslasskonus 28 dargestellt. Zwischen dem Auslasskonus 28 und der Verkleidung 29 des Kerntriebwerks ergibt sich die Austrittsdüse 35 des Kerntriebwerks. Die Pfeile zeigen jeweils die Strömungsrichtung.
Mit dem Bezugszeichen 36 ist der Querschnitt der Austrittsdüse 31 in vereinfachter Form dargestellt. Diese Austrittsfläche des Querschnitts 36 bildet die eigentliche Austrittsdüse 31 , welche bei einer Verschiebung des erfindungsgemäßen Ringelements 32 unverändert bleiben kann. Es ist jedoch auch möglich, das Ringelement 32 in seinem Querschnitt auszubilden, dass bei seiner axialen Verschiebung, parallel zur Triebwerksache 1 , auch die wirksame Querschnittsfläche der eigentlichen Austrittsdüse 31 veränderbar ist. Der Pfeil zeigt die Strömung durch den Nebenstromkanal 25. FIGS. 2 to 4 each show enlarged and more precise detail views of the ring element 32 according to the invention. This ring is designed as an aerodynamically designed and flow-optimized ring which preferably extends around the entire circumference of the aircraft gas turbine. FIGS. 2 to 4 each show an end region of the outer housing wall 30 and an end region of the lining 29 of the core engine. In addition, a portion of the outlet cone 28 is shown. Between the outlet cone 28 and the lining 29 of the core engine, the outlet nozzle 35 of the core engine results. The arrows each show the direction of flow. The reference numeral 36 shows the cross-section of the outlet nozzle 31 in a simplified form. This exit surface of the cross section 36 forms the actual outlet nozzle 31, which can remain unchanged during a displacement of the ring element 32 according to the invention. However, it is also possible to form the ring element 32 in its cross-section such that, during its axial displacement parallel to the engine axis 1, the effective cross-sectional area of the actual outlet nozzle 31 can also be changed. The arrow shows the flow through the bypass duct 25.
Die Fig. 2 zeigt einen Betriebszustand, bei welchem das erfindungsgemäße Ringelement 32 maximal nach hinten, bezogen auf die Durchströmungsrichtung der Fluggasturbine, verschoben ist. Hierdurch öffnet sich zwischen der Oberfläche der Verkleidung 29 des Kerntriebwerks 10 und dem Ringelement 32 ein Ringkanal 33. In dem Ringkanal 33 kann ein Ölkühler 34 angeordnet sein. 2 shows an operating state in which the ring element 32 according to the invention is displaced maximally to the rear, relative to the throughflow direction of the aircraft gas turbine. As a result, an annular channel 33 opens between the surface of the lining 29 of the core engine 10 and the ring element 32. An oil cooler 34 can be arranged in the annular channel 33.
Die Fig. 2 zeigt eine Betriebsstellung, bei welcher die wirksame Gesamtfläche der Austrittsdüse 31 zusätzlich zu dem Querschnitt 36 um die Querschnittsfläche des Ringkanals 33 vergrößert wird. Dies kann zu einer Vergrößerung der Gesamtfläche von 10% erfolgen. Diese Position ist bei maximaler Startleistung (max take-off) vorgesehen. Durch die höhere gesamte wirksame Querschnittsfläche kann der Arbeitspunkt des Fans 12 abgesenkt werden, so dass sich eine größere Gesamtleistung der Fluggasturbine ergibt. 2 shows an operating position in which the effective total area of the outlet nozzle 31 is increased in addition to the cross-section 36 by the cross-sectional area of the annular channel 33. This can be done to increase the total area of 10%. This position is provided at maximum take-off power (max take-off). Due to the higher overall effective cross-sectional area of the operating point of the fan 12 can be lowered, so that there is a greater overall performance of the aircraft gas turbine.
Bei dem in Fig. 3 gezeigten Betriebszustand ist das Ringelement 32 zum Ende des Steigflugs (end of climb) so verschoben, dass sich eine Verringerung der wirksamen Gesamtfläche der Austrittsdüse 31 um beispielsweise 5% ergibt. Der Ölkühler 34 wird dabei im Gegensatz zu dem Betriebszustand der Fig. 2, nicht oder nur unwesentlich durchströmt, da der Ringkanal 33 im Wesentlichen geschlossen ist. In the operating state shown in Fig. 3, the ring member 32 at the end of the climb (end of climb) is shifted so that there is a reduction in the effective total area of the outlet nozzle 31 by, for example, 5%. The oil cooler 34 is in contrast to the operating state of Fig. 2, not or only slightly flows through, since the annular channel 33 is substantially closed.
Die Fig. 4 zeigt einen Betriebszustand im Reiseflug (cruise), bei welchem die wirksame Gesamtfläche der Austrittsdüse 31 durch eine teilweise Öffnung des Ringkanals 33 so bestimmt wird, dass ein Sollzustand erreicht ist, bei welchem keine Änderung erfolgt. Es sei an dieser Stelle nochmals darauf hingewiesen, dass die wirksame Gesamtfläche der Austrittsdüse 31 aus der jeweiligen wirksamen Ausströmfläche des Ringkanals 33 und der Querschnittsfläche 36 der Austrittsdüse 31 im Bereich des Nebenstromkanals 25 resultiert. Die Erfindung ist nicht auf das gezeigte Ausführungsbeispiel beschränkt, vielmehr ergeben sich im Rahmen der Erfindung vielfältige Abwandlungs- und Modifikationsmöglichkeiten. Diese können sowohl den im Einzelnen nicht dargestellten Antrieb des Ringelements betreffen, als auch die Querschnittsgestaltung und aerodynamische Ausbildung des Ringelements 32 sowie der zugeordneten Wandung der Verkleidung 29 des Kerntriebwerks.
? FIG. 4 shows an operating state in cruise, in which the effective total area of the outlet nozzle 31 is determined by a partial opening of the annular channel 33 in such a way that a desired state is reached at which no change takes place. It should be pointed out again at this point that the effective total area of the outlet nozzle 31 results from the respective effective outflow surface of the annular channel 33 and the cross-sectional area 36 of the outlet nozzle 31 in the region of the bypass channel 25. The invention is not limited to the embodiment shown, but rather arise within the scope of the invention varied modification and modification options. These may relate both to the drive of the ring element, not shown in detail, as well as the cross-sectional design and aerodynamic design of the ring member 32 and the associated wall of the lining 29 of the core engine. ?
Bezuqszeichenliste: LIST OF REFERENCES:
1 Triebwerksachse 1 engine axis
10 Gasturbinentriebwerk / Kerntriebwe 10 gas turbine engine / core engine
1 1 Lufteinlass 1 1 air intake
12 Fan 12 fans
13 Mitteldruckkompressor (Verdichter) 13 medium pressure compressor (compressor)
14 Hochdruckkompressor 14 high pressure compressor
15 Brennkammer 15 combustion chamber
16 Hochdruckturbine 16 high-pressure turbine
17 Mitteldruckturbine 17 medium pressure turbine
18 Niederdruckturbine 18 low-pressure turbine
19 Abgasdüse 19 exhaust nozzle
20 Leitschaufeln 20 vanes
21 Kerntriebwerksgehäuse 21 core engine case
22 Kompressorlaufschaufeln 22 compressor blades
23 Leitschaufeln 23 vanes
24 Turbinenrotorschaufeln 24 turbine rotor blades
25 Nebenstromkanal 25 bypass channel
26 Kompressortrommel oder -Scheibe 26 Compressor drum or disc
27 Turbinenrotornabe 27 turbine rotor hub
28 Auslasskonus 28 outlet cone
29 Verkleidung des Kerntriebwerks 29 Fairing of the core engine
30 Gehäusewandung 30 housing wall
31 Austrittsdüse 31 outlet nozzle
32 Ringelement 32 ring element
33 Ringkanal 33 ring channel
34 Ölkühler 34 oil cooler
35 Austrittsdüse des Kerntriebwerks 35 exit nozzle of the core engine
36 Querschnitt der Austrittsdüse
36 Cross section of the outlet nozzle
Claims
1 . Fluggasturbine mit einem Kerntriebwerk (10) und einem dieses umgebenden Nebenstromkanal (25), welcher mit einer Verkleidung (29) des Kerntriebwerks (10) und einer radial äußeren Gehäusewandung (30) eine Austrittsdüse (31 ) bildet, dadurch gekennzeichnet, dass im Bereich der Austrittsdüse (31 ) ein Ringelement (32) angeordnet ist, welches in Axialrichtung verschiebbar ist, wobei zwischen der Verkleidung (29) des Kerntriebwerks (10) und dem Ringelement (32) ein durch die Verschiebung des Ringelements (32) variabler Ringkanal (33) ausgebildet ist. 1 . A gas turbine engine having a core engine (10) and a bypass duct (25) surrounding it, which with a lining (29) of the core engine (10) and a radially outer housing wall (30) forms an outlet nozzle (31), characterized in that in the region of Outlet nozzle (31) a ring member (32) is arranged, which is displaceable in the axial direction, wherein between the lining (29) of the core engine (10) and the ring member (32) by the displacement of the ring member (32) variable annular channel (33) is trained.
2. Fluggasturbine nach Anspruch 1 , dadurch gekennzeichnet, dass das Ringelement (32) in unterschiedliche Verschiebepositionen verschiebbar ist. 2. aircraft gas turbine according to claim 1, characterized in that the ring element (32) is displaceable in different displacement positions.
3. Fluggasturbine nach Anspruch 2, dadurch gekennzeichnet, dass die unterschiedlichen Verschiebepositionen unterschiedliche Querschnitte des Ringkanals (33) ausbilden. 3. aircraft gas turbine according to claim 2, characterized in that the different displacement positions form different cross-sections of the annular channel (33).
4. Fluggasturbine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Ringelement (32) als Strömungskörper ausgebildet ist. 4. aircraft gas turbine according to one of claims 1 to 3, characterized in that the ring element (32) is designed as a flow body.
5. Fluggasturbine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verkleidung (29) des Kerntriebwerks (10) im Bereich des Ringelements (32) strömungsoptimiert ausgebildet ist. 5. aircraft gas turbine according to one of claims 1 to 4, characterized in that the lining (29) of the core engine (10) in the region of the ring member (32) is designed to optimize flow.
6. Fluggasturbine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in dem Ringkanal (33) zumindest ein Ölkühler (34) angeordnet ist. 6. aircraft gas turbine according to one of claims 1 to 5, characterized in that in the annular channel (33) at least one oil cooler (34) is arranged.
7. Fluggasturbine nach Anspruch 6, dadurch gekennzeichnet, dass der Ölkühler (34) durch die Verschiebung des Ringelements (32) automatisch im Betrieb oder außer Betrieb schaltbar ist. 7. aircraft gas turbine according to claim 6, characterized in that the oil cooler (34) by the displacement of the ring member (32) is automatically switched during operation or out of service.
8. Fluggasturbine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Ringelement (32) parallel zur Triebwerksachse (1 ) verschiebbar ist. 8. aircraft gas turbine according to one of claims 1 to 7, characterized in that the ring element (32) parallel to the engine axis (1) is displaceable.
9. Fluggasturbine nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Ringelement (32) mittels elektrischer oder hydraulischer Aktuatoren verschiebbar ist.
9. aircraft gas turbine according to one of claims 1 to 8, characterized in that the ring element (32) by means of electrical or hydraulic actuators is displaceable.
0. Fluggasturbine nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Ringelement (32) an dem Kerntriebwerk (10) gelagert ist.
0. Aircraft gas turbine according to one of claims 1 to 9, characterized in that the ring element (32) is mounted on the core engine (10).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015224701.5A DE102015224701A1 (en) | 2015-12-09 | 2015-12-09 | Aircraft gas turbine with variable outlet nozzle of a bypass duct |
PCT/EP2016/079484 WO2017097665A1 (en) | 2015-12-09 | 2016-12-01 | Aircraft gas turbine having a variable outlet nozzle of a bypass flow channel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3387244A1 true EP3387244A1 (en) | 2018-10-17 |
Family
ID=57460525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16805124.1A Withdrawn EP3387244A1 (en) | 2015-12-09 | 2016-12-01 | Aircraft gas turbine having a variable outlet nozzle of a bypass flow channel |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180266361A1 (en) |
EP (1) | EP3387244A1 (en) |
DE (1) | DE102015224701A1 (en) |
WO (1) | WO2017097665A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8877851B2 (en) | 2012-05-02 | 2014-11-04 | E I Du Pont De Nemours And Company | Graphite filled polyester compositions |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017104036A1 (en) * | 2017-02-27 | 2018-08-30 | Rolls-Royce Deutschland Ltd & Co Kg | A convergent-divergent exhaust nozzle for a turbofan engine of a supersonic aircraft and method for adjusting the nozzle throat area in a thruster of a turbofan engine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3598318A (en) | 1970-04-10 | 1971-08-10 | Boeing Co | Movable acoustic splitter for nozzle area control and thrust reversal |
US4043508A (en) | 1975-12-01 | 1977-08-23 | General Electric Company | Articulated plug nozzle |
EP2069629B1 (en) | 2006-10-12 | 2014-09-24 | United Technologies Corporation | Gas turbine engine fan variable area nozzle with swivalable insert system |
US7681399B2 (en) * | 2006-11-14 | 2010-03-23 | General Electric Company | Turbofan engine cowl assembly and method of operating the same |
EP1944475B1 (en) * | 2007-01-08 | 2015-08-12 | United Technologies Corporation | Heat exchange system |
US7966828B2 (en) | 2007-01-08 | 2011-06-28 | United Technologies Corporation | Variable area nozzle with woven sleeve extension |
US20090067993A1 (en) | 2007-03-22 | 2009-03-12 | Roberge Gary D | Coated variable area fan nozzle |
US9010126B2 (en) | 2008-02-20 | 2015-04-21 | United Technologies Corporation | Gas turbine engine with variable area fan nozzle bladder system |
US8961114B2 (en) * | 2010-11-22 | 2015-02-24 | General Electric Company | Integrated variable geometry flow restrictor and heat exchanger |
DE102011106959A1 (en) | 2011-07-08 | 2013-01-10 | Rolls-Royce Deutschland Ltd & Co Kg | Aircraft gas turbine with variable bypass nozzle |
US9828943B2 (en) * | 2014-06-09 | 2017-11-28 | United Technologies Corporation | Variable area nozzle for gas turbine engine |
-
2015
- 2015-12-09 DE DE102015224701.5A patent/DE102015224701A1/en not_active Withdrawn
-
2016
- 2016-12-01 EP EP16805124.1A patent/EP3387244A1/en not_active Withdrawn
- 2016-12-01 US US15/762,815 patent/US20180266361A1/en not_active Abandoned
- 2016-12-01 WO PCT/EP2016/079484 patent/WO2017097665A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8877851B2 (en) | 2012-05-02 | 2014-11-04 | E I Du Pont De Nemours And Company | Graphite filled polyester compositions |
Also Published As
Publication number | Publication date |
---|---|
US20180266361A1 (en) | 2018-09-20 |
WO2017097665A1 (en) | 2017-06-15 |
DE102015224701A1 (en) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3059433B1 (en) | Gas turbine engine with oil cooler in the engine cladding | |
EP2522831B1 (en) | Turbojet engine with oil cooler in the engine nacelle | |
EP2628936B1 (en) | Aviation gas turbine thrust reversing device | |
EP3059431B1 (en) | Aircraft engine cowl of a gas turbine with thrust reverser and variable area fan nozzle | |
EP2714518B1 (en) | Aircraft gas turbine engine | |
EP0561791B1 (en) | Thrust reverser for a propfan engine | |
EP3093447B1 (en) | Rotor of a turbine of a gas turbine with improved cooling air conduction | |
EP2665910B1 (en) | Aviation gas turbine thrust reversing device | |
EP2824282A1 (en) | Gas turbine with high pressure turbine cooling system | |
EP2543861B1 (en) | Gas turbine engine with variable bypass nozzle | |
DE102018221812B4 (en) | Exhaust gas turbine with an exhaust gas guide device for an exhaust gas turbocharger and an exhaust gas turbocharger | |
EP2617947B1 (en) | Aircraft gas turbine engine with adjustable fan | |
EP2532898A1 (en) | Axial turbo compressor | |
EP3020950B1 (en) | Aircraft engine cowl of a gas turbine with thrust reverser and adjustable discharge nozzle | |
WO2017097665A1 (en) | Aircraft gas turbine having a variable outlet nozzle of a bypass flow channel | |
EP3081797A1 (en) | Engine cowl of an aircraft gas turbine | |
EP3075661B1 (en) | Engine cowl of an aircraft gas turbine | |
DE102013220455A1 (en) | Gas turbine engine with cooling air ring chamber | |
DE102011008919A1 (en) | Aircraft gas turbine thrust reverser | |
DE102017012253B4 (en) | Compressor for a turbocharger of an internal combustion engine and turbocharger for an internal combustion engine | |
DE102013226496A1 (en) | Aircraft gas turbine with adjustable discharge nozzle of the bypass duct | |
DE102015206143A1 (en) | Device for influencing floor vortices in the intake area of an aircraft gas turbine | |
DE102015206088A1 (en) | Aircraft gas turbine engine with annular gap closure element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20180608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20200428 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20200703 |