EP3377659A1 - Improved ilmenite smelting process - Google Patents
Improved ilmenite smelting processInfo
- Publication number
- EP3377659A1 EP3377659A1 EP16847594.5A EP16847594A EP3377659A1 EP 3377659 A1 EP3377659 A1 EP 3377659A1 EP 16847594 A EP16847594 A EP 16847594A EP 3377659 A1 EP3377659 A1 EP 3377659A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pellets
- ore
- reduction
- ilmenite
- reduced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 238000003723 Smelting Methods 0.000 title claims abstract description 22
- 239000008188 pellet Substances 0.000 claims abstract description 79
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 5
- 238000003746 solid phase reaction Methods 0.000 claims abstract description 3
- 238000010671 solid-state reaction Methods 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 16
- 239000003245 coal Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000011946 reduction process Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 229910002091 carbon monoxide Inorganic materials 0.000 claims 1
- 239000002893 slag Substances 0.000 description 16
- 238000001465 metallisation Methods 0.000 description 9
- 239000003638 chemical reducing agent Substances 0.000 description 7
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 6
- 239000003830 anthracite Substances 0.000 description 6
- 238000005187 foaming Methods 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004320 controlled atmosphere Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
- C22B1/245—Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1204—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
- C22B34/1209—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent by dry processes, e.g. with selective chlorination of iron or with formation of a titanium bearing slag
Definitions
- This invention relates to a consolidated process for the preparation of carbon-based ilmenite pellets, the solid-state reduction thereof, and the subsequent smelting thereof in an electric furnace.
- Feed to the smelting furnace is generally made up of raw ilmenite ore and a solid , carbonaceous reductant.
- Raw ilmenite in a particular process, is replaced by pre-reduced ilmenite pellets.
- the steps for the production process of the latter are to prepare ilmenite pellets using bentonite and to pre-reduce the pellets in a rotary kiln in the presence of a solid, carbonaceous reductant in excess.
- the smelting of the pre-reduced ilmenite pellets is thus carried out in an AC furnace.
- the Ti0 2 slag produced in this way is, however, contaminated with the bentonite which is an inorganic binder.
- An object of the present invention is to provide an alternative process for pre-reducing an ore essentially targeting the metallisation of iron oxides contained in the ore.
- the invention provides a method of preparing a pre-reduced ilmenite ore for smelting, wherein metal oxides, such as iron, chromium and manganese oxides contained in the ore are selectively reduced in solid-state reactions over titanium oxide, the method including the step of pre-reducing carbon-based pellets of the ore.
- the metal oxides, other than titanium oxides, in the pellets may be pre-reduced to a maximum extent i.e. essentially fully or they may be partially pre-reduced.
- the pellets may be less than 6mm in size and preferably lie in the range of 2mm to 5mm.
- the pellets may be prepared from a blend of required proportions of the ore, coal fines of -106 microns and a suitable organic binder.
- the ratio of the coal to the metallic oxide content may be practically determined.
- a stoichiometric ratio for the full reduction of iron in the ore can be used.
- the organic binder content may lie in the range of 0 to 1 %. This content may be dictated by the physical properties of the resulting pellets principally the strength of the pellets in a green state and in an air-dried or indurated state.
- the pellets may be may be air- indurated for at least 4 days. This period is usually adequate to ensure that the pellets are sufficiently strong to allow their safe and efficient handling to subsequent pre-reduction reactors.
- the mechanical strength of the pellets is preferably above 600N.
- the pellets should also have an acceptable behaviour in a hot reactor environment to avoid decrepitation due to excessive swelling.
- a single binder or a mixture of binders may be used.
- the invention is not limited in this respect.
- Pre-reduced pellets are evaluated based on the reduction extent of iron oxides contained in the ore.
- the iron oxide should be present in a quantity of less than 10% from the initial content.
- a consistent pre-reduction yield should be a main target during a normal and stable operation.
- the pellets may be subjected to a thermal reduction process or to a hybrid, solid- state, reduction process.
- the pellets, air-dried and indurated may be heated in a fixed bed reactor at an optimal residence time which may lie in a range of from 0.5 to 4 hours.
- the pellets may be heated at a temperature in the range of 1 100 to 1200°C.
- the pellets may be heated to a temperature in the range of 900 to 1000°C in a controlled atmosphere of a reducing gas.
- the reducing gas may comprise one or more of the following: CO, syngas (CO + H 2 ), natural gas and hydrogen.
- CO syngas
- H 2 syngas
- hydrogen hydrogen
- the reducing gas may be filtered through a hot burden in the reactor.
- the reducing gas flowrate should be selected to achieve an adequate reduction yield of the iron oxides in the ore, as well as acceptable reactor operation performance.
- the invention finds particular application in the preparation of pre-reduced, carbon- based, ilmenite micro-pellets which are to be smelted e.g. in a DC open arc furnace.
- the principles of the invention may be employed for the pre-reduction of pellets of titaniferous magnetite, ferrochrome and ferromanganese ores for the subsequent production of titania slag, chrome and manganese, alloys respectively.
- Figure 1 illustrates in flow chart form the pre-reduction of carbon-based, ilmenite micro- pellets and the subsequent smelting thereof;
- Figure 2 is a diagram depicting an impact of the residence time on pre-reduction and metallisation degrees at 1000°C and 0.5I CO / min;
- Figure 3 is a diagram depicting an impact of the CO flowrate on the pre-reduction and metallisation degrees at 1000°C and 1 h residence time.
- the invention is hereinafter described with reference to the pre-reduction of carbon- based, ilmenite, micro-pellets. Although this is a preferred application of the principles of the invention it is possible to adapt the principles described herein for the pre-reduction of titaniferous magnetite, ferrochrome and ferromanganese ores.
- Raw ilmenite ore 10 of a suitable size is fed to a blender 12.
- the blender also receives coal fines 14 of -106 micron in size and an organic binder 16 formed from a single binder or from a mixed binder composition.
- the ratio of the input coal to the ilmenite is determined taking into account practical considerations. For instance a stoichiometric ratio which achieves a full reduction of iron in the ilmenite ore can be used. Further, the input of organic binder or mixes of organic binders, in the range of up to 1 %, is dictated by the physical properties of the resulting pellets, particularly the green and air-dried strengths of the pellets. The resulting pellets should also have an acceptable behaviour (subsequently) in a hot reactor environment to avoid decrepitation due to excessive swelling.
- the blender 12 produces carbon-based, ilmenite, micro-pellets of 2mm to 5mm in size. These pellets are then air-dried (step 20).
- the air-dried, indurated pellets are then subjected to a thermal pre-reduction step 22, or to a hybrid, solid-state pre-reduction step 24.
- the air-dried indurated pellets are heated in a fixed bed reactor 26 for an optimal residence time, generally from 0.5 to 4 hours.
- the pellets are heated in the reactor 26 to a temperature in the range of 1 100 to 1200°C. If use is made of the hybrid approach then the pellets are heated in the reactor 26 to a temperature of 900 to 1000°C in a controlled atmosphere of a reducing gas 30 which comprises one or more of CO, syngas, natural gas and hydrogen.
- the reducing gas is filtered through the hot burden of the pellets in the reactor 26.
- the reducing gas flowrate is regulated to achieve an adequate prereduction yield. The flowrate should also be regulated to optimise the reactor operation, principally the thermal efficiency and the production cost.
- Process parameters of importance include: the ilmenite grain size distribution, the composition of the pellets, the sizes of the pellets, the operating temperature, the residence time and the reducing gas flowrate.
- the fully or partially pre-reduced ilmenite pellets 32, emerging from the reactor 26, can be fed, cold or hot, to a conventional ilmenite smelting process 34.
- the organic binder provides a more intimate contact between the ilmenite and the coal fines.
- the small pellet size feature in a highly reducing atmosphere, assists the transfer of heat and mass in the diffusion of gaseous reductants, such as CO and H 2 , to the reaction sites.
- the organic binder 16 burns off at the process temperature, a feature which induces localised reduction and promotes the formation of cracks and pores in the ilmenite ore grains contained in the pellets 32.
- the specific surface areas of the ilmenite pellets are therefore increased and the diffusion rate of the gas reductant to the reaction sites is enhanced. This in turn impacts on the pre-reduction yield.
- the reduction process can be smoothly and efficiently operated despite the minor sintering of the pellets that may occur at elevated temperatures.
- the fully or partially pre-reduced, carbon-based ilmenite pellets which are fed, either hot or cold, into a DC open arc furnace 34 decrease the consumption of electricity in the furnace, help to address slag foaming and result in an improved grade of Ti0 2 slag 36 output by the furnace 34.
- iron oxide in the pellets was nearly completely reduced through the use of the hybrid pre-reduction process carried out at a temperature of 1000°C and for a residence time of 2 hours.
- the pre-reduction yield was increased as temperature, residence time and reducing gas flowrate were increased.
- a higher grade Ti0 2 slag (above 90%) can thus be achieved, using conventional ilmenite feedstock in smelting operations, with no foaming occurring.
- a lower grade ilmenite could be used as feedstock to produce Ti0 2 slag of at least 85% Ti0 2 content.
- Additional carbonaceous solid reductant can be used in excess to reduce residual iron in the slag to below 6% without inducing slag foaming.
- a 200 kW DC arc furnace facility was used for demonstrating the smelting of pre- reduced ilmenite pellets.
- the furnace had a 1 m outer diameter, water-spray cooled steel shell lined with a single layer and three rows of magnesite-chrome bricks and a hearth lined with rammable magnesia.
- the refractory lining resulted in the furnace crucible internal diameter (ID) of 0.656 m.
- ID furnace crucible internal diameter
- the furnace was equipped with an alumina lined conical roof and a shell bolted on a domed base. A single taphole was used to tap a stream of both molten slag and metal.
- the furnace was equipped with a single and centrally-located graphite electrode of 40 mm diameter operating as a cathode while the anode comprised steel pins buried in the hearth.
- the feed system comprised individual hoppers used to feed anthracite and pre- reduced ilmenite pellets through a furnace feed pipe.
- the furnace was equipped with an off- gas system for the cleaning of produced process gas prior to release thereof into the atmosphere.
- the as-received ilmenite had a particle size distribution of Di 0 o in the 38 pm to 150 pm size range.
- the anthracite was milled to a Dss passing 106 pm to facilitate its incorporation into an ilmenite pellet recipe.
- Pellets were prepared in a pilot-scale pelletizing unit comprising an inclined rotating pan of 985 mm diameter and 170 mm depth.
- the mechanical strengths of the pellets were measured and found to vary with the type and dosage of binder used, within a range of 0.01 - 0.03 MPa for green pellets and 0.81 - 1 .50 MPa for indurated pellets at ambient conditions.
- Batches of 250 kg each of indurated pellets were reduced in an electrically heated muffle furnace operated at a controlled temperature of 1 100 °C. During a three hour firing time, in total 5 kg of CO was blown intermittently through the reactor burden at intervals of 10 minutes. The pellets were loaded in a single tray of 1700 mm x 900 mm, having a loading area of a mesh screen acting as a distribution plenum for the reducing gas.
- Total Fe in the sample is expressed as % FeO
- Tables 3 and 4 show that pellets prereduced to a consistent extent were produced as a result of the uniform furnace operating conditions.
- the 200 kW DC open-arc furnace was operated at a power level in the range of 1 15 - 140 kW and at a corresponding voltage of 100 - 1 15 V. Consistent furnace heat losses in the range of 60 - 90 kW were measured. Average tapping temperatures measured using an optical pyrometer were scattered within a range between 1670 and 1780°C. The specific energy requirement (SER) for the smelting of prereduced carbon-based pellets was measured between 0.6 and 0.7 kWh / kg prereduced ilmenite. A 30-40 % reduction in furnace electricity required relative to a conventional smelting process can be achieved assuming that a prereduction yield of at least 70 % can be achieved.
- SER specific energy requirement
- Arc resistivities were measured for various conditions investigated in order to predict the furnace arc stability. Arc resistivity was found to be in the range of 0.0168 and 0.0240 Q.cm which range is close to 0.0175 Q.cm, a typical value for arc resistivity in smelting processes with CO-rich atmospheres (in the absence of foaming).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA201508501 | 2015-11-18 | ||
PCT/ZA2016/050049 WO2017087997A1 (en) | 2015-11-18 | 2016-11-18 | Improved ilmenite smelting process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3377659A1 true EP3377659A1 (en) | 2018-09-26 |
EP3377659B1 EP3377659B1 (en) | 2020-12-16 |
Family
ID=58348043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16847594.5A Active EP3377659B1 (en) | 2015-11-18 | 2016-11-18 | Improved ilmenite smelting process |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP3377659B1 (en) |
CN (1) | CN108699624B (en) |
AU (1) | AU2016355732B2 (en) |
BR (1) | BR112018010072B1 (en) |
CA (1) | CA3005810C (en) |
RU (1) | RU2720788C2 (en) |
SA (1) | SA518391616B1 (en) |
WO (1) | WO2017087997A1 (en) |
ZA (1) | ZA201803241B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3740597A1 (en) * | 2018-01-19 | 2020-11-25 | Mintek | Production of high carbon ferromanganese |
CN113151620B (en) * | 2021-03-11 | 2022-09-13 | 首钢集团有限公司 | Smelting method and device for titanium-containing furnace burden |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765868A (en) * | 1971-07-07 | 1973-10-16 | Nl Industries Inc | Method for the selective recovery of metallic iron and titanium oxide values from ilmenites |
CN100343396C (en) * | 1998-10-30 | 2007-10-17 | 米德雷克斯技术公司 | Method of producing molten iron in duplex furnaces |
US6685761B1 (en) * | 1998-10-30 | 2004-02-03 | Midrex International B.V. Rotterdam, Zurich Branch | Method for producing beneficiated titanium oxides |
WO2007027998A2 (en) * | 2005-08-30 | 2007-03-08 | E. I. Du Pont De Nemours And Company | Ore reduction process and titanium oxide and iron metallization product |
ZA200801153B (en) * | 2005-08-30 | 2009-04-29 | Du Pont | Ore reduction process and titanium oxide and iron metallization product |
RU2361940C2 (en) * | 2006-03-23 | 2009-07-20 | ОАО ХК "Технохим-холдинг" | Processing method of ilmenite concentrates |
DE102007032419B4 (en) * | 2007-07-10 | 2013-02-21 | Outotec Oyj | Process and plant for the reduction of iron oxide-containing solids |
CN102296138B (en) * | 2011-08-15 | 2013-07-31 | 陕西延长石油中陕金属矿业有限公旬 | Method for preparing ferrovanadium intermetallic compound and titanium slags by linear moving bed prereduction and shaft furnace melting process |
RU2503724C2 (en) * | 2012-04-20 | 2014-01-10 | Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" | Method of titanium-magnetite ore processing |
CN103451454B (en) * | 2013-08-26 | 2015-06-10 | 江苏大学 | Method for producing titanium chloride slag |
CN103555947A (en) * | 2013-11-14 | 2014-02-05 | 李海鸥 | New technology for melting ilmenite |
CN104611495A (en) * | 2014-06-27 | 2015-05-13 | 冯志权 | Method for preparation of titanium slag by tunnel kiln |
-
2016
- 2016-11-18 CA CA3005810A patent/CA3005810C/en active Active
- 2016-11-18 AU AU2016355732A patent/AU2016355732B2/en active Active
- 2016-11-18 RU RU2018118796A patent/RU2720788C2/en active
- 2016-11-18 WO PCT/ZA2016/050049 patent/WO2017087997A1/en active Application Filing
- 2016-11-18 EP EP16847594.5A patent/EP3377659B1/en active Active
- 2016-11-18 BR BR112018010072-2A patent/BR112018010072B1/en active IP Right Grant
- 2016-11-18 CN CN201680079345.8A patent/CN108699624B/en active Active
-
2018
- 2018-05-16 ZA ZA2018/03241A patent/ZA201803241B/en unknown
- 2018-05-17 SA SA518391616A patent/SA518391616B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
RU2018118796A (en) | 2019-12-18 |
AU2016355732A1 (en) | 2018-06-07 |
CN108699624B (en) | 2020-03-10 |
RU2018118796A3 (en) | 2020-02-28 |
RU2720788C2 (en) | 2020-05-13 |
EP3377659B1 (en) | 2020-12-16 |
CA3005810C (en) | 2022-06-21 |
AU2016355732B2 (en) | 2021-05-20 |
CA3005810A1 (en) | 2017-05-26 |
SA518391616B1 (en) | 2021-12-13 |
CN108699624A (en) | 2018-10-23 |
ZA201803241B (en) | 2019-01-30 |
BR112018010072A2 (en) | 2018-11-13 |
BR112018010072B1 (en) | 2021-12-21 |
WO2017087997A1 (en) | 2017-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105907984B (en) | The method for comprehensively utilizing vanadium slag | |
Sarkar et al. | A study on reduction kinetics of titaniferous magnetite ore using lean grade coal | |
CN102337408B (en) | Two-step reduction method for recycling stainless steel scales | |
CA3056280C (en) | Carbothermic direct reduction of chromite using a catalyst for the production of ferrochrome alloy | |
JP4603626B2 (en) | Method for producing reduced iron | |
Li et al. | Effect of porosity of Hongge vanadium titanomagnetite-oxidized pellet on its reduction swelling behavior and mechanism with hydrogen-rich gases | |
Robinson | High temperature properties of by-product cold bonded pellets containing blast furnace flue dust | |
Sariev et al. | Remelting the high-carbon ferrochrome dust in a direct current arc furnace (DCF) | |
AU2016355732B2 (en) | Improved ilmenite smelting process | |
CN101603141B (en) | Method for producing ferronickel by utilizing low-magnesium intermediate type laterite nickel ore | |
JPH06172916A (en) | Manufacturing of stainless steel | |
WO2015159268A1 (en) | Ferrochrome alloy production | |
EP3601625B1 (en) | Process for preparing iron- and chrome-containing particles | |
Braga et al. | Prereduction of self-reducing pellets of manganese ore | |
Bisaka et al. | Prereduction and DC open-arc smelting of carbon-based ilmenite pellets | |
WO2009145348A1 (en) | Method for manufacturing pig iron | |
JP2001040426A (en) | Manufacture of prereduced product of manganese ore | |
OA18668A (en) | Improved ilmenite smelting process. | |
Kunze et al. | New trends in submerged arc furnace technology | |
Tian et al. | Smelting characteristics of nickel‑chromium‑manganese bearing prereduced pellets for the preparation of nickel saving austenite stainless steel master alloys | |
Morrison et al. | Direct reduction process using fines and with reduced CO2 emission | |
Goso et al. | Investigation into solid-state reduction of ilmenite micro-pellets in the C-CO-H2 system | |
Nafziger et al. | Prereduction and melting of domestic titaniferous materials | |
Raj et al. | Optimization of process parameter for smelting and reduction of ferrochrome | |
JP2011179090A (en) | Method for producing granulated iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180611 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190611 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200720 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MINTEK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016050013 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1345659 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1345659 Country of ref document: AT Kind code of ref document: T Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016050013 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
26N | No opposition filed |
Effective date: 20210917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016050013 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211118 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211118 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211118 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20231121 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |