EP3364904A1 - Variable sweeping for input devices - Google Patents
Variable sweeping for input devicesInfo
- Publication number
- EP3364904A1 EP3364904A1 EP16858170.0A EP16858170A EP3364904A1 EP 3364904 A1 EP3364904 A1 EP 3364904A1 EP 16858170 A EP16858170 A EP 16858170A EP 3364904 A1 EP3364904 A1 EP 3364904A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- arm
- control
- robotic
- shaft
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010408 sweeping Methods 0.000 title description 3
- 230000004044 response Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 7
- 230000000881 depressing effect Effects 0.000 claims description 4
- 230000000994 depressogenic effect Effects 0.000 claims description 4
- 210000003811 finger Anatomy 0.000 description 17
- 210000003813 thumb Anatomy 0.000 description 16
- 238000003384 imaging method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 239000012636 effector Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 210000000707 wrist Anatomy 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
Definitions
- Robotic surgical systems have been used in minimally invasive medical procedures. During such a medical procedure, the robotic surgical system is controlled by a surgeon interfacing with a user interface. The user interface allows the surgeon to manipulate an end effector that acts on a patient.
- the end effector is inserted into a small incision (via a cannula) or a natural orifice of a patient to position the end effector at a work site within the body of the patient.
- Some robotic surgical systems include a robotic console supporting a robot arm and at least one end effector such as a scalpel, a forceps, or a grasping tool that is mounted to the robot arm.
- Cables may extend from the robot console, through the robot arm, and connect to wrist and/or jaw assemblies of the end effector.
- the cables are actuated by motors that are controlled by a processing system including the user interface for a surgeon or clinician to be able to control the robotic surgical system including the robot arm, the wrist assembly and/or the jaw assembly.
- the user interface includes an input controller or handle that is moveable by the surgeon to control the robotic surgical system. Movement of the input controllers and handles is translated to movement of the robotic instruments within the surgical space.
- the present disclosure generally relates to input devices for robotic surgical systems and methods for controlling the movement of a robotic tool of a robotic surgical system.
- this disclosure is directed to input devices having control arms such that each control arm has a length corresponding to a respective digit of a clinician which engages the respective control arm. By varying the length of the control arms the input devices may account for biomechanical factors of users interfacing with the input device of robotic surgical system.
- this disclosure is directed to methods for controlling the movement of a tool in response to control arms of an input device of a robotic surgical system pivoting relative a shaft of the input device. Specifically, the method includes relating an angle between jaws of the tool to an angle between control arms of the input device.
- a method for controlling a robotic tool of a robotic surgical system includes pivoting a first control arm of a controller of a user interface of the robotic surgical system with respect to a shaft of the controller and moving a first jaw of the robotic tool of the robotic surgical system a first distance in a first direction relative to a tool axis defined by the robotic tool and moving a second jaw of the robotic tool in response to the pivoting of the first control arm.
- the second jaw moves the first distance in a second direction that is opposite the first direction.
- the user interface transmits a signal in response to pivoting the first control arm.
- a processing unit of the robotic surgical system may generate a control signal in response to receiving the signal indicative of pivoting the first control arm from the user interface.
- the processing unit may transmit the control signal to a robotic system to move the first jaw in the first direction and to move the second jaw in the second direction.
- pivoting the first control arm with respect to the shaft of the controller includes maintaining a second control arm of the control in position with respect to the shaft.
- pivoting the first control arm with respect to the shaft of the controller includes pivoting a second control arm of the controller with respect to the shaft.
- the first control arm and the second control arm may define an arm angle therebetween.
- the movement of the first jaw the first distance and the movement of the second jaw the second distance may be proportional to a change in the arm angle in response to movement of the first and second control arms.
- pivoting the first control arm with respect to the shaft includes depressing a switch to actuate a function of the robotic tool.
- Actuating a function of the robotic tool may include ejecting a staple from one of the first or section jaws, delivering electrosurgical energy with the tool, or advancing a knife of the tool.
- Pivoting the first control arm with respect to the shaft may include receiving tactile feedback in response to abutting the switch before depressing the switch to actuate a function of the tool.
- a robotic surgical system includes a processing unit, a robotic system, and a user interface. The robotic system is in communication with the processing unit.
- the robotic system includes a robotic tool supported on a shaft that defines a longitudinal tool axis.
- the robotic tool has first and second jaws movable relative to one another between open and approximated configurations.
- the first jaw defines a first jaw angle relative to the longitudinal tool axis and the second jaw defines a second jaw angle relative to the longitudinal tool axis.
- the user interface includes a control that is in communication with the processing unit to manipulate the robotic tool in response to manipulation of the controller.
- the controller has a controller shaft and first and second control arms.
- the first and second control arms are pivotally coupled to an end of the shaft.
- the first control arm defines a first arm angle with the controller shaft and the second control arm defines a second arm angle with the control shaft.
- Each of the first and second arms is pivotable between open and approximated positions relative to the shaft.
- the sum of the first and second arm angles is operatively associated with a sum of the first and second jaw angles such that the first and second jaw angles remain equal to one another.
- first and second jaws each pivot relative to one another in response to movement of the first arm. Additionally or alternatively, the first and second jaws each pivot relative to one another in response to movement of the second arm.
- the first and second jaws remain stationary in response to a change in the first arm angle and a change in the second arm angle.
- the change in the first arm angle may be a decrease in the first arm angle and the change in the second arm angle may be an increase in the second arm angle such that the decrease in the first arm angle may be equal to the increase in the second arm angle.
- the robotic system may be configured to actuate a function of the robotic tool when the first and second buttons are depressed.
- the controller includes a first button positioned between the first arm and the control shaft and a second button positioned between the second arm and the control shaft.
- the first and second buttons may be disposed on the control shaft.
- the first and second buttons may be configured to provide tactile feedback when the first and second control arms engage the first and second buttons respectively.
- the first button may be disposed on the first arm and the second button may be disposed on the second arm.
- the first and second buttons may be configured to provide tactile feedback when the first and second buttons engage the control shaft.
- FIG. 1 is a schematic illustration of a user interface and a robotic system in accordance with the present disclosure.
- FIG. 2A is a side view of a hand interfacing with a controller of the user interface of FIG. 1, with the controller shown in an open position;
- FIG. 2B is a side view of a tool attached to a distal end of one of the linkages of the robotic system in an open configuration corresponding to the open position of the controller of FIG. 2A;
- FIG. 3A is the controller of the user interface of FIG. 2A shown in a first approximated position
- FIG. 3B is the tool of FIG. 2B shown in an approximated configuration
- FIG. 4 is the controller of the user interface of FIG. 2 A in a second approximated position
- FIG. 5 is a side view of a hand interfacing with another controller of the user interface provided in accordance with the present disclosure.
- FIG. 6 is a schematic diagram of a method for controlling movement of the robotic surgical system of FIG. 1 in accordance with the present disclosure.
- a robotic surgical system 1 in accordance with the present disclosure is shown generally as a robotic system 10, a processing unit 30, and a user interface 40.
- the robotic system 10 generally includes a plurality of arms 12 and a robot base 18. An end 14 of each of the arms 12 supports an end effector or tool 20 which is configured to act on tissue. In addition, the ends 14 of the arms 12 may include an imaging device 16 for imaging a surgical site "S". The user interface 40 is in communication with robot base 18 through the processing unit 30.
- the user interface 40 includes a display device 44 which is configured to display three-dimensional images.
- the display device 44 displays three-dimensional images of the surgical site "S" which may include data captured by imaging devices 16 positioned on the ends 14 of the arms 12 and/or include data captured by imaging devices that are positioned about the surgical theater (e.g., an imaging device positioned within the surgical site "S", an imaging device positioned adjacent the patient "P", imaging device 56 positioned at a distal end of an imaging arm 52).
- the imaging devices e.g., imaging devices 16, 56
- the imaging devices may capture visual images, infra-red images, ultrasound images, X-ray images, thermal images, and/or any other known real-time images of the surgical site "S”.
- the imaging devices transmit captured imaging data to the processing unit 30 which creates three-dimensional images of the surgical site "S" in real-time from the imaging data and transmits the three-dimensional images to the display device 44 for display.
- the user interface 40 also includes input handles 42 which allow a clinician to manipulate the robotic system 10 (e.g., move the arms 12, the ends 14 of the arms 12, and/or the tools 20).
- Each of the input handles 42 is in communication with the processing unit 30 to transmit control signals thereto and to receive feedback signals therefrom. Additionally or alternatively, each of the input handles 42 may include control interfaces (not shown) which allow the surgeon to manipulate (e.g., clamp, grasp, fire, open, close, rotate, thrust, slice, etc.) the tools 20 supported at the ends 14 of the arms 12.
- Each of the input handles 42 is moveable through a predefined three-dimensional workspace to move the ends 14 of the arms 12 within a surgical site "S".
- the three-dimensional images on the display device 44 are orientated such that the movement of the input handle 42 moves the ends 14 of the arms 12 as viewed on the display device 44.
- the orientation of the three-dimensional images on the display device may be mirrored or rotated relative to view from above the patient "P".
- the size of the three-dimensional images on the display device 44 may be scaled to be larger or smaller than the actual structures of the surgical site permitting the surgeon to have a better view of structures within the surgical site "S”.
- the tools 20 are moved within the surgical site "S” as detailed below.
- movement of the tools 20 may also include the ends 14 of the arms 12 which support the tools 20.
- each input handle 42 includes a controller 50 for manipulating a respective tool 20 and a respective arm 12.
- the controller 50 includes a shaft 52, a thumb loop 54, and a finger loop 56.
- the shaft 52 has a first end 52a that is selectively coupled to the input handle 42 and a second end 52b.
- the shaft 52 defines an axis "X-X" between the first and second ends 52a, 52b.
- the thumb loop 54 is coupled to the second end 52b of the shaft 52 by a control arm 55 and the finger loop 56 is coupled to the second end 53b by a control arm 57.
- the control arms 55, 57 are pivotable in a plane orthogonal to the axis "X-X" of the shaft 52. The plane may pass through the axis "X-X" or be offset from the axis "X-X”.
- the control arm 55 that supports the thumb loop 54 defines an angle " ⁇ ” with the axis "X-X” within the plane and the control arm 56 that supports the finger loop 56 defines an angle “ ⁇ 2 " with the axis "X-X” within the plane.
- an angle “ ⁇ 3 " which is the sum of angle " ⁇ ” and angle “ ⁇ 2 ", is defined between the first and second control arms 55, 57. The angles " ⁇ ", “ ⁇ 2 ", “ ⁇ 3” are changed as the loops 54, 56 are moved or swept within the plane towards and away from the axis "X-X".
- the controller 50 may be associated with a tool 20 having first and second jaws 22, 24.
- the first and second jaws 22, 24 are moveable relative to one another between an open configuration and a closed configuration. In the open configuration, the first and second jaws 22, 24 are spaced-apart from one another and in the closed configuration, the first and second jaws 22, 24 are approximated relative to one another. In the closed configuration, the first and second jaws 22, 24 may cooperate to grasp tissue and/or tools therebetween.
- the tool 20 defines an axis "Y-Y” that passes between the first and second jaws 22, 24.
- the first jaw 22 defines an angle “ ⁇ 4 " with the axis "Y-Y' and the second jaw 24 defines an angle " ⁇ 5 " with the axis "Y-Y”.
- an angle " ⁇ 6 " which is the sum of angle " ⁇ 4 " and angle " ⁇ 5 ", is defined between the first and second jaws 22, 24.
- the controller 50 is operatively associated with the tool 20 through the user interface 40 and the processing unit 30.
- the first and second jaws 22, 24 are operatively associated with the first and second control arms 55, 57 such that movement of the control arms 55, 57 relative to the axis "X-X” effects movement of the first and second jaws 22, 24 relative to the axis "Y-Y".
- the first control arm 55 is associated with the first jaw 22 such that the angle " ⁇ " of the first control arm 55 with the axis "X-X” is associated with the angle " ⁇ 4" of the first jaw 22 with the axis "Y-Y” such that changes in the angle " ⁇ ” effect changes in the angle " ⁇ 4 ".
- the second control arm 57 is associated with the second jaw 24 such that the angle “ ⁇ 2 " between the second control arm 57 and the axis "X-X” is associated with the angle " ⁇ 5" between the second jaw 24 and the axis "Y-Y” such that changes in the angle " ⁇ 2 " effect changes in the angle " ⁇ 5 ".
- Changes in the angle " ⁇ ” may be scaled to changes in the angle " ⁇ 4" by a first scaling factor “SFi” and changes in the angle “ ⁇ 2 " may be scaled to changes in the angle " ⁇ 5 " by a second scaling factor “SF 2 ".
- the first and second scaling factors "SFi", “SF 2 " may be determined by the anatomical features of the clinician.
- movement of the first control arm 55 is effected by movement of the thumb loop 54 that is engaged by the thumb of a clinician and the first scaling factor "SFi" may be scaled relative to the movement of the thumb of a clinician from a closed position, where the thumb is adjacent or in contact with the shaft 52, to a fully extended position, where the thumb is extended away from the shaft 52.
- movement of the second control arm 57 is effected by movement of the finger loop 56 that is engaged by the index finger of a clinician and the second scaling factor "SF 2 " may be scaled relative to the movement of the index finger of a clinician from a closed position, where the index finger is adjacent or in contact with the shaft 52, to a fully extended position, where the index finger is extended away from the shaft 52.
- the first and second scaling factors "SFi", “SF 2 " are calibrated such that movement of the thumb of the clinician between the closed position and the extended position effects a change in the angle " ⁇ 4" of the first jaw 52 that is equal to the change in the angle " ⁇ 5" of the second jaw 54 when the index finger is moved between the closed position and the extended position.
- first and second scaling factors "SFi", “SF 2 " may be set during manufacturing of controller 50, may be set by a central system of the medical facility based on a clinician using the surgical system 1, or may be set by a calibration routine before the start of a procedure by measuring the movements of a clinician using the surgical system 1.
- the first control arm 55 is associated with the first jaw 22 and the second control arm 57 is associated with the second jaw 24 such that changes in the angle " ⁇ 3 ", defined between the first and second control arms 55, 57, effects changes in the angle " ⁇ 6 ", defined between the first and second jaws 22, 24.
- Changes in the angle " ⁇ 3 " may be scaled to changes in the angle " ⁇ 6 " by a third scaling factor "SF 3 ".
- the movement of the control arms 55, 57 may be scaled down such that a change of 30° of the angle " ⁇ 3 " between the control arms 55, 57 may result in a change of 15° in angle " ⁇ 6 " between the first and second jaws 22, 24.
- the movement of the control arms 55, 57 may be scaled up such that a change of 15° of the angle " ⁇ 3 " between the control arms 55, 57 may result in a change of 30° in angle " ⁇ 6 " between the first and second jaws 22, 24.
- first and second jaws 22, 24 movement of the first and second jaws 22, 24 is related to one another. It is within the scope of this disclosure that one of the first or second jaws 22, 24 may be fixed relative to the axis "Y-Y" such that changes in the angle " ⁇ 3" between control arms 55, 57 effect movement of only one of the first or second jaws 22, 24 based on the change in the angle " ⁇ 3 ".
- Such embodiments may be advantageous when one jaw (e.g., second jaw 24) of the tool 20 has a stationary jaw and the other jaw (e.g., the first jaw) is moveable relative to the stationary jaw to transition the jaws between the open and closed configurations; for example, when the tool 20 is a stapling instrument.
- a control axis passes through the second end 52b of the shaft 52, defines an angle with the axis X-X in the plane, and passes between the control arms 55, 57.
- the angle ⁇ is defined between the control arm 55 and the control axis and the angle ⁇ 2 is defined between the control arm 57 and the control axis.
- control axis may be aligned with one of the control arms 55, 57 such that a respective one of the angles ⁇ 1 and ⁇ 2 may be substantially 0° to represent a tool 20 with a stationary jaw (e.g., a stapling instrument) such that movement of either control arm 55, 57 moves the non- stationary jaw relative to the stationary jaw.
- a stationary jaw e.g., a stapling instrument
- a tool axis passes through a pivot point between the first and second jaws 22, 24 of the tool 20, defines an angle with the axis Y-Y, and passes between the first and second jaws 22, 24.
- the angle ⁇ 4 is defined between the first jaw 22 and the tool axis
- the angle ⁇ 5 is defined between the second jaw 24 and the control axis.
- the controller 50 includes an activation switch assembly including one or more activation switches (e.g., switches 64, 65, 66, 67) to activate a function of the tool 20.
- activation switches e.g., switches 64, 65, 66, 67
- functions include, but are not limited to, firing a fastener from one of the first or second jaws 22, 24 of the tool 20, advancing a knife (not shown) positioned in one of the first or second jaws 22, 24, delivering electrosurgical energy to tissue with the tool 20, or any combinations thereof.
- the activation switch assembly includes a switch 64 positioned on the shaft 52 between the shaft 52 and the control arm 55, a switch 65 positioned on the control arm 55, a switch 66 positioned on the shaft 52 between the shaft 52 and the control arm 57, and a switch 67 positioned on the control arm 57.
- the activation switch assembly includes two pairs of switches, switches 64 and 66 and switches 65 and 67; however, it is contemplated that the activation switch assembly may include a single pair of switches.
- control arms 55, 57 are moveable between an open position (FIG. 2A), a first approximated position (FIG. 3A), and a second approximated position (FIG. 4) and first and second jaws 22, 24 of the tool 20 are moveable between an open configuration (FIG. 2B) and an approximated configuration (FIG. 3B) in response to movement of the control arms 55, 57.
- control arms 55, 57 are in the open position, the first and second jaws 22, 24 are in the open configuration, the switches 64-67 are in an unactuated position, and the first and second jaws 22, 24 of the tool 20 in the open configuration such that the first and second jaws 22, 24 are spaced apart from one another.
- the controller 50 is manipulated to grasp and release tissue with the first and second jaws 22, 24 of the tool 20 until a desired portion of the tissue is grasped between the first and second jaws 22, 24. Then, the controller 50 is manipulated such that the tool 20 completes a desired function to the desired portion of the tissue. Specifically, the thumb loop 54 and the finger loop 56 are manipulated to move the control shafts 55, 57 between the open and first approximated position to move the first and second jaws 22, 24 between the open and approximated configurations to grasp, release, and reposition tissue.
- the thumb loop 54 and the finger loop 56 are manipulated to move the control shafts 55, 57 from the first approximated configuration to the second approximated configuration such that the switches 64-67 are depressed or moved to the actuated position. As the switches 64-67 reach the actuated position, electrosurgical energy is delivered to the desired portion of tissue with the tool 20.
- the controller 150 is substantially similar to the controller 50 detailed above as such for brevity only the differences will be detailed herein.
- the controller 150 includes a shaft 152, a thumb loop 154, and a finger loop 156.
- the thumb loop 154 is coupled to the second end 152b of the shaft 152 by a control arm 155 having a first length
- the finger loop 156 is coupled to the second end 152b by a control arm 157 having a second length.
- the second length is greater than the first length to compensate for anatomical differences in the length of a finger (e.g., an index finger) of a clinician and a thumb of a clinician.
- a finger e.g., an index finger
- the difference in the first and second lengths requires the finger loop 156 to sweep a greater arc towards or away from the shaft 152 to effect a change in the angle " ⁇ 2 " than an arc swept by the thumb loop 154 towards or away from the shaft 152 to effect an equal change in the angle " ⁇ ".
- a method 200 of controlling a robotic tool of a robotic surgical system is described in accordance with the present disclosure.
- a first control arm e.g., control arm 57, 157 of a user interface 40 is pivoted or swept towards or away from a shaft pivotally supporting the control arm (e.g., shaft 52, 152) (Step 210).
- a second control arm e.g., control arm 55, 155
- the user interface 40 transmits a signal to a processing unit 30 indicative of a change in an angle " ⁇ 3" defined between the first and second control arms (Step 230).
- the processing unit 30 In response to the signal from the user interface 40, the processing unit 30 generates a control signal (Step 240). The processing unit 30 transmits the control signal to a robotic system 10 (Step 250). In response to the control signal, the robotic system 10 moves first and second jaws relative to one another such that an angle " ⁇ 6 " defined between the first and second jaws of the robotic system changes proportional to the change in the angle " ⁇ 3" (Step 252).
- the control arm may abut a switch (e.g., switch 64-67) (Step 220) such that tactile feedback is received through a loop (e.g., thumb loop 54, 154 or finger loop 56, 156) (Step 222).
- a loop e.g., thumb loop 54, 154 or finger loop 56, 156
- Step 224 subsequent pivoting of the control arm towards the shaft depresses the switch
- signal transmitted by the user interface (Step 230) is indicative of the button being depressed, such that the control signal generated and transmitted by the processing unit (Steps 240, 250) actuates a function of the robotic tool of the robotic system (Step 254).
- pivoting the first control arm may first move the first and second jaws an angle " ⁇ 6 " and then actuate a function of the robotic tool.
- the user interface 40 and the processing unit 30 may generate and transmit the signal and control signal, respectively, in a wired or wireless manner.
- wireless connections detailed herein e.g., between controller 63 and the processing unit 30
- PANs personal area networks
- ZigBee ® a specification for a suite of high level communication protocols using small, low-power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area networks (WPANs)
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Robotics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562244762P | 2015-10-22 | 2015-10-22 | |
PCT/US2016/057784 WO2017070266A1 (en) | 2015-10-22 | 2016-10-20 | Variable sweeping for input devices |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3364904A1 true EP3364904A1 (en) | 2018-08-29 |
EP3364904A4 EP3364904A4 (en) | 2019-06-19 |
Family
ID=58558068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16858170.0A Pending EP3364904A4 (en) | 2015-10-22 | 2016-10-20 | Variable sweeping for input devices |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180296286A1 (en) |
EP (1) | EP3364904A4 (en) |
JP (1) | JP2019500914A (en) |
CN (1) | CN108135667B (en) |
AU (1) | AU2016341284A1 (en) |
CA (1) | CA2999053A1 (en) |
WO (1) | WO2017070266A1 (en) |
Families Citing this family (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11406464B2 (en) * | 2017-05-26 | 2022-08-09 | Covidien Lp | Handle assemblies for robotic surgical systems |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
AU2019270647A1 (en) * | 2018-05-17 | 2020-12-03 | Medical Microinstruments, Inc. | Master controller assembly for a robotic surgery system, particularly for microsurgery |
CN113473938A (en) * | 2019-01-05 | 2021-10-01 | 迪斯透莫森公司 | Surgical robotic system including robotic telemanipulator and integrated laparoscopy |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11478312B2 (en) | 2019-05-10 | 2022-10-25 | Verb Surgical Inc. | Unmatching/matching UID to robot grasper for engaging teleoperation |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11376083B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Determining robotic surgical assembly coupling status |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11399906B2 (en) | 2019-06-27 | 2022-08-02 | Cilag Gmbh International | Robotic surgical system for controlling close operation of end-effectors |
US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
US11369443B2 (en) | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
WO2022009355A1 (en) * | 2020-07-08 | 2022-01-13 | リバーフィールド株式会社 | Medical operation apparatus |
US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
US11931026B2 (en) | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2416094A1 (en) * | 1978-02-01 | 1979-08-31 | Zarudiansky Alain | REMOTE HANDLING DEVICE |
US5389849A (en) * | 1993-01-20 | 1995-02-14 | Olympus Optical Co., Ltd. | Tactility providing apparatus and manipulating device using the same |
US5855583A (en) * | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US6594552B1 (en) * | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
JP2006321027A (en) * | 2005-05-20 | 2006-11-30 | Hitachi Ltd | Master slave type manipulator system and its operation input device |
US8224484B2 (en) * | 2007-09-30 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Methods of user interface with alternate tool mode for robotic surgical tools |
US8521331B2 (en) * | 2009-11-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument |
US8682489B2 (en) * | 2009-11-13 | 2014-03-25 | Intuitive Sugical Operations, Inc. | Method and system for hand control of a teleoperated minimally invasive slave surgical instrument |
US8935003B2 (en) * | 2010-09-21 | 2015-01-13 | Intuitive Surgical Operations | Method and system for hand presence detection in a minimally invasive surgical system |
DE102010009065B4 (en) * | 2010-02-23 | 2018-05-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Input device for medical minimally invasive robots or medical simulators and medical device with input device |
WO2013018861A1 (en) * | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | Medical manipulator and method for controlling same |
JP5936914B2 (en) * | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | Operation input device and manipulator system including the same |
JP6000641B2 (en) * | 2011-08-04 | 2016-10-05 | オリンパス株式会社 | Manipulator system |
JP6296236B2 (en) * | 2013-05-27 | 2018-03-20 | パナソニックIpマネジメント株式会社 | Master device for master-slave device, control method therefor, and master-slave device |
-
2016
- 2016-10-20 EP EP16858170.0A patent/EP3364904A4/en active Pending
- 2016-10-20 JP JP2018519058A patent/JP2019500914A/en active Pending
- 2016-10-20 WO PCT/US2016/057784 patent/WO2017070266A1/en active Application Filing
- 2016-10-20 AU AU2016341284A patent/AU2016341284A1/en not_active Abandoned
- 2016-10-20 CA CA2999053A patent/CA2999053A1/en not_active Abandoned
- 2016-10-20 CN CN201680061686.2A patent/CN108135667B/en active Active
- 2016-10-20 US US15/766,929 patent/US20180296286A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN108135667B (en) | 2021-10-22 |
US20180296286A1 (en) | 2018-10-18 |
EP3364904A4 (en) | 2019-06-19 |
CN108135667A (en) | 2018-06-08 |
WO2017070266A1 (en) | 2017-04-27 |
JP2019500914A (en) | 2019-01-17 |
AU2016341284A1 (en) | 2018-04-12 |
CA2999053A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180296286A1 (en) | Variable sweeping for input devices | |
AU2020256468B2 (en) | Input device assemblies for robotic surgical systems | |
CN109310480B (en) | System and method for remotely operating an on-screen menu in a medical system | |
US20190008579A1 (en) | Energy-based surgical devices facilitating breakdown of tissue specimens for removal | |
EP4037591A1 (en) | Communicating closure effort for robotic surgical tools | |
JP2020521562A (en) | Handle assembly for robotic surgery system | |
EP3165190A1 (en) | Endoscopic surgical instrument | |
KR101267914B1 (en) | Contol Apparatus for surgical robot | |
US20200163687A1 (en) | Articulation assemblies for use with endoscopic surgical instruments | |
US20200281674A1 (en) | High precision instrument control mode for robotic surgical systems | |
WO2017151850A1 (en) | Input device handle for robotic surgical systems capable of large rotations about a roll axis | |
CN116137805A (en) | Method and application for flipping instruments in a teleoperated surgical robotic system | |
WO2021034601A1 (en) | Electrosurgical energy adapter, electrosurgical energy control, and surgical multi-tool | |
EP4147663A1 (en) | Robotic surgical instruments | |
EP3787852B1 (en) | User interface device having grip linkages | |
EP4151169A1 (en) | Vessel sealer with smart cutting | |
EP3253314B1 (en) | Controlling jaw forces with spring assembly | |
JP2021175501A (en) | Surgery support robot | |
US11540872B2 (en) | Electrosurgical instrument with trigger driven cutting function | |
EP4316404A1 (en) | Surgical robotic system with access port storage | |
WO2023049489A1 (en) | System of operating surgical robotic systems with access ports of varying length | |
CN118354732A (en) | Graphical user interface foot pedal for surgical robotic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180521 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20190522 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 34/00 20160101ALI20190516BHEP Ipc: A61B 34/37 20160101ALI20190516BHEP Ipc: A61B 18/14 20060101ALN20190516BHEP Ipc: A61B 34/30 20160101AFI20190516BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231031 |