EP3380222B1 - Modular catalyst monoliths - Google Patents

Modular catalyst monoliths Download PDF

Info

Publication number
EP3380222B1
EP3380222B1 EP16802003.0A EP16802003A EP3380222B1 EP 3380222 B1 EP3380222 B1 EP 3380222B1 EP 16802003 A EP16802003 A EP 16802003A EP 3380222 B1 EP3380222 B1 EP 3380222B1
Authority
EP
European Patent Office
Prior art keywords
catalytic
shaped bodies
reactor
usually
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16802003.0A
Other languages
German (de)
French (fr)
Other versions
EP3380222A1 (en
Inventor
Gerhard Olbert
Jochen Gauer
Holger Friedrich
Andreas Spiegel
Andreas Woelfert
Wolfgang Gmeiner
Michael Lorenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP3380222A1 publication Critical patent/EP3380222A1/en
Application granted granted Critical
Publication of EP3380222B1 publication Critical patent/EP3380222B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • C01B21/28Apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/38Nitric acid

Definitions

  • the present invention relates to a reactor R, preferably a high-temperature reactor with device D, the use of reactor R with device D and a process for the production of nitrogen oxides or nitric acid, each using reactor R with device D, each as defined in the claims .
  • Devices accommodated in reactors for example in a basket-like shape, which as a rule, also for reasons of construction or strength, consist of materials with good thermal conductivity such as metal or metal alloys, for example steel, expand when the reactor is heated to operating temperature, for example, or heated up by the heat of reaction and contract when the reactor cools down.
  • devices of this type contain easily displaceable, particulate, for example poured, fillings of cylindrical or star-shaped catalytically active or non-catalytically active particles, the thermal expansion differences between the device and said filling usually result in depressions - often irregular and funnel-shaped - in the edge area of the device Particles usually trickle or sag from the edge area of the device.
  • the flow rate of a gas is greater than in areas without an indentation, which usually reduces the residence time of the gas in the edge area, and there is also less catalytic surface area available for the reaction gas, which generally leads to lower catalytic conversions in the edge area and overall leads.
  • the devices described above may also contain, in addition to or instead of the particles mentioned, monolithic shaped bodies, for example of honeycomb shape, which frequently consist of pressed, extruded and/or sintered inorganic material which is usually brittle, fragile or susceptible to abrasion.
  • monolithic shaped bodies for example of honeycomb shape, which frequently consist of pressed, extruded and/or sintered inorganic material which is usually brittle, fragile or susceptible to abrasion.
  • the monolithic shaped bodies can also start to move, for example rub against one another and break apart or fall over. This entails the same problems as described above for particle filling.
  • the oxidation products of the ammonia are usually passed through a bed of a particulate and/or a bed of a nitrous oxide decomposition catalyst consisting of monolithic shaped bodies, which is usually located in a basket-like device.
  • a nitrous oxide decomposition catalyst consisting of monolithic shaped bodies, which is usually located in a basket-like device.
  • the above-mentioned funnel-shaped depressions or also destruction or disorder of the monolithic shaped bodies in this bed or bed of nitrous oxide decomposition catalyst lead to reduced decomposition of the nitrous oxide in the catalyst bed, which in turn usually results in higher nitrous oxide emissions from the production plant, which is undesirable are.
  • a structured packing for example hexagonal or cubic
  • shaped catalyst bodies module structured fixed-bed reactor, "MOSFIBER"
  • MOSFIBER modular structured fixed-bed reactor
  • N 2 O dinitrogen monoxide
  • WO 2006/009453 A1 Yara International
  • WO 2006/009453 A1 is silent on the problem of abrasion or breakage of these shaped catalyst bodies during operation of the reactor and their replacement with new shaped catalyst bodies.
  • WO 2015/022247 A1 discloses a reactor with a device containing a gas- and/or liquid-permeable base in the edge region of which a side boundary is arranged, which completely encloses the base and forms a volume V containing shaped bodies, with at least there is a mesh made of metal.
  • WO 2015/022247 A1 deals with the problems caused by the differential thermal expansion of different materials.
  • the object of the present invention was to provide a reactor with a device, the latter containing catalytic monolithic shaped bodies which are practically not damaged or destroyed during operation of the reactor and which can be completely or partially integrated efficiently and practically without being damaged or destroyed. and/or expand.
  • the reactor R preferably a high-temperature reactor, with the device D, the use of the reactor R with the device D and a process for the production of nitrogen oxides or nitric acid each using the reactor R with the device D, each as defined in the claims , found.
  • the reactor R with the device D is used in a process for the production of nitrogen oxides and/or nitric acid.
  • This embodiment is also referred to as “NOx/HNO 3 embodiment” below, and the following applies expressly—unless otherwise stated—in particular to the NOx/HNO 3 embodiment.
  • a mixture of ammonia and an oxygen-containing gas for example air or else pure oxygen
  • a relatively high temperature for example in the range from 800 to 900 °C, for example on a network of noble metal such as platinum or platinum-rhodium alloy
  • the resulting reaction products which usually contain nitrogen monoxide as the main component and nitrous oxide ("laughing gas") as a minor component, usually flow through a bed with catalytic and/or non-catalytic, usually ceramic , to the reaction conditions in the reactor-resistant shaped body, which is arranged in the flow direction downstream, usually below the catalyst gauze.
  • This bed is usually catalytically active in the decomposition of nitrous oxide, usually contained in a basket-like device, and typically breaks down the nitrous oxide into the elements nitrogen (N 2 ) and oxygen (O 2 ).
  • the reaction mixture After the reaction mixture has left the device, which is usually basket-like, it is usually cooled on heat exchangers, during which it reacts further with oxygen to form nitrogen dioxide.
  • the reaction mixture is generally further cooled via various heat exchangers—it being possible for nitric acid to condense out in some cases—and finally the reaction mixture is reacted with water in an absorption device to form nitric acid.
  • the dilute nitric acid that may have previously condensed out in the cooling/condensation is usually also fed into the absorption device.
  • the material for the device D is usually a high-temperature material made of metal, for example Inconel 600 (material no. 2.4816), Alloy 602 CA, Haynes Alloy or also materials made from austinitic steels with the material designations 1.4828 and 1.4835. and 1.4876.
  • the thermal expansion coefficients of these materials are usually in the range of 17 ⁇ 10 -6 K -1 to 19 ⁇ 10 -6 K -1 at an operating temperature of 800 - 900 °C.
  • a well suited material for the device D is Inconel 600 or steel with material number 1.4835 or Alloy 602 CA or Haynes Alloy.
  • Preferred materials for the device D are Inconel 600, steel with the material number 1.4835 or Alloy 602 CA.
  • the bottom B of the device D is generally perforated, with the type and geometry of the perforation not being critical and in particular permeable to gases and/or liquids, preferably gases.
  • the bottom B is usually perforated in such a way that the particles that it usually carries cannot fall through the perforation.
  • the floor B contains a support part, for example a grate made of a frame or a metal honeycomb structure on which a metal floor net or several, for example two to three, metal floor nets, usually with different mesh sizes and/or different wire mesh thicknesses, can rest.
  • the support part for example a grate made of a frame or a honeycomb structure, can consist of one piece, but it can also be composed of several segments, preferably 2 to 8 segments, particularly preferably 4 to 6 segments, which can be easily fixed to one another, with the geometry of the segments can be varied, for example quarter circle segments, sixth circle segments, eighth circle segments, ergo "pie geometry".
  • the openings of the above ground nets can have any cross-sectional geometry, for example, rectangular, hexagonal, round.
  • the base B is usually made of the material 1.4835, Alloy 602 CA and Inconel 600, preferably Inconel 600 or Alloy 602 CA.
  • the cross-sectional geometry of the base B per se generally depends on the cross-sectional geometry of the reactor R in which it is usually accommodated.
  • the cross-sectional geometry of the tray B is the same as that of the reactor R in which the tray B is housed.
  • Angular, preferably square or hexagonal, particularly preferably rectangular or uniformly hexagonal cross sections come into consideration as the cross-sectional geometry for the base B and/or the reactor R in which it is accommodated.
  • practically round or elliptical cross-sections preferably practically round or round cross-sections for the tray B and/or the reactor R in which it is accommodated, come into consideration as cross-sectional geometry for the tray B and/or the reactor R in which it is accommodated.
  • the cross section of the base B and/or the cross section of the reactor in which it is accommodated is practically round or round.
  • the tray B can be mounted, for example, directly or via ceramic or metallic spacers on a cooler or heat exchanger arranged downstream under the tray B in the reactor R.
  • the floor B can also be supported by a central inner support and lateral brackets that serve as supports.
  • the material for the side boundary W of the device D is usually the same as for the bottom B.
  • the side boundary W is arranged in the edge area of the base B in such a way that it completely encloses the base B and forms a space with the volume V that is partially or completely filled with catalytic and/or non-catalytic shaped bodies—as explained in more detail below is.
  • the side boundary can be firmly connected to the floor B, in which case a basket-like connection is formed.
  • the side boundary W is usually arranged relative to the bottom B at the angles of 45° to 135°, preferably substantially perpendicular.
  • the side boundary W is usually straight, ergo practically not bent in the vertical direction.
  • the ratio of the height of the side boundary W to the inside diameter of the floor B is usually in the range from 0.04 to 0.2.
  • Usual heights of the side boundary W are in the range from 100 to 1000 mm, preferably 150 to 600 mm.
  • Customary clear diameters of the bottom B are in the range of 2500 to 6000 mm.
  • the side boundary W can, but does not have to, be made from one piece, but can also consist of individual parts or segments.
  • a heat-insulating layer S can advantageously be located at least on a part of the surface of the inside of the side boundary W, preferably in the area directly adjoining the bottom B upstream.
  • the heat-insulating layer S can cover the area of the inside of the side boundary W, for example from 30% to practically 100%, preferably almost completely.
  • the heat-insulating layer S preferably covers at least the lower 30%, for example 30% to 90%, i.e. those parts of the surface of the inside of the side boundary W that are closest to the bottom B.
  • the heat-insulating layer S usually completely encloses the side boundary W on the inside thereof.
  • the heat-insulating layer S usually adjoins the inside of the side boundary W practically directly, that is to say practically without a gap, in the direction of the center point of the device D.
  • the heat-insulating layer S can be on the side facing the center of the device D, for example on the contact side for the bed of particles or the shaped bodies, practically any cross-sectional geometry, for example from straight (rectangular) to oblique, for example in the form of a trapezium, curved inwards (concave) and outwards, i.e. the side facing the center of the device D - curved (convex), step-like with one or more steps .
  • the heat-insulating layer S can consist of one piece or can be composed of individual elements to give the desired cross-sectional geometry, as will be described in more detail below.
  • this heat-insulating layer S based on the diameter of the floor B, is usually in the range from 0.5% to 5%, for example 1.0%. For example, when the diameter of the bottom B is 2500 to 6000 mm, the heat insulating layer S is 50 mm thick.
  • the material for the heat-insulating layer S is selected from the group consisting of ceramic material, for example fireclay, microporous material and silicate fibers, with the aforementioned materials generally not decomposing in the temperature range from approx. 700 to 1100 °C and usually having a thermal conductivity in the range from 0.03 to 0.15 W/m/K.
  • Microporous materials are microporous siliceous substances containing highly dispersed silicic acid and opacifiers, which do not decompose in the temperature range from approx. 700 to 1100 °C and have a thermal conductivity in the range from 0.04 to 0.09 W in the temperature range from 700 to 1100 °C /mK have preferred, for example the products WDS ® High and WDS ® Ultra from Porextherm, see three-page data sheet version 1.4/15-02 10/HH WDS ® High and three-page data sheet version 1.03/15-02 10/HH WDS ® Ultra der Company Porextherm Dämmstoffe GmbH, Heisinger Strasse 8/10, 87437 Kempten, www.porextherm.com.
  • the heat-insulating layer S can be made up of plates with a thickness of, for example, 10 to 50 mm made of the aforementioned material, preferably the microporous siliceous substances, with the plates being adapted to the required shapes or cross-sectional geometries of the heat-insulating layer W.
  • the above-mentioned material preferably microporous siliceous substances - preferably after they have been thermally pretreated at 850 °C - and/or silicate fibers in the form of mats, are housed in cassettes for the heat-insulating layer S (hereinafter also referred to as referred to as "insulating cassettes"), as described below, which can then generally be assembled to form the heat-insulating layer S, as described below.
  • insulating cassettes for the heat-insulating layer S
  • An insulating cassette with encased insulating material is described below as an example.
  • the insulating cassette usually consists of a metal housing, for example made of high-temperature-resistant steel, which is filled with one or more insulating materials, such as the microporous material described above, preferably the microporous siliceous substances, and/or silicate fibers, the latter preferably in the form of mats.
  • the microporous material built into the insulating cassettes is spaced apart from the metal wall by silicate fiber mats and silicate fibers.
  • the metal housing of the insulating cassettes can consist of one or more metals, for example high-temperature materials such as Inconel 600, Alloy 602 CA usually on the insulating cassette side facing the higher temperature and material 1.4541 on the insulating cassette side usually facing the lower temperature.
  • high-temperature materials such as Inconel 600, Alloy 602 CA usually on the insulating cassette side facing the higher temperature and material 1.4541 on the insulating cassette side usually facing the lower temperature.
  • These insulating cassettes are preferably parallelepipedal in shape, preferably with a slight curvature and creases or other overlapping means which may form a tongue and groove configuration and are illustrated, for example, in Figure 12, in which the reference numerals have the meaning given herein.
  • the walls located on the faces of the cassettes, which usually form the fold and overlap areas of the joined cassettes, are usually made of thin metal gauge, for example to reduce the effective total heat transfer.
  • the wall thickness of the fold and overlapping area of the insulating cassettes is usually in the range of 0.2 to 0.5 mm and is usually less than the wall thickness of the remaining part of the thermal insulation cassette, which is usually in the range of 0.8 to 1.5 mm .
  • the fold and overlap areas of the insulating cassettes are embossed in a wavy pattern.
  • the above-described insulating cassettes are arranged in segments on the inside of the side boundary W over the circumference, as shown for example in FIG. 13, in which the reference symbols have the meaning given herein.
  • the insulating cassettes are preferably equipped with a sliding fit or other superimposition techniques, for example tongue and groove, in the circumferential direction (tangential direction) and are free of movement, for example, only in the circumferential direction.
  • the insulating cassettes are usually joined together at the installation temperature, which is usually 0 to 30 °C, so that the joint width at the location where the insulating cassette is exposed to a higher temperature in the reactor R is larger than at the location where the temperature in the reactor R is lower , which usually means that the insulating cassettes fit together as closely as possible under increased operating temperature in the reactor R due to expansion with practically no stress or the formation of distortions.
  • part of the side boundary W - with or preferably without a heat-insulating layer S - here called W1 be firmly connected to the floor B, completely enclose it and be relatively low, for example W1 has a height in the range of 50 to 150 mm.
  • the second part of the side boundary W, here called W2 can be arranged as an "apron", for example in the form of a Z-shaped construction, on the reactor inner wall, completely enclosing it and preferably fixed, with the end of the apron W2 being inverted, for example, looking downwards U or V profile is formed.
  • the side boundary W1 protrudes into the opening of this inverted Us or V.
  • the fixed connection of the side boundary W1 to the floor B is brought about, for example, by welding.
  • the heat-insulating layer S is, usually below any catalyst mesh that may be present, preferably in two parts and preferably designed in a sliding-fit configuration, with the upper of the two parts of the heat-insulating layer S usually being preferably firmly connected to the upper side boundary W2 and the lower part of the heat-insulating layer S not is firmly connected to the upper side boundary W2 in such a way that it can still move up and down in the vertical direction.
  • a heat-insulating layer S can also be applied above any catalyst mesh that may be present, preferably covering the entire remainder of the side boundary W.
  • W1 cannot be firmly connected to the base B, but rather so reversibly connected that it can be detached from it and reconnected to it again in a few simple steps, for example by welding, plugging, screwing.
  • the side boundary W completely encloses the base B and is not firmly connected to it, but is arranged, for example, as an "apron" on the reactor inner wall, completely enclosing it and preferably fixed, with a circumferential wall between the lower end of the apron and the base B gap is.
  • cooling devices for example with a heat-absorbing medium - for example water or molten salt - are arranged in pipes , for example in that the tubes are arranged in the form of a tube coil between the reactor inner wall and the outside of the side boundary W.
  • Such cooling devices usually have the task of protecting the reactor wall from excessive heat by active cooling, at least in the region of device D and/or the reactor flanges.
  • the cooling devices on the inner wall of the reactor R in the area of the device D can be replaced in whole or in part by a heat-insulating layer S as described herein.
  • At least one mesh made of precious metal for example platinum, palladium, rhodium and/or noble metal alloys, for example containing the aforementioned noble metals, and/or at least one mesh made of non-precious metal, for example megapyr mesh (Kanthal network) - this usually for the mechanical stabilization of the precious metal network.
  • precious metal for example platinum, palladium, rhodium and/or noble metal alloys, for example containing the aforementioned noble metals
  • non-precious metal for example megapyr mesh (Kanthal network)
  • the volume V of the device D contains catalytic and/or non-catalytic shaped bodies (F) as described below.
  • Non-catalytic shaped bodies (F) here are usually ceramic shaped bodies which are resistant to the reaction conditions in the reactor R and practically do not catalyze the reactions in the reactor R.
  • Catalytic shaped bodies (F) are generally shaped bodies which catalyze one or more reactions taking place in the reactor R, for example the decomposition of dinitrogen monoxide (N 2 O) to form nitrogen and oxygen.
  • N 2 O dinitrogen monoxide
  • the catalytic and/or non-catalytic shaped bodies (F) are selected from (i) shaped bodies (F1) in the form of right prisms whose base is selected from a triangle, rectangle, hexagon or fragments of these polygons or (ii) a combination of the Shaped bodies (F1) with the shaped bodies (F2) defined below, which are smaller than the shaped bodies (F1).
  • the base of the shaped body (F1) is that of a preferably regular triangle, a preferably regular rectangle, a preferably regular hexagon or fragments of these polygons.
  • the parallel displacement of the polygon forming the base occurs perpendicularly to the base, resulting in a right prism as a geometric body. If the base of the right prism is rectangular, it is also called a cuboid.
  • the boundary surface of the prism that is congruent and parallel to the base of the respective prism is called the cover surface, the entirety of all other boundary surfaces is called the lateral surface.
  • V k is the volume of the shaped body and A k is the total outer surface area of the shaped body.
  • Dp eq of the shaped body (F1) is five to fifty times, preferably fifteen times to twenty-five times, as large as Dp eq of the shaped body (F2).
  • the shaped bodies (F1) in the shape of a right prism generally have a diameter or diagonal of the base area in the range from 20 to 100 mm, preferably from 50 to 75 mm, and a height in the range from 100 to 300 mm, preferably from 150 to 230 mm.
  • Catalytic shaped bodies (F1) as described above are usually so-called unsupported catalysts, ie those which do almost entirely without an inert support substance.
  • Very suitable such shaped catalytic bodies (F2) are those that catalyze the decomposition of nitrous oxide (N 2 O) and, for example, in DE 103 50 819 A , particularly in paragraphs [0015] to [0017]. They can be obtained, for example, by extrusion.
  • Catalytic shaped bodies (F1) as described above can also be those which have a body made of inert carrier material, for example cordierite, with one or more channels that run/run practically parallel to the longitudinal axis of the shaped body (F1) and its/their channel surface is each coated with a catalytically active material.
  • the channels mentioned generally have square cross-sections and the number of channels per area is expressed in cpsi (cell per square inch) and is 400, for example For example, a channel width of 1.2 mm or 230 cpsi with a channel width of 1.6 mm (the wall thickness is deducted in each case).
  • Such shaped catalytic bodies are also referred to as “monoliths”.
  • Very suitable such shaped catalytic bodies (F1) are those which catalyze the decomposition of nitrous oxide (N2O) and which, for example, in EP 1 147 813 A2 or in WO 2006/009453 A1 are described.
  • the catalytic and/or non-catalytic shaped bodies (F2) are smaller than the shaped bodies (F1).
  • Dp eq of the shaped body (F1) is 5 to 50 times, preferably 15 to 25 times, as large as Dp eq of the shaped body (F2).
  • the catalytic and/or non-catalytic shaped bodies (F2) are usually regularly or irregularly shaped solid particles, generally with a length in the range from 3 to 30 mm and a diameter in the range from 2 to 10 mm, for example with a round or star-shaped cross section .
  • Further catalytic and/or non-catalytic shaped bodies (F2) can be the following: high-flow rings, rings, spheres, strands, hollow strands or other solid particles and/or shaped bodies with dimensions similar to those described above.
  • Catalytic shaped bodies (F2) as described above are usually so-called unsupported catalysts, ie those which do almost entirely without an inert carrier substance.
  • Very suitable such shaped catalytic bodies (F2) are those that catalyze the decomposition of nitrous oxide (N 2 O) and, for example, in DE 103 50 819 A , particularly in paragraphs [0015] to [0017].
  • Groups of m to n shaped bodies (F1) are enclosed in a metal cassette which is open on the upstream side and closed off with a gas-permeable base on the downstream side, side to side and with their longitudinal axis (height) aligned in the vertical direction to form modules (M);
  • m, n is an integer from 3 to 30 and n > m.
  • the base of the modules (M) is generally perforated--the type and geometry of the perforation not being critical--and in particular permeable to gases and/or liquids, preferably gases.
  • the bottom of the modules (M) is usually perforated in such a way that the particles it carries cannot fall through the perforation.
  • the base area of the modules (M) is generally in the range from 0.25 to 1.5 m 2 , preferably in the range from 0.5 to 1.0 m 2 .
  • the geometry of the shaped bodies (F1) is advantageously selected such that they almost completely cover the cross section of the bottom of the module (M) when they are arranged side to side and with their longitudinal axis (height) aligned in the vertical direction with virtually no gaps.
  • the above-described fragments of the shaped bodies (F1) are usually used in the inner edge region of the module (M) to fill any gaps.
  • An example of the assembly of the modules (M) with shaped bodies (F1) and the practical area-wide coverage of the cross-section of the bottom B of the device D with the modules (M) is in figure 1 shown.
  • joint filling material such as in figure 2 shown.
  • Possible joint filling materials are: fabric, felt, mats or the like made of inorganic, preferably mineral material such as silicate that is resistant to high temperatures.
  • a layer of shaped bodies (F1) and, if appropriate, (F2) is produced which almost completely covers the bottom of a module (M). It is of course possible to build up a further layer of moldings (F1) and optionally (F2) or a plurality of further layers of moldings (F1) and optionally (F2) analogously to this first layer.
  • the walls of the module (M) are made of metal, preferably material 1.4835, Alloy 602 CA and Inconel 600, preferably Inconel 600 or Alloy 602 CA.
  • the cassettes forming the modules (M), preferably on their walls, are fitted with devices, for example eyelets, which serve, for example, to easily remove the modules (M), individually or in combination, for example by pulling them out of the device D can remove.
  • the height of the walls of the cassettes forming the modules is at least as high as the length of the longest shaped body (F1) contained in them, preferably the height of the walls of the cassettes forming the modules is 5 to 30% higher than the longest height of the longest in moldings (F1) contained in them.
  • the height of the walls of the cassettes forming the modules (M) is so high that the upper edge of the walls abut the underside of the precious metal and/or non-precious metal mesh opposite the bottom B of the device D upstream.
  • the volume in the module (M) created in this way and not filled by shaped bodies (F1) can be partially covered by a gas- or liquid-permeable layer of high-temperature-resistant inorganic, preferably mineral material such as aluminum oxide, for example foam ceramics, Berls saddles, or non-catalytic shaped bodies (F2). or preferably filled in completely.
  • the complete filling has the advantage, for example, that the mesh made of precious metal and/or non-precious metal lying upstream from the bottom B of the device D is supported over the entire surface and thus practically does not sag.
  • An example of this embodiment is in figure 2 shown.
  • the surface geometry of the bottom of a module (M) can be varied. It is advantageously chosen so that when the modules (M) are assembled side by side in a tessellation, they cover the cross-section of the bottom B of the device D almost completely.
  • the surface geometry of the bottom of a module (M) can be the following: (a) polygonal, such as triangular, square or hexagonal, preferably quadrangular, for example rectangular, particularly preferably square, or hexagonal, particularly preferably uniformly hexagonal, or (b) polygonal, preferably irregular polygonal, particularly preferably irregularly square, one side of the polygon being formed by an arc of a circle. In figure 1 shown.
  • the modules (M), optionally with the participation of a joint filling material, are joined to one another, side surface to side surface, with a vertical alignment of the longitudinal axis of the shaped bodies (F1) in such a way that they practically completely cover the cross section of the base B.
  • the gaps or crevices that may form where the outer side surfaces of the cassettes forming the modules (M) abut or abut the inner surface of the side boundary W of the device D can preferably be filled with joint filling material.
  • suitable joint filling materials of this type are: fabric, felt, mats or the like made from high-temperature-resistant inorganic, preferably mineral material such as silicates, for example mats made from polycrystalline fibers.
  • the layers are usually separated horizontally by devices such as horizontally arranged perforated metal sheets or metal nets, for example megapyr nets.
  • the layers in the variants ba) to bc) described can be separated horizontally by devices such as horizontally arranged perforated metal sheets or metal nets, for example megapyr nets.
  • the reactor R can be a vessel for carrying out chemical reactions, preferably on an industrial scale.
  • Examples of such chemical reactions are oxidations of carbon-containing and/or nitrogen-containing compounds, preferably with oxygen-containing or halogen-containing gases.
  • Examples of such oxidations are the usual combustion of petroleum, naphtha, natural gas, coal and the like, for example to produce heat and/or electrical energy; the catalytic oxidation of ammonia with an oxygen-containing gas, preferably air or pure oxygen, to form nitrogen oxides; the so-called ammoxidation of organic compounds with methyl groups or of methane with ammonia and oxygen to form nitriles or hydrogen cyanide.
  • N 2 O nitrous oxide
  • the reactor R is preferably a vessel for producing, preferably on an industrial scale, chemical products, for example for producing nitrogen oxides such as NO 2 , N 2 O, N 2 O 4 , NO and/or nitric acid and/or nitrous acid, inter alia, by catalytic oxidation of ammonia with an oxygen-containing gas, for example air; for the production of sulfur oxides such as SO 2 , SO 3 and/or sulfuric acid, sulfurous acid or other acids of sulfur oxides.
  • nitrogen oxides such as NO 2 , N 2 O, N 2 O 4 , NO and/or nitric acid and/or nitrous acid, inter alia, by catalytic oxidation of ammonia with an oxygen-containing gas, for example air
  • sulfur oxides such as SO 2 , SO 3 and/or sulfuric acid, sulfurous acid or other acids of sulfur oxides.
  • the reactor R is a cylindrical vessel for producing, preferably on a large industrial scale, nitrogen oxides such as NO 2 , N 2 O, N 2 O 4 , NO and/or nitric acid and/or nitrous acid by catalytic oxidation of ammonia with an oxygen-containing Gas, for example air or pure oxygen.
  • an oxygen-containing Gas for example air or pure oxygen.
  • FIG. 4 An embodiment that is well suited for this example is shown in FIG. 4, for example.
  • Another subject of the present application is the use of the reactor R with the device D, in a process for the production of nitrogen oxides by catalytic oxidation of ammonia, for example in the temperature range from 800 to 900 ° C and for example on a network of noble metal such as platinum or Platinum-rhodium alloy, with an oxygen-containing gas, for example air or pure oxygen and, if necessary, reaction of the nitrogen oxides with water to form nitric acid, it being expressly pointed out that all disclosures relating to the reactor R and/or the device D or other objects of the invention herein are contained in the aforementioned Subject matter of the present invention is expressly incorporated.
  • Another subject of the present application is a process for the production of nitrogen oxides, wherein ammonia is reacted in a reactor R with an oxygen-containing gas, preferably air or pure oxygen, for example in the temperature range from 800 to 900° C., catalytically, for example on a noble metal net , such as platinum or platinum-rhodium alloy oxidized and the resulting nitrogen oxides-containing reaction products, which usually contain nitrogen monoxide as the main component and nitrous oxide as a secondary component, flow through an arrangement of catalytic and/or non-catalytic shaped bodies (F) in a device D, which is usually arranged downstream in the direction of flow, usually below the catalyst gauze, allowing the arrangement of the catalytic and/or non-catalytic shaped bodies (F) and the device D to flow, in each case as previously described, and it being expressly pointed out w ird that all disclosure of the catalytic and / or non-catalytic shaped bodies (F), to the device D herein and / or
  • a further subject of the present application is a process for the production of nitric acid, wherein ammonia is reacted in a reactor R with an oxygen-containing gas, preferably air or pure oxygen, for example in the temperature range from 800 to 900 ° C, catalytically, for example on a net made of noble metal, such as platinum or platinum-rhodium alloy and the resulting nitrogen oxides-containing reaction products, which are usually nitrogen monoxide as the main component and nitrous oxide as a secondary component included, through an arrangement with catalytic and / or non-catalytic shaped bodies (F) in a device D, which is usually arranged downstream in the flow direction, usually below the catalyst mesh, flows, usually cools, reacting with oxygen to form nitrogen dioxide and reacted with water to form nitric acid, the arrangement of the catalytic and/or non-catalytic shaped bodies (F), the device D and the reactor R, each as previously described, it being expressly pointed out that all disclosure relating to the catalytic cal and /
  • FIG 1 Figure 12 shows in cross-section part of a cylindrical reactor R, preferred for the NO x /HNO 3 embodiment, in which device D is housed. Shown are: The reactor wall 1, 11, the side boundary W of the device D, the modules 6 housed by the walls 3, the joints between the modules (M) 6 themselves and between the modules (M) 6 and the reactor wall 1 being filled with joint filling material 2 are filled out.
  • the modules (F1) 4 are in the modules M.
  • the modules (M) 6 cover the cross-section of the bottom B almost completely.
  • figure 2 shows a longitudinal section through a module (M) 6, among other things. It shows: the wall 3 of a module (M) 6, the floor 7 of a module (M) 6, the floor B 10 on which the modules (M) rest, the shaped bodies (F1) 4, which are enclosed in the modules (M), the joint filling material 2, the mesh made of precious metal and/or non-precious metal 8.
  • the space between the shaped body (F1) and mesh 8 is equipped with a gas and/or or liquid-permeable layer of high-temperature-resistant inorganic material, the compensating body 9, filled.
  • figure 3 is analogous to figure 2 including the corresponding reference numbers and shows in longitudinal section a part of a cylindrical reactor R - preferably for the NO x /HNO 3 embodiment - in which the device D with modules (M) 6 is accommodated.
  • a U-shaped metal apron 12 is fastened on one side to the reactor wall 1 by means of a flange. On the other side of the metal U-shaped skirt 12, the side boundary W 11 of the device D is attached.
  • the U-shaped apron 12 encloses part of the tubes for a cooling medium 13.
  • An ammonia-air mixture (12.5 vol% NH 3 , 87.5 vol% air) is fed to the cylindrical ammonia combustion furnace (reactor R) in which a device D in the form of a basket with a round bottom cross-section is accommodated.
  • the basket-like device D has an internal diameter of 3.52 m.
  • the reactor R is operated with an ammonia/air mixture throughput of 3650 Nm 3 /h and per m 2 of catalyst mesh surface.
  • the inlet temperature of the ammonia-air mixture in reactor R is 28.4° C. and the pressure upstream of the platinum catalyst gauze in reactor R is 1080 mbar (abs.).
  • the ammonia burns on the platinum catalyst gauze at temperatures of approx. 880° C.
  • reaction product which is then passed through device D, containing a catalytically active filling and containing nitrogen monoxide as the main component and small amounts of nitrous oxide N 2 O ("laughing gas").
  • the nitrous oxide concentration of the reaction product is about 1000 ppm directly after the platinum catalyst gauze, ie before it hits the catalytically active filling of the basket-like device D. Downstream of the platinum gauze is the basket-like device D, containing shaped catalytic bodies (F1) (according to the invention) or shaped catalytic bodies (F2) (not according to the invention), as described in more detail below.
  • the non-mesh parts of the basket-like device D are made of Inconel 600, the side border W is about 250 mm high.
  • samples of the reaction product can be taken and analyzed for nitrous oxide concentration using the GC/MS method.
  • the basket-like device D with a round bottom cross-section initially contains a 150 mm high layer of catalytic shaped bodies (F2), namely all-catalyst extrudates, which covers the entire area, these extrudates having a star-shaped cross-section, a diameter of approx. 6 mm and a length of 5 to 30 mm and consist of a mixture of CuO, ZnO and Al 2 O 3 .
  • F2 catalytic shaped bodies
  • an ammonia-air mixture is converted as described above.
  • the edge area of device D has a funnel-shaped depression in the form of a ditch with a depth of 96 mm in the catalytically active filling, the height of which in the edge area of device D is only 54 mm (150 mm before the start of the test).
  • the measured nitrous oxide concentration at extraction point 3 practically below the funnel-shaped recess is 676 ppm nitrous oxide
  • the measured nitrous oxide concentration is 186 ppm so that the average measured nitrous oxide concentration downstream after device D and the downstream heat exchanger below is 227 ppm.
  • the basket-like device D with a round bottom cross-section contains metal cassettes almost everywhere, as described below and in an analogous manner in figure 1 shown.
  • 16 metal cassettes are used, which consist of square molds with external dimensions of 800 ⁇ 800 mm and molds adapted to the cylindrical side boundary of the device D or the reactor R.
  • the cassettes are sealed with joint filling material among themselves and towards the cylindrical side boundary.
  • the cassettes are filled with catalytic shaped bodies (F1) according to the invention in the form of a regular hexagonal prism or its fragments, as in figure 1 shown.
  • These catalytic shaped bodies (F1) are so-called unsupported catalysts and essentially consist of a mixture of CuO, ZnO and Al 2 O 3 . They have a height of 160 mm.
  • an ammonia-air mixture is converted as described above.
  • the measured nitrous oxide concentration at the extraction point 3 in the outer area of the device D, where in the case not according to the invention there was a funnel-shaped depression, is 84 ppm nitrous oxide, at the extraction point 2 the measured nitrous oxide concentration is 81 ppm, so that the average measured nitrous oxide concentration downstream after the device D and the downstream heat exchanger below is 82 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die vorliegende Erfindung betrifft einen Reaktor R, vorzugsweise einem Hochtemperaturreaktor mit Vorrichtung D, die Verwendung des Reaktors R mit der Vorrichtung D sowie ein Verfahren zur Herstellung von Stickstoffoxiden oder Salpetersäure jeweils unter Verwendung des Reaktors R mit der Vorrichtung D, jeweils wie in den Ansprüchen definiert.The present invention relates to a reactor R, preferably a high-temperature reactor with device D, the use of reactor R with device D and a process for the production of nitrogen oxides or nitric acid, each using reactor R with device D, each as defined in the claims .

In Reaktoren aufgenommene Vorrichtungen, beispielsweise in korbartiger Gestalt, die in der Regel, auch aus Konstruktions- oder Festigkeitsgründen, aus gut wärmeleitfähigen Werkstoffen wie Metall oder Metalllegierungen, zum Beispiel Stahl bestehen, dehnen sich aus, wenn der Reaktor beispielsweise auf Betriebstemperatur aufgeheizt wird oder sich durch Reaktionswärme aufheizt und ziehen sich zusammen, wenn der Reaktor abkühlt.Devices accommodated in reactors, for example in a basket-like shape, which as a rule, also for reasons of construction or strength, consist of materials with good thermal conductivity such as metal or metal alloys, for example steel, expand when the reactor is heated to operating temperature, for example, or heated up by the heat of reaction and contract when the reactor cools down.

Wenn derartige Vorrichtungen leicht verschiebbare, partikuläre, beispielsweise geschüttete Füllungen aus zylindrischen oder sternförmigen katalytisch aktiven oder nicht katalytisch aktiven Partikeln enthalten, bilden sich durch die Wärmeausdehnungsunterschiede von Vorrichtung und genannter Füllung in der Regel im Randbereich der Vorrichtung Vertiefungen - oft unregelmäßig und trichterförmig - in die Partikel üblicherweise aus dem Randbereich der Vorrichtung nachrieseln bzw. absacken.If devices of this type contain easily displaceable, particulate, for example poured, fillings of cylindrical or star-shaped catalytically active or non-catalytically active particles, the thermal expansion differences between the device and said filling usually result in depressions - often irregular and funnel-shaped - in the edge area of the device Particles usually trickle or sag from the edge area of the device.

Dies ist unerwünscht, da die Inhomogenität der Füllung üblicherweise verschlechterte Eigenschaften, beispielsweise bezüglich deren katalytischen Verhaltens zur Folge hat. In den Vertiefungen im Randbereich ist nämlich beispielsweise die Strömungsgeschwindigkeit eines Gases größer als in Bereichen ohne Vertiefung, damit sinkt üblicherweise die Verweilzeit des Gases im Randbereich, dem Reaktionsgas steht dort auch weniger katalytische Fläche zur Verfügung, was in der Regel zu geringeren katalytischen Umsätzen im Randbereich und insgesamt führt.This is undesirable since the inhomogeneity of the filling usually results in deteriorated properties, for example with regard to its catalytic behavior. In the recesses in the edge area, for example, the flow rate of a gas is greater than in areas without an indentation, which usually reduces the residence time of the gas in the edge area, and there is also less catalytic surface area available for the reaction gas, which generally leads to lower catalytic conversions in the edge area and overall leads.

Die voran beschriebene Vorrichtungen können außerdem zusätzlich zu den genannten Partikeln oder an Stelle der genannten Partikel monolithische Formkörper mit beispielsweise wabenförmiger Gestalt enthalten, welche häufig aus gepresstem, extrudierten und/oder gesintertem anorganischen Material bestehen das üblicherweise spröde, zerbrechlich oder abriebempfindlich ist. Durch die oben beschriebene Ausdehnung und Zusammenziehen der voran beschriebenen Vorrichtung können auch die monolithischen Formkörper in Bewegung geraten, sich zum Beispiel aneinander reiben und auseinanderbrechen oder umfallen. Dies zieht die gleichen Probleme nach sich wie voran für die Partikelfüllung beschrieben.The devices described above may also contain, in addition to or instead of the particles mentioned, monolithic shaped bodies, for example of honeycomb shape, which frequently consist of pressed, extruded and/or sintered inorganic material which is usually brittle, fragile or susceptible to abrasion. As a result of the above-described expansion and contraction of the device described above, the monolithic shaped bodies can also start to move, for example rub against one another and break apart or fall over. This entails the same problems as described above for particle filling.

Außerdem ist es mühsam und ineffizient derartige monolithische katalytische Formkörper gegen frische Formkörper Stück für Stück auszutauschen und es besteht die Gefahr des Bruchs derartiger Formkörper beim Herausnehmen aus oder Einsetzen in die aufnehmende Vorrichtung.In addition, it is troublesome and inefficient to replace such monolithic catalytic molded bodies with fresh molded bodies one by one, and there is a risk of breaking such molded bodies when taking them out from or putting them into the receiving device.

Es kommt außerdem relativ häufig vor, dass die Reaktoren, häufig durch unsteten Betrieb, ungeplant und ungewollt ausfallen und repariert werden müssen, wofür man dann auch die genannten monolithische katalytische Formkörper ausbauen muss, um an die Reparaturstelle zu gelangen und nach erfolgter Reparatur des Reaktors diese Formkörper wieder einbauen muss. Die oben beschriebenen Nachteile finden sich beispielsweise in Verfahren zur Herstellung von Stickstoffoxiden und/oder Salpetersäure durch Oxidation von Ammoniak in Gegenwart eines Katalysators, beispielsweise eines edelmetallhaltigen Katalysatornetzes. Hierbei werden die Oxidationsprodukte des Ammoniaks üblicherweise durch eine Schüttung eines partikulären und/oder ein Bett eines aus monolithischen Formkörpern bestehenden Lachgaszersetzungskatalysators geführt, die sich üblicherweise in einer korbartigen Vorrichtung befindet. So führen in diesem Verfahren beispielsweise die oben genannten trichterförmigen Vertiefungen oder auch Zerstörungen oder Unordnungen der monolithischen Formkörper in dieser Schüttung bzw. Bett aus Lachgaszersetzungskatalysator zur verringerten Zersetzung des Lachgases der Katalysatorschüttung, was wiederum üblicherweise höhere Lachgas-Emissionen der Produktionsanlage nach sich zieht, die unerwünscht sind.It also happens relatively often that the reactors, often due to unsteady operation, break down unplanned and unintentionally and have to be repaired, for which you then have to remove the monolithic catalytic moldings mentioned in order to get to the repair site and after the reactor has been repaired Shape body must reinstall. The disadvantages described above are found, for example, in processes for preparing nitrogen oxides and/or nitric acid by oxidizing ammonia in the presence of a catalyst, for example a catalyst gauze containing noble metals. In this case, the oxidation products of the ammonia are usually passed through a bed of a particulate and/or a bed of a nitrous oxide decomposition catalyst consisting of monolithic shaped bodies, which is usually located in a basket-like device. In this process, for example, the above-mentioned funnel-shaped depressions or also destruction or disorder of the monolithic shaped bodies in this bed or bed of nitrous oxide decomposition catalyst lead to reduced decomposition of the nitrous oxide in the catalyst bed, which in turn usually results in higher nitrous oxide emissions from the production plant, which is undesirable are.

Eine strukturierte Packung (beispielsweise hexagonal oder kubisch) von Katalysatorformkörpern (modular structured fixed-bed reactor, "MOSFIBER") zur Zersetzung von beispielsweise Distickstoffmonoxid (N2O) in einem Reaktor ist aus WO 2006/009453 A1 (Yara International ) bekannt. WO 2006/009453 A1 schweigt jedoch zu dem Problem der Abrasion oder Bruch dieser Katalysatorformkörper während des Betriebs des Reaktors sowie deren Austausch gegen neue Katalysatorformkörper.A structured packing (for example hexagonal or cubic) of shaped catalyst bodies (modular structured fixed-bed reactor, "MOSFIBER") for the decomposition of, for example, dinitrogen monoxide (N 2 O) in a reactor is out WO 2006/009453 A1 (Yara International ) known. WO 2006/009453 A1 however, is silent on the problem of abrasion or breakage of these shaped catalyst bodies during operation of the reactor and their replacement with new shaped catalyst bodies.

WO 2015/022247 A1 offenbart ein Reaktor mit einer Vorrichtung enthaltend einen gas-und/oder Flüssigkeits-durchlässigen Boden in dessen Randbereich eine Seitenbegrenzung angeordnet ist, die den Boden vollständig umschließt und ein Volumen V bildet, das Formkörper enthält, wobei sich auf der dem Boden stromaufwärts gegenüberliegenden Seite mindestens ein Geflecht aus Metall befindet. WO 2015/022247 A1 befasst sich mit den Problemen, die durch die unterschiedliche Wärmeausdehnung verschiedener Materialien verursacht werden. WO 2015/022247 A1 discloses a reactor with a device containing a gas- and/or liquid-permeable base in the edge region of which a side boundary is arranged, which completely encloses the base and forms a volume V containing shaped bodies, with at least there is a mesh made of metal. WO 2015/022247 A1 deals with the problems caused by the differential thermal expansion of different materials.

Aufgabe der vorliegenden Erfindung war es, einen Reaktor mit Vorrichtung zur Verfügung zu stellen, letztere enthaltend katalytische monolithische Formkörper, die während des Betriebs des Reaktors praktisch nicht beschädigt oder zerstört werden und die sich effizient und praktisch ohne ihre Beschädigung oder Zerstörung vollständig oder teilweise ein- und/oder ausbauen lassen.The object of the present invention was to provide a reactor with a device, the latter containing catalytic monolithic shaped bodies which are practically not damaged or destroyed during operation of the reactor and which can be completely or partially integrated efficiently and practically without being damaged or destroyed. and/or expand.

Demgemäß wurde der Reaktor R, vorzugsweise ein Hochtemperaturreaktor, mit der Vorrichtung D, die Verwendung des Reaktors R mit der Vorrichtung D sowie ein Verfahren zur Herstellung von Stickstoffoxiden oder Salpetersäure jeweils unter Verwendung des Reaktors R mit der Vorrichtung D, jeweils wie in den Ansprüchen definiert, gefunden.Accordingly, the reactor R, preferably a high-temperature reactor, with the device D, the use of the reactor R with the device D and a process for the production of nitrogen oxides or nitric acid each using the reactor R with the device D, each as defined in the claims , found.

In einer bevorzugten Ausführungsform der Erfindung wird der Reaktor R mit der Vorrichtung D, jeweils wie im Folgenden beschrieben, in einem Verfahren zur Herstellung von Stickstoffoxiden und/oder Salpetersäure verwendet. Diese Ausführungsform wird im Folgenden auch als "NOx/HNO3-Ausführungsform" bezeichnet, und das Folgende gilt ausdrücklich - wo nicht explizit anders angegeben - insbesondere für die NOx/HNO3-Ausführungsform.In a preferred embodiment of the invention, the reactor R with the device D, each as described below, is used in a process for the production of nitrogen oxides and/or nitric acid. This embodiment is also referred to as “NOx/HNO 3 embodiment” below, and the following applies expressly—unless otherwise stated—in particular to the NOx/HNO 3 embodiment.

Verfahren zur Herstellung von Stickstoffoxiden und/oder Salpetersäure, üblicherweise durch katalytische Oxidation von Ammoniak mit einem sauerstoffhaltigen Gas, in der Regel Luft, sind bekannt und beispielsweise unter" Nitric Acid, Nitrous Acid, and Nitrogen Oxides" in Ullmanns Encyclopedia of Industrial Chemistry, Sixth, Completely Revised Edition, Volume 23, Seiten 1 bis 49, 2003, Wiley-VCH Verlag GmbH & Co . KGaA, Weinheim beschrieben.Processes for the production of nitrogen oxides and/or nitric acid, usually by catalytic oxidation of ammonia with an oxygen-containing gas, usually air, are known and are described, for example, under Nitric Acid, Nitrous Acid, and Nitrogen Oxides" in Ullmann's Encyclopedia of Industrial Chemistry, Sixth, Completely Revised Edition, Volume 23, pages 1 to 49, 2003, Wiley-VCH Verlag GmbH & Co . KGaA, Weinheim.

Üblicherweise wird in einem Verfahren zur Herstellung von Stickstoffoxiden und/oder Salpetersäure ein Gemisch aus Ammoniak und einem sauerstoffhaltigen Gas, beispielsweise Luft oder auch reiner Sauerstoff, bei üblicherweise relativ hoher Temperatur, beispielsweise im Bereich von 800 bis 900 °C, katalytisch, beispielsweise an einem Netz aus Edelmetall wie Platin oder Platin-Rhodiumlegierung, umgesetzt und die entstandenen Reaktionsprodukte, die in der Regel Stickstoffmonoxid als Hauptkomponente und Distickstoffoxid ("Lachgas") als Nebenkomponente enthalten, strömen üblicherweise durch ein Bett mit katalytischen und/oder nicht-katalytischen, üblicherweise keramischen, gegenüber den Reaktionsbedingungen im Reaktor beständigen Formkörpern, welches in Strömungsrichtung stromabwärts, üblicherweise unterhalb des Katalysatornetzes, angeordnet ist.In a process for the production of nitrogen oxides and/or nitric acid, a mixture of ammonia and an oxygen-containing gas, for example air or else pure oxygen, is usually catalytically reacted at a relatively high temperature, for example in the range from 800 to 900 °C, for example on a network of noble metal such as platinum or platinum-rhodium alloy, and the resulting reaction products, which usually contain nitrogen monoxide as the main component and nitrous oxide ("laughing gas") as a minor component, usually flow through a bed with catalytic and/or non-catalytic, usually ceramic , to the reaction conditions in the reactor-resistant shaped body, which is arranged in the flow direction downstream, usually below the catalyst gauze.

Dieses Bett ist üblicherweise hinsichtlich der Zersetzung von Distickstoffoxid katalytisch aktiv, üblicherweise in einer korbartigen Vorrichtung aufgenommen und baut in der Regel das Distickstoffmonoxid in die Elemente Stickstoff (N2) und Sauerstoff (O2) ab. Nachdem das Reaktionsgemisch die üblicherweise korbartige Vorrichtung verlassen hat, wird es üblicherweise an Wärmetauschern abgekühlt, wobei es mit Sauerstoff unter Bildung von Stickstoffdioxid weiter reagiert. Das Reaktionsgemisch wird in der Regel über verschiedene Wärmetauscher weiter abgekühlt - wobei teilweise bereits Salpetersäure auskondensieren kann - und letztendlich wird das Reaktionsgemisch in einer Absorptionsvorrichtung mit Wasser unter Bildung von Salpetersäure umgesetzt. Die zuvor in der Kühlung/Kondensation eventuell auskondensierte verdünnte Salpetersäure wird üblicherweise ebenfalls in die Absorptionsvorrichtung eingespeist.This bed is usually catalytically active in the decomposition of nitrous oxide, usually contained in a basket-like device, and typically breaks down the nitrous oxide into the elements nitrogen (N 2 ) and oxygen (O 2 ). After the reaction mixture has left the device, which is usually basket-like, it is usually cooled on heat exchangers, during which it reacts further with oxygen to form nitrogen dioxide. The reaction mixture is generally further cooled via various heat exchangers—it being possible for nitric acid to condense out in some cases—and finally the reaction mixture is reacted with water in an absorption device to form nitric acid. The dilute nitric acid that may have previously condensed out in the cooling/condensation is usually also fed into the absorption device.

Im Folgenden wird die Erfindung genauer beschrieben.The invention is described in more detail below.

Der Werkstoff für die Vorrichtung D ist üblicherweise ein Hochtemperaturwerkstoff aus Metall, zum Beispiel Inconel 600 (Werkstoff-Nr. 2.4816), Alloy 602 CA, Haynes Alloy oder auch Werkstoffe aus austinitischen Stählen mit den Werkstoffbezeichnungen 1.4828 und 1.4835. und 1.4876. Die Wärmeausdehungskoefffizienten dieser Werkstoffe liegen üblicherweise bei einer Betriebstemperatur von 800 - 900 °C im Bereich von 17 × 10-6 K-1 bis 19 × 10-6 K-1.The material for the device D is usually a high-temperature material made of metal, for example Inconel 600 (material no. 2.4816), Alloy 602 CA, Haynes Alloy or also materials made from austinitic steels with the material designations 1.4828 and 1.4835. and 1.4876. The thermal expansion coefficients of these materials are usually in the range of 17 × 10 -6 K -1 to 19 × 10 -6 K -1 at an operating temperature of 800 - 900 °C.

Ein gut geeigneter Werkstoff für die Vorrichtung D ist Inconel 600 oder Stahl mit der Werkstoffnummer 1.4835 oder Alloy 602 CA oder Haynes Alloy.A well suited material for the device D is Inconel 600 or steel with material number 1.4835 or Alloy 602 CA or Haynes Alloy.

Bevorzugt als Werkstoff für die Vorrichtung D sind Inconel 600, Stahl mit der Werkstoffnummer 1.4835 oder Alloy 602 CA.Preferred materials for the device D are Inconel 600, steel with the material number 1.4835 or Alloy 602 CA.

Der Boden B der Vorrichtung D ist in der Regel perforiert wobei die Art und Geometrie der Perforierung nicht kritisch ist und insbesondere durchlässig für Gase und/oder Flüssigkeiten, vorzugsweise für Gase. Üblicherweise ist der Boden B so perforiert, dass die Partikel die er üblicherweise trägt nicht durch die Perforierung fallen können.The bottom B of the device D is generally perforated, with the type and geometry of the perforation not being critical and in particular permeable to gases and/or liquids, preferably gases. The bottom B is usually perforated in such a way that the particles that it usually carries cannot fall through the perforation.

In einer Ausführungsform enthält der Boden B ein Tragteil, zum Beispiel einen Rost aus Rahmen oder einer Metallwabenkonstruktion auf dem ein metallisches Bodennetz oder mehrere, beispielsweise zwei bis drei, metallische Bodennetze, üblicherweise unterschiedlicher Maschenweiten und/oder unterschiedlicher Maschendrahtstärken, aufliegen können. Das Tragteil, zum Beispiel ein Rost aus Rahmen oder einer Wabenkonstruktion, kann aus einem Stück bestehen, es kann aber auch aus mehreren Segmenten, bevorzugt 2 bis 8 Segmenten, besonders bevorzugt 4 bis 6 Segmenten zusammengesetzt sein, die untereinander leicht fixiert sein können, wobei die Geometrie der Segmente mannigfaltig sein kann, beispielsweise Viertelkreissegmente, Sechstelkreissegmente, Achtelkreissegmente, ergo "Tortenstück-Geometrie".In one embodiment, the floor B contains a support part, for example a grate made of a frame or a metal honeycomb structure on which a metal floor net or several, for example two to three, metal floor nets, usually with different mesh sizes and/or different wire mesh thicknesses, can rest. The support part, for example a grate made of a frame or a honeycomb structure, can consist of one piece, but it can also be composed of several segments, preferably 2 to 8 segments, particularly preferably 4 to 6 segments, which can be easily fixed to one another, with the geometry of the segments can be varied, for example quarter circle segments, sixth circle segments, eighth circle segments, ergo "pie geometry".

Die Öffnungen der oben genannten Bodennetze können jegliche Querschnittsgeometrie haben, beispielsweise, rechteckig, sechseckig, rund.The openings of the above ground nets can have any cross-sectional geometry, for example, rectangular, hexagonal, round.

Üblicherweise ist der Boden B aus dem Werkstoff 1.4835, Alloy 602 CA und Inconel 600, vorzugsweise Inconel 600 oder Alloy 602 CA.The base B is usually made of the material 1.4835, Alloy 602 CA and Inconel 600, preferably Inconel 600 or Alloy 602 CA.

Die Querschnittsgeometrie des Bodens B an sich richtet sich in der Regel nach der Querschnittsgeometrie des Reaktors R in welchem er üblicherweise aufgenommen ist. Vorzugsweise ist die Querschnittsgeometrie des Bodens B dieselbe wie jene des Reaktors R in dem der Boden B aufgenommen ist.The cross-sectional geometry of the base B per se generally depends on the cross-sectional geometry of the reactor R in which it is usually accommodated. Preferably, the cross-sectional geometry of the tray B is the same as that of the reactor R in which the tray B is housed.

Als Querschnittsgeometrie für den Boden B und/oder den Reaktor R in welchem er aufgenommen ist kommen eckige, vorzugsweise viereckige oder sechseckige, besonders bevorzugt rechteckige oder gleichmäßig sechseckige Querschnitte in Frage.Angular, preferably square or hexagonal, particularly preferably rectangular or uniformly hexagonal cross sections come into consideration as the cross-sectional geometry for the base B and/or the reactor R in which it is accommodated.

Weiterhin kommen als Querschnittsgeometrie für den Boden B und/oder den Reaktor R in welchem er aufgenommen ist praktisch runde oder elliptische Querschnitte, vorzugsweise praktisch runde oder runde Querschnitte für den Boden B und/oder den Reaktor R in welchem er aufgenommen ist in Frage. Besonders bevorzugt ist der Querschnitt des Bodens B und/oder der Querschnitt des Reaktors in welchem er aufgenommen ist praktisch rund oder rund.Furthermore, practically round or elliptical cross-sections, preferably practically round or round cross-sections for the tray B and/or the reactor R in which it is accommodated, come into consideration as cross-sectional geometry for the tray B and/or the reactor R in which it is accommodated. Particularly preferably, the cross section of the base B and/or the cross section of the reactor in which it is accommodated is practically round or round.

Der Boden B kann beispielsweise unmittelbar oder über keramische oder metallische Abstandhalter auf einem stromabwärts unter dem Boden B angeordneten Kühler oder Wärmetauscher im Reaktor R gelagert sein. Der Boden B kann auch über eine mittlere innere Stütze und seitlichen Laschen die als Auflager dienen gestützt werden.The tray B can be mounted, for example, directly or via ceramic or metallic spacers on a cooler or heat exchanger arranged downstream under the tray B in the reactor R. The floor B can also be supported by a central inner support and lateral brackets that serve as supports.

Der Werkstoff für die Seitenbegrenzung W der Vorrichtung D ist üblicherweise der gleiche wie für den Boden B.The material for the side boundary W of the device D is usually the same as for the bottom B.

Die Seitenbegrenzung W ist in dem Randbereich des Bodens B so angeordnet, dass sie den Boden B vollständig umschließt und einen Raum mit dem Volumen V bildet das zum Teil oder vollständig mit katalytischen und/oder nicht-katalytischen Formkörpern - wie weiter unten genauer ausgeführt - gefüllt ist. In einer besonderen Ausführungsform kann die Seitenbegrenzung mit dem Boden B fest verbunden sein, wobei dann eine korbartige Verbindung gebildet wird.The side boundary W is arranged in the edge area of the base B in such a way that it completely encloses the base B and forms a space with the volume V that is partially or completely filled with catalytic and/or non-catalytic shaped bodies—as explained in more detail below is. In a particular embodiment, the side boundary can be firmly connected to the floor B, in which case a basket-like connection is formed.

Die Seitenbegrenzung W ist üblicherweise relativ zum Boden B in den Winkeln von 45° bis 135°, vorzugsweise praktisch rechtwinklig angeordnet. Die Seitenbegrenzung W ist üblicherweise gerade, ergo in vertikaler Richtung praktisch nicht gebogen.The side boundary W is usually arranged relative to the bottom B at the angles of 45° to 135°, preferably substantially perpendicular. The side boundary W is usually straight, ergo practically not bent in the vertical direction.

Das Verhältnis der Höhe der Seitenbegrenzung W zum lichten Durchmesser des Bodens B liegt üblicherweise im Bereich von 0,04 bis 0,2.The ratio of the height of the side boundary W to the inside diameter of the floor B is usually in the range from 0.04 to 0.2.

Übliche Höhen der Seitenbegrenzung W liegen im Bereich von 100 bis 1000 mm, bevorzugt 150 bis 600 mm.Usual heights of the side boundary W are in the range from 100 to 1000 mm, preferably 150 to 600 mm.

Übliche lichte Durchmesser des Bodens B liegen im Bereich von 2500 bis 6000 mm.Customary clear diameters of the bottom B are in the range of 2500 to 6000 mm.

Die Seitenbegrenzung W kann, muss aber nicht, aus einem Stück angefertigt sein, sondern kann auch aus Einzelteilen bzw. Segmenten bestehen.The side boundary W can, but does not have to, be made from one piece, but can also consist of individual parts or segments.

Zumindest auf einem Teil der Fläche der Innenseite der Seitenbegrenzung W kann sich vorteilhaft eine wärmeisolierende Schicht S befinden, vorzugsweise in dem sich dem Boden B direkt stromaufwärts anschließenden Bereich. Die wärmeisolierende Schicht S kann die Fläche der Innenseite der Seitenbegrenzung W beispielsweise zu 30% bis praktisch 100%, vorzugsweise praktisch vollständig bedecken.A heat-insulating layer S can advantageously be located at least on a part of the surface of the inside of the side boundary W, preferably in the area directly adjoining the bottom B upstream. The heat-insulating layer S can cover the area of the inside of the side boundary W, for example from 30% to practically 100%, preferably almost completely.

Vorzugsweise bedeckt die wärmeisolierende Schicht S mindestens die unteren 30%, beispielsweise 30% bis 90%, also jene dem Boden B nächstliegenden Teile der Fläche der Innenseite der Seitenbegrenzung W.The heat-insulating layer S preferably covers at least the lower 30%, for example 30% to 90%, i.e. those parts of the surface of the inside of the side boundary W that are closest to the bottom B.

Die wärmeisolierende Schicht S umschließt auf der Innenseite der Seitenbegrenzung W diese in der Regel vollständig.The heat-insulating layer S usually completely encloses the side boundary W on the inside thereof.

Die wärmeisolierende Schicht S schließt sich üblicherweise praktisch unmittelbar, also praktisch abstandsfrei, in Richtung Mittelpunkt der Vorrichtung D an die Innenseite der Seitenbegrenzung W an. Die wärmeisolierende Schicht S kann der dem Mittelpunkt der Vorrichtung D zugewandten Seite, beispielsweise an der Kontaktseite zur Schüttung aus Partikeln oder den Formkörpern, praktisch jegliche Querschnittsgeometrie annehmen, beispielsweise von gerade (rechteckig) bis schräg, beispielsweise in Form eines Trapezes, nach innen gewölbt (konkav) und nach außen, also dem Mittelpunkt der Vorrichtung D zugewandten Seite - gewölbt (konvex), stufenartig mit einer oder mehreren Stufen.The heat-insulating layer S usually adjoins the inside of the side boundary W practically directly, that is to say practically without a gap, in the direction of the center point of the device D. The heat-insulating layer S can be on the side facing the center of the device D, for example on the contact side for the bed of particles or the shaped bodies, practically any cross-sectional geometry, for example from straight (rectangular) to oblique, for example in the form of a trapezium, curved inwards (concave) and outwards, i.e. the side facing the center of the device D - curved (convex), step-like with one or more steps .

Die wärmeisolierende Schicht S kann aus einem Stück bestehen oder aus einzelnen Elementen zur gewünschten Querschnittsgeometrie zusammengesetzt werden, wie weiter unten näher beschrieben wird.The heat-insulating layer S can consist of one piece or can be composed of individual elements to give the desired cross-sectional geometry, as will be described in more detail below.

Die Dicke dieser wärmeisolierenden Schicht S bezogen auf den Durchmesser des Bodens B liegt üblicherweise im Bereich von 0,5 % bis 5 %, beispielsweise bei 1,0 %. Beispielsweise ist die wärmeisolierende Schicht S bei einem Durchmesser des Bodens B von 2500 bis 6000 mm 50 mm dick.The thickness of this heat-insulating layer S, based on the diameter of the floor B, is usually in the range from 0.5% to 5%, for example 1.0%. For example, when the diameter of the bottom B is 2500 to 6000 mm, the heat insulating layer S is 50 mm thick.

Das Material für die wärmeisolierende Schicht S wird ausgewählt aus der Gruppe bestehend aus keramischem Material, beispielsweise Schamott, mikroporösem Material und Silikatfasern , wobei die vorbenannten Materalien sich in der Regel im Temperaturbereich von ca. 700 bis 1100 °C nicht zersetzen und üblicherweise eine Wärmeleitfähigkeit im Bereich von 0,03 bis 0,15 W/m/K haben.The material for the heat-insulating layer S is selected from the group consisting of ceramic material, for example fireclay, microporous material and silicate fibers, with the aforementioned materials generally not decomposing in the temperature range from approx. 700 to 1100 °C and usually having a thermal conductivity in the range from 0.03 to 0.15 W/m/K.

Als mikroporöses Material sind mikroporöse silikatische Substanzen, enthaltend hochdisperse Kieselsäure und Trübungsmittel, die sich im Temperaturbereich von ca. 700 bis 1100 °C nicht zersetzen und im Temperaturbereich von 700 bis 1100 °C eine Wärmeleitfähigkeit im Bereich von 0,04 bis 0,09 W/mK haben bevorzugt, beispielsweise die Produkte WDS ® High und WDS® Ultra der Firma Porextherm, siehe dreiseitiges Datenblatt Version 1.4/15-02 10/HH WDS® High und dreiseitiges Datenblatt Version 1.03/15-02 10/HH WDS® Ultra der Firma Porextherm Dämmstoffe GmbH, Heisinger Straße 8/10, 87437 Kempten, www.porextherm.com.Microporous materials are microporous siliceous substances containing highly dispersed silicic acid and opacifiers, which do not decompose in the temperature range from approx. 700 to 1100 °C and have a thermal conductivity in the range from 0.04 to 0.09 W in the temperature range from 700 to 1100 °C /mK have preferred, for example the products WDS ® High and WDS ® Ultra from Porextherm, see three-page data sheet version 1.4/15-02 10/HH WDS ® High and three-page data sheet version 1.03/15-02 10/HH WDS ® Ultra der Company Porextherm Dämmstoffe GmbH, Heisinger Strasse 8/10, 87437 Kempten, www.porextherm.com.

Die wärmeisolierende Schicht S kann aus Platten von beispielsweise 10 bis 50 mm Dicke aus dem vorangenannten Material, vorzugsweise den mikroporösen silikatischen Substanzen, aufgebaut werden, wobei die Platten den benötigten Formen bzw. Querschnittsgeometrien der wärmeisolierenden Schicht W angepasst werden.The heat-insulating layer S can be made up of plates with a thickness of, for example, 10 to 50 mm made of the aforementioned material, preferably the microporous siliceous substances, with the plates being adapted to the required shapes or cross-sectional geometries of the heat-insulating layer W.

In einer bevorzugten Ausführungsform ist das voranstehend genannte Material, vorzugsweise mikroporöse silikatische Substanzen - diese bevorzugt, nachdem sie bei 850 °C thermisch vorbehandelt wurden - und/oder Silikatfasern in Form von Matten, für die wärmeisoliernde Schicht S eingehaust in Kassetten (im Folgenden auch als "Isolierkassetten" bezeichnet), wie im Folgenden beschrieben, welche dann, wie im Folgenden beschrieben, im Allgemeinen zu der wärmeisolierenden Schicht S zusammengesetzt werden können.In a preferred embodiment, the above-mentioned material, preferably microporous siliceous substances - preferably after they have been thermally pretreated at 850 °C - and/or silicate fibers in the form of mats, are housed in cassettes for the heat-insulating layer S (hereinafter also referred to as referred to as "insulating cassettes"), as described below, which can then generally be assembled to form the heat-insulating layer S, as described below.

Beispielhaft sei im Folgenden eine Isolierkassette mit eingehaustem Isoliermaterial beschrieben.An insulating cassette with encased insulating material is described below as an example.

Die Isolierkassette besteht üblicherweise aus einem Metallgehäuse, beispielsweise aus hochtemperaturbeständigen Stählen, das mit einem oder mehreren Isoliermaterialien, wie dem oben beschriebenen mikroporöse Material, vorzugsweise den mikroporösen silikatischen Substanzen, und/oder Silikatfasern, letztere vorzugsweise in Form von Matten, befüllt ist. Beispielsweise ist das in die Isolierkassetten eingebaute mikroporöse Material durch Silikatfasermatten und Silikatfasern zur Metallwand hin beabstandet.The insulating cassette usually consists of a metal housing, for example made of high-temperature-resistant steel, which is filled with one or more insulating materials, such as the microporous material described above, preferably the microporous siliceous substances, and/or silicate fibers, the latter preferably in the form of mats. For example, the microporous material built into the insulating cassettes is spaced apart from the metal wall by silicate fiber mats and silicate fibers.

Das Metallgehäuse der Isolierkassetten kann aus einem oder mehreren Metallen bestehen, beispielsweise Hochtemperaturwerkstoffen wie Inconel 600, Alloy 602 CA üblicherweise auf der höherer Temperatur zugewandten Isolierkassettenseite und Werkstoff 1.4541 auf der üblicherweise geringerer Temperatur zugewandten Isolierkassettenseite.The metal housing of the insulating cassettes can consist of one or more metals, for example high-temperature materials such as Inconel 600, Alloy 602 CA usually on the insulating cassette side facing the higher temperature and material 1.4541 on the insulating cassette side usually facing the lower temperature.

Diese Isolierkassetten haben vorzugsweise eine quaderförmige Gestalt, vorzugsweise mit einer leichten Krümmung und Falzen bzw. anderen Überlappungseinrichtungen, die eine Nut- und Federkonfiguration bilden können und sind beispielsweise in der Figur 12 dargestellt, in welcher die Bezugszeichen die hierin genannte Bedeutung haben. Die auf den Stirnseiten der Kassetten befindlichen Wände, die üblicherweise die Falz- und Überlappungsbereiche der aneinandergefügten Kassetten bilden, sind üblicherweise in dünner Metallstärke auszuführen, beispielsweise um den effektiven Gesamtwärmedurchgang zu vermindern.These insulating cassettes are preferably parallelepipedal in shape, preferably with a slight curvature and creases or other overlapping means which may form a tongue and groove configuration and are illustrated, for example, in Figure 12, in which the reference numerals have the meaning given herein. The walls located on the faces of the cassettes, which usually form the fold and overlap areas of the joined cassettes, are usually made of thin metal gauge, for example to reduce the effective total heat transfer.

Die Wandstärke der Falz-/ und Überlappungsbereich der Isolierkassetten liegt üblicherweise im Bereich von 0,2 bis 0,5 mm und ist üblicherweise geringer als die Wandstärke des restlichen Teils der Wärmedämmkassette, die üblicherweise im Bereich von 0,8 bis 1,5 mm liegt. Vorzugsweise sind die Falz- und Überlappungsbereiche der Isolierkassetten in einem welligen Muster geprägt.The wall thickness of the fold and overlapping area of the insulating cassettes is usually in the range of 0.2 to 0.5 mm and is usually less than the wall thickness of the remaining part of the thermal insulation cassette, which is usually in the range of 0.8 to 1.5 mm . Preferably, the fold and overlap areas of the insulating cassettes are embossed in a wavy pattern.

Beispielsweise werden zum Aufbau der wärmeisolierenden Schicht S die oben beschriebenen Isolierkassetten segmentartig auf der Innenseite der Seitenbegrenzung W über den Umfang angeordnet, wie beispielsweise in der Figur 13 dargestellt in welchen die Bezugszeichen die hierin genannte Bedeutung haben.For example, to build up the heat-insulating layer S, the above-described insulating cassettes are arranged in segments on the inside of the side boundary W over the circumference, as shown for example in FIG. 13, in which the reference symbols have the meaning given herein.

Die Isolierkassetten sind vorzugsweise in Umfangsrichtung (tangentialer Richtung) mit Schiebesitz oder anderen Überlagerungstechniken, beispielsweise Nut und Feder, ausgestattet und beispielsweise nur in Umfangsrichtung bewegungsfrei.The insulating cassettes are preferably equipped with a sliding fit or other superimposition techniques, for example tongue and groove, in the circumferential direction (tangential direction) and are free of movement, for example, only in the circumferential direction.

Üblicherweise werden die Isolierkassetten bei der Temperatur der Montage, diese ist üblicherweise 0 bis 30 °C, so aneinandergefügt, dass am Ort, wo die Isolierkassette einer höheren Temperatur im Reaktor R ausgesetzt ist, die Fugenweite größer ist als am Ort niedrigerer Temperatur im Reaktor R, was üblicherweise dazu führt, dass die Isolierkassetten sich unter erhöhter Betriebstemperatur im Reaktor R durch Ausdehnung praktisch ohne Spannung oder Bildung von Verwerfungen möglichst schlüssig aneinander fügen.The insulating cassettes are usually joined together at the installation temperature, which is usually 0 to 30 °C, so that the joint width at the location where the insulating cassette is exposed to a higher temperature in the reactor R is larger than at the location where the temperature in the reactor R is lower , which usually means that the insulating cassettes fit together as closely as possible under increased operating temperature in the reactor R due to expansion with practically no stress or the formation of distortions.

In einer Ausführungsform kann ein Teil der Seitenbegrenzung W - mit oder vorzugsweise ohne eine wärmeisolierende Schicht S - hier W1 genannt, fest mit dem Boden B verbunden sein, diesen vollständig umschließen und relativ niedrig sein, beispielsweise hat W1 eine Höhe im Bereich von 50 bis 150 mm. Der zweite Teil der Seitenbegrenzung W, hier W2 genannt, kann als "Schürze", beispielsweise in Form einer Z-förmigen Konstruktion, an der Reaktorinnenwand diese vollständig umschließend angeordnet und vorzugsweise fixiert sein, wobei das Ende der Schürze W2 als beispielsweise nach unten schauendes umgedrehtes U- oder V-Profil ausgebildet ist. In die Öffnung dieses umgedrehten Us oder Vs ragt die Seitenbegrenzung W1 hinein. Die feste Verbindung der Seitenbegrenzung W1 mit dem Boden B wird beispielsweise durch Verschweißen herbeigeführt. Die wärmeisolierende Schicht S ist, üblicherweise unterhalb eines eventuell vorhandenen Katalysatornetzes, vorzugsweise zweiteilig und vorzugsweise in Schiebesitzkonfiguration ausgestaltet, wobei üblicherweise der obere der beiden Teile der wärmeisolierenden Schicht S mit der oberen Seitenbegrenzung W2 vorzugsweise fest verbunden ist und der untere Teil der wärmeisolierenden Schicht S nicht fest mit der oberen Seitenbegrenzung W2 verbunden ist, so, dass er sich noch in vertikale Richtung auf- und abwärts bewegen kann. Es kann eine wärmeisolierende Schicht S auch oberhalb eines eventuell vorhandenen Katalysatornetzes, vorzugsweise den gesamten Rest der Seitenbegrenzung W bedeckend, angebracht sein. In einer Variante dieser Ausführungsform kann W1 mit dem Boden B nicht fest, sondern so reversibel verbunden sein, dass sie durch wenige Handgriffe von diesem gelöst und wieder mit diesem verbunden werden kann, beispielsweise durch Schweißen, Stecken, Schrauben.In one embodiment, part of the side boundary W - with or preferably without a heat-insulating layer S - here called W1, be firmly connected to the floor B, completely enclose it and be relatively low, for example W1 has a height in the range of 50 to 150 mm. The second part of the side boundary W, here called W2, can be arranged as an "apron", for example in the form of a Z-shaped construction, on the reactor inner wall, completely enclosing it and preferably fixed, with the end of the apron W2 being inverted, for example, looking downwards U or V profile is formed. The side boundary W1 protrudes into the opening of this inverted Us or V. The fixed connection of the side boundary W1 to the floor B is brought about, for example, by welding. The heat-insulating layer S is, usually below any catalyst mesh that may be present, preferably in two parts and preferably designed in a sliding-fit configuration, with the upper of the two parts of the heat-insulating layer S usually being preferably firmly connected to the upper side boundary W2 and the lower part of the heat-insulating layer S not is firmly connected to the upper side boundary W2 in such a way that it can still move up and down in the vertical direction. A heat-insulating layer S can also be applied above any catalyst mesh that may be present, preferably covering the entire remainder of the side boundary W. In a variant of this embodiment, W1 cannot be firmly connected to the base B, but rather so reversibly connected that it can be detached from it and reconnected to it again in a few simple steps, for example by welding, plugging, screwing.

In einer weiteren Ausführungsform umschließt die Seitenbegrenzung W den Boden B vollständig und ist mit diesem nicht fest verbunden, sondern beispielsweise als "Schürze" an der Reaktorinnenwand diese vollständig umschließend angeordnet und vorzugsweise fixiert, wobei zwischen dem unteren Ende der Schürze und dem Boden B eine umlaufende Lücke ist.In a further embodiment, the side boundary W completely encloses the base B and is not firmly connected to it, but is arranged, for example, as an "apron" on the reactor inner wall, completely enclosing it and preferably fixed, with a circumferential wall between the lower end of the apron and the base B gap is.

Üblicherweise sind mindestens in dem Bereich der Innenwand des Reaktors R, wo die Vorrichtung D aufgenommen ist, zwischen der Innenwand des Reaktors R und der Außenseite der Seitenbegrenzung W der Vorrichtung D Kühlvorrichtungen, beispielsweise mit einem wärmeaufnehmenden Medium - beispielsweise Wasser oder Salzschmelze - durchströmte Rohre angeordnet, beispielsweise dadurch, dass die Rohre in Form einer Rohrwendel zwischen Reaktorinnenwand und der Außenseite der Seitenbegrenzung W angeordnet sind. Derartige Kühlvorrichtungen haben üblicherweise die Aufgabe die Reaktorwand durch aktive Kühlung, zumindest im Bereich der Vorrichtung D und/oder der Reaktorflansche, gegen zu starke Hitze zu schützen.Usually, at least in the area of the inner wall of the reactor R, where the device D is accommodated, between the inner wall of the reactor R and the outside of the side boundary W of the device D, cooling devices, for example with a heat-absorbing medium - for example water or molten salt - are arranged in pipes , for example in that the tubes are arranged in the form of a tube coil between the reactor inner wall and the outside of the side boundary W. Such cooling devices usually have the task of protecting the reactor wall from excessive heat by active cooling, at least in the region of device D and/or the reactor flanges.

In einer Ausführungsform können die Kühlvorrichtungen an der Innenwand des Reaktors R im Bereich der Vorrichtung D gänzlich oder zum Teil durch eine wärmeisolierende Schicht S, wie hierin beschrieben, ersetzt sein.In one embodiment, the cooling devices on the inner wall of the reactor R in the area of the device D can be replaced in whole or in part by a heat-insulating layer S as described herein.

Hierbei bildet der Bereich der Innenwand des Reaktors R, wo die Vorrichtung D aufgenommen ist, selbst die Seitenbegrenzung W, auf deren Innenseite sich zumindest zum Teil, vorzugsweise vollständig und praktisch lückenlos umlaufend, die wärmeisolierende Schicht S, wie oben beschrieben - vorzugsweise aus den oben beschriebenen Isolierkassetten - und beispielsweise bis zu einer Höhe im Bereich von 200 bis 1200 mm, gemessen vom Boden B aus stromaufwärts, befindet.In this case, the area of the inner wall of the reactor R, where the device D is accommodated, itself forms the side boundary W, on the inside of which the heat-insulating layer S runs at least partially, preferably completely and practically without gaps, as described above - preferably from the above described insulating cassettes - and for example up to a height in the range of 200 to 1200 mm, measured from the bottom B from upstream.

Auf der dem Boden B stromaufwärts gegenüberliegenden Seite befindet sich mindestens ein Geflecht aus Edelmetall, beispielsweise Platin, Palladium, Rhodium und/oder Edelmetall-Legierungen, beispielsweise enthaltend die vorangenannten Edelmetallen, und/oder mindestens ein Geflecht aus Nicht-Edelmetall, beispielsweise Megapyr-Netz (Kanthal-Netz) - dieses üblicherweise zur mechanischen Stabilisierung des Edelmetallnetzes . Das voran beschriebene Geflecht aus Edelmetall und/oder Nicht-Edelmetall wird hierin auch "Katalysatornetz" genannt.On the side opposite the tray B upstream there is at least one mesh made of precious metal, for example platinum, palladium, rhodium and/or noble metal alloys, for example containing the aforementioned noble metals, and/or at least one mesh made of non-precious metal, for example megapyr mesh (Kanthal network) - this usually for the mechanical stabilization of the precious metal network. The network of noble metal and/or non-noble metal described above is also referred to herein as "catalyst mesh".

Das Volumen V der Vorrichtung D enthält katalytische und/oder nicht-katalytische Formkörper (F) wie im Folgenden beschrieben.The volume V of the device D contains catalytic and/or non-catalytic shaped bodies (F) as described below.

Nicht-katalytische Formkörper (F) sind hierin üblicherweise keramische, gegenüber den Reaktionsbedingungen im Reaktor R beständige und die Reaktionen im Reaktor R praktisch nicht katalysierende Formkörper.Non-catalytic shaped bodies (F) here are usually ceramic shaped bodies which are resistant to the reaction conditions in the reactor R and practically do not catalyze the reactions in the reactor R.

Katalytische Formkörper (F) sind hierin in der Regel Formkörper welche eine oder mehrere im Reaktor R ablaufende Reaktionen, beispielsweise die Zersetzung von Distickstoffmonoxid (N2O) zu Stickstoff und Sauerstoff, katalysieren.Catalytic shaped bodies (F) here are generally shaped bodies which catalyze one or more reactions taking place in the reactor R, for example the decomposition of dinitrogen monoxide (N 2 O) to form nitrogen and oxygen.

Die katalytischen und/oder nicht-katalytische Formkörper (F) werden ausgewählt aus (i) Formkörpern (F1) in Gestalt von geraden Prismen deren Grundfläche ausgewählt wird aus Dreieck, Rechteck, Sechseck oder Fragmenten von diesen Vielecken oder (ii) einer Kombination aus den Formkörpern (F1) mit den im folgenden definierten Formkörpern (F2), die kleiner sind als die Formkörper (F1).The catalytic and/or non-catalytic shaped bodies (F) are selected from (i) shaped bodies (F1) in the form of right prisms whose base is selected from a triangle, rectangle, hexagon or fragments of these polygons or (ii) a combination of the Shaped bodies (F1) with the shaped bodies (F2) defined below, which are smaller than the shaped bodies (F1).

Die Grundfläche der Formkörper (F1) ist die eines vorzugsweise regelmäßigen Dreiecks, eines vorzugsweise regelmäßigen Rechtecks, eines vorzugsweise regelmäßigen Sechsecks oder Fragmente dieser Vielecke. Die Parallelverschiebung des die Grundfläche bildenden Vielecks geschieht senkrecht zur Grundfläche, so dass ein gerades Prisma als geometrischer Körper resultiert. Ist die Grundfläche des geraden Prismas rechteckig spricht man auch von einem Quader. Die zur Grundfläche des jeweiligen Prismas kongruente und parallele Begrenzungsfläche des Prismas heißt Deckfläche, die Gesamtheit aller übrigen Begrenzungsflächen heißt Mantelfläche.The base of the shaped body (F1) is that of a preferably regular triangle, a preferably regular rectangle, a preferably regular hexagon or fragments of these polygons. The parallel displacement of the polygon forming the base occurs perpendicularly to the base, resulting in a right prism as a geometric body. If the base of the right prism is rectangular, it is also called a cuboid. The boundary surface of the prism that is congruent and parallel to the base of the respective prism is called the cover surface, the entirety of all other boundary surfaces is called the lateral surface.

Als ein weiterer Parameter zur Beschreibung der Formkörper (F1) und insbesondere (F2) kommt der "äquivalente Partikeldurchmesser" Dpäq in Frage. Dieser ist wie folgt definiert: Dp äq = 6 × V k /A k .

Figure imgb0001
wobei Vk das Volumen des Formkörpers und Ak die gesamt äussere Oberfläche des Formkörpers ist. Beispielhaft sei der äquivalente Partikeldurchmesser für einen sogenannten "Strängling", ein zylindrischer Formkörper, als Formkörper F2 mit einem Durchmesser d = 3 mm und einer Länge l = 10 mm berechnet: Es ergibt sich ein Ak = 108,4 mm2 und ein Vk = 70 mm3. Daraus errechnet sich Dpäq = 6 × 70,7 / 108,4 = 3,91 mm.The “equivalent particle diameter” Dp eq comes into consideration as a further parameter for describing the shaped bodies (F1) and in particular (F2). This is defined as follows: dp eq = 6 × V k /A k .
Figure imgb0001
where V k is the volume of the shaped body and A k is the total outer surface area of the shaped body. As an example, the equivalent particle diameter for a so-called "strand", a cylindrical shaped body, is calculated as shaped body F2 with a diameter d = 3 mm and a length l = 10 mm: A k = 108.4 mm 2 and a V result k = 70mm3 . From this, Dp eq = 6 × 70.7 / 108.4 = 3.91 mm is calculated.

Vorzugsweise ist Dpäq der Formkörper (F1) fünfmal bis fünfzigmal, vorzugsweise fünfzehnmal bis fünfundzwanzigmal so groß wie Dpäq der Formkörper (F2).Preferably, Dp eq of the shaped body (F1) is five to fifty times, preferably fifteen times to twenty-five times, as large as Dp eq of the shaped body (F2).

Die Höhe der Formkörper (F1) in Gestalt eines geraden Prismas kann gleich oder kleiner der längsten Seitenlänge des ihre Grundfläche bildenden n-Ecks (n = 3, 4 oder 6) sein, vorzugsweise ist die Höhe der Formkörper (F1) in Gestalt eines geraden Prismas größer als die längste Seitenlänge des ihre Grundfläche bildenden n-Ecks (n = 3, 4 oder 6) so dass ein in die Höhe gestrecktes Prisma mit einer Längsachse resultiert.The height of the shaped bodies (F1) in the form of a right prism can be equal to or less than the longest side length of the n-gon (n=3, 4 or 6) forming their base; the height of the shaped bodies (F1) is preferably in the form of a straight line Prisms larger than the longest side length of the n-gon forming their base (n = 3, 4 or 6) so that an elongated prism with a longitudinal axis results.

Fragmente der die Grundfläche der Formkörper (F1) bildenden n-Ecke (n = 3, 4 oder 6) können in beliebiger Art gebildet werden, zum Beispiel indem man das Dreieck längs seiner Höhe durchschneidet, das Rechteck längs seiner Diagonalen durchschneidet oder das Sechseck durch zwei sich gegenüberliegende Ecken durchschneidet, unter Bildung eines Dreiecks oder eines Trapez. Durch diese Fragmentierung resultieren wiederum dreidimensionale Formkörper (F1) in Gestalt eines geraden Prismas.Fragments of the n-corners (n=3, 4 or 6) forming the base of the shaped body (F1) can be formed in any way, for example by cutting through the triangle along its height, through the rectangle along its diagonal or through the hexagon intersects two opposite corners to form a triangle or a trapezoid. This fragmentation in turn results in three-dimensional moldings (F1) in the shape of a right prism.

Die Formkörper (F1) in Gestalt eines geraden Prismas haben in der Regel einen Durchmesser oder Diagonale der Grundfläche im Bereich von 20 bis 100 mm, vorzugsweise von 50 bis 75 mm und eine Höhe im Bereich von 100 bis 300 mm, vorzugsweise von 150 bis 230 mm.The shaped bodies (F1) in the shape of a right prism generally have a diameter or diagonal of the base area in the range from 20 to 100 mm, preferably from 50 to 75 mm, and a height in the range from 100 to 300 mm, preferably from 150 to 230 mm.

Katalytische Formkörper (F1) wie voranstehend beschrieben sind üblicherweise sogenannte Vollkatalysatoren, also jene, die praktisch vollständig ohne inerte Trägersubstanz auskommen. Gut geeignete derartige katalytische Formkörper (F2) sind jene die die Zersetzung von Distickstoffmonioxid (N2O) katalysieren und die beispielsweise in DE 103 50 819 A , insbesondere in den Absätzen [0015] bis [0017] beschrieben sind. Sie sind beispielsweise durch Extrusion erhältlich.Catalytic shaped bodies (F1) as described above are usually so-called unsupported catalysts, ie those which do almost entirely without an inert support substance. Very suitable such shaped catalytic bodies (F2) are those that catalyze the decomposition of nitrous oxide (N 2 O) and, for example, in DE 103 50 819 A , particularly in paragraphs [0015] to [0017]. They can be obtained, for example, by extrusion.

Katalytische Formkörper (F1) wie voranstehend beschrieben können auch solche sein, welche einen Korpus aus inerten Trägermaterial, beispielsweise Cordierit,haben mit einem Kanal oder mehreren Kanälen der/die praktisch parallel zur Längsachse des Formkörpers (F1) verläuft/verlaufen und dessen/deren Kanaloberfläche jeweils mit einer katalytisch aktiven Masse beschichtet ist. Die genannten Kanäle haben in der Regel quadratische Querschnitte und die Anzahl der Kanäle pro Fläche wird in cpsi (cell per square inch) ausgedrückt beträgt beispielsweise 400 bei beispeilsweise einer Kanalweite von 1.2 mm oder 230 cpsi bei einer Kanalweite von 1.6 mm (jeweils die Wandstärke abgerechnet). Derartige katalytischen Formkörper werden auch als "Monolithe" bezeichnet. Gut geeignete derartige katalytische Formkörper (F1) sind jene die die Zersetzung von Distickstoffmonioxid (N2O) katalysieren und die beispielsweise in EP 1 147 813 A2 oder in WO 2006/009453 A1 beschrieben sind.Catalytic shaped bodies (F1) as described above can also be those which have a body made of inert carrier material, for example cordierite, with one or more channels that run/run practically parallel to the longitudinal axis of the shaped body (F1) and its/their channel surface is each coated with a catalytically active material. The channels mentioned generally have square cross-sections and the number of channels per area is expressed in cpsi (cell per square inch) and is 400, for example For example, a channel width of 1.2 mm or 230 cpsi with a channel width of 1.6 mm (the wall thickness is deducted in each case). Such shaped catalytic bodies are also referred to as “monoliths”. Very suitable such shaped catalytic bodies (F1) are those which catalyze the decomposition of nitrous oxide (N2O) and which, for example, in EP 1 147 813 A2 or in WO 2006/009453 A1 are described.

Die katalytischen und/oder nicht-katalytischen Formkörpern (F2) sind kleiner als die Formkörper (F1). Vorzugsweise ist Dpäq der Formkörper (F1) 5 bis 50mal, vorzugsweise 15 bis 25mal so groß wie Dpäq der Formkörper (F2).The catalytic and/or non-catalytic shaped bodies (F2) are smaller than the shaped bodies (F1). Preferably, Dp eq of the shaped body (F1) is 5 to 50 times, preferably 15 to 25 times, as large as Dp eq of the shaped body (F2).

Die katalytischen und/oder nicht-katalytischen Formkörpern (F2) sind üblicherweise regelmäßig oder unregelmäßig geformte Feststoffpartikel in der Regel mit einer Länge im Bereich von 3 bis 30 mm und einem Durchmesser im Bereich von 2 bis 10 mm, beispielsweise mit einem runden oder sternförmigen Querschnitt. Weitere katalytische und/oder nicht-katalytischen Formkörper (F2) können folgende sein: High Flow Ringe, Ringe, Kugeln, Stränge, Hohlstränge oder weitere Feststoffpartikel und/oder Formkörper mit ähnlichen wie vorn beschriebenen Dimensionen.The catalytic and/or non-catalytic shaped bodies (F2) are usually regularly or irregularly shaped solid particles, generally with a length in the range from 3 to 30 mm and a diameter in the range from 2 to 10 mm, for example with a round or star-shaped cross section . Further catalytic and/or non-catalytic shaped bodies (F2) can be the following: high-flow rings, rings, spheres, strands, hollow strands or other solid particles and/or shaped bodies with dimensions similar to those described above.

Katalytische Formkörper (F2) wie voranstehend beschrieben sind üblicherweise sogenannte Vollkatalysatoren, also jene, die praktisch vollständig ohne inerte Trägersubstanz auskommen. Gut geeignete derartige katalytische Formkörper (F2) sind jene die die Zersetzung von Distickstoffmonioxid (N2O) katalysieren und die beispielsweise in DE 103 50 819 A , insbesondere in den Absätzen [0015] bis [0017], beschrieben sind.Catalytic shaped bodies (F2) as described above are usually so-called unsupported catalysts, ie those which do almost entirely without an inert carrier substance. Very suitable such shaped catalytic bodies (F2) are those that catalyze the decomposition of nitrous oxide (N 2 O) and, for example, in DE 103 50 819 A , particularly in paragraphs [0015] to [0017].

Gruppen von m bis n Formkörpern (F1) sind in einer stromaufwärts offenen und stromabwärts mit einem gasdurchlässigen Boden verschlossenen Metallkassette praktisch lückenlos Seitenfläche an Seitenfläche und mit ihrer Längsachse (Höhe) in vertikaler Richtung ausgerichtet zu Modulen (M) eingefasst; m, n ist eine ganze Zahl von 3 bis 30 und n > m.Groups of m to n shaped bodies (F1) are enclosed in a metal cassette which is open on the upstream side and closed off with a gas-permeable base on the downstream side, side to side and with their longitudinal axis (height) aligned in the vertical direction to form modules (M); m, n is an integer from 3 to 30 and n > m.

Der Boden der Module (M) ist in der Regel perforiert - wobei die Art und Geometrie der Perforierung nicht kritisch ist - und insbesondere durchlässig für Gase und/oder Flüssigkeiten, vorzugsweise für Gase. Üblicherweise ist der Boden der Module (M) so perforiert, dass die Partikel, die er trägt, nicht durch die Perforierung fallen können.The base of the modules (M) is generally perforated--the type and geometry of the perforation not being critical--and in particular permeable to gases and/or liquids, preferably gases. The bottom of the modules (M) is usually perforated in such a way that the particles it carries cannot fall through the perforation.

Die Grundfläche der Module (M) liegt in der Regel im Bereich von 0,25 bis 1,5 m2, vorzugsweise im Bereich von 0,5 bis 1,0 m2.The base area of the modules (M) is generally in the range from 0.25 to 1.5 m 2 , preferably in the range from 0.5 to 1.0 m 2 .

Die Geometrie der Formkörper (F1) wird vorteilhaft so gewählt, dass sie, wenn sie praktisch lückenlos Seitenfläche an Seitenfläche und mit ihrer Längsachse (Höhe) in vertikaler Richtung ausgerichtet angeordnet werden den Querschnitt des Bodens des Moduls (M) praktisch vollständig bedecken. Üblicherweise werden hierzu im inneren Randbereich des Moduls (M) die oben beschriebenen Fragmente der Formkörper (F1) zum Ausfüllen eventueller Lücken eingesetzt. Ein Beispiel für die Bestückung der Module (M) mit Formkörpern (F1) sowie die praktisch flächendeckende Bedeckung des Querschnitts des Bodens B der Vorrichtung D mit den Modulen (M) ist in Figur 1 dargestellt.The geometry of the shaped bodies (F1) is advantageously selected such that they almost completely cover the cross section of the bottom of the module (M) when they are arranged side to side and with their longitudinal axis (height) aligned in the vertical direction with virtually no gaps. For this purpose, the above-described fragments of the shaped bodies (F1) are usually used in the inner edge region of the module (M) to fill any gaps. An example of the assembly of the modules (M) with shaped bodies (F1) and the practical area-wide coverage of the cross-section of the bottom B of the device D with the modules (M) is in figure 1 shown.

Der Raum zwischen den äußersten Formkörpern (F1) im Modul (M) und der Innenseite des Moduls (M) kann mit einem Fugenfüllmaterial ausgefüllt sein, wie beispielsweise in Figur 2 dargestellt. Als Fugenfüllmaterial kommen in Frage: Gewebe, Filz, Matten oder ähnliches aus hochtemperaturbeständigem anorganischen, vorzugsweise mineralischen Material wie Silikat.The space between the outermost moldings (F1) in the module (M) and the inside of the module (M) can be filled with a joint filling material, such as in figure 2 shown. Possible joint filling materials are: fabric, felt, mats or the like made of inorganic, preferably mineral material such as silicate that is resistant to high temperatures.

Auf die geschilderte Weise entsteht eine unmittelbar den Boden eines Moduls (M) praktisch vollständig bedeckende Schicht aus Formkörpern (F1) und gegebenenfalls (F2). Selbstverständlich ist es möglich eine weitere Schicht Formkörper (F1) und gegebenenfalls (F2) oder mehrere weitere Schichten Formkörper (F1) und gegebenenfalls (F2) auf diese erste Schicht analog aufzubauen.In the manner described, a layer of shaped bodies (F1) and, if appropriate, (F2) is produced which almost completely covers the bottom of a module (M). It is of course possible to build up a further layer of moldings (F1) and optionally (F2) or a plurality of further layers of moldings (F1) and optionally (F2) analogously to this first layer.

Die Wände des Moduls (M) bestehen aus Metall, vorzugsweise aus Werkstoff 1.4835, Alloy 602 CA und Inconel 600, vorzugsweise Inconel 600 oder Alloy 602 CA. Vorteilhaft sind an den die Module (M) bildenden Kassetten, vorzugsweise an deren Wänden, Vorrichtungen, beispielsweise Ösen angebracht, die zum Beispiel dazu dienen, dass man die Module (M) einzeln oder im Verbund, leicht, beispielsweise durch Herausziehen, aus der Vorrichtung D entfernen kann.The walls of the module (M) are made of metal, preferably material 1.4835, Alloy 602 CA and Inconel 600, preferably Inconel 600 or Alloy 602 CA. Advantageously, the cassettes forming the modules (M), preferably on their walls, are fitted with devices, for example eyelets, which serve, for example, to easily remove the modules (M), individually or in combination, for example by pulling them out of the device D can remove.

Die Höhe der Wände der die Module bildenden Kassetten ist mindestens so hoch wie die Länge der längsten in ihnen enthaltenen Formkörper (F1), vorzugsweise ist die Höhe der Wände der die Module bildenden Kassetten um 5 bis 30 % höher als die längste Höhe der längsten in ihnen enthaltenen Formkörper (F1).The height of the walls of the cassettes forming the modules is at least as high as the length of the longest shaped body (F1) contained in them, preferably the height of the walls of the cassettes forming the modules is 5 to 30% higher than the longest height of the longest in moldings (F1) contained in them.

In einer bevorzugten Ausführungsform ist die Höhe der Wände der die Module (M) bildenden Kassetten so hoch, dass die Oberkante der Wände an die Unterseite des dem Boden B der Vorrichtung D stromaufwärts gegenüberliegenden Seite liegenden Geflechts aus Edelmetall und/oder Nicht-Edelmetall stoßen. Das so geschaffene, von Formkörpern (F1) nicht ausgefüllte Volumen in dem Modul (M), kann von einer gas- oder flüssigkeitsdurchlässigen Schicht aus hochtemperaturbeständigem anorganischen, vorzugsweise mineralischen Material wie Aluminiumoxid beispielsweise Schaumkeramik, Berlsättel, oder nicht-katalytischen Formkörpern (F2) teilweise oder vorzugsweise vollständig ausgefüllt werden. Das vollständige Ausfüllen hat zum Beispiel den Vorteil, dass das dem Boden B der Vorrichtung D stromaufwärts gegenüberliegenden Seite liegenden Geflechts aus Edelmetall und/oder Nicht-Edelmetall vollflächig unterstützt wird und somit praktisch nicht durchhängt. Ein Beispiel für diese Ausführungsform ist in Figur 2 dargestellt.In a preferred embodiment, the height of the walls of the cassettes forming the modules (M) is so high that the upper edge of the walls abut the underside of the precious metal and/or non-precious metal mesh opposite the bottom B of the device D upstream. The volume in the module (M) created in this way and not filled by shaped bodies (F1) can be partially covered by a gas- or liquid-permeable layer of high-temperature-resistant inorganic, preferably mineral material such as aluminum oxide, for example foam ceramics, Berls saddles, or non-catalytic shaped bodies (F2). or preferably filled in completely. The complete filling has the advantage, for example, that the mesh made of precious metal and/or non-precious metal lying upstream from the bottom B of the device D is supported over the entire surface and thus practically does not sag. An example of this embodiment is in figure 2 shown.

Die Flächengeometrie des Bodens eines Moduls (M) kann mannigfaltig sein. Sie wird vorteilhaft so gewählt, dass, wenn die Module (M) mosaikartig Seite an Seite aneinandergefügt werden sie den Querschnitt des Bodens B der Vorrichtung D praktisch vollständig bedecken. Die Flächengeometrie des Bodens eines Moduls (M) kann folgende sein: (a) vieleckig, wie dreieckig, viereckig oder sechseckig, vorzugsweise viereckig, zum Beispiel rechteckig, besonders bevorzugt quadratisch, oder aber sechseckig, besonders bevorzugt gleichmäßig sechseckig oder (b) vieleckig, vorzugsweise unregelmäßig vieleckig, besonders bevorzugt unregelmäßig viereckig, wobei jeweils eine Seite des Vielecks durch einen Kreisbogen gebildet wird. Ein Beispiel für diverse Flächengeometrien des Bodens eines Moduls (M) sowie die praktisch flächendeckende Bedeckung des Querschnitts des Bodens B der Vorrichtung D mit den Modulen (M) ist beispielhaft in Figur 1 dargestellt.The surface geometry of the bottom of a module (M) can be varied. It is advantageously chosen so that when the modules (M) are assembled side by side in a tessellation, they cover the cross-section of the bottom B of the device D almost completely. The surface geometry of the bottom of a module (M) can be the following: (a) polygonal, such as triangular, square or hexagonal, preferably quadrangular, for example rectangular, particularly preferably square, or hexagonal, particularly preferably uniformly hexagonal, or (b) polygonal, preferably irregular polygonal, particularly preferably irregularly square, one side of the polygon being formed by an arc of a circle. In figure 1 shown.

Die Module (M) werden, gegebenenfalls unter Mitwirkung eines Fugenfüllmaterials, unter vertikaler Ausrichtung der Längsachse der Formkörper (F1) Seitenfläche an Seitenfläche praktisch lückenlos so mosaikartig aneinandergefügt sind, dass sie den Querschnitt des Bodens B praktisch vollständig bedecken.The modules (M), optionally with the participation of a joint filling material, are joined to one another, side surface to side surface, with a vertical alignment of the longitudinal axis of the shaped bodies (F1) in such a way that they practically completely cover the cross section of the base B.

Die Fugen oder Spalte die sich bilden können wo die äußeren Seitenflächen der die Module (M) bildenden Kassetten aneinanderstoßen oder auf die Innenfläche der Seitenbegrenzung W der Vorrichtung D stoßen, können vorzugsweise mit Fugenfüllmaterial ausgefüllt werden. Als solches Fugenfüllmaterial kommen in Frage: Gewebe, Filz, Matten oder ähnliches aus hochtemperaturbeständigem anorganischen, vorzugsweise mineralischen Material wie Silikate, beispielsweise Matten aus polykristallinen Fasern.The gaps or crevices that may form where the outer side surfaces of the cassettes forming the modules (M) abut or abut the inner surface of the side boundary W of the device D can preferably be filled with joint filling material. Suitable joint filling materials of this type are: fabric, felt, mats or the like made from high-temperature-resistant inorganic, preferably mineral material such as silicates, for example mats made from polycrystalline fibers.

Zusätzlich wie voranstehen beschrieben kann das Volumen V der Vorrichtung D in mannigfaltiger Weise teilweise oder vollständig mit Modulen (M) und/oder katalytischen und/oder nicht-katalytischen Formkörpern (F1) und/oder (F2), vorzugsweise horizontal schichtartig, ausgefüllt sein, vorzugsweise bis maximal zu dem untersten Geflecht aus Edelmetall und/oder Nicht-Edelmetall, beispielsweise wie im Folgenden unter a) bis c) beschrieben:

  1. a) Eine unterste Schicht katalytische und/oder nicht-katalytische Formkörper (F2), darauf eine Schicht oder mehrere Schichten von Modulen (M) mit katalytischen und/oder nicht-katalytischen Formkörpern (F1).
  2. b) Eine unterste Schicht von Modulen (M) mit katalytischen und/oder nicht-katalytischen Formkörpern (F1) darauf eine Schicht oder mehrere Schichten von katalytischen und/oder nicht-katalytischen Formkörpern (F2).
  3. c) Eine unterste Schicht entweder von Modulen (M) mit katalytischen und/oder nicht-katalytischen Formkörpern (F1) oder eine unterste Schicht von katalytischen und/oder nicht-katalytischen Formkörpern (F2) und darüber jeweils regelmäßig alternierend oder unregelmäßig aufeinandergeschichtet mindestens eine Schicht von Modulen (M) mit katalytischen und/oder nicht-katalytischen Formkörpern (F1) oder von katalytischen und/oder nicht-katalytischen Formkörpern (F2).
In addition, as described above, the volume V of the device D can be partially or completely filled with modules (M) and/or catalytic and/or non-catalytic shaped bodies (F1) and/or (F2), preferably in horizontal layers, in a variety of ways. preferably up to the lowest mesh of precious metal and/or non-precious metal, for example as described below under a) to c):
  1. a) A bottom layer of catalytic and/or non-catalytic shaped bodies (F2), thereon a layer or more layers of modules (M) with catalytic and/or non-catalytic shaped bodies (F1).
  2. b) A bottom layer of modules (M) with catalytic and/or non-catalytic shaped bodies (F1) thereon a layer or several layers of catalytic and/or non-catalytic shaped bodies (F2).
  3. c) A bottom layer either of modules (M) with catalytic and/or non-catalytic shaped bodies (F1) or a bottom layer of catalytic and/or non-catalytic shaped bodies (F2) and at least one layer regularly alternating or irregularly stacked on top of that of modules (M) with catalytic and/or non-catalytic shaped bodies (F1) or of catalytic and/or non-catalytic shaped bodies (F2).

Üblicherweise werden die Schichten bei den beschriebenen Varianten durch Vorrichtungen wie horizontal angeordnete perforierte Bleche oder Metallnetze, beispielsweise Megapyrnetze, horizontal getrennt.In the variants described, the layers are usually separated horizontally by devices such as horizontally arranged perforated metal sheets or metal nets, for example megapyr nets.

In weiteren gut geeigneten Ausführungsformen kann das Volumen der Module (M) selbst in mannigfaltiger Weise teilweise oder vollständig mit katalytischen und/oder nicht-katalytischen Formkörpern (F1) und/oder (F2), vorzugsweise horizontal schichtartig, ausgefüllt sein, beispielsweise wie im Folgenden unter ba) bis bc) beschrieben:

  • ba) Eine unterste Schicht katalytische und/oder nicht-katalytische Formkörper (F2), darauf eine Schicht oder mehrere Schichten von katalytischen und/oder nicht-katalytischen Formkörpern (F1).
  • bb) Eine unterste Schicht von katalytischen und/oder nicht-katalytischen Formkörpern (F1) darauf eine Schicht oder mehrere Schichten von katalytischen und/oder nicht-katalytischen Formkörpern (F2).
  • bc) Eine unterste Schicht entweder von katalytischen und/oder nicht-katalytischen Formkörpern (F1) oder eine unterste Schicht von katalytischen und/oder nicht-katalytischen Formkörpern (F2) und darüber jeweils regelmäßig alternierend oder unregelmäßig aufeinandergeschichtet mindestens eine Schicht von katalytischen und/oder nicht-katalytischen Formkörpern (F1) oder von katalytischen und/oder nicht-katalytischen Formkörpern (F2).
In other highly suitable embodiments, the volume of the modules (M) itself can be partially or completely filled with catalytic and/or non-catalytic shaped bodies (F1) and/or (F2), preferably in horizontal layers, in a variety of ways, for example as below described under ba) to bc):
  • ba) A bottom layer of catalytic and/or non-catalytic shaped bodies (F2), on top of which is a layer or more layers of catalytic and/or non-catalytic shaped bodies (F1).
  • bb) A bottom layer of catalytic and/or non-catalytic shaped bodies (F1), on top of which is a layer or more layers of catalytic and/or non-catalytic shaped bodies (F2).
  • bc) A bottom layer of either catalytic and/or non-catalytic shaped bodies (F1) or a bottom layer of catalytic and/or non-catalytic shaped bodies (F2) and above that at least one layer of catalytic and/or non-catalytic shaped bodies (F1) or catalytic and/or non-catalytic shaped bodies (F2).

Die Schichten bei den beschriebenen Varianten ba) bis bc) können durch Vorrichtungen wie horizontal angeordnete perforierte Bleche oder Metallnetze, beispielsweise Megapyrnetze, horizontal getrennt werden.The layers in the variants ba) to bc) described can be separated horizontally by devices such as horizontally arranged perforated metal sheets or metal nets, for example megapyr nets.

Bei dem Reaktor R kann es sich um ein Gefäß zur Durchführung von chemischen Reaktionen, vorzugsweise im großtechnischen Maßstab, handeln.The reactor R can be a vessel for carrying out chemical reactions, preferably on an industrial scale.

Beispiele für derartige chemische Reaktionen sind Oxidationen von kohlenstoffhaltigen und/oder stickstoffhaltigen Verbindungen, vorzugsweise mit sauerstoffhaltigen oder halogenhaltigen Gasen. Beispiele derartiger Oxidationen sind die übliche Verbrennung von Erdöl, Naphtha, Erdgas, Kohle und dergleichen, zum Beispiel zur Erzeugung von Wärme und/oder elektrischer Energie; die katalytische Oxidation von Ammoniak mit einem sauerstoffhaltigen Gas, vorzugsweise Luft oder reiner Sauerstoff, zu Stickstoffoxiden; die sogenannte Ammonoxidation von organischen Verbindungen mit Methylgruppen oder von Methan mit Ammoniak und Sauerstoff zu Nitrilen oder Cyanwasserstoff.Examples of such chemical reactions are oxidations of carbon-containing and/or nitrogen-containing compounds, preferably with oxygen-containing or halogen-containing gases. Examples of such oxidations are the usual combustion of petroleum, naphtha, natural gas, coal and the like, for example to produce heat and/or electrical energy; the catalytic oxidation of ammonia with an oxygen-containing gas, preferably air or pure oxygen, to form nitrogen oxides; the so-called ammoxidation of organic compounds with methyl groups or of methane with ammonia and oxygen to form nitriles or hydrogen cyanide.

Ein weiteres Beispiel für derartige chemische Reaktionen ist die, vorzugsweise katalytische, Umwandlung von Stickstoffoxiden, vorzugsweise Distickstoffoxid (N2O), zu Stickstoff und Sauerstoff.Another example of such chemical reactions is the preferably catalytic conversion of nitrogen oxides, preferably nitrous oxide (N 2 O), to form nitrogen and oxygen.

Vorzugsweise handelt es sich bei dem Reaktor R um ein Gefäß zur Herstellung, vorzugsweise im großtechnischen Maßstab, von chemischen Produkten, zum Beispiel zum Herstellen von Stickstoffoxiden wie NO2, N2O, N2O4, NO und/oder Salpetersäure und/oder salpetrige Säure unter anderem durch katalytische Oxidation von Ammoniak mit einem sauerstoffhaltigen Gas, beispielsweise Luft; zum Herstellen von Schwefeloxiden wie SO2, SO3 und/oder Schwefelsäure, schweflige Säure oder weitere Säuren der Schwefeloxide.The reactor R is preferably a vessel for producing, preferably on an industrial scale, chemical products, for example for producing nitrogen oxides such as NO 2 , N 2 O, N 2 O 4 , NO and/or nitric acid and/or nitrous acid, inter alia, by catalytic oxidation of ammonia with an oxygen-containing gas, for example air; for the production of sulfur oxides such as SO 2 , SO 3 and/or sulfuric acid, sulfurous acid or other acids of sulfur oxides.

Zum Beispiel ist der Reaktor R ein zylindrisches Gefäß zur Herstellung, vorzugsweise im großtechnischen Maßstab, von Stickstoffoxiden wie NO2, N2O, N2O4, NO und/oder Salpetersäure und/oder salpetrige Säure durch katalytische Oxidation von Ammoniak mit einem sauerstoffhaltigen Gas, beispielsweise Luft oder reiner Sauerstoff. Eine für dieses Beispiel gut geeignete Ausführungsform ist beispielsweise in Figur 4 dargestellt.For example, the reactor R is a cylindrical vessel for producing, preferably on a large industrial scale, nitrogen oxides such as NO 2 , N 2 O, N 2 O 4 , NO and/or nitric acid and/or nitrous acid by catalytic oxidation of ammonia with an oxygen-containing Gas, for example air or pure oxygen. An embodiment that is well suited for this example is shown in FIG. 4, for example.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist die Verwendung des Reaktors R mit der Vorrichtung D, in einem Verfahren zur Herstellung von Stickstoffoxiden durch katalytische Oxidation von Ammoniak, beispielsweise im Temperaturbereich von 800 bis 900 °C und beispielsweise an einem Netzt aus Edelmetall, wie Platin oder Platin-Rhodiumlegierung, mit einem sauerstoffhaltigen Gas, beispielsweise Luft oder reiner Sauerstoff und gegebenenfalls Umsetzung der Stickstoffoxide mit Wasser zur Salpetersäure, wobei ausdrücklich darauf hingewiesen wird, dass sämtliche Offenbarung zum Reaktor R und/oder zur Vorrichtung D oder andere Erfindungsgegenstände hierin in den voranstehend genannten Gegenstand der vorliegenden Erfindung ausdrücklich inkorporiert wird.Another subject of the present application is the use of the reactor R with the device D, in a process for the production of nitrogen oxides by catalytic oxidation of ammonia, for example in the temperature range from 800 to 900 ° C and for example on a network of noble metal such as platinum or Platinum-rhodium alloy, with an oxygen-containing gas, for example air or pure oxygen and, if necessary, reaction of the nitrogen oxides with water to form nitric acid, it being expressly pointed out that all disclosures relating to the reactor R and/or the device D or other objects of the invention herein are contained in the aforementioned Subject matter of the present invention is expressly incorporated.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Herstellung von Stickstoffoxiden, wobei man in einem Reaktor R Ammoniak mit einem sauerstoffhaltigen Gas, vorzugsweise Luft oder reinem Sauerstoff, beispielsweise im Temperaturbereich von 800 bis 900 °C, katalytisch, beispielsweise an einem Netzt aus Edelmetall, wie Platin oder Platin-Rhodiumlegierung oxidiert und die entstandenen Stickstoffoxide enthaltenden Reaktionsprodukte, die in der Regel Stickstoffmonoxid als Hauptkomponente und Distickstoffoxid als Nebenkomponente enthalten, durch eine Anordnung von katalytischen und/oder nicht-katalytischen Formkörpern (F) in einer Vorrichtung D strömen lässt, welche üblicherweise in Strömungsrichtung stromabwärts, üblicherweise unterhalb des Katalysatornetzes, angeordnet ist stömen lässt, wobei die Anordnung der katalytischen und/oder nicht-katalytischen Formkörpern (F) und die Vorrichtung D, jeweils wie vorher beschrieben ist, und wobei ausdrücklich darauf hingewiesen wird, dass sämtliche Offenbarung zu den katalytischen und/oder nicht-katalytischen Formkörpern (F), zur Vorrichtung D hierin und/oder dem Reaktor R oder andere Erfindungsgegenstände hierin in den voranstehend genannten Gegenstand der vorliegenden Erfindung ausdrücklich inkorporiert wird.Another subject of the present application is a process for the production of nitrogen oxides, wherein ammonia is reacted in a reactor R with an oxygen-containing gas, preferably air or pure oxygen, for example in the temperature range from 800 to 900° C., catalytically, for example on a noble metal net , such as platinum or platinum-rhodium alloy oxidized and the resulting nitrogen oxides-containing reaction products, which usually contain nitrogen monoxide as the main component and nitrous oxide as a secondary component, flow through an arrangement of catalytic and/or non-catalytic shaped bodies (F) in a device D, which is usually arranged downstream in the direction of flow, usually below the catalyst gauze, allowing the arrangement of the catalytic and/or non-catalytic shaped bodies (F) and the device D to flow, in each case as previously described, and it being expressly pointed out w ird that all disclosure of the catalytic and / or non-catalytic shaped bodies (F), to the device D herein and / or the reactor R or other subjects of the invention herein is expressly incorporated into the above-mentioned subject matter of the present invention.

Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Herstellung von Salpetersäure, wobei man in einem Reaktor R Ammoniak mit einem sauerstoffhaltigen Gas, vorzugsweise Luft oder reinem Sauerstoff, beispielsweise im Temperaturbereich von 800 bis 900 °C, katalytisch, beispielsweise an einem Netz aus Edelmetall, wie Platin oder Platin-Rhodiumlegierung umsetzt und die entstandenen Stickstoffoxide enthaltenden Reaktionsprodukte, die in der Regel Stickstoffmonoxid als Hauptkomponente und Distickstoffoxid als Nebenkomponente enthalten, durch eine Anordnung mit katalytischen und/oder nicht-katalytischen Formkörpern (F) in einer Vorrichtung D, welche üblicherweise in Strömungsrichtung stromabwärts, üblicherweise unterhalb des Katalysatornetzes angeordnet ist, strömen lässt, üblicherweise abkühlt, wobei sie mit Sauerstoff unter Bildung von Stickstoffdioxid reagieren und mit Wasser zur Salpetersäure umsetzt, wobei die Anordnung der katalytischen und/oder nicht-katalytischen Formkörpern (F) die Vorrichtung D und der Reaktor R, jeweils, wie vorher beschrieben sind, wobei ausdrücklich darauf hingewiesen wird, dass sämtliche Offenbarung zu den katalytischen und/oder nicht-katalytischen Formkörpern (F), zur Vorrichtung D hierin und/oder dem Reaktor R oder andere Erfindungsgegenstände hierin in den voranstehend genannten Gegenstand der vorliegenden Erfindung ausdrücklich inkorporiert wird.A further subject of the present application is a process for the production of nitric acid, wherein ammonia is reacted in a reactor R with an oxygen-containing gas, preferably air or pure oxygen, for example in the temperature range from 800 to 900 ° C, catalytically, for example on a net made of noble metal, such as platinum or platinum-rhodium alloy and the resulting nitrogen oxides-containing reaction products, which are usually nitrogen monoxide as the main component and nitrous oxide as a secondary component included, through an arrangement with catalytic and / or non-catalytic shaped bodies (F) in a device D, which is usually arranged downstream in the flow direction, usually below the catalyst mesh, flows, usually cools, reacting with oxygen to form nitrogen dioxide and reacted with water to form nitric acid, the arrangement of the catalytic and/or non-catalytic shaped bodies (F), the device D and the reactor R, each as previously described, it being expressly pointed out that all disclosure relating to the catalytic cal and / or non-catalytic shaped bodies (F), to the device D herein and / or the reactor R or other objects of the invention herein is expressly incorporated into the above-mentioned subject matter of the present invention.

Ausführungsbeispiele sind auch in den Figuren dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.Exemplary embodiments are also shown in the figures and are explained in more detail in the following description.

Bezugszeichenliste zu den FigurenList of reference numbers for the figures

11
Reaktorwandreactor wall
22
Fugenfüllmaterialjoint filler
33
Wand eines Moduls (M)wall of a module (M)
44
Formkörper (F1)Shaped body (F1)
55
[LEER][EMPTY]
66
Modul (M)Module (M)
77
Boden eines Moduls (M)Bottom of a module (M)
88th
Geflecht aus Edelmetall und/oder Nicht-EdelmetallMesh of precious metal and/or non-precious metal
99
Ausgleichskörpercompensating body
1010
Boden B der Vorrichtung DBottom B of device D
1111
Seitenbegrenzung W der Vorrichtung DSide boundary W of device D
1212
U-förmige SchürzeU-shaped apron
1313
Rohre für KühlmediumPipes for cooling medium

Figur 1 zeigt im Querschnitt einen Teil eines zylindrischen Reaktors R, vorzugsweise für die NOx/HNO3-Ausführungsform, in welchem die Vorrichtung D aufgenommen ist. Es sind dargestellt: Die Reaktorwand 1, 11 die Seitenbegrenzung W der Vorrichtung D, die von den Wänden 3 eingehausten Module 6, wobei die Fugen zwischen den Modulen (M) 6 selbst und zwischen den Modulen (M) 6 und der Reaktorwand 1 mit Fugenfüllmaterial 2 ausgefüllt sind. In den Modulen M befinden sich die Formkörper (F1) 4. Die Module (M) 6 bedecken den Querschnitt des Bodens B praktisch vollständig. figure 1 Figure 12 shows in cross-section part of a cylindrical reactor R, preferred for the NO x /HNO 3 embodiment, in which device D is housed. Shown are: The reactor wall 1, 11, the side boundary W of the device D, the modules 6 housed by the walls 3, the joints between the modules (M) 6 themselves and between the modules (M) 6 and the reactor wall 1 being filled with joint filling material 2 are filled out. The modules (F1) 4 are in the modules M. The modules (M) 6 cover the cross-section of the bottom B almost completely.

Figur 2 zeigt einen Längsschnitt unter anderem durch ein Modul (M) 6. Es ist dargestellt: die Wand 3 eines Moduls (M) 6, der Boden 7 eines Moduls (M) 6, der Boden B 10 auf dem die Module (M )ruhen, die Formkörper (F1) 4, welche in den Modulen (M) eingefasst sind, das Fugenfüllmaterial 2, das Geflecht aus Edelmetall und/oder Nicht-Edelmetall 8. Der Raum zwischen Formkörper (F1) und Geflecht 8 ist mit einer gas- und/oder flüssigkeitsdurchlässigen Schicht aus hochtemperaturbeständigem anorganischen Material, dem Ausgleichskörper 9, aufgefüllt. figure 2 shows a longitudinal section through a module (M) 6, among other things. It shows: the wall 3 of a module (M) 6, the floor 7 of a module (M) 6, the floor B 10 on which the modules (M) rest, the shaped bodies (F1) 4, which are enclosed in the modules (M), the joint filling material 2, the mesh made of precious metal and/or non-precious metal 8. The space between the shaped body (F1) and mesh 8 is equipped with a gas and/or or liquid-permeable layer of high-temperature-resistant inorganic material, the compensating body 9, filled.

Figur 3 ist analog zu Figur 2 inklusive der entsprechenden Bezugszeichen und zeigt im Längsschnitt einen Teil eines zylindrischen Reaktors R - vorzugsweise für die NOx/HNO3-Ausführungsform - in welchem die Vorrichtung D mit Modulen (M) 6 aufgenommen ist. Eine U-förmige Schürze 12 aus Metall ist auf der einen Seite per Flansch an der Reaktorwand 1 befestigt. An der anderen Seite der U-förmigen Schürze 12 aus Metall ist die Seitenbegrenzung W 11 der Vorrichtung D befestigt. Die U-förmige Schürze 12 umhüllt einen Teil der Rohre für ein Kühlmedium 13. figure 3 is analogous to figure 2 including the corresponding reference numbers and shows in longitudinal section a part of a cylindrical reactor R - preferably for the NO x /HNO 3 embodiment - in which the device D with modules (M) 6 is accommodated. A U-shaped metal apron 12 is fastened on one side to the reactor wall 1 by means of a flange. On the other side of the metal U-shaped skirt 12, the side boundary W 11 of the device D is attached. The U-shaped apron 12 encloses part of the tubes for a cooling medium 13.

Beispieleexamples AllgemeinGeneral

Ein Ammoniak-Luftgemisch (12,5 Vol-% NH3, 87,5 Vol-% Luft) wird dem zylindrischen Ammoniakverbrennungsofen (Reaktor R), in dem eine Vorrichtung D in Gestalt eines Korbes mit rundem Bodenquerschnitt aufgenommen ist, zugeführt. Die korbartige Vorrichtung D hat einen lichten Durchmesser von 3,52 m. Der Reaktor R wird mit einem Ammoniak-Luftgemisch-Durchsatz von 3650 Nm3/h und pro m2 Katalysatornetzfläche betrieben. Die Eintrittstemperatur des Ammoniak-Luft-Gemisches in den Reaktor R beträgt 28,4 °C und der Druck vor dem Platin-Katalysatornetz im Reaktor R 1080 mbar (abs.). Am Platin-Katalysatornetz verbrennt das Ammoniak bei Temperaturen von ca. 880 °C zum Reaktionsprodukt welches dann durch die Vorrichtung D, enthaltend eine katalytisch aktive Füllung, geleitet wird und Stickstoffmonoxid als Hauptkomponente und geringe Mengen Distickstoffmonoxid N2O ("Lachgas") enthält. Die Lachgaskonzentration des Reaktionsprodukts beträgt direkt nach dem Platin-Katalysatornetz, also noch vor dem Auftreffen auf die katalytisch aktive Füllung der korbartigen Vorrichtung D, ca. 1000 ppm. Dem Platinnetz nachgeschaltet ist die korbartige Vorrichtung D, enthaltend katalytische Formkörper (F1) (erfindungsgemäß) oder katalytische Formkörper (F2) (nicht erfindungsgemäß), wie unten näher beschrieben.An ammonia-air mixture (12.5 vol% NH 3 , 87.5 vol% air) is fed to the cylindrical ammonia combustion furnace (reactor R) in which a device D in the form of a basket with a round bottom cross-section is accommodated. The basket-like device D has an internal diameter of 3.52 m. The reactor R is operated with an ammonia/air mixture throughput of 3650 Nm 3 /h and per m 2 of catalyst mesh surface. The inlet temperature of the ammonia-air mixture in reactor R is 28.4° C. and the pressure upstream of the platinum catalyst gauze in reactor R is 1080 mbar (abs.). The ammonia burns on the platinum catalyst gauze at temperatures of approx. 880° C. to form the reaction product, which is then passed through device D, containing a catalytically active filling and containing nitrogen monoxide as the main component and small amounts of nitrous oxide N 2 O ("laughing gas"). The nitrous oxide concentration of the reaction product is about 1000 ppm directly after the platinum catalyst gauze, ie before it hits the catalytically active filling of the basket-like device D. Downstream of the platinum gauze is the basket-like device D, containing shaped catalytic bodies (F1) (according to the invention) or shaped catalytic bodies (F2) (not according to the invention), as described in more detail below.

Die nicht-netzartigen Teile der korbartigen Vorrichtung D bestehen aus Inconel 600, die Seitenbegrenzung W ist ca. 250 mm hoch.The non-mesh parts of the basket-like device D are made of Inconel 600, the side border W is about 250 mm high.

Direkt nach dem Platin-Katalysatornetz (Entnahmestelle 1) und in der Mitte des Reaktors R stromabwärts direkt unterhalb des Bodens B der Vorrichtung D (Entnahmestelle 2) sowie an der Peripherie des Reaktors stromabwärts direkt unterhalb des äußeren Randbereichs des Bodens B der Vorrichtung D (Entnahmestelle 3) können Proben des Reaktionsprodukts entnommen werden und auf Lachgaskonzentration mittels GC/MS-Methode untersucht werden.Immediately after the platinum catalyst net (tapping point 1) and in the middle of the reactor R downstream just below the tray B of the device D (tapping point 2) and at the periphery of the reactor downstream just below the outer edge area of the tray B of device D (sample point 3), samples of the reaction product can be taken and analyzed for nitrous oxide concentration using the GC/MS method.

Nach neun Monaten Betriebsdauer des Reaktors R wird die Vorrichtung D und deren Füllung geprüft. Lachgaskonzentrationen werden während des Betriebs des Reaktors R gemessen.After nine months of operation of the reactor R, the device D and its filling is checked. Nitrous oxide concentrations are measured during reactor R operation.

Vergleichsbeispiel 1 (nicht erfindungsgemäß)Comparative example 1 (not according to the invention)

Die korbartige Vorrichtung D mit rundem Bodenquerschnitt enthält anfangs praktisch flächendeckend eine 150 mm hohe Schicht aus katalytischen Formkörpern (F2), nämlich Vollkatalysatorstränglingen, wobei diese Stränglinge einen sternförmigem Querschnitt, einen Durchmesser von ca. 6 mm und eine Länge von 5 bis 30 mm haben und aus einer Mischung von CuO, ZnO und Al2O3 bestehen.The basket-like device D with a round bottom cross-section initially contains a 150 mm high layer of catalytic shaped bodies (F2), namely all-catalyst extrudates, which covers the entire area, these extrudates having a star-shaped cross-section, a diameter of approx. 6 mm and a length of 5 to 30 mm and consist of a mixture of CuO, ZnO and Al 2 O 3 .

Im kontinuierlichen Verfahren wird ein Ammoniak-Luftgemisch wie oben beschrieben umgesetzt.In the continuous process, an ammonia-air mixture is converted as described above.

Der Randbereich der Vorrichtung D weist eine trichterförmige Vertiefung in Form eines Grabens von 96 mm Tiefe in der katalytisch aktiven Füllung auf, deren Höhe im Randbereich der Vorrichtung D nur noch 54 mm (vor Versuchsbeginn 150 mm) beträgt.The edge area of device D has a funnel-shaped depression in the form of a ditch with a depth of 96 mm in the catalytically active filling, the height of which in the edge area of device D is only 54 mm (150 mm before the start of the test).

Die gemessene Lachgaskonzentration an der Entnahmestelle 3 praktisch unterhalb der trichterförmigen Vertiefung beträgt 676 ppm Lachgas, an der Entnahmestelle 2 beträgt die gemessene Lachgaskonzentration 186 ppm so dass die gemittelte gemessene Lachgaskonzentration stromabwärts nach der Vorrichtung D und dem stromabwärts darunter liegenden Wärmetauscher 227 ppm beträgt.The measured nitrous oxide concentration at extraction point 3 practically below the funnel-shaped recess is 676 ppm nitrous oxide, at extraction point 2 the measured nitrous oxide concentration is 186 ppm so that the average measured nitrous oxide concentration downstream after device D and the downstream heat exchanger below is 227 ppm.

Beispiel 1 (erfindungsgemäß)Example 1 (according to the invention)

Die korbartige Vorrichtung D mit rundem Bodenquerschnitt enthält praktisch flächendeckend Metallkassetten, wie im Folgenden beschrieben und in analoger Weise in Figur 1 dargestellt. Es werden 16 Metallkassetten eingesetzt, die aus quadratischen Formen mit 800 × 800 mm Außenmaßen und aus an die zylindrische Seitenbegrenzung der Vorrichtung D bzw. des Reaktors R angepasste Formen bestehen. Die Kassetten sind mit Fugenfüllmaterial untereinander und zur zylindrischen Seitenbegrenzung hin abgedichtet. Die Kassetten sind mit erfindungsgemäßen katalytischen Formkörpern (F1) in Gestalt eines regelmäßigen sechseckigen Prismas oder dessen Fragmente gefüllt, wie in Figur 1 dargestellt. Diese katalytischen Formkörpern (F1) sind sogenannte Vollkatalysatoren und bestehen im Wesentlichen aus einer Mischung von CuO, ZnO und Al2O3. Sie haben eine Höhe von 160 mm.The basket-like device D with a round bottom cross-section contains metal cassettes almost everywhere, as described below and in an analogous manner in figure 1 shown. 16 metal cassettes are used, which consist of square molds with external dimensions of 800×800 mm and molds adapted to the cylindrical side boundary of the device D or the reactor R. The cassettes are sealed with joint filling material among themselves and towards the cylindrical side boundary. The cassettes are filled with catalytic shaped bodies (F1) according to the invention in the form of a regular hexagonal prism or its fragments, as in figure 1 shown. These catalytic shaped bodies (F1) are so-called unsupported catalysts and essentially consist of a mixture of CuO, ZnO and Al 2 O 3 . They have a height of 160 mm.

Im kontinuierlichen Verfahren wird ein Ammoniak-Luftgemisch wie oben beschrieben umgesetzt.In the continuous process, an ammonia-air mixture is converted as described above.

Die gemessene Lachgaskonzentration an der Entnahmestelle 3 im Außenbereich der Vorrichtung D wo im nicht-erfindungsgemäßen Fall de trichterförmige Vertiefung war beträgt 84 ppm Lachgas, an der Entnahmestelle 2 beträgt die gemessene Lachgaskonzentration 81 ppm so dass die gemittelte gemessene Lachgaskonzentration stromabwärts nach der Vorrichtung D und dem stromabwärts darunter liegenden Wärmetauscher 82 ppm beträgt.The measured nitrous oxide concentration at the extraction point 3 in the outer area of the device D, where in the case not according to the invention there was a funnel-shaped depression, is 84 ppm nitrous oxide, at the extraction point 2 the measured nitrous oxide concentration is 81 ppm, so that the average measured nitrous oxide concentration downstream after the device D and the downstream heat exchanger below is 82 ppm.

Claims (7)

  1. A reactor R with apparatus D, the latter comprising a gas- and/or liquid-permeable tray B, in the edge region of which there is disposed a lateral boundary W which fully encloses the tray B and forms a volume V comprising catalytic and/or noncatalytic shaped bodies (F), wherein there is at least one braid made of precious metal and/or base metal on the upstream side opposite the tray B, and the catalytic and/or noncatalytic shaped bodies (F) are selected from (i) shaped bodies (F1) in the form of straight prisms, the footprint of which is selected from triangle, rectangle, hexagon or fragments of these polygons, and (ii) a combination of the shaped bodies (F1) with shaped bodies (F2) that are smaller than the shaped bodies (F1), wherein groups of m to n shaped bodies (F1), m and n being an integer from 3 to 30 with n > m, are framed in metal cassettes which form modules (M) and are open in the upstream direction and closed in the downstream direction by a gas-permeable tray, in a virtually seamless manner with side face to side face and with their longitudinal axis aligned in vertical direction, virtually completely covering the cross section of the tray, to form modules (M), and the modules (M), optionally with cooperation of a joint filler material, with vertical alignment of the longitudinal axis of the shaped bodies (F1), are joined to one another virtually seamlessly in a mosaic-like manner such that they virtually completely cover the cross section of the tray B.
  2. The reactor R with apparatus D according to claim 1, wherein there is a thermally insulating layer S at least over part of the area of the inside of the lateral boundary W of the apparatus D, and the material for the thermally insulating layer S is selected from the group consisting of ceramic material, microporous material and silicate fibers.
  3. The reactor R with apparatus D according to claim 1 to 2, wherein the cross section of the reactor R and of the tray B is virtually round in each case.
  4. The reactor R with apparatus D according to claim 1 to 3, wherein the volume V of the apparatus D has been filled with catalytic and/or noncatalytic shaped bodies (F) up to a maximum of the lowermost braid made of precious metal and/or base metal.
  5. The use of the reactor R as defined in claims 1 to 4 in a process for preparing nitrogen oxides by catalytic oxidation of ammonia with an oxygenous gas and optionally reaction of the nitrogen oxides with water to give nitric acid.
  6. A process for preparing nitrogen oxides, wherein, in a reactor R as defined in claims 1 to 4, ammonia is catalytically oxidized with an oxygenous gas and the reaction products which comprise nitrogen oxides and are thus formed are allowed to flow through an arrangement of catalytic and/or noncatalytic shaped bodies (F) in an apparatus D, wherein the arrangement of the catalytic and/or noncatalytic shaped bodies (F) and the apparatus D are as defined in claims 1 to 4.
  7. A process for preparing nitric acid, wherein, in a reactor R, ammonia is catalytically oxidized with an oxygenous gas and the reaction products which comprise nitrogen oxides and are thus formed are allowed to flow through an arrangement of catalytic and/or noncatalytic shaped bodies (F) in an apparatus D and then reacted with water to give nitric acid, wherein the arrangement of the catalytic and/or noncatalytic shaped bodies (F) and the apparatus D are as defined in claims 1 to 4.
EP16802003.0A 2015-11-27 2016-11-18 Modular catalyst monoliths Active EP3380222B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15196794 2015-11-27
PCT/EP2016/078100 WO2017089231A1 (en) 2015-11-27 2016-11-18 Modular catalyst monoliths

Publications (2)

Publication Number Publication Date
EP3380222A1 EP3380222A1 (en) 2018-10-03
EP3380222B1 true EP3380222B1 (en) 2022-08-03

Family

ID=55066275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16802003.0A Active EP3380222B1 (en) 2015-11-27 2016-11-18 Modular catalyst monoliths

Country Status (8)

Country Link
US (1) US10974964B2 (en)
EP (1) EP3380222B1 (en)
CN (1) CN108290129B (en)
ES (1) ES2929028T3 (en)
HU (1) HUE060103T2 (en)
PL (1) PL3380222T3 (en)
RU (1) RU2722375C2 (en)
WO (1) WO2017089231A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103199A1 (en) 2015-12-16 2017-06-22 Basf Se Reactor for carrying out heterogeneously catalysed gas phase reactions, and use of the reactor
EP3501633A1 (en) * 2017-12-19 2019-06-26 Yara International ASA Catalyst support systems for ammonia oxidation burners
GB201917634D0 (en) * 2019-12-03 2020-01-15 Johnson Matthey Catalysts Germany Gmbh Element frame assemblies containing monoliths
WO2023174923A1 (en) 2022-03-14 2023-09-21 Basf Se Continuous process for preparing chlorine and a catalyst for preparing chlorine
WO2023232853A1 (en) 2022-06-02 2023-12-07 Casale Sa Catalyst support system for ammonia oxidation burners

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19819882A1 (en) 1998-04-27 1999-10-28 Basf Ag Reactor for catalytically oxidizing ammonia to nitrogen oxides
DE10011738A1 (en) 2000-03-13 2002-03-28 Porzellanwerk Kloster Veilsdor Ceramic shaped catalyst bodies and method for producing such shaped catalyst bodies
DE10350819A1 (en) 2003-10-29 2005-06-09 Basf Ag Process for removing N2O in nitric acid production
WO2006009453A1 (en) 2004-07-19 2006-01-26 Yara International Asa Catalyst packing, a structured fixed bed reactor and use
DE102007026712A1 (en) * 2007-06-06 2008-12-11 Uhde Gmbh Apparatus and method for catalytic gas phase reactions and their use
CN101279186B (en) * 2008-05-23 2011-05-11 清华大学 Flue gas dry-type method for simultaneously desulfurizing and denitrating
GB0819094D0 (en) * 2008-10-20 2008-11-26 Johnson Matthey Plc Catalyst containment unit
WO2015022247A1 (en) * 2013-08-16 2015-02-19 Basf Se Basket-like device having wall insulation
CN103762372B (en) * 2014-01-26 2016-04-13 齐志刚 The solution and ultra-thin catalyst layer and preparation method thereof of catalyst layer water logging
WO2016055453A1 (en) 2014-10-07 2016-04-14 Basf Se Reactor for carrying out gas-phase reactions using a heterogeneous catalytic converter
WO2016055452A1 (en) 2014-10-07 2016-04-14 Basf Se Reactor for carrying out gas phase reactions using a heterogeneous catalytic converter
CA2969588A1 (en) 2014-12-03 2016-06-09 Basf Se Catalyst for decomposition of nitrous oxide

Also Published As

Publication number Publication date
RU2018123136A3 (en) 2020-04-09
EP3380222A1 (en) 2018-10-03
RU2018123136A (en) 2019-12-31
HUE060103T2 (en) 2023-01-28
PL3380222T3 (en) 2022-12-19
US10974964B2 (en) 2021-04-13
RU2722375C2 (en) 2020-05-29
CN108290129B (en) 2022-05-24
WO2017089231A1 (en) 2017-06-01
US20180305210A1 (en) 2018-10-25
CN108290129A (en) 2018-07-17
ES2929028T3 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
EP3380222B1 (en) Modular catalyst monoliths
EP3033302B1 (en) Basket-like device with wall insulation
DE2427530C2 (en) Methanation reactor
EP2373578B1 (en) Device and method for catalytic gas phase reactions and use thereof
EP3336055B1 (en) Corrosion protected reformer tube with internal heat exchanger
DE102007026712A1 (en) Apparatus and method for catalytic gas phase reactions and their use
WO2009021586A1 (en) Catalyst, production method therefor and use thereof for decomposing n2o
EP2741841B1 (en) Catalyst for direct decomposition of nitric oxide and method of manufacturing the catalyst
EP3266739B1 (en) Corrosion protected reformer tube with internal heat exchanger
EP2753575B1 (en) Apparatus for minimizing bypass in ammonia oxidation burners of industrial plants with burner diameters of 2-7 m in natural- or forced-circulation boilers
DE102007045123A1 (en) Reactor and process for its production
EP3389847A1 (en) Reactor for carrying out heterogeneously catalysed gas phase reactions, and use of the reactor
WO2016055452A1 (en) Reactor for carrying out gas phase reactions using a heterogeneous catalytic converter
WO2016055453A1 (en) Reactor for carrying out gas-phase reactions using a heterogeneous catalytic converter
DE102010060104A1 (en) Flue gas purification stage
BE1027663B1 (en) Reactor for the catalytic treatment of a gas stream
EP2753576A1 (en) Apparatus for minimizing bypass in ammonia oxidation burners
WO2014006164A1 (en) Reactor for carrying out an exothermic reaction in the gas phase
EP4110728A1 (en) Reactor for the catalytic treatment of a gas stream
EP3237105B1 (en) Method for arranging a packing in a burner and burner basket for a burner
DE102021201811A1 (en) Reactor for the catalytic treatment of a gas stream
DE3040712A1 (en) Reaction vessel esp. for high temp. high pressure catalysis - has temp. resistant inner shell pressure resistant outer shell and insulation between
DE10350819A1 (en) Process for removing N2O in nitric acid production
DE8028808U1 (en) REACTION CONTAINER

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190812

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016015146

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01J0008000000

Ipc: C01B0021260000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220325

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 19/24 20060101ALI20220311BHEP

Ipc: B01J 8/00 20060101ALI20220311BHEP

Ipc: C01B 21/28 20060101ALI20220311BHEP

Ipc: C01B 21/38 20060101ALI20220311BHEP

Ipc: C01B 21/26 20060101AFI20220311BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015146

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 40442

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2929028

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221124

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E060103

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015146

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230504

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221118

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1508606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231218

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20231103

Year of fee payment: 8

Ref country code: FR

Payment date: 20231123

Year of fee payment: 8

Ref country code: DE

Payment date: 20231127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231023

Year of fee payment: 8

Ref country code: BE

Payment date: 20231124

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803