EP3381124A1 - Electroacoustic transducer having fewer second-order nonlinearities - Google Patents
Electroacoustic transducer having fewer second-order nonlinearitiesInfo
- Publication number
- EP3381124A1 EP3381124A1 EP16790378.0A EP16790378A EP3381124A1 EP 3381124 A1 EP3381124 A1 EP 3381124A1 EP 16790378 A EP16790378 A EP 16790378A EP 3381124 A1 EP3381124 A1 EP 3381124A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric material
- electrode fingers
- transducer according
- fingers
- acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003989 dielectric material Substances 0.000 claims abstract description 95
- 230000005684 electric field Effects 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 53
- 238000002955 isolation Methods 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 description 7
- 239000002305 electric material Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 238000001465 metallisation Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 101100346656 Drosophila melanogaster strat gene Proteins 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000009021 linear effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 241000331231 Amorphocerini gen. n. 1 DAD-2008 Species 0.000 description 1
- 229910000897 Babbitt (metal) Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02818—Means for compensation or elimination of undesirable effects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
Definitions
- Electroacoustic transducer with reduced second order nonlinearities Electroacoustic transducer with reduced second order nonlinearities
- the invention relates to electroacoustic transducers with verrin ⁇ Gerter interference by second order non-linear effects.
- Electroacoustic transducers can be used in RF filters. Arranged together with each other and interconnected Kgs ⁇ nen to form band-pass filters that are well suited due to their small size for portable communication devices, for example, in front-end circuits. Electroacoustic transducers generally comprise on a piezoelectric material, for example a monocrystalline sub ⁇ strat, arranged metal structures having a comb-shaped interdigitated electrode structures with bus bars and electrode fingers. By the piezoelectric effect of such structures between electrical and acoustic Wel ⁇ len convert, wherein half the acoustic wavelength is ⁇ / 2 determined Wesentli ⁇ chen by the distance between the centers of adjacent Elektrodenfin ⁇ ger different polarity. The elektroa- kustisch active region of such a transducer, the acoustic see lane, comprises the adjacent electric ⁇ denfinger opposite polarization.
- the electroacoustic transducer comprises a piezoelectric material, two on the piezoelectric material noted hereinan ⁇ arranged and aligned parallel busbars and arranged between the Strommasammeienen electrode fingers for exciting acoustic waves.
- the Elektrodenfin ⁇ ger are each connected to one of the two current busbars.
- the converter further comprises an insulation Rich, which is disposed between the electrode fingers and the respective ⁇ on, opposite current busbar and the electrode fingers galvanically separated from this opposite current ⁇ busbar. Further, the converter has a dielectric material for reducing the electric field strength in the isolation region.
- Figure 3 shows the basic arrangement of the Stromsammei ⁇ rails and the electrode fingers relative to the propagation direction ⁇ x of the acoustic waves.
- the electrode fingers are ver ⁇ connected to one side of one of the two bus bars. On the other hand, they are isolated from the overlying against ⁇ power bus, to avoid electrical ⁇ rule short circuit.
- Arranged side by side finger electrodes, and accordingly the two opposite ⁇ the bus bars are at different electrical potential ⁇ schem.
- Corresponding to the associated electric charges are accumulated on the electrode structures, electric fields between the oppositely gela ⁇ structures which abut. In the area between the electrodes structural ⁇ structures, the field strength is reciprocal to the distance d:
- FIG. 2 shows the corresponding section of the converter and illustrates the problem:
- finger stubs are connected to the current bus rails in addition to the conventional electrode fingers.
- the distance between a stub finger and the electrode finger of the opposite electrode is denoted by de. If the converter is in operation, there is an electric field between these metallizations whose strength in the y-direction is reciprocal to the distance:
- Non-linear faults may occur in that the tensor of permittivity has a non-zero component s yyy on ⁇ This causes the component E y of. electric field applied in a y-direction component of the dielektri ⁇ 's displacement D y:
- This component of the dielectric displacement is propor tional to the square of ⁇ component of the electric field, which is why a time variation of the electric field causes a temporal variation of the dielectric displacement of twice the frequency.
- the present transducer has the isolation region with the dielectric material between the electrode fingers, and in particular the ends of the electrode fingers of one Elect ⁇ rode, and the other, opposite Stromsam ⁇ Rails masters.
- the electric field strength is correspondingly reduced. Is therefore correspondingly reduces the component of the dielectric displacement in trans Versaler direction D y, whereby the resulting therefrom Stö ⁇ approximations of second order are also reduced.
- a typical ratio of stub finger length and width of the gap D g is about 4/5: 1/5.
- the piezoelectric material may be a piezoelectric substrate.
- An advantage of a transducer in which the area, which is defined in kon ⁇ tional transducers by the term "gap", filled up by the dielectric material, is the reduction of the transverse electric field strength in the substrate and the resulting non-linearity and reduction of exciting acoustic waves in the gap.
- the di ⁇ elektrikum on the substrate extracted field strength from the substrate.
- the total parasitic capacitance may be increased by all ⁇ dings. decisive factor is the change in the substrate.
- the transverse direction is orthogonal to thereby Ausbrei ⁇ power direction of the acoustic waves, the Longitudinalrich- processing, and parallel to the surface of the piezoelectric Mate rials.
- the electrode fingers show essentially in Trans ⁇ versalraum.
- the di-electric material ⁇ strat the dielectric displacement D in the sub reduced during operation of the transducer in the transverse direction ⁇ .
- the dielectric material comprises multiple layers.
- the layers can sen comprehensive different materials, have different lateral dimensions and / or un ⁇ ter Kunststofferie thicknesses.
- the dielectric material is structured as a stub ⁇ finger in the isolation region.
- the dielectric material is structured as a finger, which connects the electrode fingers with the overlying each against ⁇ power bus but electrically insulated from it.
- the dielectric Ma ⁇ TERIAL is structured in two continuous strip along the two bus bars and is on the piezo-electric material and ⁇ on the electrode fingers angeord- net.
- the dielectric material has fingers on ⁇ whose density, width and height are chosen such that the reflection of these dielectric fingers resembles or resembles the reflection of the remaining electrode fingers.
- the dielectric material has fingers on ⁇ which overlap in an overlapping region with electrode fingers of opposing bus bar and the dielectric material is arranged in the overlapping area on the Elek ⁇ trodenfingern.
- the dielectric material has fingers which like overlap in an overlapping region with Elektrodenfin ⁇ the opposite bus bar and the electrode finger is disposed in the overlap area on the di-electric material ⁇ .
- the dielectric material in the overlap region Zvi ⁇ rule the piezoelectric material and the Elektrodenfin ⁇ like, the piezoelectric coupling between the electric ⁇ denfinger and piezoelectric material is reduced, while the acoustic coupling by the presence of the material of the electrode fingers is ideally unchanged.
- the transducer has a material layer for temperature compensation.
- the material layer for Tempe ⁇ raturkompensation covers the exposed upper surfaces of the electrode fingers, the exposed upper surfaces of the piezo-electric material ⁇ and the exposed upper surfaces of the dielectric material.
- the acoustic impedance of the materi ⁇ situation for temperature compensation differs from the acoustic impedances of the electrode fingers and the dielectric material.
- the piezoelectric material comprises LiNbÜ3 (lithium niobate). It is possible that the LiNbÜ3 has the crystal cut red-128YX.
- the material of the electrode fingers may include Al (aluminum) as a main component.
- the dielectric material may comprise S1O2 (silicon dioxide).
- the piezoelectric material comprises LiTa 3 O 3 (lithium tantalate). It is possible that the LiTa3 has the crystal cut YX1 / 42 according to the IEEE definition for crystal cuts.
- the material of the electrode fingers may comprise as a main ingredient ⁇ Cu (copper).
- the dielectric material may comprise Ta2Üs (tantalum oxide) or GeÜ2 (germanium oxide) as the main constituent.
- the dielectric material with the piezoelectric material which also as
- Carrier substrate is used under the electrode structures matches.
- the electrode structures and the dielectric material are embedded or arranged in correspondingly shaped recesses on the upper side of the piezoelectric material.
- the height of the electrode fingers is 8% of the acoustic wavelength ⁇ .
- the width of the electrode fingers ⁇ is 60% of half the acoustic wavelength ⁇ / 2, which corresponds to a metallization ratio n of 60%.
- the dielectric material has fingers whose height is 14% of the acoustic wavelength ⁇ .
- the width of the fingers of the dielectric material is 60% of half the wavelength ⁇ tables acoustically ⁇ / 2.
- the propagation speed of the acoustic wave in the region of the dielectric material is advantageously also determined by the dimensioning of the height, the width and the acoustic impedance of the dielectric material to the reflection and to the velocity of the dielectric material Adjusted wave in middle excitation area in the middle between the current busbars.
- fingers can have a width or a height from the dielektri ⁇ rule material deviates from the corresponding width or height of the finger electrodes from ⁇ .
- the electrode fingers and the structure of the dielectric Ma ⁇ terials have not forced homogeneous, ie be constant over the longitudinal direction of propagation.
- Insulation area is structured so that the lower
- Waveguide and the waveguide formed by the structures of the dielectric material match.
- the height of the dielectric material is set so that the lower stopband edge of the waveguide formed by the electrode fingers and the gebil ⁇ culminating in the structures of the dielectric material waveguide match.
- Fig. 1 The principle of operation of the dielectric material in
- Fig. 3 The arrangement of a transducer on a piezoelectric material ⁇ rule and orientation of the finger electrode and the bus bars relative to the
- Fig. 4 An embodiment with dielectric material in
- Fig. 5 An embodiment with fingers of dielectric
- Fig. 6 a cross section through a transducer with a Tem ⁇ peraturkompensationslage
- FIG. 7 shows a cross section through the yz plane in an embodiment in which the dielectric material is structured flush with the corresponding electrode finger.
- FIG. 8 a cross section through the yz plane, in which the dielectric material and the material of the electrical denfinger overlap and the metal of the electrodes ⁇ finger is arranged in the overlapping area under the dielektri ⁇ rule material
- 9 shows a cross section through the yz plane of an embodiment in which the dielectric material and the electrode fingers overlap and the dielectric material is arranged between the metal of the electrode fingers and the piezoelectric material.
- Fig. 11 the real part and the imaginary part of Dispersionsre- lation of an electrode finger of aluminum
- Fig. 12 the real part and the imaginary part of Dispersionsre ⁇ lation of a waveguide whose finger structures consist of silicon dioxide.
- FIG. 2 shows a conventional converter in which a relatively strong electric field in the transverse direction E y is effective by a fairly small distance de.
- FIG. 3 shows the orientation of the electroacoustic transducer IDT, its bus bars BB and its electrode fingers EFI relative to the propagation direction of the acoustic waves x and the transverse direction y.
- the bus bars BB and the electrode fingers EFI are there arranged in ⁇ so on a piezoelectric material PM and aligned so that the highest possible elektroakust ischer coupling coefficient ⁇ is obtained. 2
- the section is selected ⁇ angle of the piezoelectric material, which be ⁇ is made of a single crystalline piezoelectric wafer in ERAL ⁇ NEN.
- Figure 4 shows an embodiment of the transducer IDT, wherein the dielectric material in the form of stub fingers SF Zvi ⁇ 's power bus BB is arranged to the ends of the electrode fingers and the EFI Chartge ⁇ translated.
- the isolation area need not be together ⁇ menierd.
- the dielectric material does not need to consist of a single aggregate. The dielectric material may be distributed to the entspre ⁇ required positions of the finger ends of the electrode fingers.
- the dielectric material may be from different layers stand? Z. B. to a good acoustic impedance matching receive. A combination with methods for optimizing other parameters can thus be obtained without additional expenditure in the production.
- Half the acoustic wavelength ⁇ / 2 is determined by the distance between two adjacent excitation centers. An excitation ⁇ center is located in the middle between two electrode fingers of different potential.
- Figure 5 shows an embodiment in which the so-called "gaps" are completely filled by finger-shaped Ab ⁇ sections F of the dielectric material DM.
- FIG. 6 shows a cross section through the xz plane, the coordinate z indicating the height.
- the exposed surfaces of the piezoelectric material PM, the exposed upper ⁇ surfaces of the electrode fingers EFI and the exposed upper ⁇ surfaces of the dielectric material DM are covered by the mate ⁇ rial a temperature compensation position TKL to the functioning of the electroacoustic transducer in front ⁇ given specifications in a to ensure wide temperature range.
- the material of the temperature compensation ⁇ position TKL and the piezoelectric material PM are coordinated so that temperature responses of the frequencies are reduced and compensated in the ideal case.
- the dielectric material may well contribute to form ei ⁇ NEN acoustic conductor together with the electrode fingers EFI, the acoustic impedances of the dielectric material and the electrode fingers are preferably very similar to, and ideally identical, but different from the akusti ⁇ rule impedance of the temperature compensating layer TKL.
- Figure 7 shows a cross section through the yz plane an off ⁇ guide die, wherein the dielectric material Zvi ⁇ rule the power bus BB and the opposing electrode fingers EFI adjoins flush against these electrode fingers EFI, so that - with appropriate dimensioning of the height, width and the acoustic impedance of dielektri ⁇ rule material - an ideal waveguide is obtained.
- Figure 8 shows a cross section through the yz-plane of an simplifies prepared embodiment, in which the dielekt ⁇ generic material and the opposing electrode fingers EFI at least partially overlap, wherein the dielectric material DM on the upper surface of the piezoelectric material PM, and in the overlap area on the Top of the electric finger EFI is arranged.
- Figure 9 shows a cross section through the yz plane of a ⁇ fold producible embodiment, the dielectric material DM and the electrode fingers EFI are arranged in an overlapping region überei ⁇ Nander wherein similar to the embodiment of FIG. 8
- Figure 9 exporting ⁇ approximate shape while the dielectric material DM in the overlapping ⁇ pungs Scheme arranged at ⁇ under the material of the electrode finger EFI. This reduces the electroacoustic coupling in the overlapping area.
- the acoustic Wellenleiterei ⁇ characteristics can thereby be further improved.
- Figure 10 shows an embodiment in which the dielektri ⁇ specific material is arranged over a large area in the bus bars BB aligned in parallel strips on top of the piezo-electric material ⁇ .
- the dielectric Ma ⁇ TERIAL can thereby be distributed through the material of the electrode fingers in a variety of non-contiguous areas. However, it is also possible to apply a single strip dielectric material over a large area via the entspre ⁇ sponding portion of the electrode finger, whereby the manufacture is simplified.
- the improved representation lung half is the dielectric material in Fig. 10 in the transparent Be ⁇ area of the electrodes.
- FIG. 11 shows the real part (solid line) and the imaginary part (broken line) of the dispersion relation of a waveguide (eg, the acoustically active region) with aluminum electrode fingers weighted by the pitch p.
- the imaginary part is additionally normalized to the metallization ⁇ approximate ratio n.
- the stopband edge SBK at approximately 1.98 GHz is characterized by a small nascent real part and by a large nascent Ima ⁇ ginärteil.
- Figure 12 shows the corresponding curves for a waveguide (eg the isolation region) with finger structures
- Figures 11 and 12 thus show waveguide structures whose lower stopband edges are matched to enhance wave propagation with reduced nonlinearities throughout the transducer.
- the curves 11 and 12 thus clearly show that fingers structural ⁇ structures can be dimensioned in aluminum and made of silicon dioxide so that they are used together in an acoustic track.
- silicon dioxide can easily be used as the di- electric material to reduce the electric field strength ⁇ be used to reduce non-linear disturbances second Ord ⁇ voltage.
- the converter is not limited to the described or shown embodiments. Converter having other structural ⁇ structures for improving the fiber properties or for reducing electrical interference, illustrate embodiments of the invention as well.
- IB isolation area
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015120654.4A DE102015120654A1 (en) | 2015-11-27 | 2015-11-27 | Electroacoustic transducer with reduced second order nonlinearities |
PCT/EP2016/076542 WO2017089090A1 (en) | 2015-11-27 | 2016-11-03 | Electroacoustic transducer having fewer second-order nonlinearities |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3381124A1 true EP3381124A1 (en) | 2018-10-03 |
Family
ID=57223702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16790378.0A Withdrawn EP3381124A1 (en) | 2015-11-27 | 2016-11-03 | Electroacoustic transducer having fewer second-order nonlinearities |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180351531A1 (en) |
EP (1) | EP3381124A1 (en) |
CN (1) | CN108770380A (en) |
DE (1) | DE102015120654A1 (en) |
WO (1) | WO2017089090A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130051588A1 (en) * | 2010-01-25 | 2013-02-28 | Epcos Ag | Electroacoustic Transducer having Reduced Losses due to Transverse Emission and Improved Performance due to Suppression of Transverse Modes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7112860B2 (en) * | 2003-03-03 | 2006-09-26 | Cree, Inc. | Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices |
DE112007001609B4 (en) * | 2006-07-05 | 2013-08-22 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US7576471B1 (en) * | 2007-09-28 | 2009-08-18 | Triquint Semiconductor, Inc. | SAW filter operable in a piston mode |
JP5156478B2 (en) * | 2008-05-15 | 2013-03-06 | 太陽誘電株式会社 | Surface acoustic wave device |
JP2012060421A (en) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | Surface acoustic wave device, electronic apparatus and sensor device |
WO2012127793A1 (en) * | 2011-03-22 | 2012-09-27 | パナソニック株式会社 | Elastic wave element |
JP6504551B2 (en) * | 2013-06-10 | 2019-04-24 | 太陽誘電株式会社 | Resonator, filter and duplexer |
-
2015
- 2015-11-27 DE DE102015120654.4A patent/DE102015120654A1/en not_active Withdrawn
-
2016
- 2016-11-03 WO PCT/EP2016/076542 patent/WO2017089090A1/en active Application Filing
- 2016-11-03 CN CN201680068408.XA patent/CN108770380A/en active Pending
- 2016-11-03 EP EP16790378.0A patent/EP3381124A1/en not_active Withdrawn
- 2016-11-03 US US15/778,997 patent/US20180351531A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130051588A1 (en) * | 2010-01-25 | 2013-02-28 | Epcos Ag | Electroacoustic Transducer having Reduced Losses due to Transverse Emission and Improved Performance due to Suppression of Transverse Modes |
US20160126928A1 (en) * | 2010-01-25 | 2016-05-05 | Epcos Ag | Electroacoustic Transducer having Reduced Losses due to Transverse Emission and Improved Performance due to Suppression of Transverse Modes |
Non-Patent Citations (1)
Title |
---|
See also references of WO2017089090A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2017089090A1 (en) | 2017-06-01 |
US20180351531A1 (en) | 2018-12-06 |
DE102015120654A1 (en) | 2017-06-01 |
CN108770380A (en) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112015005349B4 (en) | Device for elastic waves | |
EP1125364B1 (en) | Surface acoustic wave arrangement with at least two surface acoustic wave structures | |
DE102012213892B4 (en) | Bulk acoustic wave resonator having a bridge formed within a piezoelectric layer | |
DE19714085C2 (en) | Acoustic multimode surface wave filter | |
DE102014118897B4 (en) | Converter for SAW with suppressed mode conversion | |
WO2011088904A1 (en) | Electroacoustic transducer having reduced losses due to transverse emission and improved performance due to suppression of transverse modes | |
DE102006057340B4 (en) | DMS filter with improved adaptation | |
DE112017005984T5 (en) | Acoustic wave devices | |
DE69901426T2 (en) | RESONATOR FILTER WITH ACOUSTIC SURFACE WAVES | |
DE3026655A1 (en) | PIEZOELECTRIC SWINGARM | |
DE102016105118A1 (en) | SAW device with reduced interference due to transversal and SH modes and RF filter with SAW device | |
DE102018131952A1 (en) | Electroacoustic resonator with suppressed excitation of transverse slit modes and reduced transverse modes | |
DE2442618A1 (en) | CERAMIC FILTERS USING ELEMENTS WITH DISTRIBUTED CONSTANTS | |
WO2006040001A1 (en) | Component that operates using acoustic waves and method for producing said component | |
DE102010008774B4 (en) | Microacoustic filter with compensated crosstalk and compensation method | |
DE2713672C2 (en) | Frequency selective arrangement | |
WO2012076517A1 (en) | Electroacoustic transducer with reduced losses due to transversal emission and improved performance due to suppression of transversal modes | |
DE102018124372A1 (en) | Electroacoustic resonator | |
DE10057848B4 (en) | Reactance filter with improved power compatibility | |
DE3324228C2 (en) | Acoustic surface wave component | |
EP3381124A1 (en) | Electroacoustic transducer having fewer second-order nonlinearities | |
DE19910368A1 (en) | Method of producing a piezoelectric resonator, e.g. for use in an oscillator | |
DE102010055628B4 (en) | Electro-acoustic resonator | |
DE102018130141A1 (en) | Electroacoustic resonator and RF filter | |
WO2017149514A1 (en) | Baw resonator less prone to spurious modes, baw filter, and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180619 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210303 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220319 |