EP3358575A1 - Câble electrique resistant aux decharges partielles - Google Patents

Câble electrique resistant aux decharges partielles Download PDF

Info

Publication number
EP3358575A1
EP3358575A1 EP18154329.9A EP18154329A EP3358575A1 EP 3358575 A1 EP3358575 A1 EP 3358575A1 EP 18154329 A EP18154329 A EP 18154329A EP 3358575 A1 EP3358575 A1 EP 3358575A1
Authority
EP
European Patent Office
Prior art keywords
fluorinated
electrically insulating
insulating layer
electrical cable
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18154329.9A
Other languages
German (de)
English (en)
Other versions
EP3358575B1 (fr
Inventor
Thomas Haehner
Patrick Rybski
Laurent MANENTI
Eddy AUBERT
Flavien KOLIATENE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Safran Electrical and Power SAS
Original Assignee
Nexans SA
Safran Electrical and Power SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA, Safran Electrical and Power SAS filed Critical Nexans SA
Publication of EP3358575A1 publication Critical patent/EP3358575A1/fr
Application granted granted Critical
Publication of EP3358575B1 publication Critical patent/EP3358575B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration

Definitions

  • the present invention relates to an electrical cable comprising an elongated electrically conductive member, an electrically insulating layer comprising polyimide (PI) surrounding said elongated electrically conductive member, and a fluorinated electrically insulating layer comprising a fluorinated polymer surrounding said electrically insulating layer comprising polyimide (PI), said layers having specific thicknesses according to the section of the elongated electrically conductive element.
  • PI polyimide
  • the invention typically but not exclusively applies to electrical cables used in the field of aeronautics, for example on board aircraft.
  • wiring son eg more than 500 kilometers of cable in the A380
  • these son comprising a conductive element surrounded by a first polyimide layer of 0.017 to 0.065 mm thick, itself surrounded by a layer of PTFE polytetrafluoroethylene with a thickness of 0.1 to 0.22 mm for conductor nominal sections ranging from 0.15 to 95 mm 2 .
  • the applied voltage is of the order of 115 V (between the phase and the neutral of the three-phase system).
  • the operating voltage of the aircraft cables has been increased to 230 V (between phase and neutral of the three-phase system).
  • the cable mass is divided by about two.
  • the relatively high voltage combined with aeronautical constraints, such as humidity, high temperature and low pressure, can generate partial discharges (DP) on electrical equipment, particularly at the surface and / or in the defects of electrical cable insulators.
  • the partial discharges which are tiny electric arcs, cause over time, a degradation of the insulating material until the breakdown of the dielectric causing the possible establishment of an electric arc.
  • EP 2 557 572 A1 has described an electrical cable comprising a conductive element, a layer comprising polyimide (PI) surrounding said conductive element, and a fluorinated layer comprising a fluorinated compound surrounding said layer comprising polyimide (PI), the total thickness of all fluorinated layers being at least 0.4 mm.
  • the dimensions of the cable are not optimized to minimize its size and / or weight while ensuring optimal partial discharge resistance.
  • the present invention aims to provide a cable that avoids all or part of the aforementioned drawbacks.
  • the present invention aims to provide a cable having a footprint and / or reduced weight, while ensuring good resistance to partial discharges, especially when the cable is intended for the field of aeronautics and suffered during a flight, high temperatures (around 150 ° C), low pressures (about 145 mbar) and high voltages, such as 230 V (between phase and neutral of the three-phase system) or 400 V between phases.
  • the thicknesses of the different layers of the cable of the invention are reduced, inducing a minimum weight and / or bulk in function of the diameter (ie of the section) of the elongated electrically conductive element, while guaranteeing the absence of conditions conducive to the appearance of partial discharges.
  • s (in mm 2 ) is such that 0.25 ⁇ s ⁇ 85, and preferably 1 ⁇ s ⁇ 68.
  • the total thickness e 1 + e 2 (in mm) is such that e 1 + e 2 ⁇ s 'x 0.00482 + 0.33012, with s' being the cross section of the electrically conductive elongated AWG element.
  • AWG means "American Wire Gauge” and refers to a unit of measurement for measuring the diameter of an electrical cable.
  • a table of correspondence available in the literature makes it possible to convert the section s in mm 2 in section s' in AWG (http: //www.astm.ora/Standards/B258.htm, http://www.astm.org/ standards / B286.htm).
  • s' (in AWG) is such that -2 (ie AWG000) ⁇ s' ⁇ 24 (ie AWG24), and preferably s' (in AWG) is such that -1 (ie AWG00) ⁇ s' ⁇ 10 (ie AWG10).
  • the cable of the invention makes it possible to avoid partial discharges under the conventional conditions of use. It therefore preferably has a partial peak discharge threshold voltage, peak value (also well known as the PDIV for " partial discharge inception voltage") greater than or equal to 800 V at a pressure of 145 mbar and a temperature of 150 ° C.
  • It preferably has a threshold voltage of appearance of the partial discharges, value in volts RMS (also well known under the anglicism PDIV in V RMS for " partial discharge inception voltage in voltage root mean square ”) greater than or equal to 566 V for a sinusoidal voltage, at a pressure of 145 mbar and a temperature of 150 ° C.
  • the elongated electrically conductive member is preferably central.
  • the fluoropolymer is preferably a polymer obtained by polymerization of monomers among which at least one of said monomers is tetrafluoroethylene or vinyl fluoride.
  • the fluoropolymer may be a fluorinated homopolymer or copolymer, and preferably it is chosen from a polytetrafluoroethylene (PTFE), a poly (tetrafluoroethylene-co-hexafluoropropylene) (FEP), a perfluoro (alkylvinyl ether) copolymer / tetrafluoroethylene (PFA), a poly (ethylene-co-tetrafluoroethylene) (ETFE) and a combination thereof.
  • PTFE polytetrafluoroethylene
  • FEP poly (tetrafluoroethylene-co-hexafluoropropylene)
  • PFA perfluoro (alkylvinyl ether) copolymer / tetrafluoroethylene
  • ETFE poly (ethylene-co-tetrafluoroethylene)
  • a layer is called “comprising a fluorinated polymer” when it comprises, in mass with respect to the mass of said layer, at least about 50% of fluorinated polymer (s), preferably at least 70% about fluorinated polymer (s), and even more preferably at least about 80% fluorinated polymer (s), and even more preferably about 90% fluorinated polymer (s) , such as in particular PTFE, PFA, ETFE, FEP or a combination thereof.
  • fluorinated polymer such as in particular PTFE, PFA, ETFE, FEP or a combination thereof.
  • the fluoropolymer is PTFE.
  • the thickness e 2 (in mm) of the fluorinated electrically insulating layer comprising a fluorinated polymer, such as, for example, PTFE, PFA, ETFE, FEP or a combination thereof, is such that 0.2000 mm ⁇ e 2 ⁇ 0.4000 mm, preferably such as 0.2000 mm ⁇ e 2 ⁇ 0.3950 mm, and more preferably such that 0.2500 mm ⁇ e 2 ⁇ 0.3850 mm.
  • the thickness e 2 of the fluorinated electrically insulating layer is measured after sintering of said layer. Indeed, during sintering, the fluoropolymer may lose in volume. In particular, PTFE can lose about 25% by volume.
  • the thickness e 1 + e 2 is measured after sintering of said layers.
  • the fluorinated electrically insulating layer is preferably sintered.
  • the fluorinated electrically insulating layer may be banded and / or extruded, and preferably banded.
  • the fluorinated electrically insulating layer may correspond to the winding of one or more ribbons of fluorinated polymer (s). It is then sintered to give it its mechanical properties.
  • the fluorinated electrically insulating layer comprises one or more ribbons of fluorinated polymer (s), preferably one or more PTFE ribbons.
  • the cable may further comprise at least one fluorinated adhesive layer comprising a fluoropolymer, the fluoropolymer included in said adhesive layer being in particular identical to or different from that included in the fluorinated electrically insulating layer.
  • the fluorinated adhesive layer or layers are composed of one or more fluorinated polymers. This is called fluorinated adhesive layer.
  • the fluoropolymer or polymers of the fluorinated adhesive layer are chosen from poly (tetrafluoroethylene-cohexafluoropropylene) (FEP), a perfluoro (alkyl vinyl ether) / tetrafluoroethylene (PFA) copolymer, a polytetrafluoroethylene (PTFE), a poly ( ethylene-co-tetrafluoroethylene) (ETFE) and a combination thereof, said aforementioned fluorinated compounds having adhesion properties.
  • FEP poly (tetrafluoroethylene-cohexafluoropropylene)
  • PFA perfluoro (alkyl vinyl ether) / tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • ETFE ethylene-co-tetrafluoroethylene
  • At least one fluorinated adhesive layer is disposed on at least one of the two faces of the electrically insulating layer comprising polyimide.
  • An adhesive layer has the function of allowing adhesion between the layers that it connects or between the elongate electrically conductive element and the layer that it connects.
  • the fluororesic adhesive layer is generally capable of adhering the elongated electrically conductive element to the electrically conductive layer PI insulating material or the electrically insulating layer of PI to the fluorinated electrically insulating layer (eg layer comprising PTFE, PFA, FEP, ETFE or a combination thereof).
  • the fluoropolymer or polymers of the adhesive layer undergo prior treatment that gives them their adhesive property, as is the case for the Kapton FN® product marketed by the company Dupont.
  • the electrically insulating layer comprising a polyimide and the fluorinated electrically insulating layer are separated by a fluorinated adhesive layer.
  • the electrically insulating layer comprising a polyimide may be covered on each of its faces with a fluorinated adhesive layer, and in particular a fluorinated ethylene propylene copolymer (FEP) coating.
  • FEP fluorinated ethylene propylene copolymer
  • the thickness of the fluorinated adhesive layer (e.g. FEP) can range from about 2 to 2.5 ⁇ m before sintering.
  • the thickness of the electrically insulating layer comprising a polyimide may range from about 20 to 30 microns, and preferably from about 23 to 27 microns.
  • the electrical cable of the invention may further comprise one or more electrically insulating layers comprising additional polyimide (PI), each of the electrically insulating layers comprising a polyimide which may be covered on each of its faces with a fluorinated adhesive layer, and in particular a fluorinated ethylene propylene copolymer (FEP) coating.
  • PI polyimide
  • FEP fluorinated ethylene propylene copolymer
  • the thickness e 1 (in mm) as defined in the invention refers to the total thickness of the electrically insulating layers comprising polyimide (PI),
  • the Kapton FN® product is suitable for the present invention. It is in the form of a ribbon comprising an electrically insulating layer of polyimide (PI) covered on each of its faces with a layer of FEP (FEP / PI / FEP).
  • PI polyimide
  • FEP FEP / PI / FEP
  • Two electrically insulating layers comprising a polyimide can thus be obtained by winding at least two thicknesses of said tape to overlap, and a total thickness of polyimide electrically insulating layers before sintering (or after sintering) is obtained. order of about 50 to 51 microns, and a total thickness of FEP adhesive layers before sintering (or after sintering) of the order of about 9 to 10 microns.
  • the thickness of the assembly FEP / PI / EFF / FEP / PI / FEP before sintering (or after sintering) is of the order of 60 microns.
  • the elongate electrically conductive element that is suitable according to the invention is, for example, of the solid or multi- stranded type.
  • the elongate electrically conductive member may be copper (Cu), tin-plated Cu alloy, silver-plated Cu alloy, nickel-plated Cu alloy, aluminum (Al), nickel-plated aluminum or aluminum alloy. copper-plated and nickel-plated aluminum (well known under the Anglicism " nickel plated copper clad aluminum” ).
  • the elongated electrically conductive element according to the invention is preferably multi-stranded.
  • the thickness e 2 designates the thickness of the fluorinated electrically insulating layer cumulated with the respective thicknesses of the other optional fluorinated layers, in particular comprising at least one fluorinated homo- or copolymer such as in particular PTFE, PFA, ETFE, FEP or a combination thereof.
  • the thickness e 2 denotes the thickness of the fluorinated electrically insulating layer cumulated with the thicknesses of the fluorinated adhesive layers.
  • the fluorinated electrically insulating layer is the outermost fluorinated layer of the cable.
  • the cable further comprises one or more other fluorinated layers (i.e. additional fluorinated layers).
  • the cable may comprise at least one additional fluorinated layer, in particular chosen from a fluorinated semiconductor layer, another fluorinated electrically insulating layer and an outer fluoride (superficial) layer capable of being labeled (ie a marking layer ), and preferably a fluorinated semiconductor layer.
  • additional fluorinated layer in particular chosen from a fluorinated semiconductor layer, another fluorinated electrically insulating layer and an outer fluoride (superficial) layer capable of being labeled (ie a marking layer ), and preferably a fluorinated semiconductor layer.
  • the fluorinated semiconductor layer may comprise at least one fluorinated polymer, the fluorinated compound included in said semiconductor layer being in particular identical to or different from that included in the fluorinated electrically insulating layer.
  • the fluorinated semiconductor layer may be in the form of a ribbon, an extrudate, a varnish, or a combination thereof.
  • a layer is semiconductive when its electrical conductivity is at least 0.001 Sm -1 (siemens per meter).
  • the fluorinated semiconductor layer when in the form of a ribbon or extrudate, it may be composed of at least one fluorinated polymer or copolymer and from 0.1% to 40% by weight approximately charging (electrically) conductive, with respect to the total mass of said fluorinated semiconductor layer.
  • the fluorinated semiconductor layer When the fluorinated semiconductor layer is in the form of a varnish, it may be composed of at least one fluorinated polymer or copolymer, of the FEP, PFA or PTFE dispersions type, and from 0.1% to About 40% by weight of (electrically) conductive filler, based on the total mass of said fluorinated semiconductor layer.
  • the fluorinated semiconductor layer comprises at least about 10% by mass of electrically conductive filler, and even more preferably at least about 25% by mass of electrically charged filler. conductive, relative to the total mass of said fluorinated semiconductor layer.
  • the electrically conductive filler may advantageously be chosen from carbon blacks, carbon nanotubes and a mixture thereof.
  • the fluorinated semiconductor layer has a longitudinal resistivity of 0.04 to 100 Ohm.m, and preferably 0.06 to 0.6 Ohm.m.
  • the outer layer (surface) capable of being marked may be in the form of a ribbon, an extrudate or a varnish. It may in particular comprise at least one fluorinated polymer or copolymer, such as, for example, PTFE, FEP, PFA, ETFE, and at least one metal complex-type pigment.
  • the thickness e 2 denotes the thickness of the fluorinated electrically insulating layer cumulated with the thicknesses of the other fluorinated layers such as those mentioned above (layer of fluorinated marking, fluorinated semiconductor layer, other fluorinated electrically insulating layer, etc ).
  • the other fluorinated layers of the cable of the invention are preferably sintered (e.g. fluoridated adhesive layer (s)).
  • the electrically insulating layer comprising polyimide may be made by taping (winding a polyimide tape), by coating varnish (mixture of components polymerizing in situ ) or by extrusion, according to techniques known to those skilled in the art.
  • the cable comprising the above-mentioned characteristics is intended to be used in the field of aeronautics, in particular at 230 V (between the phase and the neutral of the three-phase system) and is in particular intended to equip the aircraft.
  • the figure 1 illustrates a cross-sectional view of an electrical cable at the insulation stage (without sheath) according to a preferred embodiment of the invention.
  • the hook up wire or the power cable 1, shown in FIG. figure 1 comprises: a central elongate electrically conductive element 2, in particular of copper or aluminum, of multi-stranded type, and, successively and coaxially around this central elongated electrically conductive element 2, a first FEP adhesive layer 5a , an electrically insulating layer of polyimide (PI) 3, a second FEP adhesive layer 5b and an electrically insulating PTFE layer 4, here representing the outer layer of the cable 1.
  • the various layers are obtained by taping.
  • the cable is then heat-treated to sinter the outer layer of PTFE. For this, a temperature above 340 ° C is applied.
  • the FEP / PI / FEP assembly preferably corresponds to Kapton FN® tape from Dupont comprising a 25.4 ⁇ m thick layer of PI coated on each of its faces with a 2.5 ⁇ m FEP layer. thick before sintering.
  • the electrical cable thus isolated is heat-treated in an oven at a temperature above the melting temperature of the PTFE, ie at a temperature above 340 ° C, for obtain sintering of PTFE and layers of FEP.
  • this single heat treatment step which includes the heat-sealing step of the polyimide and the sintering step of PTFE and FEP layers, it ensures the adhesion of all the thicknesses of ribbons.
  • the heat treatment leads to the cohesion of the electrically insulating layer of PTFE on the electrically insulating layer PI and the bonding of the electrically insulating layer PI on itself and on the elongated electrically conductive element.
  • Table 1 two cables according to the invention are illustrated and for comparison two cables as described in FIG. EP 2 557 572 A1 , with for each of the cables the total thickness of the electrically insulating layers of PI after sintering, the thickness of the fluorinated layers after sintering (adhesive layers and electrically insulative fluorinated layer), their section in mm 2 and in AWG (which corresponds to the most close to the section in mm 2 for multi-strand conductors) and their emergence voltage of PDIV discharges in V RMS.
  • two layers of Kapton FN® ribbon from Dupont were used for overlap.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention se rapporte à un câble électrique comprenant un élément électriquement conducteur allongé, une couche électriquement isolante comprenant du polyimide (PI) entourant ledit élément électriquement conducteur allongé, et une couche électriquement isolante fluorée comprenant un polymère fluoré entourant ladite couche électriquement isolante comprenant du polyimide (PI), lesdites couches ayant des épaisseurs spécifiques selon la section de l'élément électriquement conducteur allongé.

Description

  • La présente invention se rapporte à un câble électrique comprenant un élément électriquement conducteur allongé, une couche électriquement isolante comprenant du polyimide (PI) entourant ledit élément électriquement conducteur allongé, et une couche électriquement isolante fluorée comprenant un polymère fluoré entourant ladite couche électriquement isolante comprenant du polyimide (PI), lesdites couches ayant des épaisseurs spécifiques selon la section de l'élément électriquement conducteur allongé.
  • L'invention s'applique typiquement mais non exclusivement aux câbles électriques utilisés dans le domaine de l'aéronautique, par exemple à bord des avions.
  • Dans l'art antérieur, il est connu d'équiper les avions de fils de câblage (e.g. plus de 500 kilomètres de câble dans l'A380), ces fils comprenant un élément conducteur entouré d'une première couche en polyimide de 0,017 à 0,065 mm d'épaisseur, elle-même entourée d'une couche en polytétrafluoroéthylène PTFE d'une épaisseur de 0,1 à 0,22 mm pour des sections nominales de conducteur allant de 0,15 à 95 mm2. Toutefois, pour de tels fils de câblages, la tension appliquée est de l'ordre de 115 V (entre la phase et le neutre du système triphasé). Afin de réduire la section des câbles pour faire passer la même quantité de courant, la tension d'utilisation des câbles des avions a été augmentée à 230 V (entre la phase et le neutre du système triphasé). En doublant la tension, la masse des câbles est divisée par environ deux. Toutefois, le voltage relativement élevé, combiné aux contraintes liées à l'aéronautique, telles que l'humidité, la température élevée et la basse pression, peuvent générer des décharges partielles (DP) sur les équipements électriques, en particulier à la surface et/ou dans les défauts des isolants de câbles électriques. Or, les décharges partielles, qui sont de minuscules arcs électriques, provoquent avec le temps, une dégradation du matériau isolant jusqu'à la rupture du diélectrique entraînant l'établissement possible d'un arc électrique.
  • Afin de diminuer les décharges partielles, EP 2 557 572 A1 a décrit un câble électrique comprenant un élément conducteur, une couche comprenant du polyimide (PI) entourant ledit élément conducteur, et une couche fluorée comprenant un composé fluoré entourant ladite couche comprenant du polyimide (PI), l'épaisseur totale de l'ensemble des couches fluorées étant d'au moins 0,4 mm. Toutefois, les dimensions du câble ne sont pas optimisées pour minimiser son encombrement et/ou son poids tout en garantissant une résistance aux décharges partielles optimale.
  • La présente invention a pour but de proposer un câble qui évite tout ou partie des inconvénients précités. En particulier, la présente invention a pour but de fournir un câble ayant un encombrement et/ou un poids réduit, tout en garantissant une bonne résistance aux décharges partielles, notamment lorsque le câble est destiné au domaine de l'aéronautique et subit lors d'un vol, de hautes températures (aux alentours de 150°C), de basses pressions (environ 145 mbar) et des tensions élevées, telles que 230 V (entre la phase et le neutre du système triphasé) ou 400 V entre les phases.
  • A cet effet, la présente invention a pour objet un câble électrique comprenant :
    • un élément électriquement conducteur allongé ayant une section transversale s (en mm2),
    • une couche électriquement isolante comprenant du polyimide (PI) entourant ledit élément électriquement conducteur allongé et ayant une épaisseur e1 (en mm), et
    • une couche électriquement isolante fluorée comprenant un polymère fluoré, entourant ladite couche électriquement isolante comprenant du polyimide (PI),
    caractérisé en ce que l'épaisseur e2 (en mm) de la couche électriquement isolante fluorée est inférieure à 0,4000 mm, et l'épaisseur totale e1 + e2 (en mm) est telle que e1 + e2 ≥ -0,02140 x In (s) + 0,41613.
  • Ainsi, les épaisseurs des différentes couches du câble de l'invention sont réduites, induisant un poids et/ou un encombrement minimaux en fonction du diamètre (i.e. de la section) de l'élément électriquement conducteur allongé, tout en garantissant l'absence des conditions propices à l'apparition de décharges partielles.
  • Dans un mode de réalisation préféré, s (en mm2) est telle que 0,25 ≤ s ≤ 85, et de préférence 1 ≤ s ≤ 68.
  • Selon une forme de réalisation de l'invention, l'épaisseur totale e1 + e2 (en mm) est telle que e1 + e2 ≥ s' x 0,00482 + 0,33012, avec s' étant la section transversale de l'élément électriquement conducteur allongé en AWG.
  • Dans la présente invention, l'expression « AWG » signifie « American Wire Gauge » et désigne une unité de mesure permettant de mesurer le diamètre d'un câble électrique. Un tableau de correspondance disponible dans la littérature permet de convertir la section s en mm2 en section s' en AWG (http://www.astm.ora/Standards/B258.htm, http://www.astm.org/Standards/B286.htm).
  • On préfèrera les tableaux de correspondance qui prennent en compte le caractère multi-brins d'un conducteur.
  • Dans un mode de réalisation préféré, s' (en AWG) est telle que -2 (i.e. AWG000) ≤ s' ≤ 24 (i.e. AWG24), et de préférence s' (en AWG) est telle que -1 (i.e. AWG00) ≤ s' ≤ 10 (i.e. AWG10).
  • Le câble de l'invention permet d'éviter les décharges partielles dans les conditions conventionnelles d'utilisation. Il présente donc de préférence une tension seuil d'apparition des décharges partielles, valeur crête (également bien connu sous l'anglicisme PDIV pour « partial discharge inception voltage ») supérieure ou égale à 800 V à une pression de 145 mbar et une température de 150°C.
  • Il présente de préférence une tension seuil d'apparition des décharges partielles, valeur en volt RMS (également bien connu sous l'anglicisme PDIV in V RMS pour « partial discharge inception voltage in voltage root mean square ») supérieure ou égale à 566 V pour une tension sinusoïdale, à une pression de 145 mbar et une température de 150°C.
  • L'élément électriquement conducteur allongé est de préférence central.
  • Le polymère fluoré est de préférence un polymère obtenu par polymérisation de monomères parmi lesquels au moins l'un desdits monomères est le tétrafluoroéthylène ou le fluorure de vinyle.
  • À titre d'exemple, le polymère fluoré peut être un homopolymère ou un copolymère fluoré, et de préférence il est choisi parmi un polytétrafluoroéthylène (PTFE), un poly(tétrafluoroéthylène-co-hexafluoropropylène) (FEP), un copolymère perfluoro(alkyvinyléther)/tétrafluoroéthylène (PFA), un poly(éthylène-co-tétrafluoroéthylène) (ETFE) et une de leurs combinaisons.
  • De préférence, une couche est dite « comprendre un polymère fluoré » lorsqu'elle comporte, en masse par rapport à la masse de ladite couche, au moins 50% environ de polymère(s) fluoré(s), de préférence au moins 70% environ de polymère(s) fluoré(s), et de manière encore plus préférée au moins 80% environ de polymère(s) fluoré(s), et de manière encore plus préférée 90% environ de polymère(s) fluoré(s), tels que notamment du PTFE, du PFA, du ETFE, du FEP ou une de leurs combinaisons.
  • Avantageusement, le polymère fluoré est le PTFE.
  • Préférentiellement, l'épaisseur e2 (en mm) de la couche électriquement isolante fluorée comprenant un polymère fluoré, tel que par exemple du PTFE, du PFA, du ETFE, du FEP ou une de leurs combinaisons, est telle que 0,2000 mm ≤ e2 < 0,4000 mm, de préférence telle que 0,2000 mm ≤ e2 ≤ 0,3950 mm, et de préférence encore telle que 0,2500 mm ≤ e2 ≤ 0,3850 mm.
  • Dans l'invention, l'épaisseur e2 de la couche électriquement isolante fluorée est mesurée après frittage de ladite couche. En effet, lors du frittage, le polymère fluoré peut perdre en volume. En particulier, le PTFE peut perdre environ 25% en volume.
  • Dans l'invention, l'épaisseur e1 + e2 est mesurée après frittage desdites couches.
  • La couche électriquement isolante fluorée est de préférence frittée.
  • Selon l'invention, la couche électriquement isolante fluorée peut être rubanée et/ou extrudée, et de préférence rubanée.
  • Lorsqu'elle est rubanée, la couche électriquement isolante fluorée peut correspondre à l'enroulement d'un ou de plusieurs rubans de polymères(s) fluoré(s). Elle est ensuite frittée, afin de lui conférer ses propriétés mécaniques.
  • Préférentiellement, la couche électriquement isolante fluorée comporte un ou plusieurs rubans de polymère(s) fluoré(s), de préférence un ou plusieurs rubans de PTFE.
  • Le câble peut comprendre en outre, au moins une couche adhésive fluorée comprenant un polymère fluoré, le polymère fluoré compris dans ladite couche adhésive étant notamment identique ou différent de celui compris dans la couche électriquement isolante fluorée.
  • Selon une caractéristique de l'invention, la ou les couches adhésives fluorées sont composées d'un ou de plusieurs polymères fluorés. On parle alors de couche adhésive fluorée.
  • En particulier, le ou les polymères fluorés de la couche adhésive fluorée sont choisis parmi un poly(tétrafluoroéthylène-cohexafluoropropylène) (FEP), un copolymère perfluoro(alkyvinyléther)/tétrafluoroéthylène (PFA), un polytétrafluoro-éthylène (PTFE), un poly(éthylène-co-tétrafluoroéthylène) (ETFE) et une de leurs combinaisons, lesdits composés fluorés susmentionnés présentant des propriétés d'adhérence.
  • De manière avantageuse, au moins une couche adhésive fluorée est disposée sur au moins une des deux faces de la couche électriquement isolante comprenant du polyimide. Une couche adhésive a pour fonction de permettre l'adhésion entre les couches qu'elle relie ou entre l'élément électriquement conducteur allongé et la couche qu'elle relie.
  • La couche adhésive fluorée est généralement apte à faire adhérer l'élément électriquement conducteur allongé à la couche électriquement isolante de PI ou la couche électriquement isolante de PI à la couche électriquement isolante fluorée (e.g. couche comprenant PTFE, PFA, FEP, ETFE ou une de leurs combinaisons). En effet, le ou les polymères fluorés de la couche adhésive subissent au préalable un traitement qui leur donne leur propriété adhérente, comme c'est le cas pour le produit Kapton FN® commercialisé par la société Dupont.
  • Selon un mode de réalisation, la couche électriquement isolante comprenant un polyimide et la couche électriquement isolante fluorée (e.g. comprenant du PTFE) sont séparées par une couche adhésive fluorée.
  • La couche électriquement isolante comprenant un polyimide peut être recouverte sur chacune de ses faces d'une couche adhésive fluorée, et notamment d'un revêtement de copolymère d'éthylène propylène fluoré (FEP).
  • L'épaisseur de la couche adhésive fluorée (e.g. FEP) peut aller de 2 à 2,5 µm environ avant frittage.
  • L'épaisseur de la couche électriquement isolante comprenant un polyimide peut aller de 20 à 30 µm environ, et de préférence de 23 à 27 µm environ.
  • Le câble électrique de l'invention peut comprendre en outre une ou plusieurs couches électriquement isolantes comprenant du polyimide (PI) supplémentaires, chacune des couches électriquement isolantes comprenant un polyimide pouvant être recouverte sur chacune de ses faces d'une couche adhésive fluorée, et notamment d'un revêtement de copolymère d'éthylène propylène fluoré (FEP).
  • Dans ce cas, l'épaisseur e1 (en mm) telle que définie dans l'invention désigne l'épaisseur totale des couches électriquement isolantes comprenant du polyimide (PI),
  • Le produit Kapton FN® convient pour la présente invention. Il se présente sous la forme de ruban comprenant une couche électriquement isolante de polyimide (PI) recouverte sur chacune de ses faces d'une couche de FEP (FEP/PI/FEP).
  • Deux couches électriquement isolantes comprenant un polyimide peuvent ainsi être obtenues par enroulement d'au moins deux épaisseurs dudit ruban pour qu'il y ait recouvrement, et en découle une épaisseur totale de couches électriquement isolantes de polyimide avant frittage (ou après frittage) de l'ordre de 50 à 51 µm environ, et une épaisseur totale de couches adhésives de FEP avant frittage (ou après frittage) de l'ordre de 9 à 10 µm environ. Ainsi, l'épaisseur de l'ensemble : FEP/PI/FEP/FEP/PI/FEP avant frittage (ou après frittage) est de l'ordre de 60 µm.
  • L'élément électriquement conducteur allongé convenant selon l'invention est par exemple du type massif ou multi-brins (« stranded »).
  • L'élément électriquement conducteur allongé peut correspondre à du cuivre (Cu), un alliage de Cu étamé, un alliage de Cu argenté, un alliage de Cu nickelé, de l'aluminium (Al), de l'aluminium nickelé ou de l'aluminium cuivré et nickelé (bien connu sous l'anglicisme « nickel plated copper clad aluminum »).
  • L'élément électriquement conducteur allongé selon l'invention est de préférence multi-brins.
  • Lorsque le câble comprend d'autre(s) couche(s) fluorées (i.e. autre(s) couche(s) comprenant un polymère fluoré tel que défini dans l'invention), l'épaisseur e2 (en mm) désigne l'épaisseur de la couche électriquement isolante fluorée cumulée avec les épaisseurs respectives des autres couches fluorées optionnelles, en particulier comprenant au moins un homo- ou un copolymère fluoré tel que notamment du PTFE, du PFA, du ETFE, du FEP ou une de leurs combinaisons.
  • En particulier, lorsqu'une ou plusieurs couches adhésives fluorées sont présentes, l'épaisseur e2 (en mm) désigne l'épaisseur de la couche électriquement isolante fluorée cumulée avec les épaisseurs des couches adhésives fluorées.
  • Selon une forme de réalisation préférée de l'invention, la couche électriquement isolante fluorée est la couche fluorée la plus externe du câble.
  • Selon une autre forme de réalisation préférée de l'invention, le câble comprend en outre une ou plusieurs autres couches fluorées (i.e. couches fluorées supplémentaires).
  • Dans ce mode de réalisation, le câble peut comprendre au moins une couche fluorée supplémentaire, notamment choisie parmi une couche semi-conductrice fluorée, une autre couche électriquement isolante fluorée et une couche fluorée extérieure (superficielle) apte à être marquée (i.e. couche de marquage), et de préférence une couche semi-conductrice fluorée.
  • La couche semi-conductrice fluorée peut comprendre au moins un polymère fluoré, le composé fluoré compris dans ladite couche semi-conductrice étant notamment identique ou différent de celui compris dans la couche électriquement isolante fluorée.
  • La couche semi-conductrice fluorée peut se présenter sous la forme d'un ruban, d'un extrudât, d'un vernis, ou d'une de leurs combinaisons.
  • Selon l'invention, on considère plus particulièrement qu'une couche est semi-conductrice lorsque sa conductivité électrique est d'au moins 0,001 S.m-1 (siemens par mètre).
  • En particulier, lorsque la couche semi-conductrice fluorée se trouve sous la forme d'un ruban ou d'un extrudât, elle peut être composée d'au moins un polymère ou copolymère fluoré et de 0,1% à 40% en masse environ de charge (électriquement) conductrice, par rapport à la masse totale de ladite couche semi-conductrice fluorée.
  • Lorsque la couche semi-conductrice fluorée se trouve sous la forme d'un vernis, elle peut être composée d'au moins un polymère ou copolymère fluoré, de type dispersions de FEP, de PFA ou de PTFE, et de 0,1% à 40% en masse environ de charge (électriquement) conductrice, par rapport à la masse totale de ladite couche semi-conductrice fluoré.
  • De préférence, la couche semi-conductrice fluorée comprend au moins 10% en masse environ de charge électriquement conductrice, et encore plus préférentiellement au moins 25% en masse environ de charge électriquement conductrice, par rapport à la masse totale de ladite couche semi-conductrice fluorée.
  • La charge électriquement conductrice peut être choisie avantageusement parmi les noirs de carbone, les nanotubes de carbone et un de leurs mélanges.
  • Selon une caractéristique de l'invention, la couche semi-conductrice fluorée présente une résistivité longitudinale de 0,04 à 100 Ohm.m, et de préférence de 0,06 à 0,6 Ohm.m.
  • La couche extérieure (superficielle) apte à être marquée peut être sous la forme d'un ruban, d'un extrudât ou d'un vernis. Elle peut en particulier comprendre au moins un polymère ou copolymère fluoré, comme par exemple du PTFE, du FEP, du PFA, du ETFE, et au moins un pigment de type complexe métallique.
  • Comme indiqué plus haut, lorsqu'une ou plusieurs autres couches fluorées sont présentes, l'épaisseur e2 (en mm) désigne l'épaisseur de la couche électriquement isolante fluorée cumulée avec les épaisseurs des autres couches fluorées telle que celles précitées (couche de marquage fluorée, couche semi-conductrice fluorée, autre couche électriquement isolante fluorée, etc...).
  • Les autres couches fluorées du câble de l'invention si elles existent sont de préférence frittées (e.g. couche(s) adhésive(s) fluorée(s)).
  • La couche électriquement isolante comprenant du polyimide peut être réalisée par rubanage (enroulement d'un ruban polyimide), par enduction de vernis (mélange de composants polymérisant in situ) ou par extrusion, selon des techniques connues de l'homme du métier.
  • Le câble comprenant les caractéristiques susmentionnées est destiné à être utilisé dans le domaine de l'aéronautique, notamment à 230 V (entre la phase et le neutre du système triphasé) et est en particulier destiné à équiper les avions.
  • Pour une meilleure compréhension de l'invention, la description fera référence au dessin annexé et qui figure uniquement à titre illustratif et non limitatif.
  • La figure 1 illustre une vue en section transversale d'un câble électrique au stade de l'isolation (sans gaine) selon un mode de réalisation préféré de l'invention.
  • Exemple de réalisation :
  • Pour des raisons de clarté, seuls les éléments essentiels pour la compréhension de l'invention ont été représentés de manière schématique, et ceci sans respect de l'échelle sur la figure 1.
  • Selon un premier mode de réalisation, le fil de câblage (hook up wire) ou le câble de puissance 1, représenté sur la figure 1, comprend : un élément électriquement conducteur allongé central 2, notamment en cuivre ou en aluminium, de type multibrins, et, successivement et coaxialement autour de cet élément électriquement conducteur allongé central 2, une première couche adhésive en FEP 5a, une couche électriquement isolante en polyimide (PI) 3, une seconde couche adhésive en FEP 5b et une couche électriquement isolante en PTFE 4, représentant ici la couche externe du câble 1. Les différentes couches sont obtenues par rubanage. Le câble est ensuite traité thermiquement afin de fritter la couche externe de PTFE. Pour cela, une température supérieure à 340°C est appliquée.
  • L'ensemble FEP/PI/FEP correspond de manière préférée au ruban Kapton FN® de chez Dupont comprenant une couche de PI de 25,4 µm d'épaisseur revêtue sur chacune de ses faces d'une couche de FEP de 2,5 µm d'épaisseur avant frittage.
  • Après la pose (ou rubanage) de la couche électriquement isolante de PTFE, le câble électrique ainsi isolé est traité thermiquement dans un four à une température supérieure à la température de fusion du PTFE, à savoir à une température supérieure à 340°C, pour obtenir le frittage du PTFE et des couches de FEP. Par cette unique étape de traitement thermique qui comprend l'étape de thermosoudage du polyimide et l'étape de frittage du PTFE et des couches de FEP, on assure l'adhésion de toutes les épaisseurs de rubans. En effet, le traitement thermique conduit à la cohésion de la couche électriquement isolante de PTFE sur la couche électriquement isolante en PI et au collage de la couche électriquement isolante en PI sur lui-même et sur l'élément électriquement conducteur allongé.
  • Dans le tableau 1 ci-dessous, sont illustrés deux câbles conformes à l'invention et à titre comparatif deux câbles tels que décrits dans EP 2 557 572 A1 , avec pour chacun des câbles l'épaisseur totale des couches électriquement isolantes de PI après frittage, l'épaisseur des couches fluorées après frittage (couches adhésives et couche électriquement isolante fluorée), leur section en mm2 et en AWG (qui correspond au plus proche de la section en mm2 pour des conducteurs multi-brins) et leur tension d'apparition de décharges PDIV en V RMS. Dans cet exemple, on a utilisé deux épaisseurs du ruban Kapton FN® de chez Dupont pour qu'il y ait recouvrement. On a donc une couche électriquement isolante fluorée de PTFE, deux couches électriquement isolante en polyimide (PI) et quatre couches adhésives de FEP selon la disposition suivante de la couche la plus externe à la couche la plus interne : PTFE/FEP/PI/FEP/FEP/PI/FEP/élément électriquement conducteur allongé.
  • La PDIV en V RMS a été mesurée selon la dernière édition (2015) de la norme EN 3475-307, méthode B. TABLEAU 1
    Section (en mm2) Section (en AWG) Epaisseur des couches fluorées (en mm) Epaisseur de la couche de PI (en mm) PDIV (en V RMS)
    Câble 1 3 12 0,35 0,0508 ≥566
    Câble 2 42 1 0,30 0,0508 ≥566
    Câble 3 (*) 3 12 0,50 0,0508 ≥700
    Câble 4 (*) 42 1 0,50 0,0508 ≥1050
    (*) Câble ne faisant pas partie de l'invention
  • Il apparaît que l'on obtient respectivement un poids réduit de 4,9% pour le câble 1 et de 4,4% pour le câble 2, par rapport aux câbles 3 et 4 de l'art antérieur, tout en garantissant un niveau suffisant de tension d'apparition des décharges partielles.
  • Bien que l'invention ait été décrite en liaison avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims (14)

  1. Câble électrique (1) comprenant :
    - un élément électriquement conducteur allongé (2) ayant une section transversale s (en mm2),
    - une couche électriquement isolante comprenant du polyimide (PI) (3) entourant ledit élément électriquement conducteur allongé (2) et ayant une épaisseur e1 (en mm), et
    - une couche électriquement isolante fluorée comprenant un polymère fluoré (4), entourant ladite couche électriquement isolante comprenant du polyimide (PI) (3),
    caractérisé en ce que l'épaisseur e2 (en mm) de la couche électriquement isolante fluorée est inférieure à 0,4000 mm, et l'épaisseur totale e1 + e2 (en mm) est telle que e1 + e2 ≥ -0,02140 x ln (s) + 0,41613.
  2. Câble électrique selon la revendication 1, caractérisé en ce que s est telle que 0,25 ≤ s ≤ 85.
  3. Câble électrique selon la revendication 1 ou 2, caractérisé en ce qu'il présente une tension seuil d'apparition des décharges partielles, valeur en volt RMS supérieure ou égale à 566 V à une pression de 145 mbar et une température de 150°C.
  4. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère fluoré est choisi parmi un polytétrafluoroéthylène (PTFE), un poly(tétrafluoroéthylène-co-hexafluoropropylène) (FEP), un copolymère perfluoro(alkyvinyléther)/tétrafluoroéthylène (PFA), un poly(éthylène-co-tétrafluoroéthylène) (ETFE) et une de leurs combinaisons.
  5. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère fluoré est le PTFE.
  6. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur e2 de la couche électriquement isolante fluorée comprenant un polymère fluoré (4) est telle que 0,2000 mm ≤ e2 ≤ 0,3950 mm.
  7. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur e2 de la couche électriquement isolante fluorée (4) est mesurée après frittage de ladite couche.
  8. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche électriquement isolante fluorée (4) est rubanée.
  9. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre, au moins une couche adhésive fluorée comprenant un polymère fluoré (5a, 5b), le polymère fluoré compris dans ladite couche adhésive (5a, 5b) étant identique ou différent de celui compris dans la couche électriquement isolante fluorée (4).
  10. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche électriquement isolante comprenant un polyimide (3) est recouverte sur chacune de ses faces d'une couche adhésive fluorée (5a, 5b).
  11. Câble électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément électriquement conducteur allongé (2) correspond à du cuivre (Cu), un alliage de Cu étamé, un alliage de Cu argenté, un alliage de Cu nickelé, de l'aluminium (Al), de l'aluminium nickelé ou de l'aluminium cuivré et nickelé.
  12. Câble électrique selon l'une des revendications précédentes, caractérisé en ce que la couche électriquement isolante fluorée (4) est frittée.
  13. Câble électrique selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre au moins une couche semi-conductrice fluorée.
  14. Câble électrique selon la revendication 13, caractérisé en ce que la couche semi-conductrice fluorée comprend au moins un polymère fluoré, le composé fluoré compris dans ladite couche semi-conductrice étant identique ou différent de celui compris dans la couche électriquement isolante fluorée (4).
EP18154329.9A 2017-02-03 2018-01-31 Câble electrique resistant aux decharges partielles Active EP3358575B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1750942A FR3062748B1 (fr) 2017-02-03 2017-02-03 Cable electrique resistant aux decharges partielles

Publications (2)

Publication Number Publication Date
EP3358575A1 true EP3358575A1 (fr) 2018-08-08
EP3358575B1 EP3358575B1 (fr) 2019-11-06

Family

ID=59031067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18154329.9A Active EP3358575B1 (fr) 2017-02-03 2018-01-31 Câble electrique resistant aux decharges partielles

Country Status (2)

Country Link
EP (1) EP3358575B1 (fr)
FR (1) FR3062748B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836165A1 (fr) * 2019-12-11 2021-06-16 HEW-KABEL GmbH Élément électriquement conducteur isolé et son procédé de fabrication
US20220084716A1 (en) * 2020-09-04 2022-03-17 Nexans Electrical cable limiting partial discharges
EP4092689A1 (fr) * 2021-05-21 2022-11-23 Nexans Câble électrique limitant les décharges partielles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062190A1 (en) * 2001-04-17 2003-04-03 Kim Young Joon Multi-layer insulation system for electrical conductors
EP2040267A1 (fr) * 2007-09-21 2009-03-25 Nexans Cable electrique resistant a la propagation d'arc electrique
EP2557572A1 (fr) 2011-08-09 2013-02-13 Nexans Câble électrique résistant aux décharges partielles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062190A1 (en) * 2001-04-17 2003-04-03 Kim Young Joon Multi-layer insulation system for electrical conductors
EP2040267A1 (fr) * 2007-09-21 2009-03-25 Nexans Cable electrique resistant a la propagation d'arc electrique
EP2557572A1 (fr) 2011-08-09 2013-02-13 Nexans Câble électrique résistant aux décharges partielles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836165A1 (fr) * 2019-12-11 2021-06-16 HEW-KABEL GmbH Élément électriquement conducteur isolé et son procédé de fabrication
US20220084716A1 (en) * 2020-09-04 2022-03-17 Nexans Electrical cable limiting partial discharges
EP4092689A1 (fr) * 2021-05-21 2022-11-23 Nexans Câble électrique limitant les décharges partielles
FR3123138A1 (fr) * 2021-05-21 2022-11-25 Nexans Câble électrique limitant les décharges partielles

Also Published As

Publication number Publication date
FR3062748B1 (fr) 2019-04-05
EP3358575B1 (fr) 2019-11-06
FR3062748A1 (fr) 2018-08-10

Similar Documents

Publication Publication Date Title
EP2557572B1 (fr) Câble électrique résistant aux décharges partielles
EP2571688B1 (fr) Bande isolante à haute température et fil ou câble revêtu par celle-ci
EP2765581B1 (fr) Câble électrique résistant aux décharges partielles
US9208925B2 (en) High performance, high temperature wire or cable
EP2445716B1 (fr) Bande, gaine ou film léger haute température et haute performance pour isolation de fils métalliques
EP2040267B1 (fr) Cable electrique resistant a la propagation d&#39;arc electrique
EP3358575B1 (fr) Câble electrique resistant aux decharges partielles
US20060137898A1 (en) Electrical cables
GB2492087A (en) High temperature and flame resistant insulating tape for wire or cable
EP3422366A1 (fr) Cable comprenant un element electriquement conducteur comprenant des fibres de carbone metallisees
EP3764372A1 (fr) Câble comprenant une couche résistante au feu
EP2783372B1 (fr) Cable electrique haute tension adapte aux conditions extremes
EP2015316A2 (fr) Fil électrique de transmission de signaux destiné à l&#39;industrie aeronautique et spatiale
EP4092689A1 (fr) Câble électrique limitant les décharges partielles
EP3965123A1 (fr) Câble électrique pour le domaine de l&#39;aéronautique
EP3965124A1 (fr) Câble électrique limitant les décharges partielles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190208

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 3/30 20060101ALI20190429BHEP

Ipc: H01B 7/28 20060101AFI20190429BHEP

Ipc: H01B 7/29 20060101ALI20190429BHEP

Ipc: H01B 3/44 20060101ALI20190429BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1199921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018001054

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018001054

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1199921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 7

Ref country code: GB

Payment date: 20240119

Year of fee payment: 7