EP3365866A1 - System adapted for providing an operator with augmented visibility and associated method - Google Patents

System adapted for providing an operator with augmented visibility and associated method

Info

Publication number
EP3365866A1
EP3365866A1 EP16787785.1A EP16787785A EP3365866A1 EP 3365866 A1 EP3365866 A1 EP 3365866A1 EP 16787785 A EP16787785 A EP 16787785A EP 3365866 A1 EP3365866 A1 EP 3365866A1
Authority
EP
European Patent Office
Prior art keywords
digital image
resolution
sensor
spectral band
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16787785.1A
Other languages
German (de)
French (fr)
Inventor
Etienne Payot
Jérôme ARTAUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3365866A1 publication Critical patent/EP3365866A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • G06T3/4061Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution by injecting details from different spectral ranges
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/04Context-preserving transformations, e.g. by using an importance map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0065Navigation or guidance aids for a single aircraft for taking-off
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • G08G5/065Navigation or guidance aids, e.g. for taxiing or rolling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0147Head-up displays characterised by optical features comprising a device modifying the resolution of the displayed image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details

Definitions

  • the present invention relates to a system adapted to provide an operator with increased visibility, which can be used in particular for assisting aircraft control, as well as an associated method.
  • the invention is in the field of augmented vision systems (EVS), which are imaging systems intended to provide an operator with an image of the environment improved by compared to a human perception, this image can be presented through a display head up (or HUD for "head-up display” in English) or on a display screen (display called “head down”).
  • EVS augmented vision systems
  • EVS systems have applications in particular in the field of aircraft piloting assistance, especially in the approach and landing phase, but also taxiing and takeoff, in case of low visibility due to environmental conditions and / or degraded weather.
  • Runaway Visual Range is defined as the distance up to which an aircraft pilot, placed in the centreline of the runway, can see by his natural vision the marks or the lights which delimit the track or which mark the axis of this one.
  • the RVR is generally evaluated by an automatic calculation integrating the instrumental measurements relating to the transmission coefficient of the atmosphere and the background luminance and information on the intensity of the lighting.
  • the regulation imposes a minimum RVR value of 550 meters to initiate an approach, other requirements have to be met otherwise, and the regulation allows to descend to a decision height (DH) at least 200ft (200ft), the height at which the pilot must discern visual references to descend below the DH decision height.
  • DH decision height
  • 200ft 200ft
  • Such a visual range is difficult to obtain in certain degraded meteorological conditions which can make the lighting markings undetectable by the pilot at the decision height DH.
  • EVS systems have been designed, in particular to remedy this problem and improve the natural vision of flight crews and extend landing capabilities in conditions of degraded visibility.
  • the regulation allows, in the example cited above, to go down to 10Oft if the necessary visual references could be discerned by the pilot at 200ft with the help of an EVS and even if this is not the case. not discernible by the human eye.
  • EVS systems comprising image sensors in the infrared spectral band using the spectral bands of 3 to 5 ⁇ or 8 to 14 ⁇ and in the spectral band SWIR for "Short Wave Infra Red" of signals electromagnetic wave which extends from 1 ⁇ to 2.5 ⁇ .
  • the purpose of using sensors in the SWIR spectral band is to optimize the detection capabilities of incandescent lamps commonly used to mark tracks.
  • LED light emitting diode
  • the patent application WO 2009/128065 A1 describes an EVS system comprising a plurality of sensors able to operate in various spectral bands, comprising the NIR spectral band for "Near Infra-Red" of electromagnetic signals of wavelength extending from 0.7 ⁇ at 1 .0 ⁇ , and the spectral band of visible light which extends from 0.4 ⁇ to 0.7 ⁇ .
  • This system mergers the image data acquired by the different sensors.
  • the spectral bands to be fused are selected according to the previously identified meteorological conditions and the nature of the light markings to be detected.
  • the angular resolution is defined as being the elementary field of view of a pixel of an image sensor detector. It is generally considered that the angular resolution of the human eye is about 0.8 arc minutes, or 0.0135 ° (or 0.00029 radians). Likewise in what follows, a high spatial resolution will designate a fine angular resolution, thus a small resolution angle / field of view.
  • the object of the invention is to overcome the disadvantages of the prior art mentioned above.
  • the invention proposes, according to a first aspect, a system adapted to provide an operator with increased visibility, intended for the purpose of piloting an aircraft, comprising at least one sensor capable of acquiring image data. in a given spectral band and a central processing unit able to process the acquired image data and to transmit the processed image data for displaying a digital image on a display unit.
  • This system comprises:
  • At least one high-resolution sensor capable of acquiring image data forming a digital image in a spectral band including at least all or part of the spectral band corresponding to the electromagnetic signals visible to the human eye, of first spatial resolution, and angular resolution of capture strictly finer than the angular resolution of the human eye, and
  • a non-linear processing module adapted to achieve a spatial resolution change while preserving bright spots of said acquired digital image to obtain a digital image to display second spatial resolution less than the first spatial resolution.
  • the system of the invention is an EVS system using at least one sensor (orientable or fixed) of very fine angular resolution and significantly better than that of the eye in the visible spectral band, which allows:
  • the proposed system is less expensive in hardware and requires less computational resources than a system based on sensors adapted to operate in several different spectral bands.
  • the system according to the invention may have one or more of the following characteristics, taken independently or in all their technically acceptable combinations.
  • Each digital image is defined by a matrix of pixels, each pixel having an associated value, said value being even higher when a pixel is glossy, and the nonlinear processing module is able to apply a nonlinear filtering has a block of pixels of the digital image acquired to determine a corresponding pixel value in the digital image to be displayed, said non-linear filtering taking into account, for a block of pixels of the acquired digital image, at least the maximum value said block of pixels.
  • Non-linear filtering involves associating with a pixel of the digital image to display a value calculated from values above a predetermined threshold of the corresponding block of pixels of the acquired digital image.
  • the nonlinear filtering involves associating with a pixel of the digital image to display a value calculated from a given number of the highest values of the block of pixels.
  • the system includes a plurality of high resolution juxtaposed sensors.
  • the system comprises a high-definition sensor, adapted to be positioned in a position for acquiring image data along a line of sight, and displacement members of said sensor, making it possible to move the angle of sight of this sensor.
  • the high-resolution sensor capable of acquiring digital image data is a first sensor in a first spectral band corresponding to the signals visible to the human eye, the system further comprising a second sensor capable of acquiring second digital image data. in a second spectral band different from the first spectral band.
  • the second spectral band belongs to the field of infrared electromagnetic waves of wavelength between 3 and 14 micrometers.
  • the system further comprises an image processing module adapted to effect a merger between said digital image to be displayed and the second digital image data acquired by the second sensor.
  • the angular capture resolution is strictly finer than the angular resolution of the human eye, by a factor greater than or equal to 3.
  • the invention proposes a method adapted to provide an operator with increased visibility, intended for use in aircraft piloting, implemented by a system comprising at least one sensor capable of acquiring data from aircraft. image in a given spectral band and a central processing unit adapted to process the acquired image data and to transmit the processed image data for displaying a digital image on a display unit.
  • the method comprises the following steps:
  • the process according to the invention may have one or more of the following characteristics, taken independently or in all their technically acceptable combinations.
  • Each digital image is defined by a matrix of pixels, each pixel having an associated value, said value being even higher when a pixel is shiny, and the nonlinear processing comprises the application of a nonlinear filtering a block of pixels of the acquired digital image for determining a corresponding pixel value in the digital image to be displayed, said non-linear filtering taking into account at least the maximum value of said block of pixels.
  • Non-linear filtering involves associating with a pixel of the digital image to display a value calculated from values above a predetermined threshold of the corresponding block of pixels of the acquired digital image.
  • the value associated with the pixel of the digital image to be displayed is calculated from a given number of the highest values of the block of pixels.
  • the method includes another step of acquiring second digital image data in a second spectral band different from the first spectral band.
  • the method includes a step of merging the second resolution digital image obtained by nonlinear processing with the second digital image data.
  • FIG. 1 schematically represents an aircraft approaching a track marked by light markings
  • FIG. 2 diagrammatically illustrates an augmented vision system according to a first embodiment
  • FIG. 3 schematically illustrates two images of different spatial resolutions
  • FIG. 4 schematically illustrates an augmented vision system according to a second embodiment.
  • the invention finds applications more generally in any context in which an increased vision compared to the human vision of an operator is useful, for example for controlling other types of devices.
  • Figure 1 schematically illustrates an application context of the invention, which is the landing of an aircraft.
  • an aircraft 2 is on landing approach on a landing field 4, comprising a landing runway 6.
  • the landing strip is marked by various markers 8, 10, 12, 16, 18.
  • the markers 8 are markers of the center of the track
  • the markers 10, 12 are light markers of the edge of the track, arranged Regularly along its entire length
  • the markers 16 are runway threshold markers
  • the markers 18 are approach ramp markers.
  • the markers 8, 10, 12, 16, 18 emit at least in the spectral band visible to the eye by the operator and some can be made by LED lamps and others by incandescent lamps .
  • the aircraft 2 is equipped with a system 14 adapted to provide the pilot with increased vision.
  • system 14 is shown schematically in Figure 1, and that it is in practice made of several elements that are positioned at different locations or grouped together, as explained in more detail below.
  • a system 14 comprises an image sensor 20 in the spectral band of the electromagnetic radiation or signals visible to the human eye, of wavelength between 0.4 ⁇ to 0.7 ⁇ but can in a variant go up to 1 ⁇ .
  • the image sensor 20 operates in a spectral band comprising only a part of the spectral band of the electromagnetic signals visible to the human eye.
  • the sensor 20 is a high resolution sensor, making it possible to obtain a level of angular resolution of shooting that is finer than the human eye.
  • the digital image acquired by the sensor 20 has an associated spatial resolution, the spatial resolution being defined as the number of image data or pixels per unit length. Each pixel has an associated radiometry value, also called intensity value.
  • the senor 20 is such that the ratio K between the angular resolution of the human eye and the angular image acquisition resolution is greater than or equal to 3.
  • the digital image acquired by such a sensor is said on -resolved because it has angular resolution finer than the angular resolution achievable by the human eye.
  • the sensor 20 makes it possible to capture, along a line of sight, a field of view of maximum angle ⁇ preferably of the order of 35 ° to 40 °.
  • the senor 20 is a CMOS sensor ("Complementarity Metal-Oxide Semiconductor”), composed of photodiodes, whose manufacturing cost is moderate.
  • CMOS sensor Complementarity Metal-Oxide Semiconductor
  • the senor 20 is a CCD (Charge Coupled Device) or uses any other sensor technology.
  • CCD Charge Coupled Device
  • the sensor 20 in order to acquire image data corresponding to the angle of view field ⁇ , the sensor 20 is replaced by a plurality of angle-of-view sensors smaller than ⁇ , juxtaposed and adapted capturing image data corresponding to adjacent fields of view or having an overlapping portion.
  • the high resolution sensor 20 has a field of view of angle smaller than the desired angle, thus a narrower field of view, but this sensor 20 is made movable by displacement members, allowing it to be rotated so as to cover a wide field of view of the order of ⁇ .
  • displacement members are formed by an articulated or fixed connection associated with a motor.
  • the sensor 20 is steerable.
  • the senor 20 is placed for example at the front of the fuselage of the aircraft.
  • the capture of an overbooked image makes it possible to improve the visibility of the light markings with a quantifiable performance, even in conditions of reduced visibility.
  • a fog-reducing weather condition is schematically illustrated by a cloud 21 in FIG.
  • a cloud 21 for example, a fog-reducing weather condition is schematically illustrated by a cloud 21 in FIG.
  • an over-resolved digital image 10 of first spatial resolution R 0 is obtained, the image consisting of K * L pixels, for example 5120 * 4096.
  • the digital image is defined by a matrix of pixel values.
  • non-linear processing module 22 The data of the over-resolved digital image 10 , of first spatial resolution R 0 , are transmitted to a non-linear processing module 22, for example via a data bus connected to the output of the sensor 20.
  • non-linear processing 22 is implemented by a not shown programmable device, for example an on-board computer, comprising one or more processors able to execute calculations and computer program code instructions when they are powered up.
  • the programmable device implementing the non-linear processing module 22, as well as any other calculation module is implemented by an integrated circuit of the FPGA type or by a dedicated integrated circuit of ASIC type.
  • the processing carried out by the nonlinear processing module 22 makes it possible to go from the first image 10 of the first spatial resolution R 0 to a digital image of second spatial resolution R 1; less than the first spatial resolution R 0 , while preserving contrast points of the image, in particular bright spots (or points of positive contrast) of the image.
  • Points of contrast are called points or pixels whose associated value is clearly greater or substantially less than the average value of the pixels of the neighborhood, for example greater than 3 times the standard deviation of the pixels of this neighborhood.
  • the points whose associated value is much higher than the surrounding values are bright points, the contrast is positive.
  • the points whose associated value is significantly lower than the surrounding values are dark points, the contrast is negative.
  • the processing performed by the nonlinear processing module 22 makes it possible to maintain positive contrast points in the digital image of second spatial resolution less than the first resolution.
  • FIG. 3 illustrates two such images 10 and 1 with a resolution factor equal to 3 between the first resolution R 0 and the second resolution.
  • a block B of 3 ⁇ 3 pixels of the digital image 10 corresponds to a pixel P of the image .
  • the correspondence is a spatial correspondence in the respective matrices, as shown in Figure 3.
  • a block of MxN pixels of the image 10 corresponds to a pixel of the image.
  • the gain provided by the over-resolution of the image 10 acquired by the sensor 20 is preserved.
  • the maximum intensity emitted by the luminous markings, captured by the over-resolved image acquisition, is preserved in the second resolution digital image.
  • the non-linear processing module is adapted to retain the detected light spots, in other words to preserve the brightest points of the block, because in fact the more a point is shiny, the higher the associated value in the image digital is high.
  • the applied nonlinear processing preserves the bright spots but does not preserve the dark spots, as only the brightest points are of interest for the intended piloting application.
  • the nonlinear processing module 22 applies other nonlinear treatments of filtering type that retain the maximum values or that process the pixels according to their rank. Filtering on overlapping windows can also be considered.
  • the values of the block pixels greater than a threshold S are retained.
  • the threshold S can be set or dynamically calculated, for example, being the average increased by 2 or 3 times the standard deviation of pixel values of the block. All the values retained, which are the values of the brightest pixels of the block according to the chosen criterion, are then used to obtain the final value of the pixel of the second resolution digital image. For example, an average of the values retained, therefore greater than threshold S, of the block considered, is calculated and assigned as the final value of the corresponding pixel in the second resolution digital image
  • the values of the pixels of a block considered are ordered in descending order of the values and the 2 (or 3) most important values are retained.
  • the values retained which are the values of the brightest pixels of the block according to the chosen criterion, are then used to obtain the final value of the pixel of the second resolution digital image. For example, an average of the values retained. of the block considered, is calculated and assigned as the final value of the corresponding pixel in the second resolution digital image.
  • the digital image of second spatial resolution Ri less than the resolution R 0 is transmitted to an image processing module 24, able to apply conventional processing, for example correction of radiometry, geometric alignment in view of the display of the image on a display unit 26, for example a screen.
  • processing modules 22 and 24 are applied by the same onboard computer.
  • the display is performed by incrustation on a display screen 26, located at the sight of a flight operator, called head-up display.
  • the second resolution is preferably chosen according to the display resolution of the display screen 26, for example a "head-up” display.
  • a “head-down” display screen for example located on the dashboard, is used.
  • such a head-up display makes it possible to present to the operator an augmented vision of the reality that he can perceive naturally, and thus to help him for the piloting operations.
  • a visualization method adapted to provide an operator with an augmented vision comprises a first step of acquiring a first digital image of first spatial resolution by a high resolution sensor able to acquire image data in a spectral band corresponding to the signals visible by the human eye, with a level of angular resolution of capture strictly greater than the level of angular resolution of the human eye.
  • This first step is followed by a non-linear processing step making it possible to obtain a second image of second spatial resolution R 2 , less than the first spatial resolution and of second angular resolution adapted to the resolution of the display device.
  • the factor between the angular resolution of capture and the angular resolution of the human eye is greater than or equal to 3, that is to say that the angular resolution of capture is at least 3 times finer than the resolution angular of the human eye.
  • the performance of the proposed system is computable, regardless of weather conditions.
  • a meteorological condition is characterized by an absorption coefficient ⁇ in a given spectral band.
  • X 0 is a reference distance to which the intensity l 0 of a beacon is associated.
  • the system of the invention is an EVS system using at least one sensor (orientable or fixed) of very fine angular resolution in a spectral band different from that of the eye, which allows to have significantly improved lighting range detection range performance compared to an EVS system having a resolution of the class of that of the eye in this same spectral band.
  • FIG. 4 A second embodiment of a system 30 adapted to provide increased vision according to the invention is illustrated in FIG. 4.
  • the system 30 comprises, in addition to the first sensor 20 capable of acquiring images of very high spatial resolution in the visible spectral band, and the processing unit 22 described above, constituting a first imaging channel, a second sensor 32 capable of acquire the images 2 in a different spectral band than the visible spectral range, preferably in the infrared spectral range.
  • the spatial resolution of the images 1 2 acquired by the sensor 32 is substantially equal to the second spatial resolution R 2 of the images obtained at the output of the nonlinear processing module 22.
  • the acquisition by this second sensor 32 forms a second imaging path.
  • the system 30 also comprises a processing module 34 adapted to perform the fusion of the images and 1 2 , corresponding to the same field of view, by applying in particular, with techniques known in the field of image processing, a radiometry control on each of the channels, a geometric alignment for rendering the images and 2 superimposable and a pixel-to-pixel addition.
  • the processing module 34 is also adapted to perform any image correction for display.
  • the processing module 34 is implemented by a not shown programmable device, for example an on-board computer, comprising one or more processors capable of executing calculations and instructions of computer program code when they are put under control. voltage.
  • the processing module 34 implements a step of merging between the second resolution digital image obtained by non-linear processing performed during the non-linear processing step by the module 22, and the second digital image data. 2 acquired by the sensor 32.
  • the resulting merged image is then transmitted to a display unit 26, analogous to the display unit 26 described above with reference to FIG. 2, for example a display for overlay and display.
  • the proposed system makes it possible to acquire an image of first spatial resolution which is over-resolved, which makes it possible to capture positive contrast points, that is to say points which are shiny with respect to their neighborhood, and of preserve these positive contrast points in the digital image of second spatial resolution, lower than the first resolution.
  • a second resolution digital image space for display and operation is obtained, but this image includes gloss information that could not have been captured with an image acquisition at said second spatial resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Image Processing (AREA)

Abstract

The invention relates to a system adapted for providing an operator with augmented visibility, useful in particular to aid aircraft piloting, comprising at least one sensor able to capture image data in a given spectral band and a central calculation unit able to process the image data captured and to transmit them to a display unit. This system comprises: - at least one high-resolution sensor (20) able to acquire image data forming a digital image (10) in a spectral band including at least all or part of the band visible to the human eye, of first spatial resolution, and of strictly finer angular capture resolution than the angular resolution of the human eye, and - a nonlinear processing module (22) adapted to produce a change in spatial resolution while preserving bright points of said digital image acquired (10) so as to obtain a digital image (h) to be displayed of second spatial resolution which is lower than the first spatial resolution.

Description

Système adapté à fournir à un opérateur une visibilité augmentée et procédé associé  System adapted to provide an operator with increased visibility and associated method
La présente invention concerne un système adapté à fournir à un opérateur une visibilité augmentée, utilisable notamment pour l'aide au pilotage d'aéronef, ainsi qu'un procédé associé.  The present invention relates to a system adapted to provide an operator with increased visibility, which can be used in particular for assisting aircraft control, as well as an associated method.
L'invention se situe dans le domaine des systèmes de vision augmentée ou EVS (de l'anglais « Enhanced Vision Systems »), qui sont des systèmes d'imagerie ayant pour but de fournir à un opérateur une image de l'environnement améliorée par rapport à une perception humaine, cette image pouvant être présentée grâce à un affichage « tête haute » (ou HUD pour « head-up display » en anglais) ou sur un écran de visualisation (affichage dit « tête basse »).  The invention is in the field of augmented vision systems (EVS), which are imaging systems intended to provide an operator with an image of the environment improved by compared to a human perception, this image can be presented through a display head up (or HUD for "head-up display" in English) or on a display screen (display called "head down").
Ces systèmes EVS trouvent des applications en particulier dans le domaine de l'aide au pilotage d'aéronef, notamment en phase d'approche et d'atterrissage, mais aussi de roulage et de décollage, en cas de faible visibilité due à des conditions environnementales et/ou météorologiques dégradées.  These EVS systems have applications in particular in the field of aircraft piloting assistance, especially in the approach and landing phase, but also taxiing and takeoff, in case of low visibility due to environmental conditions and / or degraded weather.
En effet, dans le domaine aéronautique, il est usuel de marquer les pistes de décollage/atterrissage des aéroports grâce à des marquages, notamment des balisages lumineux, comme par exemple la rampe d'approche, les balises lumineuses de bord et de centre de piste.  Indeed, in the aeronautical field, it is usual to mark the runways of landing / landing of the airports thanks to markings, in particular light markings, as for example the approach ramp, the luminous markings of edge and center of track .
Afin de garantir la sécurité dans le domaine des transports aériens, il existe des réglementations imposant une portée visuelle de piste donnée pour engager une approche d'atterrissage par exemple. La portée visuelle de piste, en anglais « Runaway Visual Range » (RVR) est définie comme étant la distance jusqu'à laquelle un pilote d'aéronef, placé dans l'axe de la piste, peut voir par sa vision naturelle les marques ou les feux qui délimitent la piste ou qui balisent l'axe de celle-ci. La RVR est généralement évaluée par un calcul automatique intégrant les mesures instrumentales relatives au coefficient de transmission de l'atmosphère et la luminance de fond et des informations sur l'intensité du balisage lumineux. Par exemple, pour une approche dite CAT 1 pour Catégorie 1 , la réglementation impose une valeur minimale de RVR de 550 mètres pour engager une approche, d'autres exigences étant à satisfaire par ailleurs, et la réglementation permet de descendre à une hauteur de décision (dite DH) valant au moins 200ft (200 pieds), hauteur à laquelle le pilote doit discerner des références visuelles pour descendre en deçà de la hauteur de décision DH. Une telle portée visuelle est difficile à obtenir dans certaines conditions météorologiques dégradées qui peuvent rendre le balisage lumineux non discernable par le pilote à la hauteur de décision DH. Des systèmes EVS ont été conçus, notamment pour remédier à ce problème et améliorer la vision naturelle des équipages de pilotage et étendre les capacités d'atterrissage en conditions de visibilité dégradée. La réglementation permet notamment, dans l'exemple cité ci-dessus, de descendre jusqu'à 10Oft si les références visuelles nécessaires ont pu être discernées par le pilote à 200ft à l'aide d'un EVS et même si celle-ci ne sont pas discernables par l'œil humain. In order to guarantee safety in the field of air transport, there are regulations imposing a given runway visual range to engage a landing approach for example. Runaway Visual Range (RVR) is defined as the distance up to which an aircraft pilot, placed in the centreline of the runway, can see by his natural vision the marks or the lights which delimit the track or which mark the axis of this one. The RVR is generally evaluated by an automatic calculation integrating the instrumental measurements relating to the transmission coefficient of the atmosphere and the background luminance and information on the intensity of the lighting. For example, for a so-called CAT 1 for Category 1 approach, the regulation imposes a minimum RVR value of 550 meters to initiate an approach, other requirements have to be met otherwise, and the regulation allows to descend to a decision height (DH) at least 200ft (200ft), the height at which the pilot must discern visual references to descend below the DH decision height. Such a visual range is difficult to obtain in certain degraded meteorological conditions which can make the lighting markings undetectable by the pilot at the decision height DH. EVS systems have been designed, in particular to remedy this problem and improve the natural vision of flight crews and extend landing capabilities in conditions of degraded visibility. The regulation allows, in the example cited above, to go down to 10Oft if the necessary visual references could be discerned by the pilot at 200ft with the help of an EVS and even if this is not the case. not discernible by the human eye.
On connaît à l'heure actuelle des systèmes EVS comportant des capteurs d'image dans la bande spectrale infrarouge utilisant les bandes spectrales de 3 à 5μηι ou de 8 à 14 μηι et dans la bande spectrale SWIR pour « Short Wave Infra Red » de signaux électromagnétiques de longueur d'onde qui s'étend de 1 μηι à 2.5μηι. L'utilisation des capteurs dans la bande spectrale SWIR a pour objectif d'optimiser les capacités de détection de lampes à incandescence couramment utilisées pour marquer les pistes.  EVS systems are currently known comprising image sensors in the infrared spectral band using the spectral bands of 3 to 5μηι or 8 to 14 μηι and in the spectral band SWIR for "Short Wave Infra Red" of signals electromagnetic wave which extends from 1 μηι to 2.5μηι. The purpose of using sensors in the SWIR spectral band is to optimize the detection capabilities of incandescent lamps commonly used to mark tracks.
Cependant, les balisages lumineux récents utilisent de nouvelles techniques d'éclairage à diode électroluminescente (LED), qui ne présentent pas d'émission au-delà d'une longueur d'onde de 1 μηι.  However, recent lighting uses new light emitting diode (LED) lighting techniques, which have no emission beyond a wavelength of 1 μηι.
La demande de brevet WO 2009/128065 A1 décrit un système EVS comprenant une pluralité de capteurs aptes à fonctionner dans diverses bandes spectrales, comprenant la bande spectrale NIR pour « Near Infra-Red » de signaux électromagnétiques de longueur d'onde s'étendant de 0,7μηι à 1 .0μηι, et la bande spectrale de la lumière visible qui s'étend de 0,4μηι à 0.7μηι. Ce système réalise une fusion des données d'images acquises par les différents capteurs. Les bandes spectrales à fusionner sont sélectionnées en fonction des conditions météorologiques préalablement identifiées et de la nature des balisages lumineux à détecter.  The patent application WO 2009/128065 A1 describes an EVS system comprising a plurality of sensors able to operate in various spectral bands, comprising the NIR spectral band for "Near Infra-Red" of electromagnetic signals of wavelength extending from 0.7μηι at 1 .0μηι, and the spectral band of visible light which extends from 0.4μηι to 0.7μηι. This system mergers the image data acquired by the different sensors. The spectral bands to be fused are selected according to the previously identified meteorological conditions and the nature of the light markings to be detected.
Cependant, outre sa complexité calculatoire et son coût de fabrication élevé, un tel système présente des performances limitées à la performance de la meilleure des bandes spectrales présentes dans l'équipement. De plus, il n'est pas possible de prédire la performance du système, c'est-à-dire le gain en visibilité par rapport à l'œil humain, car ce gain varie en fonction des conditions météorologiques et atmosphériques, de la luminance de fond et de l'intensité des balisages lumineux. Par conséquent, il n'est pas aisé, avec un tel système, de prédire si pour une valeur de RVR donnée, le système permettra d'atteindre les performances requises pour engager et conduire à terme l'atterrissage.  However, in addition to its computational complexity and its high manufacturing cost, such a system has performance limited to the performance of the best spectral bands present in the equipment. In addition, it is not possible to predict the system performance, ie the gain in visibility relative to the human eye, because this gain varies depending on the weather and atmospheric conditions, the luminance background and intensity of light markings. Therefore, it is not easy, with such a system, to predict whether for a given RVR value, the system will achieve the performance required to initiate and complete the landing.
On définit dans ce qui suit la résolution angulaire comme étant le champ de vue élémentaire d'un pixel d'un détecteur de capteur d'image. On considère généralement que la résolution angulaire de l'œil humain est d'environ 0,8 minutes d'arc, soit 0,0135° (ou 0,00029 radians). De même dans ce qui suit, une haute résolution spatiale désignera une résolution angulaire fine, donc un angle de résolution/champ de vue élémentaire petit. L'invention a pour but de remédier aux inconvénients de l'état de la technique précités. In the following, the angular resolution is defined as being the elementary field of view of a pixel of an image sensor detector. It is generally considered that the angular resolution of the human eye is about 0.8 arc minutes, or 0.0135 ° (or 0.00029 radians). Likewise in what follows, a high spatial resolution will designate a fine angular resolution, thus a small resolution angle / field of view. The object of the invention is to overcome the disadvantages of the prior art mentioned above.
A cet effet, l'invention propose, selon un premier aspect, un système adapté à fournir à un opérateur une visibilité augmentée, destiné à l'aide au pilotage d'aéronef, comportant au moins un capteur apte à acquérir des données d'image dans une bande spectrale donnée et une unité centrale de calcul apte à traiter les données d'image acquises et à transmettre les données d'image traitées pour affichage d'une image numérique sur une unité d'affichage.  For this purpose, the invention proposes, according to a first aspect, a system adapted to provide an operator with increased visibility, intended for the purpose of piloting an aircraft, comprising at least one sensor capable of acquiring image data. in a given spectral band and a central processing unit able to process the acquired image data and to transmit the processed image data for displaying a digital image on a display unit.
Ce système comporte :  This system comprises:
- au moins un capteur haute résolution apte à acquérir des données d'image formant une image numérique dans une bande spectrale incluant au moins tout ou partie de la bande spectrale correspondant aux signaux électromagnétiques visibles par l'œil humain, de première résolution spatiale, et de résolution angulaire de capture strictement plus fine que la résolution angulaire de l'œil humain, et  at least one high-resolution sensor capable of acquiring image data forming a digital image in a spectral band including at least all or part of the spectral band corresponding to the electromagnetic signals visible to the human eye, of first spatial resolution, and angular resolution of capture strictly finer than the angular resolution of the human eye, and
- un module de traitement non-linéaire adapté à réaliser un changement de résolution spatiale tout en préservant des points brillants de ladite image numérique acquise pour obtenir une image numérique à afficher de deuxième résolution spatiale inférieure à la première résolution spatiale.  - A non-linear processing module adapted to achieve a spatial resolution change while preserving bright spots of said acquired digital image to obtain a digital image to display second spatial resolution less than the first spatial resolution.
Avantageusement, le système de l'invention est un système EVS utilisant au moins un capteur (orientable ou fixe) de résolution angulaire très fine et significativement meilleure que celle de l'œil dans la bande spectrale visible, ce qui permet :  Advantageously, the system of the invention is an EVS system using at least one sensor (orientable or fixed) of very fine angular resolution and significantly better than that of the eye in the visible spectral band, which allows:
• d'avoir des performances de portée de détection des balisages lumineux significativement améliorées par rapport à l'œil,  • to have significantly improved range of detection of lighting markings compared to the eye,
• d'être adapté à des balisages lumineux de type LED,  • to be adapted to LED lighting,
• de pouvoir quantifier sa performance par rapport à la portée visuelle de l'œil humain, indépendamment de la variation éventuelle des conditions météorologiques et atmosphériques.  • to be able to quantify its performance in relation to the visual range of the human eye, regardless of any variation in weather and atmospheric conditions.
De plus, le système proposé est moins coûteux en matériel et nécessite moins de ressources calculatoires qu'un système à base de capteurs adaptés à fonctionner dans plusieurs bandes spectrales différentes.  In addition, the proposed system is less expensive in hardware and requires less computational resources than a system based on sensors adapted to operate in several different spectral bands.
Le système selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous, prises indépendamment ou selon toutes leurs combinaisons techniquement acceptables.  The system according to the invention may have one or more of the following characteristics, taken independently or in all their technically acceptable combinations.
Chaque image numérique est définie par une matrice de pixels, chaque pixel ayant une valeur associée, ladite valeur étant d'autant plus élevée qu'un pixel est brillant, et le module de traitement non-linéaire est apte à appliquer un filtrage non-linéaire à un bloc de pixels de l'image numérique acquise pour déterminer une valeur de pixel correspondant dans l'image numérique à afficher, ledit filtrage non-linéaire prenant en compte, pour un bloc de pixels de l'image numérique acquise, au moins la valeur maximale dudit bloc de pixels. Each digital image is defined by a matrix of pixels, each pixel having an associated value, said value being even higher when a pixel is glossy, and the nonlinear processing module is able to apply a nonlinear filtering has a block of pixels of the digital image acquired to determine a corresponding pixel value in the digital image to be displayed, said non-linear filtering taking into account, for a block of pixels of the acquired digital image, at least the maximum value said block of pixels.
Le filtrage non-linéaire consiste à associer à un pixel de l'image numérique à afficher une valeur calculée à partir des valeurs supérieures à un seuil prédéterminé du bloc de pixels correspondant de l'image numérique acquise.  Non-linear filtering involves associating with a pixel of the digital image to display a value calculated from values above a predetermined threshold of the corresponding block of pixels of the acquired digital image.
Selon une variante, le filtrage non linéaire consiste associer à un pixel de l'image numérique à afficher une valeur calculée à partir d'un nombre donné des valeurs les plus élevées du bloc de pixels.  Alternatively, the nonlinear filtering involves associating with a pixel of the digital image to display a value calculated from a given number of the highest values of the block of pixels.
Le système comporte une pluralité de capteurs haute résolution juxtaposés.  The system includes a plurality of high resolution juxtaposed sensors.
Le système comporte un capteur haute définition, adapté à être positionné dans une position d'acquisition de données d'image selon un axe de visée, et des organes de déplacement dudit capteur, permettant de déplacer l'angle de visée de ce capteur.  The system comprises a high-definition sensor, adapted to be positioned in a position for acquiring image data along a line of sight, and displacement members of said sensor, making it possible to move the angle of sight of this sensor.
Le capteur haute résolution apte à acquérir des données d'image numérique est un premier capteur dans une première bande spectrale correspondant aux signaux visibles par l'œil humain, le système comportant en outre un deuxième capteur apte à acquérir des deuxièmes données d'image numérique dans une deuxième bande spectrale différente de la première bande spectrale.  The high-resolution sensor capable of acquiring digital image data is a first sensor in a first spectral band corresponding to the signals visible to the human eye, the system further comprising a second sensor capable of acquiring second digital image data. in a second spectral band different from the first spectral band.
La deuxième bande spectrale appartient au domaine des ondes électromagnétiques infrarouges, de longueur d'onde comprise entre 3 et 14 micromètres.  The second spectral band belongs to the field of infrared electromagnetic waves of wavelength between 3 and 14 micrometers.
Le système comporte en outre un module de traitement d'images adapté à effectuer une fusion entre ladite image numérique à afficher et les deuxièmes données d'image numérique acquises par le deuxième capteur.  The system further comprises an image processing module adapted to effect a merger between said digital image to be displayed and the second digital image data acquired by the second sensor.
La résolution angulaire de capture est strictement plus fine que la résolution angulaire de l'œil humain, d'un facteur supérieur ou égal à 3.  The angular capture resolution is strictly finer than the angular resolution of the human eye, by a factor greater than or equal to 3.
Selon un deuxième aspect, l'invention propose un procédé adapté à fournir à un opérateur une visibilité augmentée, destiné à l'aide au pilotage d'aéronef, mis en œuvre par un système comportant au moins un capteur apte à acquérir des données d'image dans une bande spectrale donnée et une unité centrale de calcul apte à traiter les données d'image acquises et à transmettre les données d'image traitées pour affichage d'une image numérique sur une unité d'affichage. Le procédé comporte des étapes suivantes :  According to a second aspect, the invention proposes a method adapted to provide an operator with increased visibility, intended for use in aircraft piloting, implemented by a system comprising at least one sensor capable of acquiring data from aircraft. image in a given spectral band and a central processing unit adapted to process the acquired image data and to transmit the processed image data for displaying a digital image on a display unit. The method comprises the following steps:
- acquisition des données d'image formant une image numérique dans une bande spectrale incluant au moins tout ou partie de la bande spectrale correspondant aux signaux électromagnétiques visibles par l'œil humain, de première résolution spatiale, et de résolution angulaire de capture strictement plus fine que la résolution angulaire de l'œil humain, et acquisition of the image data forming a digital image in a spectral band including at least all or part of the spectral band corresponding to the electromagnetic signals visible to the human eye, of first spatial resolution, and angular resolution of capture strictly finer than the angular resolution of the human eye, and
- application d'un traitement non-linéaire adapté à réaliser un changement de résolution spatiale tout en préservant des points brillants de ladite image numérique acquise pour obtenir une image numérique à afficher de deuxième résolution spatiale inférieure à la première résolution spatiale.  - Applying a non-linear processing adapted to achieve a spatial resolution change while preserving bright spots of said acquired digital image to obtain a digital image to display second spatial resolution less than the first spatial resolution.
Les avantages du procédé étant analogues aux avantages du système brièvement décrit ci-dessus, ils ne sont pas rappelés ici.  Since the advantages of the method are similar to the advantages of the system briefly described above, they are not recalled here.
Le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous, prises indépendamment ou selon toutes leurs combinaisons techniquement acceptables.  The process according to the invention may have one or more of the following characteristics, taken independently or in all their technically acceptable combinations.
Chaque image numérique est définie par une matrice de pixels, chaque pixel ayant une valeur associée, ladite valeur étant d'autant plus élevée qu'un pixel est brillant, et le traitement non-linéaire comprend l'application d'un filtrage non-linéaire à un bloc de pixels de l'image numérique acquise pour déterminer une valeur de pixel correspondant dans l'image numérique à afficher, ledit filtrage non-linéaire prenant en compte au moins la valeur maximale dudit bloc de pixels.  Each digital image is defined by a matrix of pixels, each pixel having an associated value, said value being even higher when a pixel is shiny, and the nonlinear processing comprises the application of a nonlinear filtering a block of pixels of the acquired digital image for determining a corresponding pixel value in the digital image to be displayed, said non-linear filtering taking into account at least the maximum value of said block of pixels.
Le filtrage non-linéaire consiste à associer à un pixel de l'image numérique à afficher une valeur calculée à partir des valeurs supérieures à un seuil prédéterminé du bloc de pixels correspondant de l'image numérique acquise.  Non-linear filtering involves associating with a pixel of the digital image to display a value calculated from values above a predetermined threshold of the corresponding block of pixels of the acquired digital image.
Selon une variante, la valeur associée au pixel de l'image numérique à afficher est calculée à partir d'un nombre donné des valeurs les plus élevées du bloc de pixels.  According to one variant, the value associated with the pixel of the digital image to be displayed is calculated from a given number of the highest values of the block of pixels.
Le procédé comporte une autre étape d'acquisition de deuxièmes données d'image numérique dans une deuxième bande spectrale différente de la première bande spectrale.  The method includes another step of acquiring second digital image data in a second spectral band different from the first spectral band.
Le procédé comporte une étape de fusion entre l'image numérique de deuxième résolution obtenue par traitement non-linéaire et les deuxièmes données d'image numérique.  The method includes a step of merging the second resolution digital image obtained by nonlinear processing with the second digital image data.
D'autres caractéristiques et avantages de l'invention ressortiront de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles : Other features and advantages of the invention will emerge from the description given below, by way of indication and in no way limiting, with reference to the appended figures, among which:
-la figure 1 représente schématiquement un aéronef à l'approche d'une piste marquée par des balisages lumineux ;  FIG. 1 schematically represents an aircraft approaching a track marked by light markings;
-la figure 2 illustre schématiquement un système de vision augmentée selon un premier mode de réalisation ; -la figure 3 illustre schématiquement deux images de résolutions spatiales différentes ; FIG. 2 diagrammatically illustrates an augmented vision system according to a first embodiment; FIG. 3 schematically illustrates two images of different spatial resolutions;
- la figure 4 illustre schématiquement un système de vision augmentée selon un deuxième mode de réalisation.  - Figure 4 schematically illustrates an augmented vision system according to a second embodiment.
L'invention sera décrite dans son application à l'aide au pilotage d'aéronef, étant entendu qu'elle n'est pas limitée à cette application. The invention will be described in its application to aircraft flight control, it being understood that it is not limited to this application.
En effet, l'invention trouve des applications de manière plus générale dans tout contexte dans lequel une vision augmentée par rapport à la vision humaine d'un opérateur est utile, par exemple pour le pilotage d'autres types d'appareils.  Indeed, the invention finds applications more generally in any context in which an increased vision compared to the human vision of an operator is useful, for example for controlling other types of devices.
La figure 1 illustre schématiquement un contexte d'application de l'invention, qui est l'atterrissage d'un aéronef.  Figure 1 schematically illustrates an application context of the invention, which is the landing of an aircraft.
Dans l'exemple de la figure 1 , un aéronef 2 est en approche d'atterrissage sur un champ d'atterrissage 4, comportant une piste d'atterrissage 6.  In the example of FIG. 1, an aircraft 2 is on landing approach on a landing field 4, comprising a landing runway 6.
La piste d'atterrissage est marquée par des marqueurs divers 8, 10, 12, 16, 18. Par exemple, les marqueurs 8 sont des marqueurs de centre de piste, les marqueurs 10, 12 sont des balises lumineuses de bord de piste, disposés régulièrement sur toute sa longueur, les marqueurs 16 sont des marqueurs de seuil de piste et les marqueurs 18 sont des balises de rampe d'approche.  The landing strip is marked by various markers 8, 10, 12, 16, 18. For example, the markers 8 are markers of the center of the track, the markers 10, 12 are light markers of the edge of the track, arranged Regularly along its entire length, the markers 16 are runway threshold markers and the markers 18 are approach ramp markers.
Les marqueurs 8, 10, 12, 16, 18 émettent au moins dans la bande spectrale visible à l'œil par l'opérateur et certains peuvent être réalisés par des lampes à diodes électroluminescentes (LED) et d'autres par des lampes à incandescence.  The markers 8, 10, 12, 16, 18 emit at least in the spectral band visible to the eye by the operator and some can be made by LED lamps and others by incandescent lamps .
Avantageusement, l'aéronef 2 est équipé d'un système 14 adapté à fournir à l'opérateur de pilotage une vision augmentée.  Advantageously, the aircraft 2 is equipped with a system 14 adapted to provide the pilot with increased vision.
Il est à noter que le système 14 est représenté schématiquement sur la figure 1 , et qu'il est en pratique constitué de plusieurs éléments qui sont positionnés à différents endroits ou regroupés, comme expliqué plus en détail ci-après.  It should be noted that the system 14 is shown schematically in Figure 1, and that it is in practice made of several elements that are positioned at different locations or grouped together, as explained in more detail below.
Selon un premier mode de réalisation illustré schématiquement à la figure 2, un système 14 selon l'invention comporte un capteur d'images 20 dans la bande spectrale des rayonnements ou signaux électromagnétiques visibles par l'œil humain, de longueur d'onde comprise entre 0,4μηι à 0.7μηι mais pouvant dans une variante aller jusqu'à 1 μηι.  According to a first embodiment illustrated schematically in FIG. 2, a system 14 according to the invention comprises an image sensor 20 in the spectral band of the electromagnetic radiation or signals visible to the human eye, of wavelength between 0.4μηι to 0.7μηι but can in a variant go up to 1 μηι.
En variante, le capteur d'images 20 fonctionne dans une bande spectrale comportant seulement une partie de la bande spectrale des signaux électromagnétiques visibles par l'œil humain.  In a variant, the image sensor 20 operates in a spectral band comprising only a part of the spectral band of the electromagnetic signals visible to the human eye.
Le capteur 20 est un capteur de haute résolution, permettant d'obtenir un niveau de résolution angulaire de prise de vue plus fine que l'œil humain. L'image numérique acquise par le capteur 20 a une résolution spatiale associée, la résolution spatiale étant définie comme étant le nombre de données d'image ou pixels par unité de longueur. Chaque pixel a une valeur de radiométrie associée, appelée également valeur d'intensité. The sensor 20 is a high resolution sensor, making it possible to obtain a level of angular resolution of shooting that is finer than the human eye. The digital image acquired by the sensor 20 has an associated spatial resolution, the spatial resolution being defined as the number of image data or pixels per unit length. Each pixel has an associated radiometry value, also called intensity value.
De préférence, le capteur 20 est tel que le rapport K entre la résolution angulaire de l'œil humain et la résolution angulaire d'acquisition d'images est supérieur ou égal à 3. L'image numérique acquise par un tel capteur est dite sur-résolue car elle présente une résolution angulaire plus fine que la résolution angulaire atteignable par l'œil humain.  Preferably, the sensor 20 is such that the ratio K between the angular resolution of the human eye and the angular image acquisition resolution is greater than or equal to 3. The digital image acquired by such a sensor is said on -resolved because it has angular resolution finer than the angular resolution achievable by the human eye.
Le capteur 20 permet de saisir, selon un axe de visée, un champ de vision d'angle maximal Θ de préférence de l'ordre de 35° à 40°.  The sensor 20 makes it possible to capture, along a line of sight, a field of view of maximum angle Θ preferably of the order of 35 ° to 40 °.
De préférence, le capteur 20 est un capteur CMOS (« Complementarity Metal- Oxide-Semiconductor »), composé de photodiodes, dont le coût de fabrication est modéré.  Preferably, the sensor 20 is a CMOS sensor ("Complementarity Metal-Oxide Semiconductor"), composed of photodiodes, whose manufacturing cost is moderate.
En variante, le capteur 20 est un capteur CCD (pour « Charge Coupled Device » ou dispositif à transfert de charge) ou utilise toute autre technologie de capteur.  Alternatively, the sensor 20 is a CCD (Charge Coupled Device) or uses any other sensor technology.
Dans un mode de réalisation alternatif, afin d'acquérir des données d'image correspondant au champ de vision d'angle Θ, le capteur 20 est remplacé par une pluralité de capteurs de champ de vision d'angle inférieur à Θ, juxtaposés et adaptés à capturer des données d'image correspondant à des champs de vision adjacents ou présentant une portion de recouvrement.  In an alternative embodiment, in order to acquire image data corresponding to the angle of view field Θ, the sensor 20 is replaced by a plurality of angle-of-view sensors smaller than Θ, juxtaposed and adapted capturing image data corresponding to adjacent fields of view or having an overlapping portion.
Dans un autre mode de réalisation alternatif, le capteur 20 haute résolution présente un champ de vision d'angle plus faible que l'angle souhaité, donc un champ de vision plus restreint, mais ce capteur 20 est rendu mobile par des organes de déplacement, permettant de le faire tourner de façon à pouvoir couvrir un champ de vision large de l'ordre de Θ. Par exemple, de tels organes de déplacement sont formés par une liaison articulée ou fixe associée à un moteur. Dans ce mode de réalisation, le capteur 20 est orientable.  In another alternative embodiment, the high resolution sensor 20 has a field of view of angle smaller than the desired angle, thus a narrower field of view, but this sensor 20 is made movable by displacement members, allowing it to be rotated so as to cover a wide field of view of the order of Θ. For example, such displacement members are formed by an articulated or fixed connection associated with a motor. In this embodiment, the sensor 20 is steerable.
En pratique, dans le cas d'utilisation pour l'aide au pilotage d'aéronef 2, le capteur 20 est placé par exemple à l'avant du fuselage de l'aéronef.  In practice, in the case of use for aircraft piloting aid 2, the sensor 20 is placed for example at the front of the fuselage of the aircraft.
Avantageusement, comme expliqué en détail ci-après, la capture d'une image surrésolue permet d'améliorer la visibilité des balisages lumineux avec une performance quantifiable, y compris dans des conditions de visibilité réduite.  Advantageously, as explained in detail below, the capture of an overbooked image makes it possible to improve the visibility of the light markings with a quantifiable performance, even in conditions of reduced visibility.
Par exemple, une condition météorologique de type brouillard réduisant la visibilité est schématiquement illustrée par un nuage 21 sur la figure 2. En sortie du capteur 20, une image numérique sur-résolue l0 de première résolution spatiale R0 est obtenue, l'image étant constituée de K*L pixels, par exemple 5120*4096. L'image numérique est définie par une matrice de valeurs de pixels. For example, a fog-reducing weather condition is schematically illustrated by a cloud 21 in FIG. At the output of the sensor 20, an over-resolved digital image 10 of first spatial resolution R 0 is obtained, the image consisting of K * L pixels, for example 5120 * 4096. The digital image is defined by a matrix of pixel values.
Les données de l'image numérique sur-résolue l0, de première résolution spatiale R0, sont transmises à un module de traitement non-linéaire 22, par exemple via un bus de données connecté à la sortie du capteur 20. Le module de traitement non-linéaire 22 est implémenté par un dispositif programmable non représenté, par exemple un ordinateur de bord, comportant un ou plusieurs processeurs aptes à exécuter des calculs et des instructions de code de programme d'ordinateur lorsqu'ils sont mis sous tension. The data of the over-resolved digital image 10 , of first spatial resolution R 0 , are transmitted to a non-linear processing module 22, for example via a data bus connected to the output of the sensor 20. non-linear processing 22 is implemented by a not shown programmable device, for example an on-board computer, comprising one or more processors able to execute calculations and computer program code instructions when they are powered up.
En variante, le dispositif programmable mettant en œuvre le module de traitement non-linéaire 22, ainsi que tout autre module de calcul, est mis en œuvre par un circuit intégré de type FPGA ou par un circuit intégré dédié de type ASIC.  In a variant, the programmable device implementing the non-linear processing module 22, as well as any other calculation module, is implemented by an integrated circuit of the FPGA type or by a dedicated integrated circuit of ASIC type.
Le traitement effectué par le module de traitement non-linéaire 22 permet de passer de la première image l0 de première résolution spatiale R0 à une image numérique de deuxième résolution spatiale R1 ; inférieure à la première résolution spatiale R0, tout en préservant des points de contraste de l'image, en particulier des points brillants (ou points de contraste positif) de l'image. The processing carried out by the nonlinear processing module 22 makes it possible to go from the first image 10 of the first spatial resolution R 0 to a digital image of second spatial resolution R 1; less than the first spatial resolution R 0 , while preserving contrast points of the image, in particular bright spots (or points of positive contrast) of the image.
On appelle points de contraste des points ou pixels dont la valeur associée est nettement supérieure ou nettement inférieure à la valeur moyenne des pixels du voisinage, par exemple supérieure de 3 fois l'écart-type des pixels de ce voisinage.  Points of contrast are called points or pixels whose associated value is clearly greater or substantially less than the average value of the pixels of the neighborhood, for example greater than 3 times the standard deviation of the pixels of this neighborhood.
Les points dont la valeur associée est nettement supérieure aux valeurs environnantes sont des points brillants, le contraste est dit positif.  The points whose associated value is much higher than the surrounding values are bright points, the contrast is positive.
Les points dont la valeur associée est nettement inférieure aux valeurs environnantes sont des points sombres, le contraste est dit négatif.  The points whose associated value is significantly lower than the surrounding values are dark points, the contrast is negative.
Il est à noter qu'avec un capteur de résolution classique, non sur-résolu, il est possible de rater des points de fort contraste (positif ou négatif) du fait de la résolution du capteur.  It should be noted that with a conventional resolution sensor, not over-resolved, it is possible to miss points of strong contrast (positive or negative) due to the resolution of the sensor.
Le traitement effectué par le module de traitement non-linéaire 22 permet de conserver des points de contraste positif dans l'image numérique de deuxième résolution spatiale inférieure à la première résolution.  The processing performed by the nonlinear processing module 22 makes it possible to maintain positive contrast points in the digital image of second spatial resolution less than the first resolution.
La figure 3 illustre deux telles images l0 et \ avec un facteur de résolution égal à 3 entre la première résolution R0 et la deuxième résolution Ainsi, un bloc B de 3x3 pixels de l'image numérique l0 correspond à un pixel P de l'image . La correspondance est une correspondance spatiale dans les matrices respectives, comme illustré à la figure 3. FIG. 3 illustrates two such images 10 and 1 with a resolution factor equal to 3 between the first resolution R 0 and the second resolution. Thus, a block B of 3 × 3 pixels of the digital image 10 corresponds to a pixel P of the image . The correspondence is a spatial correspondence in the respective matrices, as shown in Figure 3.
De manière plus générale, un bloc de MxN pixels de l'image l0, correspond à un pixel de l'image . Dans le mode de réalisation préféré, le traitement non-linéaire appliqué par le module 22 pour passer d'un bloc B, contenant des pixels (Bij), { = 3x 1 + k, j = 3x jl + k, k€ {0,1,2}} de l'image l0 au pixel P i j de l'image consiste à associer au pixel Pn^ la valeur maximale des pixels du bloc MxN de l'image l0 : More generally, a block of MxN pixels of the image 10 , corresponds to a pixel of the image. In the preferred embodiment, the nonlinear processing applied by the module 22 to pass from a block B, containing pixels (Bi j ), {= 3x 1 + k, j = 3x j l + k, k € {0,1,2}} of the image 10 at the pixel P i j of the image consists in associating with the pixel Pn ^ the maximum value of the pixels of the block MxN of the image 10 :
PWi = max(fl(J ) P Wi = max (fl (J )
Ainsi, avantageusement, le gain apporté par la sur-résolution de l'image l0 acquise par le capteur 20 est préservé. L'intensité maximale émise par les balisages lumineux, captée par l'acquisition d'image sur-résolue, est conservée dans l'image numérique de deuxième résolution Thus, advantageously, the gain provided by the over-resolution of the image 10 acquired by the sensor 20 is preserved. The maximum intensity emitted by the luminous markings, captured by the over-resolved image acquisition, is preserved in the second resolution digital image.
Avantageusement, le module de traitement non-linéaire est adapté à conserver les points lumineux détectés, en d'autres termes à préserver les points les plus brillants du bloc, car en effet plus un point est brillant, plus la valeur associée dans l'image numérique est élevée.  Advantageously, the non-linear processing module is adapted to retain the detected light spots, in other words to preserve the brightest points of the block, because in fact the more a point is shiny, the higher the associated value in the image digital is high.
Le traitement non-linéaire appliqué préserve les points brillants mais ne préserve pas les points sombres, car seuls les points les plus brillants sont d'intérêt pour l'application d'aide au pilotage visée.  The applied nonlinear processing preserves the bright spots but does not preserve the dark spots, as only the brightest points are of interest for the intended piloting application.
En variante, le module de traitement non-linéaire 22 applique d'autres traitements non-linéaires de type filtrage conservant les valeurs maximales ou traitant les pixels en fonction de leur rang. Un filtrage sur des fenêtres recouvrantes peut également être envisagé.  In a variant, the nonlinear processing module 22 applies other nonlinear treatments of filtering type that retain the maximum values or that process the pixels according to their rank. Filtering on overlapping windows can also be considered.
Par exemple, pour un bloc donné, on conserve les valeurs des pixels du bloc supérieures à un seuil S. Le seuil S peut être fixé ou calculé dynamiquement, comme étant par exemple la moyenne augmentée de 2 ou 3 fois l'écart-type des valeurs des pixels du bloc. Toutes les valeurs retenues, qui sont les valeurs des pixels les plus brillants du bloc selon le critère choisi, sont ensuite utilisées obtenir la valeur finale du pixel de l'image numérique de deuxième résolution Par exemple, une moyenne des valeurs retenues, donc supérieures au seuil S, du bloc considéré, est calculée et attribuée comme valeur finale du pixel correspondant dans l'image numérique de deuxième résolution  For example, for a given block, the values of the block pixels greater than a threshold S are retained. The threshold S can be set or dynamically calculated, for example, being the average increased by 2 or 3 times the standard deviation of pixel values of the block. All the values retained, which are the values of the brightest pixels of the block according to the chosen criterion, are then used to obtain the final value of the pixel of the second resolution digital image. For example, an average of the values retained, therefore greater than threshold S, of the block considered, is calculated and assigned as the final value of the corresponding pixel in the second resolution digital image
Dans un autre exemple, on ordonne les valeurs des pixels d'un bloc considéré dans l'ordre décroissant des valeurs et on conserve les 2 (ou 3) valeurs les plus importantes. Les valeurs retenues, qui sont les valeurs des pixels les plus brillants du bloc selon le critère choisi, sont ensuite utilisées obtenir la valeur finale du pixel de l'image numérique de deuxième résolution Par exemple, une moyenne des valeurs retenues du bloc considéré, est calculée et attribuée comme valeur finale du pixel correspondant dans l'image numérique de deuxième résolution. In another example, the values of the pixels of a block considered are ordered in descending order of the values and the 2 (or 3) most important values are retained. The values retained, which are the values of the brightest pixels of the block according to the chosen criterion, are then used to obtain the final value of the pixel of the second resolution digital image. For example, an average of the values retained. of the block considered, is calculated and assigned as the final value of the corresponding pixel in the second resolution digital image.
En sortie du module de traitement non-linéaire 22, l'image numérique de deuxième résolution spatiale Ri inférieure à la résolution R0 est transmise à un module 24 de traitement d'image, apte à appliquer des traitements classiques, par exemple de correction de radiométrie, d'alignement géométrique en vue de l'affiche de l'image sur une unité d'affichage 26, par exemple un écran. At the output of the non-linear processing module 22, the digital image of second spatial resolution Ri less than the resolution R 0 is transmitted to an image processing module 24, able to apply conventional processing, for example correction of radiometry, geometric alignment in view of the display of the image on a display unit 26, for example a screen.
Dans un mode de réalisation, les modules de traitement 22 et 24 sont appliqués par un même ordinateur de bord.  In one embodiment, the processing modules 22 and 24 are applied by the same onboard computer.
Dans un mode de réalisation, l'affichage est effectué par incrustation sur un écran d'affichage 26, situé à hauteur du regard d'un opérateur de pilotage, appelé affichage tête haute.  In one embodiment, the display is performed by incrustation on a display screen 26, located at the sight of a flight operator, called head-up display.
La deuxième résolution est de préférence choisie en fonction de la résolution d'affichage de l'écran d'affichage 26, par exemple un affichage « tête-haute ». En variante, un écran de visualisation « tête-basse », par exemple situé sur le tableau de bord, est utilisé.  The second resolution is preferably chosen according to the display resolution of the display screen 26, for example a "head-up" display. Alternatively, a "head-down" display screen, for example located on the dashboard, is used.
Avantageusement, un tel affichage tête haute permet de présenter à l'opérateur une vision augmentée de la réalité qu'il peut percevoir naturellement, et donc de l'aider pour les opérations de pilotage.  Advantageously, such a head-up display makes it possible to present to the operator an augmented vision of the reality that he can perceive naturally, and thus to help him for the piloting operations.
Ainsi, un procédé de visualisation adapté à fournir à un opérateur une vision augmentée selon l'invention comporte une première étape d'acquisition d'une première image numérique de première résolution spatiale par un capteur haute résolution apte à acquérir des données d'image dans une bande spectrale correspondant aux signaux visibles par l'œil humain, avec un niveau de résolution angulaire de capture strictement supérieur au niveau de résolution angulaire de l'œil humain.  Thus, a visualization method adapted to provide an operator with an augmented vision according to the invention comprises a first step of acquiring a first digital image of first spatial resolution by a high resolution sensor able to acquire image data in a spectral band corresponding to the signals visible by the human eye, with a level of angular resolution of capture strictly greater than the level of angular resolution of the human eye.
Cette première étape est suivie d'une étape de traitement non-linéaire permettant d'obtenir une deuxième image de deuxième résolution spatiale R2, inférieure à la première résolution spatiale et de deuxième résolution angulaire adaptée à la résolution du dispositif d'affichage. This first step is followed by a non-linear processing step making it possible to obtain a second image of second spatial resolution R 2 , less than the first spatial resolution and of second angular resolution adapted to the resolution of the display device.
De préférence, le facteur entre la résolution angulaire de capture et la résolution angulaire de l'œil humain est supérieur ou égal à 3, c'est-à-dire que la résolution angulaire de capture est au moins 3 fois plus fine que la résolution angulaire de l'œil humain.  Preferably, the factor between the angular resolution of capture and the angular resolution of the human eye is greater than or equal to 3, that is to say that the angular resolution of capture is at least 3 times finer than the resolution angular of the human eye.
Avantageusement, la performance du système proposé est calculable, indépendamment des conditions météorologiques. En effet, une condition météorologique est caractérisée par un coefficient d'absorption σ dans une bande spectrale donnée. Advantageously, the performance of the proposed system is computable, regardless of weather conditions. Indeed, a meteorological condition is characterized by an absorption coefficient σ in a given spectral band.
Selon la loi de Beer-Lambert-Bouguer, l'intensité évolue en fonction de la distance X et du coefficient d'absorption σ de la fa on suivante : l(X) = l0 · βχρ(-σ(Χ - According to Beer-Lambert-Bouguer's law, the intensity changes as a function of the distance X and the absorption coefficient σ in the following way: l (X) = l 0 · β χ ρ (-σ (Χ -
Où X0 est une distance de référence à laquelle on associe l'intensité l0 d'une balise lumineuse. Where X 0 is a reference distance to which the intensity l 0 of a beacon is associated.
En prenant en compte une variation de la résolution angulaire, où a est la résolution angulaire du pixel pour un équipement EVS utilisant le procédé de l'invention et ocref est la résolution angulaire du pixel pour un équipement EVS de référence utilisant une résolution angulaire équivalente à la résolution d'affichage, on obtient : Taking into account a variation of the angular resolution, where a is the angular resolution of the pixel for an EVS equipment using the method of the invention and ore f is the angular resolution of the pixel for a reference EVS equipment using an equivalent angular resolution at the display resolution, we obtain:
l(X) = l0 · εχρ(-σ(Χ - l (X) = l 0 · ε χ ρ (-σ (Χ -
Dans des conditions météorologiques conduisant à un coefficient d'extinction de 0,01 m"1 , on obtient par exemple: Under meteorological conditions leading to an extinction coefficient of 0.01 m- 1 , for example:
• un même rapport signal à bruit pour des balisages lumineux à 500 m avec un capteur de référence de résolution angulaire ocref et à 1000m avec un capteur de résolution angulaire affinée d'un facteur 25 (a=ocref/25), c'est-à- dire qu'un niveau de résolution supérieur d'un facteur 25 conduit à un gain en portée d'un facteur 2, • the same signal-to-noise ratio for luminous markings at 500 m with an angular resolution reference sensor oc ref and at 1000 m with an angular resolution sensor refined by a factor of 25 (a = oc ref / 25), c ' that is, a higher resolution level of a factor of 25 leads to a gain in range of a factor of 2,
• un même rapport signal à bruit pour des balisages lumineux à 800 m avec un capteur de référence de résolution angulaire ocref et à 1000m avec un capteur de résolution angulaire affinée d'un facteur compris entre 3 et 4 (a=aref/3,5), c'est-à-dire qu'un niveau de résolution supérieur d'un facteur 3,5 conduit à un gain en portée de 25%. • the same signal-to-noise ratio for luminous markings at 800 m with an angular resolution reference sensor oc ref and at 1000m with an angular resolution sensor refined by a factor of between 3 and 4 (a = a ref / 3 , 5), that is to say that a level of resolution higher by a factor of 3.5 leads to a gain in range of 25%.
Par conséquent, il est démontré qu'une résolution angulaire d'un niveau supérieur permet de diminuer de manière quantifiable la portée de détection qu'apporte un équipement EVS. Therefore, it is demonstrated that a higher level of angular resolution makes it possible to quantifiably reduce the range of detection provided by EVS equipment.
Dans une variante de ce premier mode de réalisation, le système de l'invention est un système EVS utilisant au moins un capteur (orientable ou fixe) de résolution angulaire très fine dans une bande spectrale différente de celle de l'œil, ce qui permet d'avoir des performances de portée de détection des balisages lumineux significativement améliorées par rapport à un système EVS ayant une résolution de la classe de celle de l'œil dans cette même bande spectrale. In a variant of this first embodiment, the system of the invention is an EVS system using at least one sensor (orientable or fixed) of very fine angular resolution in a spectral band different from that of the eye, which allows to have significantly improved lighting range detection range performance compared to an EVS system having a resolution of the class of that of the eye in this same spectral band.
Un deuxième mode de réalisation d'un système 30 adapté à fournir une vision augmentée selon l'invention est illustré à la figure 4.  A second embodiment of a system 30 adapted to provide increased vision according to the invention is illustrated in FIG. 4.
Le système 30 comporte, outre le premier capteur 20 apte à acquérir des images de très haute résolution spatiale dans la bande spectrale visible, et l'unité de traitement 22 décrite précédemment, constituant une première voie d'imagerie, un deuxième capteur 32 apte à acquérir des images l2 dans une autre bande spectrale que la bande spectrale visible, de préférence dans la bande spectrale infrarouge. The system 30 comprises, in addition to the first sensor 20 capable of acquiring images of very high spatial resolution in the visible spectral band, and the processing unit 22 described above, constituting a first imaging channel, a second sensor 32 capable of acquire the images 2 in a different spectral band than the visible spectral range, preferably in the infrared spectral range.
De préférence, la résolution spatiale des images l2 acquises par le capteur 32 est sensiblement égale à la deuxième résolution spatiale R2 des images obtenues en sortie du module de traitement non-linéaire 22. Preferably, the spatial resolution of the images 1 2 acquired by the sensor 32 is substantially equal to the second spatial resolution R 2 of the images obtained at the output of the nonlinear processing module 22.
L'acquisition par ce deuxième capteur 32 forme une deuxième voie d'imagerie. The acquisition by this second sensor 32 forms a second imaging path.
Le système 30 comprend également un module de traitement 34 adapté à réaliser la fusion des images et l2, correspondant à un même champ de vision, en appliquant notamment, avec des techniques connues dans le domaine du traitement d'image, un contrôle de radiométrie sur chacune des voies, un alignement géométrique permettant de rendre les images et l2 superposables et une addition pixel à pixel. The system 30 also comprises a processing module 34 adapted to perform the fusion of the images and 1 2 , corresponding to the same field of view, by applying in particular, with techniques known in the field of image processing, a radiometry control on each of the channels, a geometric alignment for rendering the images and 2 superimposable and a pixel-to-pixel addition.
Le module de traitement 34 est également adapté à réaliser toute correction d'image en vue de l'affichage.  The processing module 34 is also adapted to perform any image correction for display.
En pratique, le module de traitement 34 est implémenté par un dispositif programmable non représenté, par exemple un ordinateur de bord, comportant un ou plusieurs processeurs aptes à exécuter des calculs et des instructions de code de programme d'ordinateur lorsqu'ils sont mis sous tension.  In practice, the processing module 34 is implemented by a not shown programmable device, for example an on-board computer, comprising one or more processors capable of executing calculations and instructions of computer program code when they are put under control. voltage.
Le module de traitement 34 met en œuvre une étape de fusion entre l'image numérique de deuxième résolution obtenue par traitement non-linéaire effectué lors de l'étape de traitement non linéaire par le module 22, et les deuxièmes données d'image numérique l2 acquises par le capteur 32. The processing module 34 implements a step of merging between the second resolution digital image obtained by non-linear processing performed during the non-linear processing step by the module 22, and the second digital image data. 2 acquired by the sensor 32.
L'image fusionnée résultante est ensuite transmise à une unité d'affichage 26, analogue à l'unité d'affichage 26 décrite ci-dessus en référence à la figure 2, par exemple un écran, pour incrustation et affichage.  The resulting merged image is then transmitted to a display unit 26, analogous to the display unit 26 described above with reference to FIG. 2, for example a display for overlay and display.
Avantageusement, le système proposé permet une acquisition d'image de première résolution spatiale qui est sur-résolue, ce qui permet de capter des points de contraste positif, c'est-à-dire de point brillants par rapport à leur voisinage, et de préserver ces points de contraste positif dans l'image numérique de deuxième résolution spatiale, inférieure à la première résolution. Au final, une image numérique de deuxième résolution spatiale pour affichage et exploitation est obtenue, mais cette image comporte des informations de brillance qui n'auraient pas pu être captées avec une acquisition d'image à ladite deuxième résolution spatiale. Advantageously, the proposed system makes it possible to acquire an image of first spatial resolution which is over-resolved, which makes it possible to capture positive contrast points, that is to say points which are shiny with respect to their neighborhood, and of preserve these positive contrast points in the digital image of second spatial resolution, lower than the first resolution. In the end, a second resolution digital image space for display and operation is obtained, but this image includes gloss information that could not have been captured with an image acquisition at said second spatial resolution.

Claims

REVENDICATIONS
1 . - Système adapté à fournir à un opérateur une visibilité augmentée, destiné à l'aide au pilotage d'aéronef, comportant au moins un capteur apte à acquérir des données d'image dans une bande spectrale donnée et une unité centrale de calcul apte à traiter les données d'image acquises et à transmettre les données d'image traitées pour affichage d'une image numérique sur une unité d'affichage, 1. - System adapted to provide an operator with increased visibility, for use in aircraft piloting, comprising at least one sensor capable of acquiring image data in a given spectral band and a central processing unit able to process the acquired image data and transmitting the processed image data for displaying a digital image on a display unit,
caractérisé en ce qu'il comporte :  characterized in that it comprises:
- au moins un capteur (20) haute résolution apte à acquérir des données d'image formant une image numérique (l0) dans une bande spectrale incluant au moins tout ou partie de la bande spectrale correspondant aux signaux électromagnétiques visibles par l'œil humain, de première résolution spatiale, et de niveau de résolution angulaire de capture strictement plus fine que la résolution angulaire de l'œil humain, et at least one high-resolution sensor (20) capable of acquiring image data forming a digital image (l 0 ) in a spectral band including at least all or part of the spectral band corresponding to the electromagnetic signals visible to the human eye , of first spatial resolution, and angular resolution level of capture strictly finer than the angular resolution of the human eye, and
- un module (22) de traitement non-linéaire adapté à réaliser un changement de résolution spatiale tout en préservant des points brillants de ladite image numérique acquise (l0) pour obtenir une image numérique (h) à afficher de deuxième résolution spatiale inférieure à la première résolution spatiale. a nonlinear processing module adapted to perform a spatial resolution change while preserving bright spots of said acquired digital image (l 0 ) to obtain a digital image (h) to display a second spatial resolution less than the first spatial resolution.
2. - Système selon la revendication 1 , dans lequel chaque image numérique est définie par une matrice de pixels, chaque pixel ayant une valeur associée, ladite valeur étant d'autant plus élevée qu'un pixel est brillant, caractérisé en ce que le module (22) de traitement non-linéaire est apte à appliquer un filtrage non-linéaire à un bloc de pixels de l'image numérique acquise pour déterminer une valeur de pixel correspondant dans l'image numérique à afficher, ledit filtrage non-linéaire préservant les points brillants et prenant en compte, pour un bloc de pixels de l'image numérique acquise, au moins la valeur maximale dudit bloc de pixels. 2. - System according to claim 1, wherein each digital image is defined by a matrix of pixels, each pixel having an associated value, said value being even higher than a pixel is glossy, characterized in that the module (22) is capable of applying a nonlinear filtering to a block of pixels of the acquired digital image to determine a corresponding pixel value in the digital image to be displayed, said nonlinear filtering preserving the bright points and taking into account, for a block of pixels of the acquired digital image, at least the maximum value of said block of pixels.
3. - Système selon la revendication 2, caractérisé en ce que ledit filtrage non- linéaire préservant les points brillants consiste à associer à un pixel de l'image numérique à afficher une valeur calculée à partir des valeurs supérieures à un seuil prédéterminé du bloc de pixels correspondant de l'image numérique acquise. 3. - System according to claim 2, characterized in that said non-linear filtering preserving the bright spots consists of associating with a pixel of the digital image to display a value calculated from the values greater than a predetermined threshold of the block of corresponding pixels of the acquired digital image.
4. - Système selon la revendication 2, caractérisé en ce que ledit filtrage non- linéaire préservant les points brillants consiste à associer à un pixel de l'image numérique à afficher une valeur calculée à partir d'un nombre donné de valeurs les plus élevées du bloc de pixels correspondant de l'image numérique acquise. 4. - System according to claim 2, characterized in that said non-linear filtering preserving the bright spots consists in associating with a pixel of the digital image to be displayed a value calculated from a given number of the highest values. the corresponding pixel block of the acquired digital image.
5. - Système selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte une pluralité de capteurs haute résolution juxtaposés. 5. - System according to one of claims 1 to 4, characterized in that it comprises a plurality of juxtaposed high resolution sensors.
6. - Système selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte un capteur haute définition, adapté à être positionné dans une position d'acquisition de données d'image selon un axe de visée, et des organes de déplacement dudit capteur, permettant de déplacer l'angle de visée de ce capteur. 6. - System according to one of claims 1 to 4, characterized in that it comprises a high-definition sensor, adapted to be positioned in a position for acquiring image data along a line of sight, and organs displacement of said sensor, for moving the viewing angle of the sensor.
7. - Système selon l'une quelconque des revendications 1 à 6, dans lequel ledit capteur (20) haute résolution apte à acquérir des données d'image numérique est un premier capteur dans une première bande spectrale correspondant aux signaux visibles par l'œil humain, caractérisé en ce qu'il comporte en outre un deuxième capteur (32) apte à acquérir des deuxièmes données d'image numérique dans une deuxième bande spectrale différente de la première bande spectrale. 7. - System according to any one of claims 1 to 6, wherein said high resolution sensor (20) capable of acquiring digital image data is a first sensor in a first spectral band corresponding to the signals visible by the eye human, characterized in that it further comprises a second sensor (32) adapted to acquire second digital image data in a second spectral band different from the first spectral band.
8. - Système selon la revendication 7, caractérisé en ce que ladite deuxième bande spectrale appartient au domaine des ondes électromagnétiques infrarouges, de longueur d'onde comprise entre 3 et 14 micromètres. 8. - System according to claim 7, characterized in that said second spectral band belongs to the field of infrared electromagnetic waves of wavelength between 3 and 14 microns.
9. - Système selon l'une quelconque des revendications 7 ou 8, caractérisé en ce qu'il comporte en outre un module (34) de traitement d'images adapté à effectuer une fusion entre ladite image numérique à afficher et les deuxièmes données d'image numérique acquises par le deuxième capteur. 9. - System according to any one of claims 7 or 8, characterized in that it further comprises an image processing module (34) adapted to perform a merger between said digital image to be displayed and the second data d digital image acquired by the second sensor.
10. - Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la résolution angulaire de capture est strictement plus fine que la résolution angulaire de l'œil humain, d'un facteur supérieur ou égal à 3. 10. - System according to any one of claims 1 to 9, characterized in that the angular resolution of capture is strictly finer than the angular resolution of the human eye by a factor greater than or equal to 3.
1 1 . - Procédé adapté à fournir à un opérateur une visibilité augmentée, destiné à l'aide au pilotage d'aéronef, mis en œuvre par un système comportant au moins un capteur apte à acquérir des données d'image dans une bande spectrale donnée et une unité centrale de calcul apte à traiter les données d'image acquises et à transmettre les données d'image traitées pour affichage d'une image numérique sur une unité d'affichage, 1 1. - A method adapted to provide an operator with increased visibility, for use in aircraft piloting, implemented by a system comprising at least one sensor capable of acquiring image data in a given spectral band and a unit a central processing unit adapted to process the acquired image data and to transmit the processed image data for displaying a digital image on a display unit,
caractérisé en ce qu'il comporte des étapes de : - acquisition des données d'image formant une image numérique dans une bande spectrale incluant au moins tout ou partie de la bande spectrale correspondant aux signaux électromagnétiques visibles par l'œil humain, de première résolution spatiale, et de résolution angulaire de capture strictement plus fine que la résolution angulaire de l'œil humain, et characterized in that it comprises steps of: - acquisition of the image data forming a digital image in a spectral band including at least all or part of the spectral band corresponding to the electromagnetic signals visible to the human eye, of first spatial resolution, and angular resolution resolution strictly finer than the angular resolution of the human eye, and
- application d'un traitement non-linéaire adapté à réaliser un changement de résolution spatiale tout en préservant des points brillants de ladite image numérique acquise pour obtenir une image numérique à afficher de deuxième résolution spatiale inférieure à la première résolution spatiale.  - Applying a non-linear processing adapted to achieve a spatial resolution change while preserving bright spots of said acquired digital image to obtain a digital image to display second spatial resolution less than the first spatial resolution.
12. - Procédé selon la revendication 1 1 , dans lequel chaque image numérique est définie par une matrice de pixels, chaque pixel ayant une valeur associée, ladite valeur étant d'autant plus élevée qu'un pixel est brillant, caractérisé en ce que le traitement non- linéaire comprend l'application d'un filtrage non-linéaire à un bloc de pixels de l'image numérique acquise pour déterminer une valeur de pixel correspondant dans l'image numérique à afficher, ledit filtrage non-linéaire prenant en compte au moins la valeur maximale dudit bloc de pixels. 12. - The method of claim 1 1, wherein each digital image is defined by a matrix of pixels, each pixel having an associated value, said value being higher as a pixel is shiny, characterized in that the non-linear processing includes applying a non-linear filtering to a block of pixels of the acquired digital image to determine a corresponding pixel value in the digital image to be displayed, said non-linear filtering taking into account at the minus the maximum value of said block of pixels.
13. - Procédé selon la revendication 12, caractérisé en ce que ledit filtrage non- linéaire consiste à associer à un pixel de l'image numérique à afficher une valeur calculée à partir des valeurs supérieures à un seuil prédéterminé du bloc de pixels correspondant de de l'image numérique acquise. 13. - Method according to claim 12, characterized in that said non-linear filtering comprises associating with a pixel of the digital image to be displayed a value calculated from values greater than a predetermined threshold of the block of corresponding pixels of de the digital image acquired.
14. - Procédé selon la revendication 12, caractérisé en ce que ledit filtrage non- linéaire consiste à associer à un pixel de l'image numérique à afficher une valeur calculée à partir d'un nombre donné de valeurs les plus élevées du bloc de pixels correspondant de l'image numérique acquise. 14. - Method according to claim 12, characterized in that said nonlinear filtering comprises associating with a pixel of the digital image to be displayed a value calculated from a given number of the highest values of the block of pixels. corresponding of the acquired digital image.
15. - Procédé selon l'une quelconque des revendications 1 1 à 14, caractérisé en ce qu'il comporte une autre étape d'acquisition de deuxièmes données d'image numérique dans une deuxième bande spectrale différente de la première bande spectrale. 15. - Method according to any one of claims 1 1 to 14, characterized in that it comprises another step of acquiring second digital image data in a second spectral band different from the first spectral band.
16. - Procédé selon la revendication 15, caractérisé en ce qu'il comporte une étape de fusion entre l'image numérique de deuxième résolution obtenue par traitement non- linéaire et les deuxièmes données d'image numérique. 16. - Method according to claim 15, characterized in that it comprises a step of merging between the second resolution digital image obtained by non-linear processing and the second digital image data.
EP16787785.1A 2015-10-22 2016-10-21 System adapted for providing an operator with augmented visibility and associated method Withdrawn EP3365866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502237A FR3042882B1 (en) 2015-10-22 2015-10-22 SYSTEM PROVIDED TO PROVIDE OPERATOR WITH INCREASED VISIBILITY AND ASSOCIATED METHOD
PCT/EP2016/075412 WO2017068141A1 (en) 2015-10-22 2016-10-21 System adapted for providing an operator with augmented visibility and associated method

Publications (1)

Publication Number Publication Date
EP3365866A1 true EP3365866A1 (en) 2018-08-29

Family

ID=55646639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16787785.1A Withdrawn EP3365866A1 (en) 2015-10-22 2016-10-21 System adapted for providing an operator with augmented visibility and associated method

Country Status (7)

Country Link
US (1) US20180300856A1 (en)
EP (1) EP3365866A1 (en)
CN (1) CN108369727A (en)
CA (1) CA3001668A1 (en)
FR (1) FR3042882B1 (en)
IL (1) IL258758A (en)
WO (1) WO2017068141A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800005817A1 (en) * 2018-05-29 2019-11-29 DEVICE AND METHOD FOR VISIBILITY MEASUREMENTS
US10777013B1 (en) * 2018-12-21 2020-09-15 Rockwell Collins, Inc. System and method for enhancing approach light display
CN111746816B (en) * 2020-05-18 2022-03-08 陈穗 Airplane landing auxiliary device and landing method
CN116129249B (en) * 2023-04-04 2023-07-07 上海燧原科技有限公司 Image processing method, device, electronic equipment and storage medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028725A (en) * 1976-04-21 1977-06-07 Grumman Aerospace Corporation High-resolution vision system
US4513317A (en) * 1982-09-28 1985-04-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Retinally stabilized differential resolution television display
US5719567A (en) * 1995-05-30 1998-02-17 Victor J. Norris, Jr. System for enhancing navigation and surveillance in low visibility conditions
US6119055A (en) * 1998-01-23 2000-09-12 Mcdonnell Douglas Corporation Real time imaging system and method for use in aiding a landing operation of an aircraft in obscured weather conditions
US20050232512A1 (en) * 2004-04-20 2005-10-20 Max-Viz, Inc. Neural net based processor for synthetic vision fusion
US20060126959A1 (en) * 2004-12-13 2006-06-15 Digitalglobe, Inc. Method and apparatus for enhancing a digital image
US7355179B1 (en) * 2005-07-30 2008-04-08 Rockwell Collins, Inc. Scene imaging system integrity monitor and method thereof
US7605369B2 (en) * 2007-01-08 2009-10-20 Max-Viz, Inc. Assessing runway visibility to airborne infrared vision devices
US10168179B2 (en) * 2007-01-26 2019-01-01 Honeywell International Inc. Vehicle display system and method with enhanced vision system and synthetic vision system image display
EP2167920B1 (en) * 2007-07-18 2013-09-18 Elbit Systems Ltd. Aircraft landing assistance
WO2009128065A1 (en) * 2008-04-16 2009-10-22 Elbit Systems Ltd. Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions
US7850306B2 (en) * 2008-08-28 2010-12-14 Nokia Corporation Visual cognition aware display and visual data transmission architecture
US8749635B2 (en) * 2009-06-03 2014-06-10 Flir Systems, Inc. Infrared camera systems and methods for dual sensor applications
US9105115B2 (en) * 2010-03-16 2015-08-11 Honeywell International Inc. Display systems and methods for displaying enhanced vision and synthetic images
US9494447B2 (en) * 2010-07-28 2016-11-15 Honeywell International Inc. Methods and systems for attitude differentiation in enhanced vision images
IL221863A (en) * 2012-09-10 2014-01-30 Elbit Systems Ltd Digital system for surgical video capturing and display
US9000350B1 (en) * 2012-09-11 2015-04-07 Rockwell Collins, Inc. Time-domain overlap imagery detecting system and method of using same
US9390559B2 (en) * 2013-03-12 2016-07-12 Honeywell International Inc. Aircraft flight deck displays and systems and methods for enhanced display of obstacles in a combined vision display
CN104766337B (en) * 2015-04-27 2017-10-20 西北工业大学 One kind is based on the enhanced aircraft landing vision enhancement method in runway boundary

Also Published As

Publication number Publication date
FR3042882A1 (en) 2017-04-28
FR3042882B1 (en) 2018-09-21
CA3001668A1 (en) 2017-04-27
WO2017068141A1 (en) 2017-04-27
US20180300856A1 (en) 2018-10-18
CN108369727A (en) 2018-08-03
IL258758A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
EP3072812B1 (en) A method and a device for marking the ground for an aircraft in flight, and an aircraft including the device
EP3365866A1 (en) System adapted for providing an operator with augmented visibility and associated method
EP2272027B1 (en) Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions
CA2418243C (en) Aircraft guidance procedure for the final landing phase and the corresponding device
CA2989154A1 (en) System and method for automatically inspecting surfaces
WO2016113983A1 (en) Image processing device, image processing method, program, and system
FR3062720A1 (en) SYSTEM AND METHOD FOR AIDING THE LANDING OF AN AIRCRAFT, AND THE AIRCRAFT CORRESPONDING
JP2005537545A (en) Image fusion system and method
CN102314601A (en) Use nonlinear optical to remove by the shade in the image of catching based on the camera of vehicle according to constant nuclear
EP3689755B1 (en) Directional lighting system provided in an aircraft and associated lighting method
FR3089038A1 (en) METHOD FOR LEARNING A NETWORK OF NEURONES ON BOARD AN AIRCRAFT FOR AID IN LANDING SAID AIRCRAFT AND SERVER FOR THE IMPLEMENTATION OF SUCH A PROCESS
JP6555569B2 (en) Image processing apparatus, mobile device control system, and image processing program
CN114729804A (en) Multispectral imaging system and method for navigation
EP1936330B1 (en) Method and system for processing and visualising images of the surroundings of an aircraft
EP2193477B1 (en) Method and system for aircraft taxiing assistance
FR3088908A1 (en) DEVICE AND METHOD FOR ASSISTING THE LANDING OF AN AIRCRAFT UNDER CONDITIONS OF REDUCED VISIBILITY
US20190141262A1 (en) Systems and methods for detecting light sources
CA2503891C (en) Image processing device with recognition and selection of light sources
EP2508870A1 (en) Device for inspecting travelling belts
CN117037007B (en) Aerial photographing type road illumination uniformity checking method and device
EP4086819A1 (en) Method for learning a supervised artificial intelligence intended for identifying a predetermined object in the surroundings of an aircraft
EP3602395B1 (en) Method based on a pathway article with calibration information
FR3058690B1 (en) ASSISTED LIGHTING SYSTEM FOR VEHICLE AND METHOD FOR FORMING HYBRID IMAGE
EP4386719A1 (en) Method and system for assisting a pilot of an aircraft during taxiing the aircraft on a taxiway of an airfield
CA3233479A1 (en) Method for detecting obstacles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G08G 5/02 20060101ALI20211015BHEP

Ipc: G08G 5/06 20060101ALI20211015BHEP

Ipc: G08G 5/00 20060101ALI20211015BHEP

Ipc: G06T 3/00 20060101ALI20211015BHEP

Ipc: G06T 19/00 20110101ALI20211015BHEP

Ipc: G06T 5/50 20060101ALI20211015BHEP

Ipc: G02B 27/01 20060101AFI20211015BHEP

INTG Intention to grant announced

Effective date: 20211102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220315