EP3372775A1 - Mounting element for mounting an architectural covering between opposing mounting surfaces - Google Patents

Mounting element for mounting an architectural covering between opposing mounting surfaces Download PDF

Info

Publication number
EP3372775A1
EP3372775A1 EP17159407.0A EP17159407A EP3372775A1 EP 3372775 A1 EP3372775 A1 EP 3372775A1 EP 17159407 A EP17159407 A EP 17159407A EP 3372775 A1 EP3372775 A1 EP 3372775A1
Authority
EP
European Patent Office
Prior art keywords
actuator
mounting
extension mechanism
mounting element
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17159407.0A
Other languages
German (de)
French (fr)
Inventor
Jörg Bohlen
Katharina Vangberg-Brinkmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunter Douglas Industries BV
Original Assignee
Hunter Douglas Industries BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunter Douglas Industries BV filed Critical Hunter Douglas Industries BV
Priority to EP17159407.0A priority Critical patent/EP3372775A1/en
Priority to US15/910,472 priority patent/US10934771B2/en
Priority to ZA2018/01456A priority patent/ZA201801456B/en
Priority to JP2018037811A priority patent/JP7071166B2/en
Priority to MX2018002798A priority patent/MX2018002798A/en
Priority to CA2997329A priority patent/CA2997329A1/en
Priority to ES18160140T priority patent/ES2846305T3/en
Priority to ARP180100510A priority patent/AR111119A1/en
Priority to CN201810184921.6A priority patent/CN108533163B/en
Priority to EP18160140.2A priority patent/EP3375969B1/en
Priority to DK18160140.2T priority patent/DK3375969T3/en
Priority to AU2018203967A priority patent/AU2018203967B2/en
Publication of EP3372775A1 publication Critical patent/EP3372775A1/en
Priority to US17/168,416 priority patent/US11976517B2/en
Priority to AU2024202207A priority patent/AU2024202207A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/40Roller blinds
    • E06B9/42Parts or details of roller blinds, e.g. suspension devices, blind boxes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/28Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable
    • E06B9/30Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable liftable
    • E06B9/32Operating, guiding, or securing devices therefor
    • E06B9/323Structure or support of upper box
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/40Roller blinds
    • E06B9/42Parts or details of roller blinds, e.g. suspension devices, blind boxes
    • E06B9/50Bearings specially adapted therefor

Definitions

  • the present disclosure relates to a mounting element for mounting an architectural covering, such as a recess, between two opposing mounting surfaces, e.g. by a force fit (frictional fit) and/or form fit (e.g. if the recess has matching female or male relief). Furthermore, the present disclosure relates to an architectural covering comprising such a mounting element.
  • US20140086676A1 describes a so-called headrail for fixing an architectural covering in an architectural recess.
  • the headrail of US20140086676A1 comprises an elongated member, for mounting the architectural covering in the architectural recess, and an extension mechanism manually moveable between a retracted state and an extended state.
  • extension mechanism of US20140086676A1 is quite difficult to access, and hence difficult to manually operate. Moreover, the extension mechanism necessitates numerous components, which renders expensive the whole headrail. Besides, some of these components are relatively fragile and risk being broken after the extension mechanism has been operated several times.
  • this object can be met with a mounting element for mounting an architectural covering between two opposing mounting surfaces, the mounting element comprising:
  • another object is to provide a mounting element, for mounting an architectural covering between two opposing mounting surfaces, the mounting element comprising:
  • a second object is to provide a mounting element for mounting an architectural covering between two opposing mounting surfaces, the mounting element comprising:
  • a third object is to provide a battery assembly intended to supply power to an electric motor in order to wind and unwind a covering member of an architectural covering, the battery assembly comprising:
  • the first, second and third objects may form the subject-matter of a claim to patent protection, either in combination or independently.
  • the actuator enables a user to easily fasten the mounting element supporting a covering between two opposing mounting surfaces. Indeed, the user only needs to grasp the actuator and rotate it to place the extension mechanism in the extended state. With one hand a user can hold the mounting element at its mounting position and, with its other hand, the user can operate the actuator so as to fasten the mounting element between two opposing mounting surfaces.
  • the mounting element achieves a force fit (frictional fit) between two opposing mounting surfaces.
  • the mounting element may alternatively or complementarily achieve a form fit, for example if one of the opposing mounting surfaces has matching female or male reliefs.
  • the rotation axis is transverse to the longitudinal direction, when viewed in a plane parallel to the longitudinal direction.
  • the rotation axis may form an angle ranging from 80 degrees to 100 degrees with respect to the longitudinal direction.
  • the rotation axis may be orthogonal to the longitudinal direction, in which case the actuator rotates along a plane which includes the longitudinal direction.
  • the rotation axis may intersect the longitudinal direction.
  • the rotation axis may not intersect the longitudinal direction.
  • the elongate mounting member can withstand the weight of the whole architectural covering and withstand the forces resulting from the extension mechanism being in the extended state.
  • the elongate mounting member is rigid or stiff enough to sustain the architectural covering while spanning the gap between the opposing mounting surfaces.
  • the elongate mounting member is made of a single component.
  • the mounting element can form a rail, for example a headrail.
  • the elongate mounting member may be made of several parts coupled together.
  • the components of the extension mechanism may be composed of metallic and/or of plastic materials.
  • the conversion mechanism may further comprise a compression part configured to transmit a compression force along the longitudinal direction towards the opposing mounting surface.
  • the translatory movement of conversion mechanism makes it possible to frictionally hold the mounting element between the two opposing mounting surfaces.
  • the compression part may substantially have a prismatic shape extending along a longitudinal direction.
  • the compression part may comprise an abutment part arranged to receive an end of the biasing part.
  • the compression part may substantially have a cylindrical shape extending along a longitudinal direction.
  • the conversion mechanism may comprise a biasing part mechanically connected to the actuator, the biasing part being configured to generate the compression force when the extension mechanism is in the extended state.
  • Such a biasing part can easily generate the compression force by simply being elastically deformed by the actuator.
  • the biasing part may be elastically deformable and configured to be more stressed when the extension mechanism is in the extended state than in the retracted state so as to generate the compression force.
  • the biasing part may be selected to have a deformation distance ranging from 10 mm to 100 mm, the deformation distance being measured as the length difference of the biasing part between the extended state and the retracted state.
  • the compression part and the biasing part may be separate components.
  • the compression part may be integral with the biasing part.
  • the compression part and the biasing part may be made of one-piece, for example composed of an elastomeric material.
  • the biasing part may comprise at least one compression spring.
  • the biasing part may comprise at least two compression springs arranged in parallel and preferably laterally spaced apart from each other.
  • The/each compression spring may comprise a helical spring, which can be easily designed and assembled into the extension mechanism and which can have a very long service life.
  • the compression spring may be comprised of an elastomeric material.
  • the conversion mechanism may further comprise at least one ring arranged between the actuator and the at least one compression spring.
  • a ring can be configured to maximize the interface between the actuator and the at least one compression spring. In service, such a ring hence distributes the reaction force of the biasing part on the actuator.
  • the actuator may directly actuate the biasing part.
  • the extension mechanism can be very compact.
  • the actuator may indirectly actuate the biasing part, for example where the extension mechanism comprises at least one intermediary component interposed between the actuator and the biasing part.
  • the conversion mechanism may further comprise a connection member mechanically linked:
  • connection member can guide in rotation the actuator and facilitate the implementation of the actuator into the extension mechanism.
  • the actuator and the connection member may have substantially elongated shapes, the actuator and the connection member being substantially parallel when the extension mechanism is in the extended state.
  • Such elongated actuator and connection member help keep the extension mechanism compact when viewed in a plane perpendicular to the longitudinal direction.
  • connection member may be a rod.
  • connection member may be hinged to the elongate mounting member so as to rotate about a connection axis which is orthogonal to the longitudinal direction.
  • Such a hinged connection member can easily be moved between the retracted state and the extended state.
  • connection member may be linked to the elongate mounting member so as to move, concomitantly to its rotation, in translation along the longitudinal direction.
  • connection member and the actuator may be linked by means of at least: i) a linkage pin and ii) a curvilinear bearing portion arranged to guide the at least one linkage pin.
  • linkage pin and curvilinear bearing portion form an inexpensive yet accurate rotatable link between the connection member and the actuator.
  • connection member and the actuator may be linked by means of two linkage pins and two curvilinear bearing portions arranged to respectively guide the linkage pins.
  • the curvilinear bearing portion may have the form of a circular arc.
  • the circular arc may extend over an angle ranging from 45 degrees to 120 degrees.
  • the linkage pin may protrude on a lateral face of the connection member, and the curvilinear bearing portion may extend on a side face of the actuator.
  • the linkage pin may protrude on a side face of the actuator and the curvilinear bearing portion may extend on a lateral face of the connection member.
  • the extension mechanism may be arranged in the extended state such that the actuator is locked against its rotation from the extended state to the retracted state.
  • the actuator, the biasing part, and the connection member may be arranged so that the biasing part exerts a locking torque on the actuator about the connection axis, said locking torque being oriented counter the rotation direction of the actuator from the extended state to the retracted state.
  • the actuator, the biasing part, and the connection member may be arranged such that:
  • the actuator may be at least partly arranged between the connection member and the biasing part.
  • the guide may be configured to guide the compression part in translation along the longitudinal direction.
  • the actuator may have a pushing portion arranged to push the conversion mechanism, the pushing portion being moveable in translation along the longitudinal direction and in rotation.
  • the conversion mechanism may further comprise a guide having at least one guiding slot which extends at least partly along the longitudinal direction, and the actuator further may comprise at least one pin configured to slidingly and rotatably move in the at least one guiding slot.
  • longitudinal characterizes an element, for example the guiding slot, which extends substantially parallel to the longitudinal direction along which the elongate mounting member is elongated.
  • the guide may have two guiding slots arranged on two sides of the guide, and the actuator may have two pins configured to slidingly and rotatably move respectively in the two guiding slots.
  • the at least one guiding slot fully extends along the longitudinal direction.
  • the actuator may be configured to be manually movable.
  • a user can move the actuator manually in order to operate the extension mechanism between the retracted state and the extended state.
  • the actuator may comprise a lever.
  • Such a lever may be formed by an elongate component, like an elongate profile. As the actuator is rotatable with respect to the elongate mounting member, the lever provides a lever arm to operate the conversion mechanism.
  • the actuator may comprise a control portion which is arranged for an actuation of the actuator.
  • Such a control portion makes it easy for a user to grasp and operate the actuator.
  • control portion may be distant from the pushing portion.
  • the pushing portion may be located on one end of the actuator whereas the control portion may be located in a median region of the actuator or on the other end of the actuator.
  • the actuator may protrude from the elongate mounting member when the extension mechanism is in the retracted state.
  • connection member may herein comprise a rod.
  • the mounting element may further comprise a friction member arranged on an outer end portion of the extension mechanism so as to bear against the opposing mounting surfaces when the extension mechanism is in the extended state, the friction member being mechanically linked to the conversion mechanism such that the friction member converts a part of the translatory movement into an upwardly-oriented friction force when the friction member bears against the two opposing mounting surfaces.
  • Such a friction member makes it possible to fasten the mounting element between two opposing mounting surfaces, because of the upwardly-oriented friction force.
  • the friction member may be arranged to protrude from the outer end portion of the extension mechanism when the extension mechanism is in the extended state.
  • the friction member may protrude only on a small scale.
  • the friction member may be composed of at least one friction material selected within the group consisting of elastomers and plastics.
  • the friction member may be composed of another material provided the friction member has a surface roughness selected to convert the translatory movement into the upwardly-oriented friction force.
  • the friction member may be elastic or resilient due to its material and/or due to its shape.
  • a friction pad can already be secured to the opposing mounting surfaces, for example by means of double-sided tape or glue, in which case the mounting element does not need to comprise a friction member.
  • the friction member may be integral with the compression part.
  • the friction member and the compression part may be made as a single piece.
  • the friction member may be secured directly to the compression part.
  • at least one element may be interposed between the friction member and the compression part, in which case the friction member may be secured indirectly to the compression part.
  • the friction member and the compression part may be separate components.
  • the elongate mounting member may comprise a housing part configured to substantially accommodate the extension mechanism in the extended state.
  • such a housing part enables design of a compact mounting element. Furthermore, such a housing part protects the actuator and the connection member.
  • the elongate mounting member may advantageously be configured to hold all the components of the architectural covering.
  • the elongate mounting member may hold the extension mechanism, a covering member, and an electric motor for winding and unwinding the covering member.
  • the housing part may be configured to fully accommodate the extension mechanism in the extended state.
  • the mounting element may further comprise a supplementary friction member arranged on an end portion of the elongate mounting member opposite the extension mechanism so as to bear against the opposing mounting surfaces, the supplementary friction member being configured to convert a part of the translatory movement into an upwardly-oriented friction force when the supplementary friction member bears against the opposing mounting surfaces.
  • the elongate mounting member may comprise mounting clips arranged to help mount, for example, a horizontal blind or a roman blind onto the mounting element so as to install an architectural covering.
  • the actuator enables a user to easily fasten the mounting element between two opposing mounting surfaces. Indeed, the user only needs to impart the force to the actuator so as to place the extension mechanism in the extended state. With one hand a user can hold the mounting element at its mounting position and, with its other hand, the user can impart the force to the actuator such that the extension mechanism abuts one of the opposing surfaces, so as to fasten the mounting element in the architectural recess.
  • another object is an architectural covering comprising a covering member for covering an architectural opening, wherein the architectural covering is equipped with a mounting element according to the present disclosure.
  • the supplementary extension mechanism may comprise a supplementary compression part configured to transmit a compression force along the longitudinal direction towards the opposing mounting surface.
  • a compression force helps hold the mounting element, because it helps generate a friction force against the opposing mounting surfaces.
  • the supplementary compression part may have a prismatic shape extending along the longitudinal direction.
  • the translatory movement of the supplementary extension mechanism may develop along the longitudinal direction.
  • the supplementary conversion mechanism may be configured to cooperate with the supplementary actuator.
  • the supplementary conversion mechanism may comprise a driven portion, which is fast in translation with the supplementary sliding portion, and several driving surfaces which are fast in rotation with the supplementary actuator and which are configured to cooperate selectively with driven portion.
  • the driven portion may have a semicylindrical male cross-section, the shape of which is substantially complementary to each one of the driving surfaces, such that each one of the driving surfaces may selectively drive the driven portion in translation along a longitudinal direction.
  • the driving surfaces may be arranged such that each one of the driving surfaces extends substantially perpendicularly to its adjacent driving surfaces.
  • the supplementary actuator may have an actuating portion configured to actuate the supplementary actuator.
  • the actuating portion may have a slot configured to receive a tool, for example a screwdriver, such that a user may exert a torque on the tool to impart rotation to the supplementary actuator about the supplementary rotation axis, selectively clockwise or counterclockwise.
  • the elongate mounting member may have an opening, e.g. a hole, configured to make the slot accessible to a tool from outside, say from under, the elongate mounting member.
  • the supplementary actuator is configured such that the slot has a geometric center substantially located on the rotation axis, the driving surfaces being located at different respective distances from the geometric center.
  • the supplementary actuator may comprise a ratchet wheel having several notches on its periphery
  • the supplementary conversion mechanism may comprise at least one pawl, e.g. two pawls, configured to fall within the notches, the ratchet wheel and the or each pawl being configured to cooperate such that the or each pawl may fall into a respective notch, so as to prevent rotation of the supplementary actuator.
  • the or each pawl may selectively release the ratchet wheel, such that the supplementary actuator may rotate about the supplementary rotation axis.
  • the ratchet wheel and the or each pawl are configured so as to define four discrete, stable positions of the supplementary actuator about the supplementary rotation axis, the discrete, stable positions being defined such that two successive driving surfaces are separated by a 90 degree angle.
  • the rechargeable battery pack may be comprised of several batteries which may be arranged in a series, parallel or a mixture thereof.
  • the rechargeable battery pack may be secured to elongate mounting member so as to prevent the user from removing the rechargeable battery pack out of the elongate mounting member.
  • the battery assembly may comprise securing elements configured to secure the rechargeable battery pack to the elongate mounting member in a non-detachable manner.
  • the elongate mounting member may have a housing space configured to accommodate totally or partially the rechargeable battery pack.
  • the elongate mounting member may be configured so that the charger plug is accessible from outside the elongate mounting member.
  • the elongate mounting member may comprise a hole for accessing the charger plug.
  • the user may: i) either plug in a charger while the mounting element remains mounted, ii) or remove the whole mounting element and displace it to get the rechargeable battery pack recharged at a dedicated charging installation.
  • FIGS 1 to 5 depict a mounting element 101 for mounting an architectural covering 200 in an architectural recess 300 which is formed by a window opening frame having two opposing mounting surfaces 302 and 304.
  • the architectural covering 200 comprises the mounting element 101.
  • the mounting element 101 comprises an elongate mounting member 102 and an extension mechanism 104.
  • the elongate mounting member 102 is configured to mount the architectural covering 200 between opposing mounting surfaces 302 and 304.
  • elongate mounting member 102 holds all the components of architectural covering 200, in particular the extension mechanism 104, a covering member 202 and a not shown electric motor for winding and unwinding the covering member 202.
  • Elongate mounting member 102 is elongated along a longitudinal direction X102 extending across architectural recess 300, such that elongate mounting member 102 substantially spans the distance between the opposing mounting surfaces 302 and 304, hence the length of architectural recess 300. Hence, elongate mounting member 102 extends between the two opposing mounting surfaces 302 and 304.
  • elongate mounting member 102 is made of a single component which has an overall prismatic shape extruded along longitudinal direction X102.
  • mounting element 101 can form a rail, for example a headrail.
  • the elongate mounting member may be made of several parts attached together.
  • Figure 11 depicts an exemplary cross-section of elongate mounting member 102.
  • the exemplary cross-section of elongate mounting member 102 substantially has the form of a rectangle with stiffening webs extending along longitudinal direction X102.
  • the term “along” means either "parallel to" or "collinear with”.
  • mounting element 101 forms a headrail.
  • Elongate mounting member 102 may be stiff enough to withstand the weight of the whole architectural covering 200 and the forces resulting from extension mechanism 104 being in the extended state.
  • Elongate mounting member 102 may be composed of extruded aluminum.
  • mounting element 101 further comprises two flanges 105.1 and 105.2 which are configured to hold some of the components of architectural covering 200, like covering member 202.
  • Flanges 105 . 1 and 105 . 2 are respectively attached to the ends of elongate mounting member 102.
  • the extension mechanism 104 may be arranged at an end 106 of the elongate mounting member 102 , as shown in figures 2 to 4 . Extension mechanism 104 may be operable between: i) a retracted state, as shown in figures 1 and 12 , and ii) an extended state, as shown in figures 3 and 13 . When the extension mechanism 104 is in the extended state, the mounting element 101 can be fastened to the opposing mounting surfaces 302 and 304, as shown in figure 13 , so as to mount architectural covering 200 between opposing mounting surfaces 302 and 304.
  • the extension mechanism 104 When the extension mechanism 104 is in the retracted state ( figure 12 ), the mounting element 101 is in a release configuration. When the extension mechanism 104 is in the extended state ( figure 13 ), the mounting element 101 is in a fastening configuration.
  • the extension mechanism 104 may comprise an actuator 110 and a conversion mechanism 112 .
  • Extension mechanism 104 may further comprise a compression part 114, as depicted in figures 5 , 6 , 12 , and 13 .
  • the components of extension mechanism 104 may be composed of metallic and/or of plastic materials.
  • the actuator 110 may protrude from elongate mounting member 102 when the extension mechanism 104 is in the retracted state ( figures 1 and 12 ).
  • the actuator 110 may be rotatable (compare figures 1 and 3 ) about a rotation axis Y110 which is perpendicular to the longitudinal direction X102.
  • the angle of rotation of the actuator 110 about rotation axis Y110 is about 40 degrees between the retracted and extended states of the extension mechanism 104 .
  • Rotation axis Y110 is herein transverse to longitudinal direction X102 when viewed in a plane parallel to longitudinal direction X102.
  • Rotation axis Y110 may form an angle ranging from 80 degrees to 100 degrees with the longitudinal direction.
  • rotation axis Y110 is herein orthogonal to longitudinal direction X102, such that actuator 110 rotates along a plane which includes longitudinal direction X102.
  • the rotation axis may be intersect the longitudinal direction X102.
  • the rotation axis may not intersect the longitudinal direction X102.
  • actuator 110 comprises a control portion 110 . 1 which is arranged for manually actuating actuator 110 .
  • a user can grasp the control portion 110 . 1 and then push the actuator 110 as a lever.
  • the actuator 110 may rotate along an actuator plane which includes the longitudinal direction X102 and which is vertical when extension mechanism 104 is in the extended state.
  • the rotation axis Y110 is orthogonal to the longitudinal direction X102.
  • the actuator plane corresponds to the plane of figure 12 .
  • the conversion mechanism 112 is configured to convert a rotation of actuator 110 into a translatory movement of rotation axis Y110 along the longitudinal direction X102 from the retracted state to the extended state and vice versa.
  • the translatory movement of extension mechanism 104 develops along the longitudinal direction X102.
  • the extension mechanism 104 is arranged to abut one of the opposing mounting surfaces 302 and 304 in the extended state when the mounting element 101 is mounted between the opposing mounting surfaces 302 and 304.
  • extension mechanism 104 As visible when comparing figures 12 and 13 , the compression part 114 of the extension mechanism 104 translates towards opposing mounting surface 302 (to the right). In other words, extension mechanism 104 extends in translation (X102) towards opposing mounting surface 302 when the extension mechanism 104 is moved from its retracted state ( figure 12 ) to its extended state ( figure 13 ).
  • actuator 110 is displaceable, for example manually, by a force F110 having a component F110Z which is orthogonal to the longitudinal direction X102.
  • force F110 also has a component F110X which is parallel to the longitudinal direction X12.
  • Conversion mechanism 112 is configured to convert the displacement of the actuator 110 , actually a rotation about rotation axis Y110 , due to orthogonal component F110Z, into a translatory movement of rotation axis Y110 towards opposing mounting surface 302 and from the retracted state to the extended state. In its extended state the extension mechanism 104 abuts one of the opposing mounting surfaces 302 and 304 when the mounting element 101 is mounted between the opposing mounting surfaces 302 and 304.
  • Compression part 114 is configured to transmit a compression force F along the longitudinal direction X102 towards the opposing mounting surface 302 , as shown in figure 13 .
  • Compression part 114 may substantially have a prismatic shape extending along longitudinal direction X102.
  • the compression part may substantially have a cylindrical shape extending along longitudinal direction.
  • the compression force F When the architectural covering 200 is in its service position, the compression force F may be oriented substantially horizontally and towards the architectural recess 300, more particularly towards opposing mounting surface 302 .
  • the compression force F makes it possible to hold mounting element 101 in the architectural recess 300 between opposing mounting surfaces 302 and 304, because compression force F helps generate a friction force, as described further below.
  • the conversion mechanism 112 comprises a biasing part 116 which is mechanically coupled with actuator 110 .
  • Biasing part 116 may be configured to generate the compression force F when the extension mechanism 104 is in the extended state ( figure 13 ).
  • biasing part 116 is located on a longitudinal end of mounting element 101.
  • the actuator 110 may directly actuate biasing part 116.
  • extension mechanism 101 can be very compact.
  • the actuator may indirectly actuate the biasing part, for example where the extension mechanism comprises at least one intermediary component interposed between the actuator and the biasing part.
  • Biasing part 116 may be a component distinct or separate from compression part 114.
  • the compression part may be integral with the biasing part and, for example, be made one-piece and composed of an elastomeric material.
  • compression part 114 comprises an abutment part 115 which is arranged to receive an end of the biasing part 116.
  • Biasing part 116 may comprise at least one compression spring.
  • biasing part 116 comprises two compression springs 116.1 and 116.2 , which are herein arranged in parallel and laterally spaced apart from each other.
  • the parallel compression springs 116.1 and 116.2 make it possible to minimize the overall dimension of mounting element 101 along longitudinal direction X102.
  • Each compression spring 116.1 or 116.2 may be comprised of a helical spring, which can be easily designed and assembled into extension mechanism 101 and which can have a very long service life.
  • the compression spring may be comprised of an elastomeric material.
  • the abutment part 115 has two cylindrical protrusions 115 . 1 and 115 . 2 which are configured to hold respectively the outer ends of springs 116.1 and 116.2.
  • the conversion mechanism may further comprise at least one ring arranged between the actuator and the at least one compression spring.
  • a ring can be configured to maximize the interface between the actuator and the at least one compression spring. In service, such a ring can hence distribute the reaction force of the biasing part on the actuator.
  • Biasing part 116 may be elastically deformable and configured to be more stressed when extension mechanism 104 is in the extended state ( figures 3 and 13 ) than in the retracted state ( figures 1 and 12 ) so as to generate the compression force F.
  • the elastic deformation of biasing part 116 results from the length difference of the biasing part 116 between the extended state ( figure 13 ) and the retracted state ( figure 12 ).
  • the biasing part may be selected to have a deformation distance ranging from 10 mm to 100 mm, for example of 50 mm, the deformation distance being measured as the length difference of the biasing part 116 between the extended state and the retracted state of extension mechanism 104 .
  • Conversion mechanism 112 may further comprise a connection member 120 which is mechanically linked to the elongate mounting member 102 so as to rotate between the retracted state and the extended state, and to the actuator 110 so as to guide actuator 110 in rotation.
  • Connection member 120 is intended to guide in rotation actuator 110 and facilitate its implementation into extension mechanism 104.
  • connection member 120 may be hinged to the elongate mounting member 102 so as to rotate about a connection axis Y120 which is orthogonal to the longitudinal direction X102, when extension mechanism 104 is displaced between the retracted state ( figures 1 and 12 ) and the extended state ( figures 3 and 13 ).
  • the angle of rotation of the connection member 120 about connection axis Y120 is about 30 degrees between the retracted and extended states of the extension mechanism 104 .
  • the connection member can easily be moved between the retracted state and the extended state.
  • the connection member may be linked to the elongate mounting member so as to move, concomitantly to its rotation, in translation along the longitudinal direction.
  • Mounting element 101 further comprises a hinge 121 which is configured to swingably link connection member 120 to elongate mounting member 102.
  • Connection member 120 can easily be moved between the retracted state and the extended state.
  • the hinge 121 may be fastened to the elongate mounting member 102 , such that hinge 121 does not translate relative to elongate mounting member 102.
  • connection member 120 is linked to actuator 110 so as to guide actuator 110 in rotation, for example about the rotation axis Y110.
  • Connection member 120 and actuator 110 may be linked by means of at least: i) a linkage pin and ii) a curvilinear bearing portion arranged to guide the at least one linkage pin.
  • Such linkage pin and curvilinear bearing portion form an inexpensive yet accurate rotatable link between the connection member and the actuator.
  • the curvilinear bearing portion may have the form of a circular arc which extends, for example, over an angle ranging from 45 degrees to 120 degrees.
  • connection member 120 is linked to actuator 110 by means of two linkage pins 122 . 1 and 122 . 2 respectively cooperating with two curvilinear bearing portions 124 . 1 and 124 . 2 .
  • Curvilinear bearing portions 124 . 1 and 124.2 are arranged to guide respectively linkage pins 122 . 1 and 122 . 2 .
  • Each linkage pin 122 . 1 or 122 . 2 protrudes on a respective lateral face of connection member 120 .
  • Each curvilinear bearing portion 124 extends on a respective side face of actuator 110 .
  • Each curvilinear bearing portion 124 . 1 or 124 . 2 may have the form of a circular arc which extends over an angle of approximately 60 degrees.
  • the or each linkage pin may protrude on a side face of the actuator and the curvilinear bearing portion may extend on a lateral face of the connection member.
  • the actuator 110 is configured to be manually movable.
  • the actuator 110 and connection member 120 have substantially elongated shapes.
  • the actuator 110 may herein form a lever and connection member 120 may herein be a rod.
  • actuator 110 comprises a control portion 110 . 1 which has a U-shaped cross-section so as to accommodate a substantial portion of connection member 120 .
  • a user can move the actuator 110 manually in order to operate the extension mechanism 104 between the retracted state ( figure 12 ) and the extended state ( figure 13 ).
  • actuator 110 provides a lever arm to operate conversion mechanism 112 .
  • the actuator 110 and connection member 120 are substantially parallel when the extension mechanism 104 is placed in the extended state, as shown in figures 13 and 14 . Due to their elongated shapes and to their substantially parallel arrangement, actuator 110 and connection member 120 keep extension mechanism 104 very compact when viewed in a plane perpendicular to the longitudinal direction X102.
  • elongate mounting member 102 comprises a housing part 126 which fully accommodates the extension mechanism 104 in its extended state ( figures 3 and 13 ). Housing part 126 thus protects the actuator 110 and the connection member 120 and mounting element 101 is compact when extension mechanism 104 is in its extended state, as no component protrudes from elongate mounting member 102.
  • the actuator 110 and the connection member 120 have respective outer side walls and respective inner stiffening webs with hollow regions therebetween. Such a design makes it possible to maximize the ratio of the mechanical strength over the weight respectively for the actuator 110 and for the connection member 120 .
  • housing part 126 has an opening 127 which is configured for the passage of part of the actuator 110 and part of the connection member 120 .
  • extension mechanism When the extension mechanism is in the extended state ( figures 3 and 13 ) a user can access the actuator 110 through opening 127 .
  • extension mechanism 104 When extension mechanism 104 is in the retracted state ( figures 1 and 12 ), actuator 110 may protrude from the elongate mounting member 102 through opening 127 . Thus, a user can easily reach for actuator 110 and push it as a lever in order to place extension mechanism 104 in its extended state.
  • the actuator 110 may be at least partly arranged between the connection member 120 and the biasing part 116.
  • the actuator 110 may be interposed between connection member 120 and biasing part 116.
  • actuator 110 has a pushing portion 110.2 which is arranged to push conversion mechanism 112 , herein compression part 114, via biasing part 116. Put another way, pushing portion 110.2 indirectly pushes conversion mechanism 112 , herein compression part 114.
  • Pushing portion 110.2 may be moveable in translation along longitudinal direction X102 and in rotation, herein about rotation axis Y110 , hence orthogonally to longitudinal direction X102. The translatory movement of rotation axis Y110 is transmitted by pushing portion 110.2.
  • pushing portion 110.2 is distant from control portion 110.1.
  • Pushing portion 110.2 may be located on one end of actuator 110 whereas control portion 110 . 1 may be located on the opposite end of actuator 110 or else in a median region of the actuator 110 .
  • the conversion mechanism 112 comprises a guide 130 which is configured to guide actuator 110 both in translation and in rotation, as hereinafter described.
  • the guide may have at least one guiding slot which extends at least partly along the longitudinal direction.
  • the actuator may further comprise at least one pin configured to slidingly and rotatably move in the at least one guiding slot. Such pin and guiding slot enable translation and rotation of the actuator.
  • guide 130 has two guiding slots 130.1 and 130.2 which are arranged on two sides of guide 130. Both guiding slots 130.1 and 130.2 extend parallel to longitudinal direction X102.
  • actuator 110 may further comprise two pins 132.1 and 132 . 2 which are configured to slidingly and rotatably move respectively in guiding slots 130.1 and 130.2.
  • pins 132.1 and 132 . 2 and guiding slots 130.1 and 130.2 enable the actuator 110 to translate parallel to longitudinal direction X102 and to rotate herein about rotation axis Y110.
  • the guide 130 herein has two grooves 130.3 and 130.4 which are respectively configured for the introduction of pins 132.1 and 132 . 2 up into the guiding slots 130.1 and 130.2 when an operator assembles the extension mechanism 104.
  • guide 130 also guides and holds compression part 114 along longitudinal direction X102.
  • Guide 130 is configured to substantially accommodate compression part 114.
  • mounting element 101 further comprises a friction member 134 which is arranged on an outer end portion 104.1 of the extension mechanism 104 so as to bear against the architectural recess 300, in this case against opposing mounting surface 302 , when extension mechanism 104 is in the extended state ( figures 3 and 13 ).
  • Friction member 134 may be mechanically linked to conversion mechanism 112 , herein to compression part 114, such that friction member 134 converts a part of the translatory displacement of rotation axis Y110 along the longitudinal direction X102 into an upwardly-oriented friction force F134, as shown in figure 13 , when friction member 134 abuts opposing mounting surface 302 .
  • friction member 134 makes it possible to fasten mounting element 101 in architectural recess 300, hence to mount architectural covering 200 between opposing mounting surfaces 302 and 304, because of the upwardly-oriented friction force F134. Upwardly-oriented friction force F134 results from the friction coefficient.
  • the friction member 134 may belong to compression part 114.
  • friction member 134 is arranged to protrude, on a small scale, from the outer end portion 104.1 of the extension mechanism 104 when extension mechanism 104 is placed in the extended state. Depending on the play between architectural recess 300 and mounting element 101, friction member 134 may protrude only on a small scale from outer end portion 104.1.
  • friction member 134 is integral with compression part 114. The friction member and the compression part may be made as a single piece.
  • the friction member may be a component separate from the compression part.
  • the friction member may be secured to the compression part directly or indirectly, i.e. without or with at least one element interposed between the friction member and the compression part.
  • friction member 134 is composed of at least one friction material selected within the group consisting of elastomeric materials and plastics.
  • the friction member may be composed of another material provided the friction member has a surface roughness selected to convert the translatory movement into the upwardly-oriented friction force.
  • the friction member may be elastic or resilient due to its material and/or due to its shape.
  • the mounting element 101 may further comprise a supplementary friction member.
  • the supplementary friction member may be substantially similar to friction member 134.
  • the supplementary friction member may be arranged so as to bear against architectural recess 300, in this case against opposing mounting surface 304.
  • the supplementary friction member may also be configured to convert a part of the translatory movement of rotation axis Y110 into an upwardly-oriented friction force when the supplementary friction member bears against opposing mounting surfaces 302 and 304. This left-hand part of translatory movement of rotation axis Y110 imparts a portion of the compression force F to the supplementary friction member via the stiff portions of elongate mounting member 102.
  • Mounting element 101 may further comprise a supplementary holder which is configured to hold the supplementary friction member.
  • the supplementary friction member is arranged to protrude from the supplementary holder.
  • the mounting element may further comprise a supplementary extension mechanism which is similar or identical to extension mechanism 104 and which is arranged at the other end of the elongate mounting member opposite the end at which is arranged extension mechanism 104, as shown in figures 17 to 27 .
  • a friction pad can already be secured to the architectural recess, for example by means of double-sided tape or glue.
  • extension mechanism 104 is arranged in the extended state ( figure 14 ) such that actuator 110 is locked against its rotation from the extended state to the retracted state.
  • actuator 110 biasing part 116, and connection member 120 may be arranged so that the biasing part 116 exerts a locking torque T116 on actuator 110 about connection axis Y120.
  • Locking torque T116 is oriented counter a rotation direction R110 of actuator 110 from the extended state to the retracted state.
  • locking torque T116 prevents an unexpected self-retraction of the extension mechanism 104 .
  • locking torque T116 can prevent the extension mechanism 104 from unwittingly returning into the retracted state once it has been placed by the user in the extended state.
  • actuator 110 In order to generate locking torque T116, actuator 110 , biasing part 116 and connection member 120 may be arranged such that:
  • the extension mechanism 104 When the mounting element 101 is in service, the extension mechanism 104 is first in its retracted state. A user can, with one hand, hold the mounting element 101 at its mounting position between opposing mounting surfaces 302 and 304. With its other hand, the user can grasp actuator 110 , push it as a lever to impart the force F110 to actuator 110 and rotate it herein about rotation axis Y110.
  • connection member 120 is driven in rotation about connection direction Y120 by actuator 110 via linkage pins 122 . 1 and 122 . 2 guided by the curvilinear bearing portions 124 . 1 and 124.2.
  • Pushing portion 110.2 of actuator 110 may rotate about rotation axis Y110 and may slide along longitudinal direction X102 towards opposing mounting surface 302 . While sliding, actuator 110 compresses biasing part 116. Biasing part 116 in turn drives compression part 114 in translation along longitudinal direction X102 towards opposing mounting surface 302 .
  • friction member 134 Once friction member 134 has covered a gap G between extension mechanism 104 and opposing mounting surface 302 , friction member 34 bears against the architectural recess 300. Then, compression part 114 starts to transmit a compression force F to opposing mounting surface 302 . Hence, friction member 134 starts to convert a part of the translatory movement into the upwardly-oriented friction force F134.
  • biasing part 116 When extension mechanism 104 reaches its extended state, biasing part 116 fully generates compression force F .
  • the length difference of biasing part 116 as compared to the retracted state is depicted in figures 12 and 13 with reference sign LD116.
  • Friction member 134 fully produces the upwardly-oriented friction force F134, which enables the mounting element 101 to hold in place the architectural covering 200.
  • the supplementary friction member likewise produces an upwardly-oriented friction force.
  • the mounting element 101 is force-fitted between opposing mounting surfaces 302 and 304.
  • actuator 110 Since actuator 110 is locked, as afore-detailed, against its rotation direction R110 from the extended state to the retracted state, the extension mechanism 104 steadily remains in the extended state. The architectural covering 200 thereby remains in its service position.
  • the user only needs to grasp actuator 110 , push it as a lever and rotate it in order to impart force F110 to actuator 110 so as to place extension mechanism 104 in the extended state.
  • a user can hold mounting element 101 at its mounting position and, with its other hand, the user can grasp actuator 110 , push it as a lever and rotate it in order to operate, hence impart the force F110 to, the actuator 110 so as to fasten mounting element 101 to architectural recess 300.
  • actuator 110 enables a user to easily fasten mounting element 101 between opposing mounting surfaces 302 and 304, herein in architectural recess 300.
  • Such architectural covering 200 can hence be quickly and reliably installed by hand, hence without tool.
  • mounting element 101 achieves a force fit (frictional fit) between opposing mounting surfaces 302 and 304.
  • Mounting element 101 may alternatively or complementarily achieve a form fit, for example if one or both of opposing mounting surfaces 302 and 304 has matching female or male reliefs (not shown).
  • the user can access the actuator 110 through opening 127. Then the user draws the actuator 110 as a lever so as to rotate it along rotation direction R110.
  • the connection member 120 rotates as well and guides the actuator from the extended state to the retracted state.
  • the extension mechanism 104 By the time the extension mechanism 104 reaches its retracted state, the mounting element 1 no longer holds the architectural covering 200, which the user can then hold by one hand and remove from the architectural recess 300.
  • the actuator enables a user to easily fasten or unfasten the mounting element between opposing mounting surfaces. Indeed, the user only needs to impart the force to the actuator so as to place the extension mechanism in the extended state. With one hand a user can hold the mounting element at its mounting position and, with its other hand, the user can push the lever-like actuator to impart the force driving the conversion mechanism, so as to fasten the mounting element to the architectural recess.
  • Figure 15 illustrates a second embodiment of a mounting element 101.
  • the mounting element 101 of figure 15 is similar to the mounting element 101 of figures 1 to 14 , the afore-detailed description may be applied to the mounting element 101 of figure 15 , but for the hereinafter mentioned noticeable differences.
  • An element of mounting element 101 of figure 15 having a structure or function identical to an element of the mounting element 101 of figures 1 to 14 is given the same reference sign.
  • the mounting element 101 of figure 15 comprises an extension mechanism 104, an actuator member 110 , a conversion mechanism 112 , a compression part 114, a biasing part 116, a connection member 120, a guide 130 , and a friction member 134 and a supplementary friction member.
  • the mounting element 1 of figure 15 mainly differs from the mounting element 101 of figures 1 to 14 in that the compression part 114 and the biasing part 116 are reversedly arranged with respect to figures 1 to 14 .
  • the mounting element 101 of figure 15 also differs from the mounting element 101 of figures 1 to 14 in that the actuator 110 and the connection member 120 are reversedly arranged with respect to figures 1 to 14 .
  • actuator 110 directly pushes compression part 114 in translation towards opposing mounting surface 302 , whereas compression part 114 pushes biasing part 116 in translation.
  • Biasing part 116 imparts a compression force to friction member 134 and to the supplementary friction member, which in turn produce upwardly-oriented forces to hold mounting element 101.
  • Figure 16 illustrates a third embodiment of a mounting element 101.
  • the mounting element 101 of figure 16 is similar to the mounting element 101 of figures 1 to 14 , the afore-detailed description may be applied to the mounting element 101 of figure 16 , but for the hereinafter mentioned noticeable differences.
  • An element of mounting element 101 of figure 16 having a structure or function identical to an element of the mounting element 101 of figures 1 to 14 is given the same reference sign.
  • the mounting element 101 of figure 16 may comprise an extension mechanism 104, an actuator member 110 , a conversion mechanism 112 , a compression part 114, a biasing part 116, a connection member 120, a guide 130, and a friction member 134 and a supplementary friction member.
  • the mounting element 1 of figure 16 mainly differs from the mounting element 101 of figures 1 to 14 in that the biasing part 116 is arranged between actuator 110 and connection member 120 .
  • Figures 17 to 27 illustrate an independent object having a supplementary extension mechanism 154 which belongs to mounting element 101 and which is arranged at the opposite end of the elongate mounting member 102 with respect to the above described extension mechanism 104 .
  • the supplementary extension mechanism 154 is located near the flange 105.2.
  • the elongate mounting member 102 thus extends from extension mechanism 104 to supplementary extension mechanism 154.
  • the supplementary extension mechanism 154 has several functional features similar to the extension mechanism 104 .
  • a component of supplementary extension mechanism 154 having a similar function as a component of extension mechanism 104 is hereinafter designated with the same reference sign augmented by 50.
  • Supplementary extension mechanism 154 is operable between: i) a retracted state, as depicted on figures 17, 19 and 25 , and ii) an extended state, as depicted on figures 18, 20 and 27 .
  • Figure 26 depicts the supplementary extension mechanism 154 placed in an intermediary state between the retracted state and an extended state.
  • the mounting element 101 can be i) in a fastening configuration when supplementary extension mechanism 154 is in an extended state and ii) in a release configuration when supplementary extension mechanism 154 is in the retracted state.
  • the supplementary extension mechanism 154 may comprise a supplementary actuator 160, a supplementary conversion mechanism 162 and a supplementary compression part 164.
  • Supplementary extension mechanism 154 may further comprise a supplementary sliding portion 163 which is arranged to translate along longitudinal direction X102 with respect to elongate mounting member 102. In the illustrated embodiment, sliding portion 163 is arranged to translate within the elongate mounting member 102 .
  • the components of supplementary extension mechanism 154 may be composed of metallic and/or of plastic materials.
  • the supplementary actuator 160 may be rotatable about a supplementary rotation axis Y160, which is substantially perpendicular to the longitudinal direction X102.
  • the supplementary rotation axis Y160 may form an angle ranging from 80 to 100 degrees, e.g. 90 degrees, with the longitudinal direction X102.
  • the supplementary rotation axis Y160 may be vertical when the mounting element is in a service position.
  • the supplementary conversion mechanism 162 may be configured to convert a rotation of supplementary actuator 160 into a translatory movement of supplementary rotation axis Y160 along the longitudinal direction X102 from the retracted state to an extended state and vice versa.
  • the translatory movement of supplementary extension mechanism 154 develops along the longitudinal direction X102.
  • the supplementary extension mechanism 154 may be arranged so that supplementary compression part 164 can abut opposing mounting surface 304 and thus transmit a compression force to opposing mounting surface 304 .
  • the supplementary compression part 164 can abut opposing mounting surface 304 when the supplementary extension mechanism 154 is in its retracted state. In such a case, placing the extension mechanism 104 in its extended state suffices to make both the compression part 104 and the supplementary compression part 164 abut respectively on the opposing mounting surfaces 302 and 304 .
  • supplementary compression part 164 of supplementary extension mechanism 154 translates towards opposing mounting surface 304 (to the left).
  • supplementary extension mechanism 154 extends in translation (X102) towards opposing mounting surface 304 when supplementary extension mechanism 154 is moved from its retracted state ( figures 17 and 25 ) to an extended state ( figure 18 and 27 ).
  • Supplementary compression part 164 may be configured to transmit a supplementary compression force along the longitudinal direction X102 towards opposing mounting surface 304 .
  • Supplementary compression part 164 substantially may have a prismatic shape extending along longitudinal direction X102.
  • Supplementary compression part 164 may comprise an abutment part 165 , as shown in figure 22 .
  • the supplementary compression force When the architectural covering 200 is in its service position, the supplementary compression force may be oriented substantially horizontally and towards opposing mounting surface 304 .
  • the supplementary compression force helps hold the mounting element 101 in the architectural recess 300 between opposing mounting surfaces 302 and 304 , because it helps generate a friction force, akin to the afore-described force generated by compression part 104 .
  • Supplementary conversion mechanism 162 may comprise a driven portion 163.1 which is fast in translation with supplementary sliding portion 163. Furthermore, supplementary conversion mechanism 162 may comprise four driving surfaces 160.1, 160.2, 160.3 and 160.4 which are configured to cooperate selectively with driven portion 163.1. The driving surfaces 160.1, 160.2, 160.3 and 160.4 are fast in rotation with supplementary actuator 160 . Within the supplementary conversion mechanism 162 , driven portion 163.1 is configured to cooperate with a selected one of the driving surfaces 160.1, 160.2, 160.3 and 160.4.
  • the driven portion 163.1 has a semicylindrical male cross-section, the shape of which is substantially complementary to each driving surface 160.1, 160.2, 160.3 or 160.4.
  • driving surface 160.1, 160.2 , 160.3 or 160.4 may selectively drive driven portion 163.1 in translation along longitudinal direction X102.
  • the driving surfaces 160.1, 160.2, 160.3 and 160.4 may be arranged such that each driving surface 160.1, 160.2, 160.3 or 160.4 extends substantially perpendicularly to its adjacent driving surfaces.
  • driving surface 160.1 may be arranged such that it extends substantially perpendicularly to its adjacent driving surfaces 160.2 and 160.4.
  • the supplementary actuator 160 may have an actuating portion 161.
  • the actuating portion 161 has a slot 161.1 configured to receive a tool, for example a screwdriver.
  • a tool for example a screwdriver.
  • a user may exert a torque on the tool to impart rotation to the supplementary actuator 160 about the supplementary rotation axis Y160 , selectively clockwise or counterclockwise.
  • elongate mounting member 102 may have an opening 102.160 , e.g. a hole, configured to make the slot 161.1 accessible to a tool from outside, say from under, the elongate mounting member 102 .
  • the supplementary actuator 160 may be configured such that the slot 161.1 has a geometric center C161.1 substantially located on the rotation axis Y160.
  • the driving surfaces 160.1, 160.2, 160.3 and 160.4 are located at different respective distances from geometric center C161.1.
  • driving surface 160.1 is located closest to geometric center C161.1; driving surface 160.2 is located closer to geometric center C161.1 than driving surface 160.3; finally, driving surface 160.4 is the furthest from geometric center C161.1.
  • Each of the afore-mentioned distances is measured as a Euclidean distance, i.e. as the shortest distance between geometric center C161.1 and the closest point of the relevant driving surface.
  • supplementary actuator 160 may comprise a ratchet wheel 167 having several notches 167.1 on its periphery.
  • supplementary conversion mechanism 162 may comprise at least one pawl, herein two pawls 168, configured to fall within the notches 167.1.
  • Pawls 168 may be arranged symmetrically with respect to longitudinal direction X102 when the mounting element 101 is in the assembled state.
  • Ratchet wheel 167 and pawls 168 may be configured to cooperate such that each pawl 168 may fall into a respective notch 167.1 of the ratchet wheel 167.
  • pawls 168 prevent rotation of supplementary actuator 160.
  • ratchet wheel 167 and pawls 168 are configured so as to define four discrete, stable positions of the supplementary actuator 160 about supplementary rotation axis Y160. These four discrete, stable positions correspond to the four driving surfaces 160.1, 160.2, 160.3 and 160.4 .
  • a user may insert a tool, e.g. a screwdriver, in slot 161.1 in order to impart a rotation to supplementary actuator 160 about supplementary rotation axis Y160.
  • a tool e.g. a screwdriver
  • Such rotation of supplementary actuator 160 is converted by supplementary conversion mechanism 162 into a translatory movement of supplementary sliding portion 163, via the cooperation of driven portion 163.1 with the selected driving surfaces 160.1, 160.2, 160.3 and 160.4.
  • the pawls 168 may release ratchet wheel 167 , such that supplementary actuator 160 may rotate about the supplementary rotation axis Y160 from 90, 180 or 270 degrees, depending on the angle selected by the user to set the appropriate overall length of the mounting element 101 , i.e. depending on the driving surface 160.1, 160.2, 160.3 or 160.4 selected by the user to press against driven portion 163.1.
  • the afore-mentioned four discrete, stable positions of the supplementary actuator 160 each correspond to a given protruding distance by which the supplementary compression part 164 protrudes towards opposing mounting surface 304 .
  • an increment in the protruding distance may be 1,5 mm between two successive stable positions, i.e. between two successive driving surfaces 160.1, 160.2 , 160.3 and 160.4.
  • Figures 28 to 32 illustrate another independent object comprising a battery assembly 401 intended to supply power to a not shown electric motor, in order to wind and unwind the covering member 202 .
  • the electric motor may be housed within a roller supporting covering member 202 .
  • the battery assembly 401 may comprise a rechargeable battery pack 402 , an output connector 404 and a charger plug 406 .
  • the rechargeable battery pack 402 may be comprised of several batteries which may be arranged in a series, parallel or a mixture thereof, depending on the required power characteristics.
  • the rechargeable battery pack 402 may be configured to be completely accommodated in the elongate mounting member 102 which may herein form a headrail as afore-mentioned.
  • Elongate mounting member 102 may have a housing space configured to accommodate at least partially rechargeable battery pack 402 .
  • Rechargeable battery pack 402 may be secured to elongate mounting member 102 so as to prevent the user from removing rechargeable battery pack 402 out of elongate mounting member 102 .
  • battery assembly 401 may comprise securing elements configured to secure rechargeable battery pack 402 to the elongate mounting member 102 in a non-detachable manner.
  • the output connector 404 may be a standard DC connector configured to get connected to the electric motor. When supplied with power from the rechargeable battery pack 402, the electric motor may wind or unwind the covering member 202 upon receipt of a dedicated command signal. In the example of figures 28 to 32 , output connector 404 is located outside the elongate mounting member 102 so as to be easily connected to the electric motor. A cable may connect the output connector 404 to the rechargeable battery pack 402 .
  • the charger plug 406 may be a standard plug configured to connect rechargeable battery pack 402 to a recharging power source.
  • Charger plug 406 and elongate mounting member 102 may be configured so that charger plug 406 is accessible from outside the elongate mounting member 102 .
  • elongate mounting member 102 may comprise a hole 102.406 for accessing charger plug 406 and thus plug rechargeable battery pack 402 to a not shown charger or recharging power source.
  • the user may: i) either plug in a charger while the mounting element 101 remains mounted in architectural recess 300, ii) or remove from architectural recess 300 the whole mounting element 101 and displace it to get rechargeable battery pack 402 recharged at a dedicated charging installation.
  • FIG 32 illustrate yet another independent object.
  • Elongate mounting member 102 may herein comprise mounting clips 103.1, 103.2, 103.3 arranged to help mount, for example, a horizontal blind or a roman blind onto the mounting element 101 so as to install the architectural covering 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)

Abstract

A mounting element, for mounting an architectural covering between two opposing mounting surfaces, comprising:
- an elongate mounting member,
- an extension mechanism (104) operable between: i) a retracted state, and ii) an extended state in which the mounting element can be fastened to the architectural recess,
- an actuator (110) rotatable about a rotation axis (Y110) which is not parallel to the longitudinal direction, and
- a conversion mechanism (112) to convert a rotation of the actuator (110) into a translatory movement of the rotation axis (Y110) along the longitudinal direction (X102) and vice versa.
The extension mechanism (104) is arranged to abut one of the opposing mounting surfaces (302) in the extended state when the mounting element is mounted between the opposing mounting surfaces (302).

Description

    TECHNICAL FIELD
  • The present disclosure relates to a mounting element for mounting an architectural covering, such as a recess, between two opposing mounting surfaces, e.g. by a force fit (frictional fit) and/or form fit (e.g. if the recess has matching female or male relief). Furthermore, the present disclosure relates to an architectural covering comprising such a mounting element.
  • BACKGROUND ART
  • US20140086676A1 describes a so-called headrail for fixing an architectural covering in an architectural recess. The headrail of US20140086676A1 comprises an elongated member, for mounting the architectural covering in the architectural recess, and an extension mechanism manually moveable between a retracted state and an extended state.
  • However, the extension mechanism of US20140086676A1 is quite difficult to access, and hence difficult to manually operate. Moreover, the extension mechanism necessitates numerous components, which renders expensive the whole headrail. Besides, some of these components are relatively fragile and risk being broken after the extension mechanism has been operated several times.
  • SUMMARY
  • This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
  • It is therefore a first object to provide an improved mounting element, which alleviates the afore-mentioned drawbacks. Accordingly, this object can be met with a mounting element for mounting an architectural covering between two opposing mounting surfaces, the mounting element comprising:
    • an elongate mounting member which is elongated along a longitudinal direction, and
    • an extension mechanism arranged at an end of the elongate mounting member, the extension mechanism being operable between: i) a retracted state, and ii) an extended state,
    wherein the extension mechanism comprises:
    • an actuator rotatable about a rotation axis, the rotation axis being substantially perpendicular to the longitudinal direction, and
    • a conversion mechanism configured to convert a rotation of the actuator into a translatory movement of the rotation axis along the longitudinal direction from the retracted state to the extended state and vice versa,
    • wherein the extension mechanism is arranged to abut one of the opposing mounting surfaces in the extended state when the mounting element is mounted between the opposing mounting surfaces.
  • Besides, another object is to provide a mounting element, for mounting an architectural covering between two opposing mounting surfaces, the mounting element comprising:
    • an elongate mounting member which is elongated along a longitudinal direction, and
    • an extension mechanism arranged at an end of the elongate mounting member, the extension mechanism being operable between: i) a retracted state, and ii) an extended state,
    wherein the extension mechanism comprises at least:
    • an actuator displaceable by a force having at least one component orthogonal to the longitudinal direction, and
    • a conversion mechanism configured to convert a rotation of the actuator into a translatory movement of the rotation axis along the longitudinal direction from the retracted state to the extended state and vice versa,
    • wherein the extension mechanism is arranged to abut one of the opposing mounting surfaces in the extended state when the mounting element is mounted between the opposing mounting surfaces.
  • A second object is to provide a mounting element for mounting an architectural covering between two opposing mounting surfaces, the mounting element comprising:
    1. i) an elongate mounting member which is elongated along a longitudinal direction, and
    2. ii) a supplementary extension mechanism which is arranged at an end of the elongate mounting member, the supplementary extension mechanism being operable between: i) a retracted state and ii) at least one extended state,
    the supplementary extension mechanism comprising:
    1. i) a supplementary actuator rotatable about a supplementary rotation axis, the supplementary rotation axis being substantially perpendicular to the longitudinal direction,
    2. ii) a supplementary sliding portion arranged to translate along the longitudinal direction with respect to the elongate mounting member,
    3. iii) a supplementary conversion mechanism configured to convert a rotation of the supplementary actuator into a translatory movement of the supplementary sliding portion along the longitudinal direction from the retracted state to an extended state and vice versa, and
    wherein the supplementary extension mechanism is arranged to abut one of the opposing mounting surfaces.
  • A third object is to provide a battery assembly intended to supply power to an electric motor in order to wind and unwind a covering member of an architectural covering, the battery assembly comprising:
    1. i) a rechargeable battery pack for storing energy,
    2. ii) an output connector for connection to the electric motor, and
    3. iii) a charger plug configured to connect the rechargeable battery pack to a recharging power source,
    wherein the rechargeable battery pack is configured to be completely accommodated in an elongate mounting member, e.g. a headrail, belonging to a mounting element of the architectural covering.
  • The first, second and third objects may form the subject-matter of a claim to patent protection, either in combination or independently.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further features, aspects, and advantages of the present disclosure will also become apparent from the following detailed description of embodiments, when read in conjunction with the exemplary drawings in which:
    • Figure 1 is a schematic perspective view of a mounting element according to a first embodiment of the first object where an extension mechanism is placed in a retracted state;
    • Figure 2 is a view similar to figure 1, where the extension mechanism is moving into an extended state;
    • Figure 3 is a view similar to figure 1, where the extension mechanism is placed in an extended state;
    • Figure 4 is a schematic perspective view of a part of an architectural covering and comprising the mounting element of figure 1;
    • Figure 5 is a schematic partly sectioned perspective view, along arrow V at figure 4;
    • Figure 6 is a schematic exploded perspective view of an extension mechanism belonging to the mounting element of figure 1;
    • Figure 7 is a view, on a larger scale, of detail VII at figure 6;
    • Figure 8 is a view, on a larger scale, of detail VIII at figure 6;
    • Figure 9 is a schematic assembled perspective view of the extension mechanism of figure 6;
    • Figure 10 is a schematic top view of an elongate mounting member belonging to the mounting element of figure 1;
    • Figure 11 is a schematic front view of the elongate mounting member of figure 10;
    • Figure 12 is a schematic sectional view, in a plane including the longitudinal direction, of the extension mechanism of figure 9 placed in a retracted state;
    • Figure 13 is a schematic sectional view, in a plane including the longitudinal direction, of the extension mechanism of figure 9 placed in an extended state;
    • Figure 14 is a schematic sectional view, in a plane parallel to the longitudinal direction, of the extension mechanism of figure 9 placed in an extended state;
    • Figure 15 is a schematic sectional view of part of a mounting element according to a second embodiment of the first object where an extension mechanism is placed in a retracted state;
    • Figure 16 is a schematic sectional view of part of a mounting element according to a third embodiment of the first object where an extension mechanism is placed in a retracted state;
    • Figure 17 is a schematic top perspective view of a part of the mounting element of figure 1 and a supplementary extension mechanism according to a second object placed in an retracted state close to an opposing mounting surface;
    • Figure 18 is a view similar to figure 17, where the supplementary extension mechanism is placed in an extended state;
    • Figure 19 is schematic bottom perspective view of the part of the mounting element of figure 17;
    • Figure 20 is schematic bottom perspective view of the part of the mounting element of figure 18;
    • Figure 21 is a schematic assembled perspective view of the supplementary extension mechanism;
    • Figure 22 is a schematic exploded perspective view of the supplementary extension mechanism of figure 21;
    • Figure 23 is a schematic perspective view of a component belonging to the supplementary extension mechanism of figure 21;
    • Figure 24 is a schematic cross-section, along plane XXIV at figure 23, of the component of figure 23;
    • Figure 25 is a schematic cross-section, along plane XXV at figure 17, where the supplementary extension mechanism is placed in an retracted state close to an opposing mounting surface;
    • Figure 26 is a view similar to figure 25, where the supplementary extension mechanism is heading for its extended state;
    • Figure 27 is a view similar to figure 25, where the supplementary extension mechanism is placed in its extended state;
    • Figure 28 is a schematic top partly exploded perspective view of the mounting element of figure 1 and a battery assembly according to a third object;
    • Figure 29 is a schematic top perspective view of the mounting element of figure 28 showing the battery of figure 28 in an assembled state;
    • Figure 30 is an enlarged view of detail XXX at figure 29;
    • Figure 31 is a schematic top perspective view, along a direction opposite to figure 31, of the detail XXX; and
    • Figure 32 is schematic bottom perspective view of the mounting element of figure 29.
    DETAILED DESCRIPTION
  • In an improvement according to the afore-detailed first object, the actuator enables a user to easily fasten the mounting element supporting a covering between two opposing mounting surfaces. Indeed, the user only needs to grasp the actuator and rotate it to place the extension mechanism in the extended state. With one hand a user can hold the mounting element at its mounting position and, with its other hand, the user can operate the actuator so as to fasten the mounting element between two opposing mounting surfaces.
  • Once fastened, the mounting element achieves a force fit (frictional fit) between two opposing mounting surfaces. The mounting element may alternatively or complementarily achieve a form fit, for example if one of the opposing mounting surfaces has matching female or male reliefs.
  • According to an aspect, the rotation axis is transverse to the longitudinal direction, when viewed in a plane parallel to the longitudinal direction. The rotation axis may form an angle ranging from 80 degrees to 100 degrees with respect to the longitudinal direction. For example, the rotation axis may be orthogonal to the longitudinal direction, in which case the actuator rotates along a plane which includes the longitudinal direction.
  • According to an aspect, the rotation axis may intersect the longitudinal direction. Alternatively, the rotation axis may not intersect the longitudinal direction.
  • The elongate mounting member can withstand the weight of the whole architectural covering and withstand the forces resulting from the extension mechanism being in the extended state. Advantageously, the elongate mounting member is rigid or stiff enough to sustain the architectural covering while spanning the gap between the opposing mounting surfaces.
  • According to an aspect, the elongate mounting member is made of a single component. Thus, the mounting element can form a rail, for example a headrail. Alternatively to this aspect, the elongate mounting member may be made of several parts coupled together.
  • The components of the extension mechanism may be composed of metallic and/or of plastic materials.
  • Throughout the present application the term "along" means either substantially "parallel to" or substantially "collinear with".
  • According to an embodiment, the conversion mechanism may further comprise a compression part configured to transmit a compression force along the longitudinal direction towards the opposing mounting surface.
  • Thus, the translatory movement of conversion mechanism makes it possible to frictionally hold the mounting element between the two opposing mounting surfaces.
  • According to an aspect of this embodiment, the compression part may substantially have a prismatic shape extending along a longitudinal direction. The compression part may comprise an abutment part arranged to receive an end of the biasing part. Alternatively, the compression part may substantially have a cylindrical shape extending along a longitudinal direction.
  • According to an embodiment, the conversion mechanism may comprise a biasing part mechanically connected to the actuator, the biasing part being configured to generate the compression force when the extension mechanism is in the extended state.
  • Thus, such a biasing part can easily generate the compression force by simply being elastically deformed by the actuator.
  • According to an aspect of this embodiment, the biasing part may be elastically deformable and configured to be more stressed when the extension mechanism is in the extended state than in the retracted state so as to generate the compression force.
  • According to an aspect of this embodiment, the biasing part may be selected to have a deformation distance ranging from 10 mm to 100 mm, the deformation distance being measured as the length difference of the biasing part between the extended state and the retracted state.
  • According to an aspect of this embodiment, the compression part and the biasing part may be separate components. Alternatively, the compression part may be integral with the biasing part. For example, the compression part and the biasing part may be made of one-piece, for example composed of an elastomeric material.
  • According to an aspect of this embodiment, the biasing part may comprise at least one compression spring.
  • According to an embodiment, the biasing part may comprise at least two compression springs arranged in parallel and preferably laterally spaced apart from each other.
  • Thus, parallel compression springs make it possible to minimize the overall dimension of the mounting element along the longitudinal direction.
  • The/each compression spring may comprise a helical spring, which can be easily designed and assembled into the extension mechanism and which can have a very long service life.
  • Alternatively, the compression spring may be comprised of an elastomeric material.
  • According to an aspect of this embodiment, the conversion mechanism may further comprise at least one ring arranged between the actuator and the at least one compression spring. Such a ring can be configured to maximize the interface between the actuator and the at least one compression spring. In service, such a ring hence distributes the reaction force of the biasing part on the actuator.
  • According to an embodiment, the actuator may directly actuate the biasing part.
  • Thus, the extension mechanism can be very compact.
  • Alternatively, the actuator may indirectly actuate the biasing part, for example where the extension mechanism comprises at least one intermediary component interposed between the actuator and the biasing part.
  • According to an embodiment, the conversion mechanism may further comprise a connection member mechanically linked:
    1. i) to the elongate mounting member so as to rotate between the retracted state and the extended state, and
    2. ii) to the actuator so as to guide the actuator in rotation.
  • Thus, such a connection member can guide in rotation the actuator and facilitate the implementation of the actuator into the extension mechanism.
  • According to an embodiment, the actuator and the connection member may have substantially elongated shapes, the actuator and the connection member being substantially parallel when the extension mechanism is in the extended state.
  • Thus, such elongated actuator and connection member help keep the extension mechanism compact when viewed in a plane perpendicular to the longitudinal direction.
  • According to an aspect of this embodiment, the connection member may be a rod.
  • According to an embodiment, the connection member may be hinged to the elongate mounting member so as to rotate about a connection axis which is orthogonal to the longitudinal direction.
  • Thus, such a hinged connection member can easily be moved between the retracted state and the extended state.
  • Alternatively, the connection member may be linked to the elongate mounting member so as to move, concomitantly to its rotation, in translation along the longitudinal direction.
  • According to an embodiment, the connection member and the actuator may be linked by means of at least: i) a linkage pin and ii) a curvilinear bearing portion arranged to guide the at least one linkage pin.
  • Thus, such linkage pin and curvilinear bearing portion form an inexpensive yet accurate rotatable link between the connection member and the actuator.
  • According to an aspect of this embodiment, the connection member and the actuator may be linked by means of two linkage pins and two curvilinear bearing portions arranged to respectively guide the linkage pins.
  • According to an aspect of this embodiment, the curvilinear bearing portion may have the form of a circular arc. For example, the circular arc may extend over an angle ranging from 45 degrees to 120 degrees.
  • According to an embodiment, the linkage pin may protrude on a lateral face of the connection member, and the curvilinear bearing portion may extend on a side face of the actuator.
  • Alternatively, the linkage pin may protrude on a side face of the actuator and the curvilinear bearing portion may extend on a lateral face of the connection member.
  • According to an aspect, the extension mechanism may be arranged in the extended state such that the actuator is locked against its rotation from the extended state to the retracted state.
  • According to an embodiment, the actuator, the biasing part, and the connection member may be arranged so that the biasing part exerts a locking torque on the actuator about the connection axis, said locking torque being oriented counter the rotation direction of the actuator from the extended state to the retracted state.
  • Thus, such an arrangement prevents the extension mechanism from unwittingly returning into the retracted state once it has been placed by the user in the extended state.
  • According to an aspect of this embodiment, the actuator, the biasing part, and the connection member may be arranged such that:
    • the mechanical link between the actuator and the connection member is located on the other side,
    • with respect to the mechanical link between the actuator and the connection member when the extension mechanism is in the extended state,
    • of a segment connecting: a) the center of rotation of the connection member relative to the elongate mounting member, to b) the point of the actuator where is exerted the resultant of the reaction force generated by the biasing part.
  • According to an embodiment, the actuator may be at least partly arranged between the connection member and the biasing part.
  • According to an aspect of this embodiment, the guide may be configured to guide the compression part in translation along the longitudinal direction.
  • According to an embodiment, the actuator may have a pushing portion arranged to push the conversion mechanism, the pushing portion being moveable in translation along the longitudinal direction and in rotation.
  • According to an embodiment, the conversion mechanism may further comprise a guide having at least one guiding slot which extends at least partly along the longitudinal direction, and the actuator further may comprise at least one pin configured to slidingly and rotatably move in the at least one guiding slot.
  • Thus, such pin and guiding slot enable translation and rotation of the actuator.
  • Throughout the present application the adjective "longitudinal" characterizes an element, for example the guiding slot, which extends substantially parallel to the longitudinal direction along which the elongate mounting member is elongated.
  • According to an aspect of this embodiment, the guide may have two guiding slots arranged on two sides of the guide, and the actuator may have two pins configured to slidingly and rotatably move respectively in the two guiding slots.
  • According to an aspect of this embodiment, the at least one guiding slot fully extends along the longitudinal direction.
  • According to an embodiment, the actuator may be configured to be manually movable. Thus, a user can move the actuator manually in order to operate the extension mechanism between the retracted state and the extended state. According to an aspect, the actuator may comprise a lever. Such a lever may be formed by an elongate component, like an elongate profile. As the actuator is rotatable with respect to the elongate mounting member, the lever provides a lever arm to operate the conversion mechanism.
  • According to an aspect of this embodiment, the actuator may comprise a control portion which is arranged for an actuation of the actuator.
  • Thus, such a control portion makes it easy for a user to grasp and operate the actuator.
  • According to an aspect of this embodiment, the control portion may be distant from the pushing portion. For example, the pushing portion may be located on one end of the actuator whereas the control portion may be located in a median region of the actuator or on the other end of the actuator.
  • According to an embodiment, the actuator may protrude from the elongate mounting member when the extension mechanism is in the retracted state.
  • Thus, a user can easily reach for the actuator in order to place the extension mechanism in its extended state.
  • According to an embodiment, the connection member may herein comprise a rod.
  • According to an embodiment, the mounting element may further comprise a friction member arranged on an outer end portion of the extension mechanism so as to bear against the opposing mounting surfaces when the extension mechanism is in the extended state, the friction member being mechanically linked to the conversion mechanism such that the friction member converts a part of the translatory movement into an upwardly-oriented friction force when the friction member bears against the two opposing mounting surfaces.
  • Thus, such a friction member makes it possible to fasten the mounting element between two opposing mounting surfaces, because of the upwardly-oriented friction force.
  • According to an aspect of this embodiment, the friction member may be arranged to protrude from the outer end portion of the extension mechanism when the extension mechanism is in the extended state. However, depending on the play between the opposing mounting surfaces and the mounting element, the friction member may protrude only on a small scale.
  • According to an aspect of this embodiment, the friction member may be composed of at least one friction material selected within the group consisting of elastomers and plastics. Alternatively to this aspect, the friction member may be composed of another material provided the friction member has a surface roughness selected to convert the translatory movement into the upwardly-oriented friction force. The friction member may be elastic or resilient due to its material and/or due to its shape.
  • Alternatively to this embodiment, a friction pad can already be secured to the opposing mounting surfaces, for example by means of double-sided tape or glue, in which case the mounting element does not need to comprise a friction member.
  • According to an aspect of this embodiment, the friction member may be integral with the compression part. According to an aspect of this embodiment, the friction member and the compression part may be made as a single piece.
  • According to an aspect of this embodiment, the friction member may be secured directly to the compression part. Alternatively to this aspect, at least one element may be interposed between the friction member and the compression part, in which case the friction member may be secured indirectly to the compression part.
  • Alternatively to this embodiment, the friction member and the compression part may be separate components.
  • According to an embodiment, the elongate mounting member may comprise a housing part configured to substantially accommodate the extension mechanism in the extended state.
  • Thus, such a housing part enables design of a compact mounting element. Furthermore, such a housing part protects the actuator and the connection member.
  • The elongate mounting member may advantageously be configured to hold all the components of the architectural covering. In particular, the elongate mounting member may hold the extension mechanism, a covering member, and an electric motor for winding and unwinding the covering member.
  • According to an aspect of this embodiment, the housing part may be configured to fully accommodate the extension mechanism in the extended state.
  • According to an aspect, the mounting element may further comprise a supplementary friction member arranged on an end portion of the elongate mounting member opposite the extension mechanism so as to bear against the opposing mounting surfaces, the supplementary friction member being configured to convert a part of the translatory movement into an upwardly-oriented friction force when the supplementary friction member bears against the opposing mounting surfaces.
  • According to an aspect, the elongate mounting member may comprise mounting clips arranged to help mount, for example, a horizontal blind or a roman blind onto the mounting element so as to install an architectural covering.
  • Thus, the actuator enables a user to easily fasten the mounting element between two opposing mounting surfaces. Indeed, the user only needs to impart the force to the actuator so as to place the extension mechanism in the extended state. With one hand a user can hold the mounting element at its mounting position and, with its other hand, the user can impart the force to the actuator such that the extension mechanism abuts one of the opposing surfaces, so as to fasten the mounting element in the architectural recess.
  • Furthermore, another object is an architectural covering comprising a covering member for covering an architectural opening, wherein the architectural covering is equipped with a mounting element according to the present disclosure. Thus, such an architectural covering can be quickly and reliably installed by hand, hence without tool, within an architectural recess having two opposing mounting surfaces.
  • In an improvement according to the afore-detailed second object, the supplementary extension mechanism may comprise a supplementary compression part configured to transmit a compression force along the longitudinal direction towards the opposing mounting surface. Such a compression force helps hold the mounting element, because it helps generate a friction force against the opposing mounting surfaces.
  • According to an aspect, the supplementary compression part may have a prismatic shape extending along the longitudinal direction. In particular, the translatory movement of the supplementary extension mechanism may develop along the longitudinal direction.
  • According to an aspect, the supplementary conversion mechanism may be configured to cooperate with the supplementary actuator. In a particular aspect, the supplementary conversion mechanism may comprise a driven portion, which is fast in translation with the supplementary sliding portion, and several driving surfaces which are fast in rotation with the supplementary actuator and which are configured to cooperate selectively with driven portion.
  • According to a further aspect, the driven portion may have a semicylindrical male cross-section, the shape of which is substantially complementary to each one of the driving surfaces, such that each one of the driving surfaces may selectively drive the driven portion in translation along a longitudinal direction. In a particular aspect, the driving surfaces may be arranged such that each one of the driving surfaces extends substantially perpendicularly to its adjacent driving surfaces.
  • According to a further aspect, the supplementary actuator may have an actuating portion configured to actuate the supplementary actuator. In a particular aspect, the actuating portion may have a slot configured to receive a tool, for example a screwdriver, such that a user may exert a torque on the tool to impart rotation to the supplementary actuator about the supplementary rotation axis, selectively clockwise or counterclockwise. Advantageously, the elongate mounting member may have an opening, e.g. a hole, configured to make the slot accessible to a tool from outside, say from under, the elongate mounting member.
  • According to a further aspect, the supplementary actuator is configured such that the slot has a geometric center substantially located on the rotation axis, the driving surfaces being located at different respective distances from the geometric center. As a result, when the driven portion bears against a given driving surface, the outer end of the supplementary compression part is further from the opposing mounting surface than when the driven portion bears against another driving surface.
  • According to an aspect, the supplementary actuator may comprise a ratchet wheel having several notches on its periphery, the supplementary conversion mechanism may comprise at least one pawl, e.g. two pawls, configured to fall within the notches, the ratchet wheel and the or each pawl being configured to cooperate such that the or each pawl may fall into a respective notch, so as to prevent rotation of the supplementary actuator.
  • In a particular aspect, the or each pawl may selectively release the ratchet wheel, such that the supplementary actuator may rotate about the supplementary rotation axis. In a particular aspect, the ratchet wheel and the or each pawl are configured so as to define four discrete, stable positions of the supplementary actuator about the supplementary rotation axis, the discrete, stable positions being defined such that two successive driving surfaces are separated by a 90 degree angle.
  • In an improvement according to the afore-detailed third object, the rechargeable battery pack may be comprised of several batteries which may be arranged in a series, parallel or a mixture thereof.
  • According to an aspect, the rechargeable battery pack may be secured to elongate mounting member so as to prevent the user from removing the rechargeable battery pack out of the elongate mounting member. Advantageously, the battery assembly may comprise securing elements configured to secure the rechargeable battery pack to the elongate mounting member in a non-detachable manner. In a particular aspect, the elongate mounting member may have a housing space configured to accommodate totally or partially the rechargeable battery pack.
  • According to an aspect, the elongate mounting member may be configured so that the charger plug is accessible from outside the elongate mounting member. Advantageously, the elongate mounting member may comprise a hole for accessing the charger plug.
  • Thus, when the rechargeable battery pack needs to be recharged, the user may: i) either plug in a charger while the mounting element remains mounted, ii) or remove the whole mounting element and displace it to get the rechargeable battery pack recharged at a dedicated charging installation.
  • Some embodiments will now be described with reference to the exemplary drawings, in which like reference signs refer to like parts or features.
  • Figures 1 to 5 depict a mounting element 101 for mounting an architectural covering 200 in an architectural recess 300 which is formed by a window opening frame having two opposing mounting surfaces 302 and 304. The architectural covering 200 comprises the mounting element 101. The mounting element 101 comprises an elongate mounting member 102 and an extension mechanism 104.
  • The elongate mounting member 102 is configured to mount the architectural covering 200 between opposing mounting surfaces 302 and 304. In the illustrated embodiment, elongate mounting member 102 holds all the components of architectural covering 200, in particular the extension mechanism 104, a covering member 202 and a not shown electric motor for winding and unwinding the covering member 202.
  • Elongate mounting member 102 is elongated along a longitudinal direction X102 extending across architectural recess 300, such that elongate mounting member 102 substantially spans the distance between the opposing mounting surfaces 302 and 304, hence the length of architectural recess 300. Hence, elongate mounting member 102 extends between the two opposing mounting surfaces 302 and 304.
  • In the illustrated embodiment, elongate mounting member 102 is made of a single component which has an overall prismatic shape extruded along longitudinal direction X102. Thus, mounting element 101 can form a rail, for example a headrail. Alternatively, the elongate mounting member may be made of several parts attached together. Figure 11 depicts an exemplary cross-section of elongate mounting member 102. The exemplary cross-section of elongate mounting member 102 substantially has the form of a rectangle with stiffening webs extending along longitudinal direction X102. Throughout the present disclosure, the term "along" means either "parallel to" or "collinear with".
  • In the example of figures 1 to 14 , mounting element 101 forms a headrail. Elongate mounting member 102 may be stiff enough to withstand the weight of the whole architectural covering 200 and the forces resulting from extension mechanism 104 being in the extended state. Elongate mounting member 102 may be composed of extruded aluminum.
  • As depicted in figures 1 and 4 , mounting element 101 further comprises two flanges 105.1 and 105.2 which are configured to hold some of the components of architectural covering 200, like covering member 202. Flanges 105.1 and 105.2 are respectively attached to the ends of elongate mounting member 102.
  • The extension mechanism 104 may be arranged at an end 106 of the elongate mounting member 102, as shown in figures 2 to 4 . Extension mechanism 104 may be operable between: i) a retracted state, as shown in figures 1 and 12 , and ii) an extended state, as shown in figures 3 and 13 . When the extension mechanism 104 is in the extended state, the mounting element 101 can be fastened to the opposing mounting surfaces 302 and 304, as shown in figure 13 , so as to mount architectural covering 200 between opposing mounting surfaces 302 and 304.
  • When the extension mechanism 104 is in the retracted state (figure 12 ), the mounting element 101 is in a release configuration. When the extension mechanism 104 is in the extended state (figure 13 ), the mounting element 101 is in a fastening configuration.
  • As shown in figures 6 , 7 and 8 , the extension mechanism 104 may comprise an actuator 110 and a conversion mechanism 112. Extension mechanism 104 may further comprise a compression part 114, as depicted in figures 5 , 6 , 12, and 13 . The components of extension mechanism 104 may be composed of metallic and/or of plastic materials.
  • The actuator 110 may protrude from elongate mounting member 102 when the extension mechanism 104 is in the retracted state (figures 1 and 12 ). The actuator 110 may be rotatable (compare figures 1 and 3 ) about a rotation axis Y110 which is perpendicular to the longitudinal direction X102. In the example of figures 12 and 13 , the angle of rotation of the actuator 110 about rotation axis Y110 is about 40 degrees between the retracted and extended states of the extension mechanism 104. Rotation axis Y110 is herein transverse to longitudinal direction X102 when viewed in a plane parallel to longitudinal direction X102.
  • Rotation axis Y110 may form an angle ranging from 80 degrees to 100 degrees with the longitudinal direction. For example, rotation axis Y110 is herein orthogonal to longitudinal direction X102, such that actuator 110 rotates along a plane which includes longitudinal direction X102. The rotation axis may be intersect the longitudinal direction X102. Alternatively, the rotation axis may not intersect the longitudinal direction X102.
  • As shown in figures 7 , 9 , and 12 , actuator 110 comprises a control portion 110.1 which is arranged for manually actuating actuator 110. In order to operate actuator 110 a user can grasp the control portion 110.1 and then push the actuator 110 as a lever.
  • The actuator 110 may rotate along an actuator plane which includes the longitudinal direction X102 and which is vertical when extension mechanism 104 is in the extended state. In the example of figures 1 to 12 , the rotation axis Y110 is orthogonal to the longitudinal direction X102. The actuator plane corresponds to the plane of figure 12 .
  • The conversion mechanism 112 is configured to convert a rotation of actuator 110 into a translatory movement of rotation axis Y110 along the longitudinal direction X102 from the retracted state to the extended state and vice versa. In the example of figures 1 to 14 , the translatory movement of extension mechanism 104 develops along the longitudinal direction X102. The extension mechanism 104 is arranged to abut one of the opposing mounting surfaces 302 and 304 in the extended state when the mounting element 101 is mounted between the opposing mounting surfaces 302 and 304.
  • As visible when comparing figures 12 and 13 , the compression part 114 of the extension mechanism 104 translates towards opposing mounting surface 302 (to the right). In other words, extension mechanism 104 extends in translation (X102) towards opposing mounting surface 302 when the extension mechanism 104 is moved from its retracted state (figure 12 ) to its extended state (figure 13 ).
  • As depicted in figures 1 and 12 , actuator 110 is displaceable, for example manually, by a force F110 having a component F110Z which is orthogonal to the longitudinal direction X102. In the example of figure 12 , force F110 also has a component F110X which is parallel to the longitudinal direction X12.
  • Conversion mechanism 112 is configured to convert the displacement of the actuator 110, actually a rotation about rotation axis Y110, due to orthogonal component F110Z, into a translatory movement of rotation axis Y110 towards opposing mounting surface 302 and from the retracted state to the extended state. In its extended state the extension mechanism 104 abuts one of the opposing mounting surfaces 302 and 304 when the mounting element 101 is mounted between the opposing mounting surfaces 302 and 304.
  • Compression part 114 is configured to transmit a compression force F along the longitudinal direction X102 towards the opposing mounting surface 302, as shown in figure 13 . Compression part 114 may substantially have a prismatic shape extending along longitudinal direction X102. Alternatively, the compression part may substantially have a cylindrical shape extending along longitudinal direction.
  • When the architectural covering 200 is in its service position, the compression force F may be oriented substantially horizontally and towards the architectural recess 300, more particularly towards opposing mounting surface 302. The compression force F makes it possible to hold mounting element 101 in the architectural recess 300 between opposing mounting surfaces 302 and 304, because compression force F helps generate a friction force, as described further below.
  • The conversion mechanism 112 comprises a biasing part 116 which is mechanically coupled with actuator 110. Biasing part 116 may be configured to generate the compression force F when the extension mechanism 104 is in the extended state (figure 13 ). In the embodiment of figures 1 to 14 , biasing part 116 is located on a longitudinal end of mounting element 101. The actuator 110 may directly actuate biasing part 116. Thus, extension mechanism 101 can be very compact. Alternatively, the actuator may indirectly actuate the biasing part, for example where the extension mechanism comprises at least one intermediary component interposed between the actuator and the biasing part.
  • Biasing part 116 may be a component distinct or separate from compression part 114. Alternatively, the compression part may be integral with the biasing part and, for example, be made one-piece and composed of an elastomeric material.
  • In the illustrated embodiment, compression part 114 comprises an abutment part 115 which is arranged to receive an end of the biasing part 116. Biasing part 116 may comprise at least one compression spring. In the illustrated embodiment, biasing part 116 comprises two compression springs 116.1 and 116.2, which are herein arranged in parallel and laterally spaced apart from each other. Thus, the parallel compression springs 116.1 and 116.2 make it possible to minimize the overall dimension of mounting element 101 along longitudinal direction X102.
  • Each compression spring 116.1 or 116.2 may be comprised of a helical spring, which can be easily designed and assembled into extension mechanism 101 and which can have a very long service life. Alternatively, the compression spring may be comprised of an elastomeric material. The abutment part 115 has two cylindrical protrusions 115.1 and 115.2 which are configured to hold respectively the outer ends of springs 116.1 and 116.2.
  • According to a not shown aspect, the conversion mechanism may further comprise at least one ring arranged between the actuator and the at least one compression spring. Such a ring can be configured to maximize the interface between the actuator and the at least one compression spring. In service, such a ring can hence distribute the reaction force of the biasing part on the actuator.
  • Biasing part 116 may be elastically deformable and configured to be more stressed when extension mechanism 104 is in the extended state (figures 3 and 13 ) than in the retracted state (figures 1 and 12 ) so as to generate the compression force F. The elastic deformation of biasing part 116 results from the length difference of the biasing part 116 between the extended state (figure 13 ) and the retracted state (figure 12 ). The biasing part may be selected to have a deformation distance ranging from 10 mm to 100 mm, for example of 50 mm, the deformation distance being measured as the length difference of the biasing part 116 between the extended state and the retracted state of extension mechanism 104.
  • Conversion mechanism 112 may further comprise a connection member 120 which is mechanically linked to the elongate mounting member 102 so as to rotate between the retracted state and the extended state, and to the actuator 110 so as to guide actuator 110 in rotation. Connection member 120 is intended to guide in rotation actuator 110 and facilitate its implementation into extension mechanism 104.
  • On the one hand, connection member 120 may be hinged to the elongate mounting member 102 so as to rotate about a connection axis Y120 which is orthogonal to the longitudinal direction X102, when extension mechanism 104 is displaced between the retracted state (figures 1 and 12 ) and the extended state (figures 3 and 13 ). In the example of figures 12 and 13 , the angle of rotation of the connection member 120 about connection axis Y120 is about 30 degrees between the retracted and extended states of the extension mechanism 104. Thus, the connection member can easily be moved between the retracted state and the extended state. Alternatively (not shown), the connection member may be linked to the elongate mounting member so as to move, concomitantly to its rotation, in translation along the longitudinal direction.
  • Mounting element 101 further comprises a hinge 121 which is configured to swingably link connection member 120 to elongate mounting member 102. Connection member 120 can easily be moved between the retracted state and the extended state. The hinge 121 may be fastened to the elongate mounting member 102, such that hinge 121 does not translate relative to elongate mounting member 102.
  • On the other hand, the connection member 120 is linked to actuator 110 so as to guide actuator 110 in rotation, for example about the rotation axis Y110.
  • Connection member 120 and actuator 110 may be linked by means of at least: i) a linkage pin and ii) a curvilinear bearing portion arranged to guide the at least one linkage pin. Such linkage pin and curvilinear bearing portion form an inexpensive yet accurate rotatable link between the connection member and the actuator. The curvilinear bearing portion may have the form of a circular arc which extends, for example, over an angle ranging from 45 degrees to 120 degrees.
  • In the example of figures 1 to 14 , connection member 120 is linked to actuator 110 by means of two linkage pins 122.1 and 122.2 respectively cooperating with two curvilinear bearing portions 124.1 and 124.2. Curvilinear bearing portions 124.1 and 124.2 are arranged to guide respectively linkage pins 122.1 and 122.2. Each linkage pin 122.1 or 122.2 protrudes on a respective lateral face of connection member 120. Each curvilinear bearing portion 124 extends on a respective side face of actuator 110. Each curvilinear bearing portion 124.1 or 124.2 may have the form of a circular arc which extends over an angle of approximately 60 degrees. Alternatively (not shown), the or each linkage pin may protrude on a side face of the actuator and the curvilinear bearing portion may extend on a lateral face of the connection member.
  • In the example of figures 1 to 14 , the actuator 110 is configured to be manually movable. The actuator 110 and connection member 120 have substantially elongated shapes. The actuator 110 may herein form a lever and connection member 120 may herein be a rod. In the illustrated embodiment, actuator 110 comprises a control portion 110.1 which has a U-shaped cross-section so as to accommodate a substantial portion of connection member 120. Thus, a user can move the actuator 110 manually in order to operate the extension mechanism 104 between the retracted state (figure 12) and the extended state (figure 13). As the actuator 110 is rotatable with respect to elongate mounting member 102, actuator 110 provides a lever arm to operate conversion mechanism 112.
  • The actuator 110 and connection member 120 are substantially parallel when the extension mechanism 104 is placed in the extended state, as shown in figures 13 and 14 . Due to their elongated shapes and to their substantially parallel arrangement, actuator 110 and connection member 120 keep extension mechanism 104 very compact when viewed in a plane perpendicular to the longitudinal direction X102.
  • In the example of figures 1 to 14 , elongate mounting member 102 comprises a housing part 126 which fully accommodates the extension mechanism 104 in its extended state (figures 3 and 13 ). Housing part 126 thus protects the actuator 110 and the connection member 120 and mounting element 101 is compact when extension mechanism 104 is in its extended state, as no component protrudes from elongate mounting member 102.
  • As best shown in figures 5 and 7 , the actuator 110 and the connection member 120 have respective outer side walls and respective inner stiffening webs with hollow regions therebetween. Such a design makes it possible to maximize the ratio of the mechanical strength over the weight respectively for the actuator 110 and for the connection member 120.
  • As shown in figure 10 , housing part 126 has an opening 127 which is configured for the passage of part of the actuator 110 and part of the connection member 120. When the extension mechanism is in the extended state (figures 3 and 13 ) a user can access the actuator 110 through opening 127. When extension mechanism 104 is in the retracted state (figures 1 and 12 ), actuator 110 may protrude from the elongate mounting member 102 through opening 127. Thus, a user can easily reach for actuator 110 and push it as a lever in order to place extension mechanism 104 in its extended state.
  • The actuator 110 may be at least partly arranged between the connection member 120 and the biasing part 116. The actuator 110 may be interposed between connection member 120 and biasing part 116.
  • In the illustrated embodiment, actuator 110 has a pushing portion 110.2 which is arranged to push conversion mechanism 112, herein compression part 114, via biasing part 116. Put another way, pushing portion 110.2 indirectly pushes conversion mechanism 112, herein compression part 114. Pushing portion 110.2 may be moveable in translation along longitudinal direction X102 and in rotation, herein about rotation axis Y110, hence orthogonally to longitudinal direction X102. The translatory movement of rotation axis Y110 is transmitted by pushing portion 110.2.
  • Relative to the actuator 110, pushing portion 110.2 is distant from control portion 110.1. Pushing portion 110.2 may be located on one end of actuator 110 whereas control portion 110.1 may be located on the opposite end of actuator 110 or else in a median region of the actuator 110.
  • In the illustrated embodiment, the conversion mechanism 112 comprises a guide 130 which is configured to guide actuator 110 both in translation and in rotation, as hereinafter described.
  • The guide may have at least one guiding slot which extends at least partly along the longitudinal direction. The actuator may further comprise at least one pin configured to slidingly and rotatably move in the at least one guiding slot. Such pin and guiding slot enable translation and rotation of the actuator.
  • As shown in figure 8 or 9 , guide 130 has two guiding slots 130.1 and 130.2 which are arranged on two sides of guide 130. Both guiding slots 130.1 and 130.2 extend parallel to longitudinal direction X102. As a complementary arrangement, as shown in figures 6 , 7 and 9 , actuator 110 may further comprise two pins 132.1 and 132.2 which are configured to slidingly and rotatably move respectively in guiding slots 130.1 and 130.2. Thus, pins 132.1 and 132.2 and guiding slots 130.1 and 130.2 enable the actuator 110 to translate parallel to longitudinal direction X102 and to rotate herein about rotation axis Y110.
  • The guide 130 herein has two grooves 130.3 and 130.4 which are respectively configured for the introduction of pins 132.1 and 132.2 up into the guiding slots 130.1 and 130.2 when an operator assembles the extension mechanism 104.
  • Besides, guide 130 also guides and holds compression part 114 along longitudinal direction X102. Guide 130 is configured to substantially accommodate compression part 114.
  • In the illustrated embodiment, mounting element 101 further comprises a friction member 134 which is arranged on an outer end portion 104.1 of the extension mechanism 104 so as to bear against the architectural recess 300, in this case against opposing mounting surface 302, when extension mechanism 104 is in the extended state (figures 3 and 13 ).
  • Friction member 134 may be mechanically linked to conversion mechanism 112, herein to compression part 114, such that friction member 134 converts a part of the translatory displacement of rotation axis Y110 along the longitudinal direction X102 into an upwardly-oriented friction force F134, as shown in figure 13, when friction member 134 abuts opposing mounting surface 302. Thus, friction member 134 makes it possible to fasten mounting element 101 in architectural recess 300, hence to mount architectural covering 200 between opposing mounting surfaces 302 and 304, because of the upwardly-oriented friction force F134. Upwardly-oriented friction force F134 results from the friction coefficient. The friction member 134 may belong to compression part 114.
  • In the illustrated embodiment, friction member 134 is arranged to protrude, on a small scale, from the outer end portion 104.1 of the extension mechanism 104 when extension mechanism 104 is placed in the extended state. Depending on the play between architectural recess 300 and mounting element 101, friction member 134 may protrude only on a small scale from outer end portion 104.1. In the illustrated embodiment, friction member 134 is integral with compression part 114. The friction member and the compression part may be made as a single piece.
  • Alternatively, the friction member may be a component separate from the compression part. The friction member may be secured to the compression part directly or indirectly, i.e. without or with at least one element interposed between the friction member and the compression part.
  • In the illustrated embodiment, friction member 134 is composed of at least one friction material selected within the group consisting of elastomeric materials and plastics. Alternatively, the friction member may be composed of another material provided the friction member has a surface roughness selected to convert the translatory movement into the upwardly-oriented friction force. The friction member may be elastic or resilient due to its material and/or due to its shape.
  • At the end (left end) of elongate mounting member 102 opposite the extension mechanism 104, the mounting element 101 may further comprise a supplementary friction member. The supplementary friction member may be substantially similar to friction member 134. The supplementary friction member may be arranged so as to bear against architectural recess 300, in this case against opposing mounting surface 304.
  • The supplementary friction member may also be configured to convert a part of the translatory movement of rotation axis Y110 into an upwardly-oriented friction force when the supplementary friction member bears against opposing mounting surfaces 302 and 304. This left-hand part of translatory movement of rotation axis Y110 imparts a portion of the compression force F to the supplementary friction member via the stiff portions of elongate mounting member 102. Mounting element 101 may further comprise a supplementary holder which is configured to hold the supplementary friction member. The supplementary friction member is arranged to protrude from the supplementary holder. The mounting element may further comprise a supplementary extension mechanism which is similar or identical to extension mechanism 104 and which is arranged at the other end of the elongate mounting member opposite the end at which is arranged extension mechanism 104, as shown in figures 17 to 27 .
  • Alternatively or complementarily to the presence of a friction member, a friction pad can already be secured to the architectural recess, for example by means of double-sided tape or glue.
  • As shown in figure 14 , in order to prevent the extension mechanism 104 from unwittingly returning into the retracted state, extension mechanism 104 is arranged in the extended state (figure 14 ) such that actuator 110 is locked against its rotation from the extended state to the retracted state.
  • In the example of figure 14 , actuator 110, biasing part 116, and connection member 120 may be arranged so that the biasing part 116 exerts a locking torque T116 on actuator 110 about connection axis Y120. Locking torque T116 is oriented counter a rotation direction R110 of actuator 110 from the extended state to the retracted state. Thus, locking torque T116 prevents an unexpected self-retraction of the extension mechanism 104. In other words, locking torque T116 can prevent the extension mechanism 104 from unwittingly returning into the retracted state once it has been placed by the user in the extended state.
  • In order to generate locking torque T116, actuator 110, biasing part 116 and connection member 120 may be arranged such that:
    • the mechanical link 110.120 between actuator 110 and connection member 120 is located on the other side,
    • with respect to the mechanical link 110.120 between actuator 110 and connection member 120 when extension mechanism 104 is in the extended state (figure 14 ),
    • of a segment connecting: a) the center of rotation C121 of connection member 120 relative to elongate mounting member 102, to b) the point 110.116 of actuator 110 where is exerted the resultant of the reaction force F116 generated by biasing part 116.
  • When the mounting element 101 is in service, the extension mechanism 104 is first in its retracted state. A user can, with one hand, hold the mounting element 101 at its mounting position between opposing mounting surfaces 302 and 304. With its other hand, the user can grasp actuator 110, push it as a lever to impart the force F110 to actuator 110 and rotate it herein about rotation axis Y110.
  • The connection member 120 is driven in rotation about connection direction Y120 by actuator 110 via linkage pins 122.1 and 122.2 guided by the curvilinear bearing portions 124.1 and 124.2.
  • Pushing portion 110.2 of actuator 110 may rotate about rotation axis Y110 and may slide along longitudinal direction X102 towards opposing mounting surface 302. While sliding, actuator 110 compresses biasing part 116. Biasing part 116 in turn drives compression part 114 in translation along longitudinal direction X102 towards opposing mounting surface 302.
  • Once friction member 134 has covered a gap G between extension mechanism 104 and opposing mounting surface 302, friction member 34 bears against the architectural recess 300. Then, compression part 114 starts to transmit a compression force F to opposing mounting surface 302. Hence, friction member 134 starts to convert a part of the translatory movement into the upwardly-oriented friction force F134.
  • When extension mechanism 104 reaches its extended state, biasing part 116 fully generates compression force F. The length difference of biasing part 116 as compared to the retracted state is depicted in figures 12 and 13 with reference sign LD116. Friction member 134 fully produces the upwardly-oriented friction force F134, which enables the mounting element 101 to hold in place the architectural covering 200. The supplementary friction member likewise produces an upwardly-oriented friction force. Thus, the mounting element 101 is force-fitted between opposing mounting surfaces 302 and 304.
  • Since actuator 110 is locked, as afore-detailed, against its rotation direction R110 from the extended state to the retracted state, the extension mechanism 104 steadily remains in the extended state. The architectural covering 200 thereby remains in its service position.
  • As a summary, the user only needs to grasp actuator 110, push it as a lever and rotate it in order to impart force F110 to actuator 110 so as to place extension mechanism 104 in the extended state. With one hand a user can hold mounting element 101 at its mounting position and, with its other hand, the user can grasp actuator 110, push it as a lever and rotate it in order to operate, hence impart the force F110 to, the actuator 110 so as to fasten mounting element 101 to architectural recess 300.
  • Thus, actuator 110 enables a user to easily fasten mounting element 101 between opposing mounting surfaces 302 and 304, herein in architectural recess 300. Such architectural covering 200 can hence be quickly and reliably installed by hand, hence without tool. Once fastened, mounting element 101 achieves a force fit (frictional fit) between opposing mounting surfaces 302 and 304. Mounting element 101 may alternatively or complementarily achieve a form fit, for example if one or both of opposing mounting surfaces 302 and 304 has matching female or male reliefs (not shown).
  • Vice versa, in case the user wants to detach or unfasten the architectural covering 200 from the architectural recess 300, the user can access the actuator 110 through opening 127. Then the user draws the actuator 110 as a lever so as to rotate it along rotation direction R110. The connection member 120 rotates as well and guides the actuator from the extended state to the retracted state. Thus, such an architectural covering can be quickly and reliably installed by hand, hence without tool between opposing mounting surfaces.
  • While the actuator 110 rotates, biasing part 116 relaxes and eventually stops generating the compression force F and conversion mechanism 112 stops providing the translatory movement to rotation axis Y110. Friction member 134 and the supplementary friction member stop producing upwardly-oriented friction forces.
  • By the time the extension mechanism 104 reaches its retracted state, the mounting element 1 no longer holds the architectural covering 200, which the user can then hold by one hand and remove from the architectural recess 300.
  • Thus, the actuator enables a user to easily fasten or unfasten the mounting element between opposing mounting surfaces. Indeed, the user only needs to impart the force to the actuator so as to place the extension mechanism in the extended state. With one hand a user can hold the mounting element at its mounting position and, with its other hand, the user can push the lever-like actuator to impart the force driving the conversion mechanism, so as to fasten the mounting element to the architectural recess.
  • Figure 15 illustrates a second embodiment of a mounting element 101. Inasmuch as the mounting element 101 of figure 15 is similar to the mounting element 101 of figures 1 to 14 , the afore-detailed description may be applied to the mounting element 101 of figure 15 , but for the hereinafter mentioned noticeable differences. An element of mounting element 101 of figure 15 having a structure or function identical to an element of the mounting element 101 of figures 1 to 14 is given the same reference sign.
  • Like the mounting element 101 of figures 1 to 14 , the mounting element 101 of figure 15 comprises an extension mechanism 104, an actuator member 110, a conversion mechanism 112, a compression part 114, a biasing part 116, a connection member 120, a guide 130, and a friction member 134 and a supplementary friction member.
  • The mounting element 1 of figure 15 mainly differs from the mounting element 101 of figures 1 to 14 in that the compression part 114 and the biasing part 116 are reversedly arranged with respect to figures 1 to 14 . The mounting element 101 of figure 15 also differs from the mounting element 101 of figures 1 to 14 in that the actuator 110 and the connection member 120 are reversedly arranged with respect to figures 1 to 14 .
  • In service, actuator 110 directly pushes compression part 114 in translation towards opposing mounting surface 302, whereas compression part 114 pushes biasing part 116 in translation. Biasing part 116 imparts a compression force to friction member 134 and to the supplementary friction member, which in turn produce upwardly-oriented forces to hold mounting element 101.
  • Figure 16 illustrates a third embodiment of a mounting element 101. Inasmuch as the mounting element 101 of figure 16 is similar to the mounting element 101 of figures 1 to 14 , the afore-detailed description may be applied to the mounting element 101 of figure 16 , but for the hereinafter mentioned noticeable differences. An element of mounting element 101 of figure 16 having a structure or function identical to an element of the mounting element 101 of figures 1 to 14 is given the same reference sign.
  • Like the mounting element 101 of figures 1 to 14 , the mounting element 101 of figure 16 may comprise an extension mechanism 104, an actuator member 110, a conversion mechanism 112, a compression part 114, a biasing part 116, a connection member 120, a guide 130, and a friction member 134 and a supplementary friction member.
  • The mounting element 1 of figure 16 mainly differs from the mounting element 101 of figures 1 to 14 in that the biasing part 116 is arranged between actuator 110 and connection member 120.
  • Figures 17 to 27 illustrate an independent object having a supplementary extension mechanism 154 which belongs to mounting element 101 and which is arranged at the opposite end of the elongate mounting member 102 with respect to the above described extension mechanism 104. Thus, the supplementary extension mechanism 154 is located near the flange 105.2. The elongate mounting member 102 thus extends from extension mechanism 104 to supplementary extension mechanism 154.
  • In the illustrated embodiment, the supplementary extension mechanism 154 has several functional features similar to the extension mechanism 104. A component of supplementary extension mechanism 154 having a similar function as a component of extension mechanism 104 is hereinafter designated with the same reference sign augmented by 50. Supplementary extension mechanism 154 is operable between: i) a retracted state, as depicted on figures 17, 19 and 25 , and ii) an extended state, as depicted on figures 18, 20 and 27. Figure 26 depicts the supplementary extension mechanism 154 placed in an intermediary state between the retracted state and an extended state.
  • Depending on the distance between the opposing mounting surfaces 304 and 302, the mounting element 101 can be i) in a fastening configuration when supplementary extension mechanism 154 is in an extended state and ii) in a release configuration when supplementary extension mechanism 154 is in the retracted state.
  • The supplementary extension mechanism 154 may comprise a supplementary actuator 160, a supplementary conversion mechanism 162 and a supplementary compression part 164. Supplementary extension mechanism 154 may further comprise a supplementary sliding portion 163 which is arranged to translate along longitudinal direction X102 with respect to elongate mounting member 102. In the illustrated embodiment, sliding portion 163 is arranged to translate within the elongate mounting member 102. The components of supplementary extension mechanism 154 may be composed of metallic and/or of plastic materials.
  • The supplementary actuator 160 may be rotatable about a supplementary rotation axis Y160, which is substantially perpendicular to the longitudinal direction X102. The supplementary rotation axis Y160 may form an angle ranging from 80 to 100 degrees, e.g. 90 degrees, with the longitudinal direction X102. The supplementary rotation axis Y160 may be vertical when the mounting element is in a service position.
  • The supplementary conversion mechanism 162 may be configured to convert a rotation of supplementary actuator 160 into a translatory movement of supplementary rotation axis Y160 along the longitudinal direction X102 from the retracted state to an extended state and vice versa. In the example of figures 17 to 32 , the translatory movement of supplementary extension mechanism 154 develops along the longitudinal direction X102.
  • The supplementary extension mechanism 154 may be arranged so that supplementary compression part 164 can abut opposing mounting surface 304 and thus transmit a compression force to opposing mounting surface 304. In case the distance between the opposing mounting surfaces 304 and 302 is relatively short, the supplementary compression part 164 can abut opposing mounting surface 304 when the supplementary extension mechanism 154 is in its retracted state. In such a case, placing the extension mechanism 104 in its extended state suffices to make both the compression part 104 and the supplementary compression part 164 abut respectively on the opposing mounting surfaces 302 and 304.
  • As visible when comparing figures 17 and 18 or figures 25 and 27 , the supplementary compression part 164 of supplementary extension mechanism 154 translates towards opposing mounting surface 304 (to the left). In other words, supplementary extension mechanism 154 extends in translation (X102) towards opposing mounting surface 304 when supplementary extension mechanism 154 is moved from its retracted state (figures 17 and 25 ) to an extended state (figure 18 and 27 ).
  • Supplementary compression part 164 may be configured to transmit a supplementary compression force along the longitudinal direction X102 towards opposing mounting surface 304. Supplementary compression part 164 substantially may have a prismatic shape extending along longitudinal direction X102. Supplementary compression part 164 may comprise an abutment part 165, as shown in figure 22 .
  • When the architectural covering 200 is in its service position, the supplementary compression force may be oriented substantially horizontally and towards opposing mounting surface 304. The supplementary compression force helps hold the mounting element 101 in the architectural recess 300 between opposing mounting surfaces 302 and 304, because it helps generate a friction force, akin to the afore-described force generated by compression part 104.
  • Supplementary conversion mechanism 162 may comprise a driven portion 163.1 which is fast in translation with supplementary sliding portion 163. Furthermore, supplementary conversion mechanism 162 may comprise four driving surfaces 160.1, 160.2, 160.3 and 160.4 which are configured to cooperate selectively with driven portion 163.1. The driving surfaces 160.1, 160.2, 160.3 and 160.4 are fast in rotation with supplementary actuator 160. Within the supplementary conversion mechanism 162, driven portion 163.1 is configured to cooperate with a selected one of the driving surfaces 160.1, 160.2, 160.3 and 160.4.
  • As illustrated on figures 25 to 27 , the driven portion 163.1 has a semicylindrical male cross-section, the shape of which is substantially complementary to each driving surface 160.1, 160.2, 160.3 or 160.4. Thus, driving surface 160.1, 160.2, 160.3 or 160.4 may selectively drive driven portion 163.1 in translation along longitudinal direction X102. The driving surfaces 160.1, 160.2, 160.3 and 160.4 may be arranged such that each driving surface 160.1, 160.2, 160.3 or 160.4 extends substantially perpendicularly to its adjacent driving surfaces. For example, driving surface 160.1 may be arranged such that it extends substantially perpendicularly to its adjacent driving surfaces 160.2 and 160.4.
  • The supplementary actuator 160 may have an actuating portion 161. In the example of figure 24 , the actuating portion 161 has a slot 161.1 configured to receive a tool, for example a screwdriver. When a tool is inserted in slot 161.1, a user may exert a torque on the tool to impart rotation to the supplementary actuator 160 about the supplementary rotation axis Y160, selectively clockwise or counterclockwise. As shown on figures 19 and 20 , elongate mounting member 102 may have an opening 102.160, e.g. a hole, configured to make the slot 161.1 accessible to a tool from outside, say from under, the elongate mounting member 102.
  • The supplementary actuator 160 may be configured such that the slot 161.1 has a geometric center C161.1 substantially located on the rotation axis Y160. As illustrated by double arrows on figure 24 , the driving surfaces 160.1, 160.2, 160.3 and 160.4 are located at different respective distances from geometric center C161.1. When ranked by increasing distance, driving surface 160.1 is located closest to geometric center C161.1; driving surface 160.2 is located closer to geometric center C161.1 than driving surface 160.3; finally, driving surface 160.4 is the furthest from geometric center C161.1. Each of the afore-mentioned distances is measured as a Euclidean distance, i.e. as the shortest distance between geometric center C161.1 and the closest point of the relevant driving surface.
  • As a result, when driven portion 163.1 bears against driving surface 160.1, as shown in figure 25 , the outer end of the supplementary compression part 164 is further from the opposing mounting surface 304 than when driven portion 163.1 bears against driving surface 160.2, as shown in figure 26 , and even further than when driven portion 163.1 bears against driving surface 160.3, as shown in figure 27 .
  • Besides, supplementary actuator 160 may comprise a ratchet wheel 167 having several notches 167.1 on its periphery. Complementarily, supplementary conversion mechanism 162 may comprise at least one pawl, herein two pawls 168, configured to fall within the notches 167.1. Pawls 168 may be arranged symmetrically with respect to longitudinal direction X102 when the mounting element 101 is in the assembled state. Ratchet wheel 167 and pawls 168 may be configured to cooperate such that each pawl 168 may fall into a respective notch 167.1 of the ratchet wheel 167. When located into respective notches 167.1, pawls 168 prevent rotation of supplementary actuator 160. In the examples of figures 21 to 24 , ratchet wheel 167 and pawls 168 are configured so as to define four discrete, stable positions of the supplementary actuator 160 about supplementary rotation axis Y160. These four discrete, stable positions correspond to the four driving surfaces 160.1, 160.2, 160.3 and 160.4.
  • In service, a user may insert a tool, e.g. a screwdriver, in slot 161.1 in order to impart a rotation to supplementary actuator 160 about supplementary rotation axis Y160. Such rotation of supplementary actuator 160 is converted by supplementary conversion mechanism 162 into a translatory movement of supplementary sliding portion 163, via the cooperation of driven portion 163.1 with the selected driving surfaces 160.1, 160.2, 160.3 and 160.4. Where supplementary compression part 164 does not abut opposing mounting surface 304, the pawls 168 may release ratchet wheel 167, such that supplementary actuator 160 may rotate about the supplementary rotation axis Y160 from 90, 180 or 270 degrees, depending on the angle selected by the user to set the appropriate overall length of the mounting element 101, i.e. depending on the driving surface 160.1, 160.2, 160.3 or 160.4 selected by the user to press against driven portion 163.1.
  • The afore-mentioned four discrete, stable positions of the supplementary actuator 160 each correspond to a given protruding distance by which the supplementary compression part 164 protrudes towards opposing mounting surface 304. For example, an increment in the protruding distance may be 1,5 mm between two successive stable positions, i.e. between two successive driving surfaces 160.1, 160.2, 160.3 and 160.4. After the user has set the appropriate overall length, the mounting element 101 can fit in the architectural recess 300 with both the extension mechanism 104 and the supplementary extension mechanism 154 abutting respectively on the opposing surfaces 302 and 304.
  • Figures 28 to 32 illustrate another independent object comprising a battery assembly 401 intended to supply power to a not shown electric motor, in order to wind and unwind the covering member 202. The electric motor may be housed within a roller supporting covering member 202.
  • The battery assembly 401 may comprise a rechargeable battery pack 402, an output connector 404 and a charger plug 406. The rechargeable battery pack 402 may be comprised of several batteries which may be arranged in a series, parallel or a mixture thereof, depending on the required power characteristics.
  • The rechargeable battery pack 402 may be configured to be completely accommodated in the elongate mounting member 102 which may herein form a headrail as afore-mentioned. Elongate mounting member 102 may have a housing space configured to accommodate at least partially rechargeable battery pack 402.
  • Rechargeable battery pack 402 may be secured to elongate mounting member 102 so as to prevent the user from removing rechargeable battery pack 402 out of elongate mounting member 102. For example, battery assembly 401 may comprise securing elements configured to secure rechargeable battery pack 402 to the elongate mounting member 102 in a non-detachable manner.
  • The output connector 404 may be a standard DC connector configured to get connected to the electric motor. When supplied with power from the rechargeable battery pack 402, the electric motor may wind or unwind the covering member 202 upon receipt of a dedicated command signal. In the example of figures 28 to 32 , output connector 404 is located outside the elongate mounting member 102 so as to be easily connected to the electric motor. A cable may connect the output connector 404 to the rechargeable battery pack 402.
  • The charger plug 406 may be a standard plug configured to connect rechargeable battery pack 402 to a recharging power source. Charger plug 406 and elongate mounting member 102 may be configured so that charger plug 406 is accessible from outside the elongate mounting member 102. For example, elongate mounting member 102 may comprise a hole 102.406 for accessing charger plug 406 and thus plug rechargeable battery pack 402 to a not shown charger or recharging power source.
  • In service, when the rechargeable battery pack 402 needs to be recharged, the user may: i) either plug in a charger while the mounting element 101 remains mounted in architectural recess 300, ii) or remove from architectural recess 300 the whole mounting element 101 and displace it to get rechargeable battery pack 402 recharged at a dedicated charging installation.
  • Figure 32 illustrate yet another independent object. Elongate mounting member 102 may herein comprise mounting clips 103.1, 103.2, 103.3 arranged to help mount, for example, a horizontal blind or a roman blind onto the mounting element 101 so as to install the architectural covering 200.
  • Although some embodiments have been described above in relation to the exemplary drawings, the present disclosure is not limited to the embodiments described above and illustrated in the exemplary drawings wherein the reference numbers are only provided as non-limiting examples. Many changes and alternatives may be made by the skilled person within the scope of the present disclosure, which scope shall not be limited to the appended drawings.

Claims (15)

  1. A mounting element (101), for mounting an architectural covering (200) between two opposing mounting surfaces (302, 304), the mounting element (101) comprising:
    - an elongate mounting member (102) which is elongated along a longitudinal direction (X102), and
    - an extension mechanism (104) arranged at an end of the elongate mounting member (102), the extension mechanism (104) being operable between: i) a retracted state, and ii) an extended state,
    wherein the extension mechanism (104) comprises:
    - an actuator (110) rotatable about a rotation axis (Y110), the rotation axis (Y110) being substantially perpendicular to the longitudinal direction (X102), and
    - a conversion mechanism (112) configured to convert a rotation of the actuator (110) into a translatory movement of the rotation axis (Y110) along the longitudinal direction (X102) from the retracted state to the extended state and vice versa, and
    wherein the extension mechanism (104) is arranged to abut one of the opposing mounting surfaces (302, 304) in the extended state when the mounting element (101) is mounted between the opposing mounting surfaces (302, 304).
  2. The mounting element (101) according to claim 1, wherein the conversion mechanism (112) further comprises a compression part (114) configured to transmit a compression force (F) along the longitudinal direction (X102) towards one of the opposing mounting surfaces (302, 304), and
    wherein, optionally, the conversion mechanism (112) comprises a biasing part (116) mechanically connected to the actuator (110), the biasing part (116) being configured to generate the compression force (F) when the extension mechanism (104) is in the extended state.
  3. The mounting element (101) according to the preceding claim, wherein the biasing part (116) comprises at least two compression springs (116.1, 116.2) arranged in parallel.
  4. The mounting element (101) according to any one of claims 2 to 3, wherein the actuator (110) directly actuates the biasing part (116).
  5. The mounting element (101) according to any one of the preceding claims, wherein the conversion mechanism (112) further comprises a connection member (120) operably connected:
    i) to the elongate mounting member (102), and
    ii) to the actuator (110), and
    wherein, optionally, the actuator (110) and the connection member (120) have substantially elongated shapes, the actuator (110) and the connection member (120) being substantially parallel when the extension mechanism (104) is placed in the extended state.
  6. The mounting element (101) according to the preceding claim, wherein the connection member (120) is hinged to the elongate mounting member (102) so as to rotate about a connection axis (Y120) which is orthogonal to the longitudinal direction (X102).
  7. The mounting element (101) according to any one of claims 5 to 6, wherein the connection member (120) and the actuator (110) are linked by means of at least: i) a linkage pin (122.1, 122.2) and ii) a curvilinear bearing portion (124.1, 124.2) arranged to guide the at least one linkage pin (122.1, 122.2), and
    wherein, optionally, the at least one linkage pin (122.1, 122.2) protrudes on a lateral face of the connection member (120), and wherein the curvilinear bearing portion (124.1, 124.2) extends on a side face of the actuator (110).
  8. The mounting element (101) according to any one of claims 2 to 4 and to any one of claims 6 to 7, wherein the actuator (110), the biasing part (116) and the connection member (120) are arranged so that the biasing part (116) exerts a locking torque (T116) on the actuator (110) about the connection axis, said locking torque (T116) being oriented counter the rotation direction (R110) of the actuator (110) from the extended state to the retracted state.
  9. The mounting element (101) according to any one of claims 2 to 4 and to any one of claims 6 to 8, wherein the actuator (110) is at least partly arranged between the connection member (120) and the biasing part (116).
  10. The mounting element (101) according to any one of the preceding claims, wherein the conversion mechanism (112) further comprises a guide (130) having at least one guiding slot (130.1, 130.2) which extends at least partly along the longitudinal direction (X102), and wherein the actuator (110) further comprises at least one pin (132.1, 132.2) configured to move in the at least one guiding slot (130.1, 130.2) in translation along the longitudinal direction (X102) and, optionally, in rotation about the rotation axis (Y110).
  11. The mounting element (101) according to any one of the preceding claims, wherein the actuator (110) comprises a control portion (110.1) which is arranged for an actuation of the actuator (110).
  12. The mounting element (101) according to any one of the preceding claims, wherein the actuator (110) protrudes from the elongate mounting member (102) when the extension mechanism (104) is in the retracted state.
  13. The mounting element (101) according to any one of the preceding claims, further comprising a friction member (134) arranged on an outer end portion (104.1) of the extension mechanism (104) so as to abut one of the opposing mounting surfaces (302, 304) when the extension mechanism (104) is in the extended state, the friction member (134) being mechanically linked to the conversion mechanism (112) such that the friction member (134) converts a part of the translatory movement into an upwardly-oriented friction force (F134) when the friction member (134) abuts said opposing mounting surface (302, 304).
  14. The mounting element (101) according to any one of the preceding claims, wherein the elongate mounting member (102) comprises a housing part configured to substantially accommodate the extension mechanism (104) in the extended state.
  15. An architectural covering (200) comprising a covering member for covering an architectural recess (300), wherein the architectural covering (200) is equipped with a mounting element (101) according to any one of the preceding claims.
EP17159407.0A 2017-03-06 2017-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces Withdrawn EP3372775A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP17159407.0A EP3372775A1 (en) 2017-03-06 2017-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces
US15/910,472 US10934771B2 (en) 2017-03-06 2018-03-02 Mounting element for mounting an architectural covering between opposing mounting surfaces
ZA2018/01456A ZA201801456B (en) 2017-03-06 2018-03-02 Mounting element for mounting an architectural covering between opposing mounting surfaces
JP2018037811A JP7071166B2 (en) 2017-03-06 2018-03-02 Mounting elements for mounting building covers between facing mounting surfaces
MX2018002798A MX2018002798A (en) 2017-03-06 2018-03-05 Mounting element for mounting an architectural covering between opposing mounting surfaces.
CA2997329A CA2997329A1 (en) 2017-03-06 2018-03-05 Mounting element for mounting an architectural covering between opposing mounting surfaces
ARP180100510A AR111119A1 (en) 2017-03-06 2018-03-06 MOUNTING ELEMENT TO ASSEMBLE AN ARCHITECTURAL COVER BETWEEN OPPOSITE MOUNTING SURFACES
ES18160140T ES2846305T3 (en) 2017-03-06 2018-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces
CN201810184921.6A CN108533163B (en) 2017-03-06 2018-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces
EP18160140.2A EP3375969B1 (en) 2017-03-06 2018-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces
DK18160140.2T DK3375969T3 (en) 2017-03-06 2018-03-06 Mounting element for mounting an architectural cover between opposite mounting surfaces
AU2018203967A AU2018203967B2 (en) 2017-03-06 2018-06-05 Mounting element for mounting an architectural covering between opposing mounting surfaces
US17/168,416 US11976517B2 (en) 2017-03-06 2021-02-05 Mounting element for mounting an architectural covering between opposing mounting surfaces
AU2024202207A AU2024202207A1 (en) 2017-03-06 2024-04-05 Mounting element for mounting an architectural covering between opposing mounting surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17159407.0A EP3372775A1 (en) 2017-03-06 2017-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces

Publications (1)

Publication Number Publication Date
EP3372775A1 true EP3372775A1 (en) 2018-09-12

Family

ID=58261537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17159407.0A Withdrawn EP3372775A1 (en) 2017-03-06 2017-03-06 Mounting element for mounting an architectural covering between opposing mounting surfaces

Country Status (2)

Country Link
EP (1) EP3372775A1 (en)
AR (1) AR111119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480414A1 (en) * 2017-11-03 2019-05-08 Hunter Douglas Industries B.V. Mounting element for mounting an architectural covering between opposing mounting surfaces

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782882A (en) * 1987-11-23 1988-11-08 Joseph Amedeo Venetian blind mounting bracket
US20090242143A1 (en) * 2008-04-01 2009-10-01 Dung Viet Pham Portable roll up window blind
US20140086676A1 (en) 2012-09-27 2014-03-27 Tuluhan Coker System and method for a modular, locking headrail-retention mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782882A (en) * 1987-11-23 1988-11-08 Joseph Amedeo Venetian blind mounting bracket
US20090242143A1 (en) * 2008-04-01 2009-10-01 Dung Viet Pham Portable roll up window blind
US20140086676A1 (en) 2012-09-27 2014-03-27 Tuluhan Coker System and method for a modular, locking headrail-retention mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480414A1 (en) * 2017-11-03 2019-05-08 Hunter Douglas Industries B.V. Mounting element for mounting an architectural covering between opposing mounting surfaces
US11802441B2 (en) 2017-11-03 2023-10-31 Hunter Douglas Industries B.V. Mounting element for mounting an architectural covering between opposing mounting surfaces

Also Published As

Publication number Publication date
AR111119A1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
EP3375969B1 (en) Mounting element for mounting an architectural covering between opposing mounting surfaces
US20070180773A1 (en) Dual-guided single rail window regulator
AU2023202623A1 (en) Mounting assembly for an architectural covering
CA2060450A1 (en) Parking hand brake for a motor vehicle and manufacturing process of its brake lever
EP3480414B1 (en) Mounting element for mounting an architectural covering between opposing mounting surfaces
US20100013284A1 (en) Transmission device and power seat slide device for vehicle
EP3372775A1 (en) Mounting element for mounting an architectural covering between opposing mounting surfaces
US20230250689A1 (en) Elongate Mounting Structure and Mounting Unit Comprising the Same for Mounting an Architectural Covering Between Opposing Mounting Surfaces
TWI728524B (en) Battery assembly
US20220265076A1 (en) Opening and closing device for curtains and system based on the same
US11136820B2 (en) Mechanical module for filtering vibrations, electromechanical actuator comprising such a mechanical module for filtering vibrations, and closure, covering or solar protection installation comprising such an electro-mechanical actuator
CN113142958A (en) Curtain opening and closing device
CN215190832U (en) Curtain opening and closing device
CN113431433A (en) Locking device
CN218347117U (en) Clamping structure and electronic lock
CN220189803U (en) Housing device, battery device, and camping vehicle
CN216277401U (en) Vehicle door lock actuator
CN216110168U (en) Locking device
CN219298983U (en) Transmission box and transmission structure
CN219601482U (en) Buckle assembly, pipe fitting attachment mounting mechanism and wind power lamp device
CN219961021U (en) Locking mechanism and electrical equipment
EP4195502A1 (en) Solar power system and support housing thereof
CN213734679U (en) Brake cable pre-tightening mechanism
CN117468820A (en) Chain box assembly for electric window opener, electric window opener and electric window
CN219112741U (en) Bending device and processing equipment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190313