EP3374605B1 - Procédé de génération d'énergie au moyen d'un cycle combiné - Google Patents

Procédé de génération d'énergie au moyen d'un cycle combiné Download PDF

Info

Publication number
EP3374605B1
EP3374605B1 EP16793905.7A EP16793905A EP3374605B1 EP 3374605 B1 EP3374605 B1 EP 3374605B1 EP 16793905 A EP16793905 A EP 16793905A EP 3374605 B1 EP3374605 B1 EP 3374605B1
Authority
EP
European Patent Office
Prior art keywords
waste heat
heat recovery
fluid
flue gas
recovery fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16793905.7A
Other languages
German (de)
English (en)
Other versions
EP3374605A1 (fr
Inventor
Yogesh Chandrakant HASABNIS
Sreenivas RAGHAVENDRAN
Shekhar JAIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP3374605A1 publication Critical patent/EP3374605A1/fr
Application granted granted Critical
Publication of EP3374605B1 publication Critical patent/EP3374605B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the present invention relates to method and system for generating power using a combined cycle, in particular a combined cycle in which an organic Rankine cycle is used as second power system.
  • Power plants such as gas turbines, produce power by combusting fuel.
  • the power is usually produced in the form of electricity. This is usually referred to as the first (power) system.
  • waste heat recovery system (the second (power) system) to generate additional power from the hot flue gasses produced by the first system.
  • the combination of the first and second system is usually referred to as a combined cycle.
  • the first system is a gas turbine operated by a Brayton cycle and the second system is a Rankine cycle, such as an organic Rankine cycle (ORC).
  • ORC organic Rankine cycle
  • the flue gasses produced by a gas turbine may typically have a temperature greater than 450°C, e.g. in the range of 450°C - 650°C.
  • US2013/0133868 describes a system for power generation using an organic Rankine cycle.
  • ORC fluids comprising pentane, propane, cyclohexane, cyclopentane, butane, fluorohydrocarbon, a ketone such as aceton or an aromatic such as toluene or thiophene.
  • EP1764487 disclose the use of organic working fluids for use in an organic Rankine cycle for energy recovery, especially for utilization of heat sources having a temperature up to approx. 200°C, preferably up to approx. 180°C.
  • US2011/0100009 describes a system and method including heat exchangers using Organic Rankine Cycle (ORC) fluids in power generation systems.
  • the system includes a heat exchanger configured to be mounted inside an exhaust stack that guides hot flue gases.
  • the heat exchanger is configured to receive a liquid stream of a first fluid and to generate a vapor stream of the first fluid.
  • the heat exchanger is configured to include a double walled pipe, where the first fluid is disposed within an inner wall of the double walled pipe and a second fluid is disposed between the inner wall and an outer wall of the double walled pipe.
  • the double walled pipe is used to shield the working fluid from direct exposure to the high temperature of the flue gasses and suggests to keep the temperature of the working fluid below 300°C.
  • system for generating power comprises:
  • the waste heat recovery fluid is temperature stable up to a temperature of 500°C.
  • the term temperature stable is used to indicate that the molecules don't decompose under the influence of the temperature.
  • the waste heat recovery fluid substantially consists of fluorinated ketones, preferably consists of fluorinated ketones with 4 - 6 carbon atoms of which 4 - 6 are fluorinated carbon atoms.
  • the waste heat recovery fluid substantially consists of dodecafluoro-2-methylpentan-3-one.
  • the waste heat recovery fluid comprises more than 90 mol% dodecafluoro-2-methylpentan-3-one, preferably more than 95 mol% dodecafluoro-2-methylpentan-3-one, more preferably more than 98 mol% dodecafluoro-2-methylpentan-3-one and most preferably 100 mol% dodecafluoro-2-methylpentan-3-one.
  • the waste heat recovery fluid may be essentially pure dodecafluoro-2-methylpentan-3-one, where the skilled person will understand that the term pure is used to indicate a level of purity that is practically achievable, e.g. a purity of more than 99 mol%.
  • the waste heat recovery fluid essentially consisting of pure dodecafluoro-2-methylpentan-3-one may be obtained from 3M at a purity of more than 99 mol%.
  • Fluorinated ketones in particular dodecafluoro-2-methylpentan-3-one, can advantageous be used as waste heat recovery fluid, for instance in a Rankine cycle, as it can be exposed to temperatures above 450°C.
  • an intermediate working fluid such as an intermediate hot oil loop
  • direct heat exchange between the flue gasses and the working fluid is made possible. This reduces cost and increases the efficiency of the cycle.
  • fluorinated ketones in particular dodecafluoro-2-methylpentan-3-one, may also be used in an intermediate loop.
  • direct heat exchange is used in this text to indicate that the exchange of heat takes place without intermediate fluid or cycles.
  • direct heat exchange is not used to indicate that the fluids exchanging heat are mixed or brought into contact as is done in a direct heat exchanger (in which the fluids to exchange heat are mixed).
  • Heat exchange between the waste heat recovery fluid and the flue gas stream is typically done by an indirect heat exchanger in which the fluids are kept separated by a heat exchange wall through which the heat is transmitted.
  • a waste heat recovery fluid as defined above in particular consisting of dodecafluoro-2-methylpentan-3-one, is stable at relatively high temperatures, i.e. in the range of 350-500°C. This avoids degradation of circulating fluids.
  • waste heat exchange fluid produces power (mechanical work) in a relatively efficient way, i.e. at a 9-11% efficiency from a flue gas stream in the indicated temperature range (compared to 6 - 9% when using water).
  • the suggested waste heat recovery fluid is non-corrosive to all metals and hard polymers.
  • the Global Warming Potential (GWP) of the waste heat recovery fluid is low, compared to known waste heat recovery fluids, such as chlorofluorocarbon (CFC, also known as Freon), due to the ozone depletion potential.
  • CFC chlorofluorocarbon
  • a method and system in which a first and second power system are operated, wherein the second power system is powered by the heat of the flue gas stream of the first power system.
  • the second power system comprises a waste heat recovery heat exchanger through which a pressurized waste heat recovery fluid is circulated, wherein the waste heat recovery fluid comprises fluorinated ketones, in particular dodecafluoro-2-methylpentan-3-one.
  • the first power system comprises a gas turbine operated by a Brayton cycle.
  • the flue gass stream produced by such a first power system typically have a temperature greater than 450°C, typically in the range of 450°C - 650°C
  • operating the second power system comprises circulating a working fluid through a heat engine cycle, in particular a Rankine cycle.
  • Rankine cycles are an efficient way to transform heat into power.
  • the waste heat recovery fluid may be circulated through the waste heat recovery heat exchanger as part of an intermediate heat transfer cycle. This embodiment will be described in more detail below with reference to Fig. 2 .
  • the working fluid circulated through the heat engine cycle is the waste heat recovery fluid.
  • the waste heat recovery heat exchanger is part of the heat engine cycle.
  • the above identified waste heat recovery fluid is suitable for being cycled through a waste heat recovery heat exchanger which is exposed to a flue gas stream at a flue gas temperature greater than 450°C.
  • the pressurized vaporous waste heat recovery fluid as obtained from the waste heat recovery heat exchanger has a temperature in the range of 350°C - 500°C, preferably in the range of 450°C - 500°C.
  • the waste heat recovery fluid is stable up to temperatures in the range of 400°C - 500°C and can therefor advantageous be used in an organic Rankine cycle.
  • the heat engine cycle comprises a condenser in which the waste heat recovery fluid is condensed against an ambient cooling stream, the ambient cooling stream being an ambient air stream or an ambient (sea) water stream.
  • the working fluid may be cooled to a temperature in the range 15°C - 80°C in the condenser.
  • the waste heat recovery fluid can be used in a cycle in which it experiences a temperature difference of more than 320°C, even more than 400°C or even more than 450°C. This allows cooling the waste heat recovery fluid against the ambient and heating the waste heat recovery fluid against a flue gas stream having a temperature greater than 450°C.
  • operating the second power system comprises circulating the waste heat recovery fluid as working fluid through a heat engine, such as a Rankine cycle.
  • a heat engine such as a Rankine cycle.
  • the Rankine cycle comprises the following steps, which are performed simultaneously:
  • Fig. 1 schematically shows a system for generating power.
  • the system comprises a first power system 1 and a second power system 2.
  • the first power system 1 comprises a fuel burning stage, here schematically depicted as a gas turbine.
  • the gas turbine comprises a compressor 11, a fuel chamber 12 and an turbine 13.
  • the turbine 13 drives the compressor 11 and excess power is used to drive shaft 14 which is coupled to a generator 15, such as an electric generator, to generate primary power.
  • a flue gas stream 16 leaves the turbine 13 via an exhaust 17 at a flue gas temperature greater than 450°C.
  • FIG. 1 shows a schematic view of an exemplary primary power system and that many variations are known to the skilled person.
  • Fig. 1 further schematically shows a second power system 2.
  • the second power system 2 is arranged to generate secondary power from the heat of the flue gas stream 16.
  • the second power system 2 comprises a waste heat recovery heat exchanger 21.
  • the waste heat recovery heat exchanger 21 is positioned in the exhaust 17.
  • the waste heat recovery heat exchanger 21 comprises a first fluid path arranged to receive and convey at least part of the flue gas stream 16.
  • the waste heat recovery heat exchanger 21 comprises a second fluid path arranged to receive and convey the waste heat recovery fluid.
  • the waste heat recovery heat exchanger 21 may be any suitable type, including a plate heat exchanger.
  • the waste heat recovery heat exchanger 21 is a shell and tube heat exchanger, wherein the first fluid path is at the shell side and the second fluid path is at the tube side.
  • the first and second fluid paths are separated by a heat exchange wall, e.g. the walls forming the tubes of the shell and tube heat exchanger.
  • Fig. 1 shows a single tube but it will be understood that more than one tube may be present, each tube wall forming a heat exchange wall.
  • the heat exchange wall is a single layer wall.
  • the heat exchange does not comprise internal cooling facilities, intermediate isolation layers, double walls and the like.
  • the system as described here and shown in Fig. 1 comprises a working fluid in a cycle (21, 22, 23, 24, 25, 26, 27, 28) comprised by the second power system 2, the working fluid consisting of fluorinated ketones, in particular dodecafluoro-2-methylpentan-3-one.
  • the second power system comprises a heat engine comprising waste heat recovery heat exchanger 21, (turbo-) expander 23, condenser 25 and pump 27, being in fluid communication with each other by conduits 22, 24, 26, 28.
  • a cycle is known as a Rankine cycle.
  • An outlet of the heat recovery heat exchanger 21 is in fluid communication with an inlet of expander 23 via first conduit 22; an outlet of the expander 23 is in fluid communication with an inlet of condenser 25 via second conduit 24; an outlet of the condenser 25 is in fluid communication with an inlet of pump 27 via third conduit 26; an outlet of the pump is in fluid communication with an inlet of the waste heat recovery heat exchanger 21 via fourth conduit 28.
  • the condenser 25 comprises an ambient inlet to receive an ambient cooling stream 61 and an ambient outlet to discharge a warmed ambient cooling stream 62.
  • the first power system 1 In use, the first power system 1 generates primary power and flue gas stream 16, while the second power system 2 cycles the waste heat recovery fluid as working fluid through the above described Rankine cycle.
  • the expander 23 drives drive shaft 29 which is coupled to a secondary generator 30, such as an electric generator, to generate secondary power.
  • Fig. 2 schematically shows an alternative embodiment wherein the waste heat recovery fluid is not used as working fluid in a heat engine, but is used in an intermediate loop 3 to transfer heat from the waste heat recovery heat exchanger 21 to a heat engine wherein a different fluid is circulated as working fluid, such as water/steam.
  • the second power system 2 comprises the heat engine and the intermediate loop 3.
  • operating the second power system 2 comprises circulating the waste heat recovery fluid (consisting of fluorinated ketones, in particular consisting of dodecafluoro-2-methylpentan-3-one) through the intermediate loop 3 and circulating a working fluid through a heat engine, such as a Rankine cycle, to generate the secondary power, the heat engine comprising a heat source heat exchanger 42 and a heat sink heat exchanger 25, wherein the method comprises
  • Fig. 2 shows an intermediate loop 3 in which the waste heat recovery fluid is circulated.
  • the intermediate loop 3 comprises the waste heat recovery heat exchanger 21, a condenser 42 and a pump 44, being connected by intermediate loop conduits 41, 43 and 45.
  • An outlet of the heat recovery heat exchanger 21 is in fluid communication with an inlet of condenser 42 via first intermediate loop conduit 41; an outlet of the condenser 42 is in fluid communication with an inlet of pump 44 via second intermediate loop conduit 43; an outlet of the pump 44 is in fluid communication with an inlet of the waste heat recovery heat exchanger 21 via intermediate loop third conduit 45.
  • the first power system 1 In use, the first power system 1 generates primary power and flue gas stream 16, while the second power system 2 cycles the waste heat recovery fluid through the above described intermediate loop 3 transferring heat from the flue gas stream 16 to the heat engine via heat source heat exchanger 42.
  • a working fluid In the heat engine, a working fluid is circulated, driving expander 23, which drives drive shaft 29 coupled to a secondary generator 30, such as an electric generator, to generate secondary power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Claims (14)

  1. Procédé de génération d'énergie au moyen d'un cycle combiné, le procédé comprenant :
    - le fonctionnement d'un premier système d'alimentation (1) dans lequel du combustible est brûlé pour générer de l'énergie primaire et un flux de gaz de combustion (16) à une température de gaz de combustion supérieure à 450 °C,
    - le fonctionnement d'un second système d'alimentation (2) pour générer une énergie secondaire à partir de la chaleur constituée par le flux de gaz de combustion (16), le second système d'alimentation comprenant un échangeur de chaleur à récupération de chaleur résiduelle (21), le procédé comprenant en outre :
    - le passage du flux de gaz de combustion (16) à travers l'échangeur de chaleur à récupération de chaleur résiduelle (21),
    - le passage d'un fluide de récupération de chaleur résiduelle sous pression à travers l'échangeur de chaleur à récupération de chaleur résiduelle (21) pour recevoir de la chaleur provenant du flux de gaz de combustion (16), obtenant ainsi un fluide de récupération de chaleur résiduelle sous forme de vapeur et sous pression ayant une température dans la plage de 350 à 500 °C, le fluide de récupération de chaleur résiduelle étant constitué de cétones fluorées.
  2. Procédé selon la revendication 1, dans lequel le fluide de récupération de chaleur résiduelle comprend plus de 90 % en moles de dodécafluoro-2-méthylpentan-3-one, de préférence plus de 95 % en moles de dodécafluoro-2-méthylpentan-3-one, plus préférablement plus de 98 % en moles de dodécafluoro-2-méthylpentan-3-one et de manière préférée entre toutes 100 % en moles de dodécafluoro-2-méthylpentan-3-one.
  3. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel le fonctionnement du second système d'alimentation (2) comprend la circulation d'un fluide de travail à travers un cycle de moteur thermique.
  4. Procédé selon la revendication 3, dans lequel le cycle de moteur thermique est un cycle de Rankine.
  5. Procédé selon l'une quelconque des revendications 3 à 4, dans lequel le fluide de travail mis en circulation à travers le cycle de moteur thermique est le fluide de récupération de chaleur résiduelle.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fluide de récupération de chaleur résiduelle sous forme de vapeur et sous pression a une température dans la plage de 400 à 500 °C.
  7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le fluide de récupération de chaleur résiduelle sous forme de vapeur et sous pression a une température dans la plage de 450 à 500 °C.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le cycle de moteur thermique comprend un condenseur (25) dans lequel le fluide de récupération de chaleur résiduelle est condensé par un flux de refroidissement ambiant (61), le flux de refroidissement ambiant étant un flux d'air ambiant ou un flux d'eau (de mer) ambiant.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fluide de travail est refroidi à une température dans la plage de 15 à 80 °C dans le condenseur (25).
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fonctionnement du second système d'alimentation (2) comprend la circulation du fluide de récupération de chaleur résiduelle comme fluide de travail à travers un moteur thermique, tel qu'un cycle de Rankine, en réalisant simultanément les étapes consistant à :
    - faire passer le fluide de récupération de chaleur résiduelle sous pression à travers l'échangeur de chaleur à récupération de chaleur résiduelle (21) pour recevoir de la chaleur provenant du flux de gaz de combustion (16), obtenant ainsi un fluide de récupération de chaleur résiduelle sous forme de vapeur et sous pression ayant une température dans la plage de 350 à 500 °C,
    - dilater le fluide de récupération de chaleur sous forme de vapeur et sous pression sur un dispositif de dilatation (23), obtenant ainsi l'énergie secondaire et un fluide de récupération de chaleur résiduelle sous forme de vapeur dilaté à pression plus faible,
    - faire passer le fluide de récupération de chaleur résiduelle sous forme de vapeur dilatée à pression plus faible à travers un condenseur (25) pour obtenir un fluide de récupération de chaleur résiduelle liquide, et
    - faire passer le fluide de récupération de chaleur résiduelle liquide à travers une pompe (27) pour obtenir le fluide de récupération de chaleur résiduelle liquide sous pression.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fonctionnement du second système d'alimentation (2) comprend la circulation d'un fluide de travail à travers un moteur thermique, tel qu'un cycle de Rankine, pour générer l'énergie secondaire, le moteur thermique comprenant un échangeur de chaleur à source de chaleur (42) et un échangeur de chaleur à dissipateur thermique (25), le procédé comprenant :
    - le passage du fluide de récupération de chaleur résiduelle à travers l'échangeur de chaleur à source de chaleur (42),
    - faire passer le fluide de travail à travers l'échangeur de chaleur à source de chaleur (42) pour obtenir un fluide de travail chauffé en recevant de la chaleur provenant du fluide de récupération de chaleur résiduelle.
  12. Système de génération d'énergie, le système comprenant :
    - un premier système d'alimentation (1) comprenant un étage de combustion de combustible conçu pour brûler du combustible afin de générer de l'énergie primaire et un flux de gaz de combustion (16) à une température de gaz de combustion supérieure à 450 °C,
    - un second système d'alimentation (2) conçu pour générer une énergie secondaire à partir de la chaleur constituée par le flux de gaz de combustion (16), le second système d'alimentation (2) comprenant un échangeur de chaleur à récupération de chaleur résiduelle (21) et un fluide de récupération de chaleur résiduelle,
    l'échangeur de chaleur à récupération de chaleur résiduelle (21) comprenant un premier trajet de fluide conçu pour recevoir et transporter au moins une partie du flux de gaz de combustion (16), et un second trajet de fluide conçu pour recevoir et transporter le fluide de récupération de chaleur résiduelle, le premier et le second trajets de fluide étant séparés par une paroi d'échange thermique, caractérisé en ce que la paroi d'échange thermique est adaptée pour être exposée au flux de gaz de combustion (16) à une température de gaz de combustion dans la plage de 450 à 650 °C, et en ce que la paroi d'échange thermique est adaptée pour être exposée au fluide de récupération de chaleur résiduelle à une température dans la plage de 350 à 500 °C, le fluide de travail contenu dans le second système d'alimentation étant constitué de cétones fluorées.
  13. Système selon la revendication 12, dans lequel la paroi d'échange thermique est une paroi monocouche.
  14. Système selon la revendication 12 ou 13, le système comprenant en outre un moteur thermique, tel qu'un cycle Rankine, comprenant l'échangeur de chaleur à récupération de chaleur résiduelle (21), un dispositif de dilatation (23), un condenseur (25) et une pompe (27), le condenseur (25) étant conçu pour condenser le fluide de récupération de chaleur résiduelle par un flux de refroidissement ambiant (61) .
EP16793905.7A 2015-11-13 2016-11-10 Procédé de génération d'énergie au moyen d'un cycle combiné Active EP3374605B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN6121CH2015 2015-11-13
EP16151232 2016-01-14
PCT/EP2016/077225 WO2017081131A1 (fr) 2015-11-13 2016-11-10 Procédé de production d'énergie utilisant un cycle combiné

Publications (2)

Publication Number Publication Date
EP3374605A1 EP3374605A1 (fr) 2018-09-19
EP3374605B1 true EP3374605B1 (fr) 2020-05-06

Family

ID=57256328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16793905.7A Active EP3374605B1 (fr) 2015-11-13 2016-11-10 Procédé de génération d'énergie au moyen d'un cycle combiné

Country Status (7)

Country Link
US (1) US20180340452A1 (fr)
EP (1) EP3374605B1 (fr)
JP (1) JP6868022B2 (fr)
CN (1) CN108368751B (fr)
AU (2) AU2016353483A1 (fr)
RU (1) RU2720873C2 (fr)
WO (1) WO2017081131A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723816C1 (ru) * 2019-03-26 2020-06-17 Михаил Алексеевич Калитеевский Установка для утилизации отходов и генерации энергии

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
US20050188697A1 (en) * 2004-03-01 2005-09-01 Honeywell Corporation Fluorinated ketone and fluorinated ethers as working fluids for thermal energy conversion
US7428816B2 (en) * 2004-07-16 2008-09-30 Honeywell International Inc. Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems
DE102004040730B3 (de) * 2004-08-20 2005-11-17 Ralf Richard Hildebrandt Verfahren und Vorrichtung zum Nutzen von Abwärme
US7225621B2 (en) 2005-03-01 2007-06-05 Ormat Technologies, Inc. Organic working fluids
EP1764487A1 (fr) 2005-09-19 2007-03-21 Solvay Fluor GmbH Fluide de travail pour un procédé de type cycle organique de Rankine
US8915083B2 (en) * 2008-10-14 2014-12-23 George Erik McMillan Vapor powered engine/electric generator
US20110100009A1 (en) 2009-10-30 2011-05-05 Nuovo Pignone S.P.A. Heat Exchanger for Direct Evaporation in Organic Rankine Cycle Systems and Method
IT1397145B1 (it) * 2009-11-30 2013-01-04 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico.
US20120000200A1 (en) * 2010-06-30 2012-01-05 General Electric Company Inert gas purging system for an orc heat recovery boiler
US20120186253A1 (en) * 2011-01-24 2012-07-26 General Electric Company Heat Recovery Steam Generator Boiler Tube Arrangement
CN103702988A (zh) * 2011-03-25 2014-04-02 3M创新有限公司 作为有机兰金循环工作流体的氟化环氧化物和使用其的方法
JP5875253B2 (ja) * 2011-05-19 2016-03-02 千代田化工建設株式会社 複合発電システム
US9003797B2 (en) * 2011-11-02 2015-04-14 E L Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally Z-1,1,1,4,4,4-hexafluoro-2-butene in power cycles
ITCO20110063A1 (it) * 2011-12-14 2013-06-15 Nuovo Pignone Spa Sistema a ciclo chiuso per recuperare calore disperso
US9689281B2 (en) * 2011-12-22 2017-06-27 Nanjing Tica Air-Conditioning Co., Ltd. Hermetic motor cooling for high temperature organic Rankine cycle system
CA2857131C (fr) 2012-01-03 2018-09-11 Exxonmobil Upstream Research Company Production d'energie en utilisant un solvant non aqueux
ITFI20120193A1 (it) * 2012-10-01 2014-04-02 Nuovo Pignone Srl "an organic rankine cycle for mechanical drive applications"
BR112015007446A2 (pt) * 2012-10-05 2017-07-04 Abb Technology Ag aparelho que contém um gás de isolamento dielétrico que compreende um composto de flúor orgânico

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2720873C2 (ru) 2020-05-13
US20180340452A1 (en) 2018-11-29
RU2018120240A (ru) 2019-12-13
AU2016353483A1 (en) 2018-05-17
CN108368751A (zh) 2018-08-03
WO2017081131A1 (fr) 2017-05-18
AU2019268076A1 (en) 2019-12-12
JP2018533688A (ja) 2018-11-15
EP3374605A1 (fr) 2018-09-19
RU2018120240A3 (fr) 2020-03-05
AU2019268076B2 (en) 2021-03-11
CN108368751B (zh) 2020-09-15
JP6868022B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
US8276383B2 (en) Power generator using an organic rankine cycle drive with refrigerant mixtures and low waste heat exhaust as a heat source
AU2010325109B2 (en) Direct evaporator apparatus and energy recovery system
EP2386727A1 (fr) Turbodétendeur pour systèmes de génération de puissance
CN103195524A (zh) 用于朗肯循环系统的非共沸工作流体混合物
US20110100009A1 (en) Heat Exchanger for Direct Evaporation in Organic Rankine Cycle Systems and Method
US20150075164A1 (en) Cascaded power plant using low and medium temperature source fluid
MX2014011444A (es) Sistema y metodo para recuperar calor residual de fuentes de calor dual.
Meyer et al. Design and build of a 1 kilowatt organic Rankine cycle power generator
JP2018123756A (ja) 熱サイクル設備
JP2015183597A (ja) 排熱回収システム、これを備えているガスタービンプラント、及び排熱回収方法
EP3374605B1 (fr) Procédé de génération d'énergie au moyen d'un cycle combiné
Vélez Selecting working fluids in an organic Rankine cycle for power generation from low temperature heat sources
Yang et al. Optimum composition ratios of multicomponent mixtures of organic Rankine cycle for engine waste heat recovery
Vojacek et al. Challenges in supercritical CO2 power cycle technology and first operational experience at CVR
RU2560503C1 (ru) Способ работы тепловой электрической станции
Zarati et al. Potential of the bottom organic Rankine cycle to recover energy on turboprop engine architecture
GB2604542A (en) Plant based upon combined Joule-Brayton and Rankine cycles working with directly coupled reciprocating machines
RU2560505C1 (ru) Способ работы тепловой электрической станции
RU2560502C1 (ru) Способ работы тепловой электрической станции
RU2560504C1 (ru) Способ работы тепловой электрической станции
RU2560499C1 (ru) Способ работы тепловой электрической станции
RU2564470C2 (ru) Способ работы тепловой электрической станции
RU2560500C1 (ru) Способ работы тепловой электрической станции
RU2560514C1 (ru) Способ работы тепловой электрической станции
RU2564748C1 (ru) Способ работы тепловой электрической станции

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267059

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016035984

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200702

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20200611

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1267059

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016035984

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201015

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016035984

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201