EP3347500B1 - Steel, hot-rolled flat steel produkt, and manufacturing method of the product - Google Patents

Steel, hot-rolled flat steel produkt, and manufacturing method of the product Download PDF

Info

Publication number
EP3347500B1
EP3347500B1 EP15763888.3A EP15763888A EP3347500B1 EP 3347500 B1 EP3347500 B1 EP 3347500B1 EP 15763888 A EP15763888 A EP 15763888A EP 3347500 B1 EP3347500 B1 EP 3347500B1
Authority
EP
European Patent Office
Prior art keywords
steel
temperature
hot
content
flat steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15763888.3A
Other languages
German (de)
French (fr)
Other versions
EP3347500A1 (en
Inventor
Wolfgang ARENDT
Ulrich BLÖTNER
Volker Brandenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3347500A1 publication Critical patent/EP3347500A1/en
Application granted granted Critical
Publication of EP3347500B1 publication Critical patent/EP3347500B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • the invention relates to a steel suitable for producing a graphite-free hot-rolled steel flat product, a hot-rolled steel flat product with a graphite-free structure in the uncured state, the hot-rolled steel flat product in the hardened state, and a method for producing such hot-rolled steel flat products.
  • Steels of this type and the resulting hot-rolled flat steel products are required for the manufacture of hardened machine components that are used, for example, in agriculture, forestry and timber, and which are required for their intended use to have excellent fatigue strength, optimized hardenability and a high level of resistance to crack corrosion.
  • knives that are used in cutters for cutting, chopping or chopping grass, straw, cereals, branches and other plants and parts of plants.
  • These include, in particular, cutting knives for rotary mowers, rotor knives, fodder mixing wagon knives, straw chopper knives or underfloor chopper knives, as well as the parts of plows or harrows that penetrate into the ground during field work in order to shred or circulate the soil.
  • chopper knives for straw are between 3 mm and 5 mm thick in practice. They can be either fully coated or only locally edge-zone coated. Other knives are at least 1.3 mm thick, other wear parts such as the components used in harrows reach thicknesses of up to 20 mm.
  • the high abrasive wear to which the components made from steels of the type in question are exposed mainly results from the shock and friction loads that occur during use.
  • the load spectrum described above requires a high hardness of the steel from which the components in question are made. However, sufficient toughness must often be set to withstand the dynamic loads that occur during operation. In addition, there are high demands on the service life, which can be checked by fatigue tests.
  • a material of the type in question here must be suitable for complex shaping.
  • the steel material must be separated from the respective hot-rolled flat steel product forming the respective starting product by different separation processes and be able to be brought into the required form in a shaping process and also be remuneration-able. It should also be suitable for other processes that protect the surface or further increase hardness.
  • the JP 2000 328182 A a structural steel for machine parts which, in addition to iron and unavoidable impurities, contains the contents of the elements listed below (in% by weight): 0.10-0.65% C, 0.03-2.00% Si, 0.30 - 2.50% Mn, 0.015 - 0.35% S, 0.005 - 0.060% AI, 0.0005 - 0.0100% B and 0.005 - 0.020% N, with the proviso that 0.3 ⁇ B / N ⁇ 1.2, as well as 0.01 - 0.30 Pb and / or 0.01 - 0.30 Bi and optionally one or more of the following elements: Cr: 0.1 - 2.0%, Mo: 0.05 - 1.00 %, Ni: 0.1 - 3.5%, V: 0.01 - 0.50%, Ti: 0.01 - 0.40%, Nb: 0.01 - 0.30%, Ca: 0.001 - 0.01%.
  • the steel is at 1200 ° C for 30 min
  • the invention has achieved this object by means of an alloyed steel according to claim 1, a hot-rolled flat steel product obtained according to claim 2 and the method designed according to claim 8.
  • Carbon is present in the steel according to the invention in a content of 0.4-0.7% by weight and in this content acts to increase hardness and strength.
  • the minimum content of 0.4% is required for a sufficient basic hardness.
  • the C content can be limited to 0.6% by weight, whereby an optimal rollability of the steel can be ensured if the C content is 0.55% by weight. -% does not exceed.
  • the positive effect of the presence of carbon in the steel according to the invention can be used particularly safely if the minimum carbon content is 0.47% by weight.
  • Silicon increases the hardenability in the steel according to the invention and is therefore present in the steel according to the invention in contents of 0.15-0.5% by weight. At higher contents, scale that is difficult to remove can form on the hot strip. With increasing Si content, the hydrogen permeability is also reduced. If graphite is formed, silicon promotes graphite particle growth in particular. It shows a low solubility in cementite and destabilizes it. For this reason too high Si content above 0.5% should be avoided. However, a minimum content of 0.15% by weight should be added to the steel in order to be able to use the positive effect of Si in the steel according to the invention in a reliable manner. By the Si content is limited to a maximum of 0.3% by weight, a particularly simple removal of scale adhering to the hot strip can be accomplished by means of pickling which is customary for this purpose and carried out in a conventional manner.
  • Sulfur acts as an accompanying steel element in the steel according to the invention in several ways.
  • the S content should therefore be kept as low as possible.
  • a maximum of 0.005% by weight of S has proven to be favorable, the limitation to a maximum of 0.0005% by weight particularly reliably preventing the negative influences of the presence of S in the steel according to the invention.
  • the sulfur content is also minimized in order to avoid the setting of the titanium content provided according to the invention into titanium carbosulfide.
  • a calcium treatment is also carried out in addition to a conventional desulfurization treatment when the steel according to the invention is produced.
  • CaSi is added, as a result of which Ca contents of 0.0005-0.004% by weight of Ca are present in the steel according to the invention.
  • the increase in Si content associated with the addition of CaSi must also be taken into account when measuring the Si content.
  • the Ca content is limited to 0.0015% by weight in order to particularly reliably avoid the formation of inclusions which could have a negative effect on toughness.
  • the P content of a steel according to the invention can be limited to at most 0.025% by weight. However, in order to be able to use the favorable influence of P, it may be expedient to provide a minimum P content of 0.001% by weight in the steel according to the invention.
  • Chromium increases the hardenability and strength in the steel according to the invention and is a carbide former. With increasing Cr content, however, the hydrogen permeability is reduced. Below 0.3% by weight of Cr, however, the increase in hardenability and strength would be too small, whereas if the Cr content was more than 1.0% by weight, the hydrogen permeability would be reduced too much. Cr also prevents the early appearance of graphite after long annealing.
  • the void holes caused by the hardening process due to graphite accumulation must be avoided in order to avoid hydrogen accumulation, which would ultimately lead to material failure.
  • Such holes as traps for hydrogen reduce the permeability (diffusion) for hydrogen.
  • the holes remaining in the structure after graphite accumulations have a negative effect on the fatigue strength. Chromium, on the other hand, suppresses the nucleation and growth of the graphite particles.
  • Molybdenum can optionally be added to a steel according to the invention in order to improve its through-hardenability. If flat steel products with a thickness of up to 15 mm are produced from steel according to the invention, contents of at least 0.006% by weight are sufficient for this purpose. With larger thicknesses, however, no more than 0.02% by weight should also be added, since otherwise there is a risk of graphite formation in the structure.
  • nickel acts both to increase hardenability and, particularly at low temperatures, to improve toughness.
  • a minimum content of 0.04% by weight is required for this.
  • an upper limit of the Ni content of 2% by weight must be observed.
  • the positive effect of Ni can be used particularly safely while avoiding negative effects if the Ni content is limited to a maximum of 0.35% by weight.
  • Mn content a maximum of 2% by weight, in particular a maximum of 1.8% by weight.
  • a minimum content of 0.8% by weight, in particular 1.0% by weight, of Mn should, however, be observed in order to ensure reliable sulfur binding in the form of manganese sulfides and thus to avoid low-melting iron eutectics.
  • the steel contains 0.005-0.1% by weight of titanium.
  • Ti forms nitrides, carbonitrides and carbosulfides and thus binds the constituents nitrogen and sulfur, which are unfavorable with regard to the properties of the steel, and at the same time contributes to increasing the strength and hardness of the steel according to the invention.
  • the presence of Ti makes it possible to control austenite grain growth.
  • the Ti content should be a minimum of 0.005% by weight and a maximum of 0.1% by weight, with Ti contents of up to 0.04% by weight proving to be particularly effective in relation to the action of Ti used according to the invention to have.
  • a minimum content of 0.01% by weight can be provided. So that there is always a sufficient amount of Ti in the steel for setting the S content "% S” and N content “% N” in the steel, the respective Ti content "% Ti” can also be set according to the following condition (in% by weight): % S * 1.5 +% N * 3.5 + 0.005% ⁇ % Ti ⁇ % S * 1.5 +% N * 3.5 + 0.010%
  • niobium is provided only as an accompanying element which is to be attributed to the unavoidable impurities in amounts in which it has no effect. Therefore, the Nb content is limited to at most 0.004% by weight.
  • vanadium is a microalloying element that forms carbonitrides, nitrides and carbides, which increases strength and hardness and thus contributes to the wear resistance of steel.
  • the minimum vanadium content in the steel according to the invention is 0.0080% by weight. With contents of more than 0.1% by weight, however, there is no further increase in the positive influence of V. Vanadium can be used particularly effectively in contents of up to 0.05% by weight in the steel according to the invention.
  • Nitrogen especially in the unbound state, contributes to the fatigue strength of the steel according to the invention.
  • a minimum content of 0.0015% by weight is provided in the steel according to the invention.
  • too high a non-set nitrogen content would lead to premature aging and thus to less favorable processing behavior of the steel according to the invention. Therefore, the N content of the steel is limited to at most 0.010% by weight. Negative effects of the presence of nitrogen can be safely avoided by reducing the nitrogen content to a maximum of 0.0070% by weight, in particular a maximum of 0.0040% by weight.
  • nitrogen present in the steel according to the invention are sufficient to ensure, in the presence of V, the formation of an amount of nitrides, carbides and mixed forms of these precipitates which is sufficient to improve the wear resistance.
  • Another positive effect of nitrogen in the steel according to the invention is that N stabilizes existing iron carbides and therefore hinders graphite formation in the structure. A minimum content of 15 ppm N in the steel according to the invention must also be maintained for this effect.
  • the hydrogen content in the hot strip must be limited to a maximum of 1 ppm to prevent breaks due to hydrogen. Non-metallic inclusions can become places for hydrogen accumulation, reducing hydrogen permeability. This is accompanied by the risk of hydrogen-induced cracks. To prevent this, the oxygen content of the steel according to the invention is limited to a maximum of 0.0050% by weight, in particular a maximum of 0.0030% by weight.
  • the presence of large amounts of aluminum would favor the occurrence of graphite when the steel according to the invention solidifies. Larger graphite accumulations hardly dissolve during hardening and, as mentioned, can even leave holes in the structure where hydrogen could in turn accumulate. In order to prevent these negative effects, the Al content of the steel according to the invention is limited to a maximum of 0.05% by weight.
  • Copper is also only present in the steel according to the invention as an accompanying element, which has no positive effect on the desired properties of the steel. Rather, excessive Cu contents should be avoided, since Cu forms low-melting compounds in connection with sulfur and iron, which can cause surface defects and edge cracks during hot rolling.
  • the Cu content of the steel according to the invention is therefore limited to a maximum of 0.1% by weight.
  • the risk of edge cracking in particular can be excluded with particular certainty if the Cu content of the steel according to the invention is limited to at most 0.012% by weight.
  • the alloy concept according to the invention based on the combination of Mn, Ti, B and V contents in combination with a higher C content and the additional addition of nickel has proven to be successful in the production of hot rolled flat steel products, in particular Hot wide strip. This not only achieved optimized mechanical properties that led to a significantly increased fatigue strength, but also minimized susceptibility to corrosion.
  • the invention enables a much more economical production due to the resource-saving, precisely dimensioned alloy of nickel and chromium.
  • a flat steel product according to the invention is characterized in that it consists of a steel according to the invention and in the uncured state has a pearlitic, graphite-free structure of at least 80% by volume.
  • the absence of graphite makes the steel particularly suitable for hardening and minimizes the risk of hydrogen being embedded in the structure of the steel, which would favor the formation of cracks and reduce the fatigue strength of the steel.
  • the steel flat product produced and assembled in accordance with the invention has mechanical properties and wear resistance, which, in combination with optimized elongation properties, make it particularly suitable for use with impact loads, such as occur wherever appropriate equipment is used to move earth or stone or to process vegetation be made. Examples of this are agriculture or forestry, but also mining, construction, especially civil engineering, and the like. For example, highly wear-resistant and durable components of plows, harrows and knives or cutting members and the like can be produced from flat steel products according to the invention, which are required in agricultural implements and machines for tillage or harvesting.
  • flat steel products according to the invention measured transversely to the rolling direction, have a yield strength ReH of 450-650 MPa and a tensile strength Rm of 750-950 MPa and have a uniform elongation Ag of 5 - 15% and an elongation A80 of 15 - 30%.
  • the graphite-free structure of flat steel products according to the invention in the unhardened state, in addition to the at least 80% by volume pearlite, consists in total of at most 10% by volume bainite or martensite and the rest consists of ferrite.
  • the proportions of bainite and martensite in the structure of the steel according to the invention are to be kept as low as possible. In this way, a temperature change which is narrow in terms of temperature is achieved during the subsequent hardening and thus a homogeneous hardening structure, so that the highest possible pearlite contents of preferably at least 90% by volume are achieved. This in turn causes a homogeneous initial state, which leads to a correspondingly homogeneous hardening and tempering structure.
  • flat steel products according to the invention or components produced therefrom have a structure which consists of at least 99% by volume of martensite and the remainder of residual austenite.
  • the hydrogen diffusion coefficient determined according to DIN ISO 17081, June 2014 edition typically 1.5 * 10 -7 cm 2 / s to 9 * 10 -7 cm 2 / s, is in particular 4.2 * 10 -7 cm 2 / s to 5.2 * 10 -7 cm 2 / s.
  • a certain combination of precipitations and martensite structure and the avoidance of significant holes in the structure are responsible for the susceptibility to corrosion of a steel flat product made of steel according to the invention or of a component produced therefrom in the hardened state.
  • the method according to the invention for producing a steel is designed in such a way that it reliably supplies flat steel products which are both in the hot-rolled uncured state, i.e. after cooling in the coil, as well as after the treatment steps completed during their processing, are free of graphite.
  • the casting of the molten steel according to the invention can take place in the strand for the production of slabs or as near-final-size strip casting with subsequent hot rolling.
  • the respective preliminary product is hot rolled to a thickness of typically at least 1.2 mm and a maximum of 20 mm, whereby a minimum thickness of 4 mm should be observed when processing cast strip in order to avoid the unfavorable effects of coarser inclusions that occur due to the system.
  • the preheating temperature i.e. the temperature to which the slabs are heated before the rolling process should not fall below 1150 ° C. in order to achieve as complete a resolution as possible of the precipitates of the microalloying elements formed in the previous casting process.
  • the preheating temperature should not be higher than 1300 ° C to avoid the formation of coarse austenite grain at the beginning of the rolling process.
  • phase change in the Fe-C system takes place according to a stable system or according to the so-called metastable system.
  • the end products are the carbon compound Fe3C or the pure carbon in the form of graphite.
  • the alloying elements have different effects on this phase change process in the manner explained above.
  • a particularly slow cooling that is to say with respect to the stable state diagram, must be particularly beneficial for the formation of graphite.
  • the invention takes this into account when designing the temperature profile during hot strip production. Long dwell times at higher temperatures can have a direct or indirect effect on the formation of graphite via other mechanisms, for example, on the one hand favoring C diffusion at higher temperatures and on the other hand the stronger scaling of the strip contributes to the cooling of the hot strip in the coil due to the mutual contact lying windings is slowed down due to lower heat energy radiation.
  • the weakening of the emission by the scale layer and the low thermal conductivity by the air layer have an impact. On top of that break up particularly thick layers of scale easily and can lead to surface defects. As a result, the temperature control at higher temperatures is also decisive in the pre-rolling stage for the later graphite formation.
  • a hot rolling start temperature of 900-1150 ° C in combination with a hot rolling end temperature of 780-880 is required in the process according to the invention ° C provided.
  • the rolling forces required for forming increase significantly in the case of steels with relatively high C contents, as are provided according to the invention, at hot rolling end temperatures of less than 780 ° C.
  • the hot rolling end temperature in hot rolling according to the invention is at least 780 ° C. Above 880 ° C, however, an austenite grain that is too coarse and therefore less prone to transformation occurs. At higher hot rolling temperatures, there is also a risk that austenite transformation will result in hard phases during hot strip cooling, which would impair the toughness of the steel. Therefore, the hot rolling end temperature according to the invention should not exceed 880 ° C.
  • the hot strip obtained is cooled to a coiling temperature which is 550-580 ° C.
  • This cooling can be carried out in a conventional manner using a suitable medium at a cooling rate of typically 2-50 ° C./s.
  • the reel temperature is at least 550 ° C to prevent significant amounts of bainite or martensite from forming in the hot strip instead of the desired pearlite. If the reel temperature is too high of more than At 680 ° C, however, further austenite grain growth would be possible, which could have an unfavorable effect on the toughness of the hot strip and could also trigger cracks or breaks when it is subsequently unwound in the cooled state.
  • the lower limit of the reel temperature can be raised to 600 ° C in order to achieve increased security against the occurrence of hard phases, particularly in the presence of segregations. If optimized toughness properties are to be guaranteed, the maximum reel temperature can be limited to 650 ° C.
  • the hot strip which is tempered in the manner explained above and wound into a fixed coil in which the turns of the hot strip lie close together, is cooled in the coil to a target temperature which is at most 100 ° C. in the region of the coil core.
  • the average cooling rate of this cooling in the coil core is 4.5-14.5 ° C / h and can be achieved in a manner known per se by means of water or air cooling.
  • the target temperature in the core area of the coil should be reached within 40-120 hours, cooling times of 40-60 hours having proven particularly advantageous. In contrast, cooling in the area of the free edges and surfaces of the coil can take place more quickly. Avoid quenching with cooling media of any kind.
  • the coil weight should in practice be a maximum of 38 t when cooling in air. Otherwise there is a risk that graphite will form in the microstructure as a result of cooling that takes place too slowly.
  • the carbides can be individually or in the hood furnace after an optional heat treatment Stacks at annealing times of 10-100 hours in the temperature range of 660-740 ° C, in particular at temperatures of more than 660 ° C to less than 740 ° C, can be divided by a suitable process, such as laser cutting or punching, blanks or blanks, from which the components to be manufactured are then hot or cold formed in a manner known per se.
  • a hot-rolled flat steel product according to the invention can be cold-rolled in a conventional manner without graphite being formed, so that cold-formed flat steel products or components can also be hardened from the flat steel product according to the invention, and in the hardened state they have optimum wear resistance and also for the one provided here Have optimal mechanical properties.
  • the austenitizing temperature in step i) should not be less than 830 ° C and the holding time in step j) should not be less than 3 minutes in order to achieve a sufficiently coarse austenite grain.
  • the transformation inertia of large austenite grains prevents the transformation of the austenite into softer phase components such as ferrite or bainite and promotes the transformation into the martensite, so that after hardening in the respective Flat steel product or component has a structure consisting of at least 99% martensite.
  • the austenitizing temperature should not exceed 950 ° C and the holding time 60 min in order to avoid irreversible structural damage from overheating.
  • the flat steel product or the component formed therefrom is quenched at a cooling rate of 40-250 ° C./s in a manner known per se, for example by means of water or oil cooling.
  • the cooling rate is at least 40 ° C / s to ensure a complete transformation of the austenite into martensite.
  • the cooling rate is also limited to 250 ° C / s to avoid hard cracks.
  • the hardening carried out in this way can be followed by a tempering treatment in which the flat steel product or the component produced therefrom is kept at a tempering temperature of 150-350 ° C., in particular 150-300 ° C., for a period of 0.2-2 hours. to improve toughness.
  • the respective flat steel product or the component formed from it can then be cooled in air to room temperature.
  • the steel melts S1-S6 were melted with the compositions given in Table 1 and cast into slabs.
  • Slabs consisting of steels S1, S2, S3, S5 and S6 have been heated to a preheating temperature T1 and then, starting from a hot rolling start temperature T2 and a hot rolling end temperature T3, were conventionally hot-rolled into hot strips W1 - W8 with a thickness of 2-6 mm.
  • the hot strips were cooled to a reel temperature T4 at a cooling rate CR1 and were wound at this reel temperature T4 to form a coil, in which the turns were close to one another.
  • the hot strips W1-W8 were then cooled to a target temperature of 100 ° C. over a cooling time t1 in the coil, the cooling taking place in the core area of the coil at a cooling rate CR2. After cooling in the coil, the mixture was cooled to room temperature in air.
  • the pearlite content P, the ferrite content F, the sum of the bainite and martensite contents B + M, the graphite content G and the residual austenite content RA have been determined for the structure of the hot strip samples W1-W5 thus obtained.
  • the yield strength ReH, the tensile strength Rm, the uniform elongation Ag and the elongation A80 have also been determined for the hot strip samples W1 - W5.
  • the hot strip samples W1 - W5, W7, W8 each additionally went through a hardening process, in which they were first heated to an austenitizing temperature T6, held there for an austenitizing period t2 and quenched at the cooling rate CR3 after the end of the austenitizing period t2.
  • the quenched samples W1-W5, W7, W8 then underwent a tempering treatment in which they were heated to a tempering temperature T7 and held there for a tempering period t3. After the end of the tempering period t3, the samples W1-W5, W7, W8 were cooled in air to room temperature.
  • the martensite content M, the graphite content G and the residual austenite content RA have been determined for the structure of the samples H1 - H5, H7, H8 hardened and tempered in this way.
  • the notched impact strength KBZ was determined in an impact test according to DIN EN ISO 148-1, January 2011 edition, at 25 ° C on an ISO-V standard sample and, according to DIN ISO 17081, June 2014 edition, the hydrogen diffusion coefficient k.
  • the metallographic assessment of the phase fractions of pearlite, ferrite, graphite and residual austenite (RA) was carried out light-optically on cuts at 1000x magnification, and the residual austenite fraction was additionally checked by X-ray.
  • the hot strip sample W5 already contains the undesired phase graphite in the unhardened structure with a proportion of 1.6% by volume. After a further possible cold rolling along with previous optional and subsequent optional annealing in the coil, an increase in the amount of graphite must be expected here.
  • the alloy is selected such that graphite is formed in the structure and accordingly there is a risk of holes forming in the steel.
  • hardened components which are produced from the hot strip specimen W5 do not meet the requirements placed on a hardened flat steel product according to the invention or a component produced therefrom.
  • the hot strip sample W4 After hot rolling, the hot strip sample W4 has higher ferrite fractions than the sample W1. As a result, the hardened sample H4 produced from this hot strip sample W4 does not achieve the total hardness required according to the invention.
  • the reason for the comparably high proportion of ferrite is the low Ni content.
  • the hardened sample H1 made of steel S1 not only has a higher toughness, but also has a particularly favorable fatigue strength, which is a measure of the service life of components made from this steel, which are used, for example, in agricultural equipment.
  • the hardened samples H7 and H3 not according to the invention achieve endurance strengths Pü determined according to DIN 50100 of only a maximum of 183 MPa, whereas the sample H1 according to the invention with 245 MPa has a significantly better endurance strength value Pü in combination with optimal toughness.
  • the sample H8 not according to the invention has a high hardness, but not a good notched impact strength.
  • a fatigue strength Pü50 of 245 MPa was determined in accordance with DIN 50100, while the sample H7 not according to the invention achieved only Pü values of less than 190 MPa.
  • the sample H6 not according to the invention and consisting of the steel S4 not according to the invention was intended for case hardening and therefore did not go through the hardening process according to the invention.
  • the hydrogen diffusion coefficient determined for this sample H6 for comparison was 1.87 * 10-6 cm 2 / s. Table 2 Sample No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung betrifft einen für die Herstellung eines grafitfreien warmgewalzten Stahlflachprodukts geeigneten Stahl, ein warmgewalztes Stahlflachprodukt mit einem im ungehärteten Zustand grafitfreien Gefüge, das warmgewalzte Stahlflachprodukt im gehärteten Zustand, und ein Verfahren zur Herstellung solcher warmgewalzter Stahlflachprodukte.The invention relates to a steel suitable for producing a graphite-free hot-rolled steel flat product, a hot-rolled steel flat product with a graphite-free structure in the uncured state, the hot-rolled steel flat product in the hardened state, and a method for producing such hot-rolled steel flat products.

Stähle dieser Art und daraus bestehende warmgewalzte Stahlflachprodukte werden zur Herstellung von gehärteten Maschinenbauteilen benötigt, die beispielweise in der Land-, Forst- und Holzwirtschaft eingesetzt werden und von denen ihrem Einsatzzweck entsprechend ausgezeichnete Dauerfestigkeiten, eine optimierte Härtbarkeit und eine hohe Beständigkeit gegen Risskorrosion verlangt werden.Steels of this type and the resulting hot-rolled flat steel products are required for the manufacture of hardened machine components that are used, for example, in agriculture, forestry and timber, and which are required for their intended use to have excellent fatigue strength, optimized hardenability and a high level of resistance to crack corrosion.

Wenn hier von "Stahlflachprodukten" die Rede ist, sind damit Walzprodukte, wie gewalzte Bänder und Bleche sowie daraus gewonnene Zuschnitte und Platinen gemeint, deren Breite und Länge jeweils wesentlich größer ist als ihre Dicke.When we speak of "flat steel products", we mean rolled products such as rolled strips and sheets as well as blanks and blanks obtained therefrom, the width and length of which are in each case substantially greater than their thickness.

Wenn im vorliegenden Text im Zusammenhang mit Legierungsangaben Angaben in "%" oder "ppm" gemacht werden, so beziehen sich diese Angaben stets auf das Gewicht, sofern nichts anderes ausdrücklich angegeben ist.If in the present text information is given in "%" or "ppm" in connection with alloy information, this information always refers to the weight, unless expressly stated otherwise.

In der Land-, Forst- und Holzwirtschaft gewinnt die Standzeit der eingesetzten Verschleißteile in Folge von immer weiter steigenden Leistungs- und Verfügbarkeitsanforderungen zunehmend an Bedeutung. Ausfallzeiten durch Wechsel- und Instandhaltung sollen so kurz wie möglich sein, um eine maximale Verfügbarkeit der in der Regel kostspieligen Maschinen zu gewährleisten.In the agricultural, forestry and timber industries, the service life of the wear parts used increases as a result of ever increasing ones Performance and availability requirements are becoming increasingly important. Downtimes due to change and maintenance should be as short as possible to ensure maximum availability of the usually expensive machines.

Ein besonderes Beanspruchungsprofil ergibt sich beispielsweise bei land- oder forstwirtschaftlichen Messern im Ernteeinsatz daraus, dass die Messer zwar grundsätzlich beispielsweise zum Schneiden von vergleichsweise weichem Schnittgut, wie Gras, dienen, beim Schnittvorgang jedoch auch auf relativ harte Teile, wie beispielsweise Steine, Wurzeln und desgleichen, treffen können. Wenn das Material des Messers hart und spröde ist, besteht die Gefahr eines Messerbruchs.A particular stress profile arises, for example, in agricultural or forestry knives during harvesting from the fact that the knives are basically used, for example, for cutting comparatively soft clippings such as grass, but also for relatively hard parts, such as stones, roots and the like, during the cutting process , can meet. If the knife material is hard and brittle, there is a risk of the knife breaking.

Dieselben Probleme ergeben sich bei Messern, die in Schneidwerken zum Schneiden, Zerkleinern oder Zerhäckseln von Gras, Stroh, Getreide, Ästen und anderen Pflanzen und Pflanzenteilen eingesetzt werden. Zu nennen sind hier insbesondere Schneidmesser für Kreiselmäher, Rotormesser, Futtermischwagenmesser, Strohhäckslermesser oder Unterflurhäckslermesser sowie die Teile von Pflug oder Egge, die bei Feldarbeit in den Boden eindringen, um das Erdreich zu zerkleinern oder umzuwälzen.The same problems arise with knives that are used in cutters for cutting, chopping or chopping grass, straw, cereals, branches and other plants and parts of plants. These include, in particular, cutting knives for rotary mowers, rotor knives, fodder mixing wagon knives, straw chopper knives or underfloor chopper knives, as well as the parts of plows or harrows that penetrate into the ground during field work in order to shred or circulate the soil.

Häckslermesser für Stroh sind beispielsweise in der Praxis zwischen etwa 3 mm und 5 mm dick. Sie können sowohl komplett vergütet als auch nur örtlich randzonenvergütet ausgeführt sein. Andere Messer sind mindestens 1,3 mm dick, andere Verschleißteile, wie z.B. die bei Eggen zum Einsatz kommenden Bauteile, erreichen Dicken von bis zu 20 mm.For example, chopper knives for straw are between 3 mm and 5 mm thick in practice. They can be either fully coated or only locally edge-zone coated. Other knives are at least 1.3 mm thick, other wear parts such as the components used in harrows reach thicknesses of up to 20 mm.

Der hohe abrasive Verschleiß, dem die aus Stählen der hier in Rede stehenden Art gefertigten Bauelemente ausgesetzt sind, resultiert hauptsächlich aus den im Einsatz auftretenden Stoß- und Reibbelastungen. Durch harte Gegenstände, die mit den verschleißfesten Stahlteilen in Kontakt geraten, werden kontinuierlich Oberflächensegmente abgetragen.The high abrasive wear to which the components made from steels of the type in question are exposed mainly results from the shock and friction loads that occur during use. Hard objects that come into contact with the wear-resistant steel parts continuously remove surface segments.

Das voranstehend erläuterte Belastungskollektiv verlangt nach einer hohen Härte des Stahls, aus dem die betreffenden Bauteile hergestellt sind. Allerdings muss oftmals auch eine ausreichende Zähigkeit eingestellt sein, um den im Betrieb auftretenden dynamischen Belastungen standhalten zu können. Hinzu kommen hohe Anforderungen an die Standzeit, die durch Dauerfestigkeitsuntersuchungen überprüft werden kann.The load spectrum described above requires a high hardness of the steel from which the components in question are made. However, sufficient toughness must often be set to withstand the dynamic loads that occur during operation. In addition, there are high demands on the service life, which can be checked by fatigue tests.

Weil während des Einsatzes korrosive Angriffe des Werkstoffes erfolgen können - wie Kontakt mit sauren oder basischen Medien (Böden oder Schneidgütern) -, spielt auch eine Empfindlichkeit für durch Wasserstoff induziertes Versagen eine maßgebliche Rolle. Die Neigung zu Wasserstoff induzierter Rissbildung kann anhand des für den Stahl zu ermittelnden Diffusionskoeffizienten beurteilt werden.Because corrosive attacks of the material can occur during use - such as contact with acidic or basic media (floors or cut materials) - sensitivity to hydrogen-induced failure also plays a decisive role. The tendency towards hydrogen-induced crack formation can be assessed on the basis of the diffusion coefficient to be determined for the steel.

Schließlich muss ein Werkstoff der hier in Rede stehenden Art für eine komplexe Formgebung geeignet sein. So muss der Stahlwerkstoff durch unterschiedliche Trennverfahren vom das jeweilige Ausgangsprodukt bildenden jeweiligen warmgewalzten Stahlflachprodukt abgeteilt und in einem formgebenden Verfahren in die jeweils geforderte Form gebracht werden können und zudem vergütbar sein. Ebenso sollte er für weitere die Oberfläche schützende oder die Härte weiter steigernde Verfahren geeignet sein.Finally, a material of the type in question here must be suitable for complex shaping. For example, the steel material must be separated from the respective hot-rolled flat steel product forming the respective starting product by different separation processes and be able to be brought into the required form in a shaping process and also be remuneration-able. It should also be suitable for other processes that protect the surface or further increase hardness.

Im Stand der Technik sind unterschiedlichste Vorschläge für Stähle und Stahlflachprodukte gemacht worden, die diese Anforderungen erfüllen sollen.In the prior art, a wide variety of suggestions have been made for steels and flat steel products which are intended to meet these requirements.

In der DE 10 2010 050 499 B3 ( WO 2012/062281 A1 ) ist beispielsweise die Verwendung eines warmumgeformten und pressgehärteten, verschleißfesten Stahlbauteils mit einer Härte zwischen 500 und 700 HB in Baumaschinen, Agrarmaschinen und Bergbaumaschinen vorgestellt worden. Dabei werden für die Herstellung solcher Stahlbauteile vier Stahllegierungen vorgeschlagen, die neben ihrem jeweiligen Hauptbestandteil Eisen unvermeidbare Verunreinigungen (in Gew.-%) Stahl 1: 0,2 - 0,4 % C, 0,3 - 0,8 % Si, 1,0 - 2,5 % Mn, max. 0,02 % P, max. 0,02 % S, max. 0,05 % AI, max. 2 % Cu, 0,1 - 0,5 % Cr, max. 2 % Ni, 0,1 - 1 % Mo, 0,001 - 0,01 % B, 0,01 - 1 % W, max. 0,05 % N, Stahl 2: 0,35 - 0,55 % C, 0,1 - 2,5 % Si, 0,3 - 2,5 % Mn, max. 0,05 % P, max. 0,01 % S, max. 0,08 % AI, max. 0,5 % Cu, 0,1 - 2,0 % Cr, max. 3,0 % Ni, max. 1,0 % Mo, max. 2,0 % Co, 0,001 - 0,005 % B, 0,01 - 0,08 % Nb, max. 0,4 % V, max. 0,02 % N, max. 0,2 % Ti, Stahl 3: 0,40 - 0,44 % C, 0,1 - 0,5 % Si, 0,5 - 1,2 % Mn, max. 0,02 % P, max. 0,005 % S, max. 0,05 % AI, max. 0,2 % Cu, 0,3 - 0,8 % Cr, 1,0 - 2,5 % Ni, 0,2 - 0,6 % Mo, 0,5 - 2,0 % Co, 0,0015 - 0,005 % B, 0,02 - 0,05 % Nb, max. 0,4 % V, max. 0,015 % N, 0,01 - 0,05 % Ti und Stahl 4: 0,42 - 0,45 % C, 0,30 - 0,40 % Si, 0,80 - 0,90 % Mn, max. 0,012 % P, max. 0,001 % S, 0,020 - 0,050 % Al, max. 0,10 % Cu, 0,50 - 0,60 % Cr, 2,00 - 2,20 % Ni, 0,45 - 0,59 % Mo, 0,90 - 1,10 % Co, 0,002 - 0,004 % B, max. 0,008 % N, 0,015 - 0,025 % Ti, max. 0,030 % Sn enthalten. Die Auswahl der vier Stähle ist dabei speziell darauf abgestellt, dass die Stahlbauteile mit Biegewinkeln von mehr als 5 Grad hergestellt werden. Hierdurch soll es insbesondere möglich sein, komplexe Geometrien von verschleißfesten Stahlbauteilen einzusetzen.In the DE 10 2010 050 499 B3 ( WO 2012/062281 A1 ), for example, the use of a hot-formed and press-hardened, wear-resistant steel component with a hardness between 500 and 700 HB in construction machines, agricultural machines and mining machines has been presented. For the manufacture of such steel components, four steel alloys are proposed which, in addition to their respective main constituent iron, contain unavoidable impurities (in% by weight) steel 1: 0.2-0.4% C, 0.3-0.8% Si, 1 , 0 - 2.5% Mn, max. 0.02% P, max. 0.02% S, max. 0.05% AI, max. 2% Cu, 0.1 - 0.5% Cr, max. 2% Ni, 0.1 - 1% Mo, 0.001 - 0.01% B, 0.01 - 1% W, max. 0.05% N, steel 2: 0.35 - 0.55% C, 0.1 - 2.5% Si, 0.3 - 2.5% Mn, max. 0.05% P, max. 0.01% S, max. 0.08% AI, max. 0.5% Cu, 0.1 - 2.0% Cr, max. 3.0% Ni, max. 1.0% Mo, max. 2.0% Co, 0.001 - 0.005% B, 0.01 - 0.08% Nb, max. 0.4% V, max. 0.02% N, max. 0.2% Ti, steel 3: 0.40 - 0.44% C, 0.1 - 0.5% Si, 0.5 - 1.2% Mn, max. 0.02% P, max. 0.005% S, max. 0.05% AI, max. 0.2% Cu, 0.3 - 0.8% Cr, 1.0 - 2.5% Ni, 0.2 - 0.6% Mo, 0.5 - 2.0% Co, 0.0015 - 0.005% B, 0.02 - 0.05% Nb, max. 0.4% V, max. 0.015% N, 0.01-0.05% Ti and steel 4: 0.42-0.45% C, 0.30-0.40% Si, 0.80-0.90% Mn, max. 0.012% P, max. 0.001% S, 0.020 - 0.050% Al, max. 0.10% Cu, 0.50 - 0.60% Cr, 2.00 - 2.20% Ni, 0.45 - 0.59% Mo, 0.90 - 1.10% Co, 0.002 - 0.004% B, max. 0.008% N, 0.015 - 0.025% Ti, max. Contain 0.030% Sn. The selection of the four steels is specifically based on the fact that the steel components are manufactured with bending angles of more than 5 degrees. This should make it possible, in particular, to use complex geometries of wear-resistant steel components.

Neben dem voranstehend erläuterten Stand der Technik ist aus der JP 2000 328182 A ein Baustahl für Maschinenteile bekannt, der neben Eisen und unvermeidbaren Verunreinigungen die nachfolgend spezifizierten Gehalte an den nachfolgend aufgezählten Elementen enthält (in Gew.-%): 0,10 - 0,65 % C, 0,03 - 2,00 % Si, 0,30 - 2,50 % Mn, 0.015 - 0.35 % S, 0,005 - 0,060 % AI, 0,0005 - 0,0100 % B und 0,005 - 0,020 % N , mit der Maßgabe, dass 0,3 ≤ B/N ≤ 1,2, sowie aus 0,01 - 0.30 Pb und/oder 0.01 - 0.30 Bi und optional einem oder mehreren der folgenden Elemente besteht: Cr: 0,1 - 2,0 %, Mo: 0,05 - 1,00 %, Ni: 0,1 - 3,5 %, V: 0,01 - 0,50 %, Ti: 0,01 - 0,40 %, Nb: 0,01 - 0,30 %, Ca: 0,001 - 0,01 %. Der Stahl wird auf 1200 °C für 30 min. gehalten, warmgewalzt oder geschmiedet und an Luft abgekühlt. Aus dem Baustahl gefertigte Elemente lassen sich auf 850 °C erwärmen, härten und bei 600 °C anlassen.In addition to the prior art explained above, the JP 2000 328182 A a structural steel for machine parts is known which, in addition to iron and unavoidable impurities, contains the contents of the elements listed below (in% by weight): 0.10-0.65% C, 0.03-2.00% Si, 0.30 - 2.50% Mn, 0.015 - 0.35% S, 0.005 - 0.060% AI, 0.0005 - 0.0100% B and 0.005 - 0.020% N, with the proviso that 0.3 ≤ B / N ≤ 1.2, as well as 0.01 - 0.30 Pb and / or 0.01 - 0.30 Bi and optionally one or more of the following elements: Cr: 0.1 - 2.0%, Mo: 0.05 - 1.00 %, Ni: 0.1 - 3.5%, V: 0.01 - 0.50%, Ti: 0.01 - 0.40%, Nb: 0.01 - 0.30%, Ca: 0.001 - 0.01%. The steel is at 1200 ° C for 30 min. held, hot rolled or forged and cooled in air. Elements made of structural steel can be heated to 850 ° C, hardened and tempered at 600 ° C.

Vor dem Hintergrund des Standes der Technik hat sich die Aufgabe ergeben, einen Stahl, ein Stahlflachprodukt sowie ein Verfahren zu dessen Herstellung bereitzustellen, die es erlauben, Produkte zu fertigen, die eine für die Anwendung im Bereich der Landwirtschaft, der Forstwirtschaft oder vergleichbaren Anwendungen optimierte Kombination aus Zähigkeit und Dauerfestigkeit besitzen.Against the background of the prior art, the task has arisen of a steel, a flat steel product and a method for the same To provide manufacturing that make it possible to manufacture products that have a combination of toughness and fatigue strength that is optimized for use in the fields of agriculture, forestry or comparable applications.

Die Erfindung hat diese Aufgabe durch einen gemäß Anspruch 1 legierten Stahl, ein gemäß Anspruch 2 beschaffenes warmgewalztes Stahlflachprodukt und das gemäß Anspruch 8 ausgebildete Verfahren gelöst.The invention has achieved this object by means of an alloyed steel according to claim 1, a hot-rolled flat steel product obtained according to claim 2 and the method designed according to claim 8.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous refinements of the invention are specified in the dependent claims and are explained in detail below, like the general inventive concept.

Ein erfindungsgemäßer Stahl besteht demnach aus (in Gew.-% C: 0,4 - 0,7 %, Si: 0,15 - 0,5% Mn: 0,8 - 2,0% Cr: 0,3 - 1,0 %, wobei der Cr-Gehalt %Cr jeweils folgende Bedingung erfüllt:

        %Cr ≥ (%Ni + %Si + %Mn + %S + %AI)/5

  • mit %Ni: jeweiliger Ni-Gehalt des Stahls
  • %Si: jeweiliger Si-Gehalt des Stahls
  • %Mn: jeweiliger Mn-Gehalt des Stahls
  • %S: jeweiliger S-Gehalt des Stahls
  • %Al: jeweiliger Al-Gehalt des Stahls
N: 0,0015 - 0.010 % Ni: 0,04 - 2 % Ti: 0,005 - 0,1 % V: 0,0080 - 0,1 % B: 0,0005 - 0,004 % Ca: 0,0005 - 0,004 % P: ≤ 0,030 % S: ≤ 0,005 % Al: ≤ 0,05 % Cu: ≤ 0,1 % Nb: ≤ 0,004 % H: ≤ 0,0001 % O: ≤ 0,0050 % sowie optional Mo: 0,006 - 0,02 %,
und als Rest aus Eisen und unvermeidbaren Verunreinigungen.A steel according to the invention accordingly consists of (in% by weight C: 0.4 - 0.7%, Si: 0.15 - 0.5% Mn: 0.8 - 2.0% Cr: 0.3 - 1.0%, the Cr content% Cr fulfills the following condition in each case:

% Cr ≥ (% Ni +% Si +% Mn +% S +% AI) / 5

  • with% Ni: the respective Ni content of the steel
  • % Si: respective Si content of the steel
  • % Mn: respective Mn content of the steel
  • % S: respective S content of the steel
  • % Al: respective Al content of the steel
N: 0.0015 - 0.010% Ni: 0.04 - 2% Ti: 0.005 - 0.1% V: 0.0080 - 0.1% B: 0.0005 - 0.004% Ca: 0.0005 - 0.004% P: ≤ 0.030% S: ≤ 0.005% Al: ≤ 0.05% Cu: ≤ 0.1% Nb: ≤ 0.004% H: ≤ 0.0001% O: ≤ 0.0050% and optionally Mo: 0.006 - 0.02%,
and the rest of iron and unavoidable impurities.

Kohlenstoff ist im erfindungsgemäßen Stahl in Gehalten von 0,4 - 0,7 Gew.-% vorhanden und wirkt in diesen Gehalten härte- und festigkeitssteigernd. Der Mindestgehalt von 0,4 % ist für eine ausreichende Grundhärte erforderlich. Um Beeinträchtigungen der Umformbarkeit durch einen zu hohen C-Gehalt zu vermeiden, kann der C-Gehalt auf 0,6 Gew.-% beschränkt werden, wobei eine optimale Walzbarkeit des Stahls gewährleistet werden kann, wenn der C-Gehalt 0,55 Gew.-% nicht überschreitet. Die positive Wirkung der Anwesenheit von Kohlenstoff im erfindungsgemäßen Stahl kann dann besonders sicher genutzt werden, wenn der Minimalgehalt an Kohlenstoff 0,47 Gew.-% beträgt.Carbon is present in the steel according to the invention in a content of 0.4-0.7% by weight and in this content acts to increase hardness and strength. The minimum content of 0.4% is required for a sufficient basic hardness. In order to avoid impairment of the formability due to an excessively high C content, the C content can be limited to 0.6% by weight, whereby an optimal rollability of the steel can be ensured if the C content is 0.55% by weight. -% does not exceed. The positive effect of the presence of carbon in the steel according to the invention can be used particularly safely if the minimum carbon content is 0.47% by weight.

Silizium wirkt im erfindungsgemäßen Stahl stark härtbarkeitssteigernd und ist deshalb in Gehalten von 0,15 - 0,5 Gew.-% im erfindungsgemäßen Stahl vorhanden. Bei höheren Gehalten kann es zur Bildung von schlecht entfernbarem Zunder auf dem Warmband kommen. Mit zunehmendem Si - Gehalt wird zudem die Wasserstoffdurchlässigkeit vermindert. Sofern es zur Entstehung von Grafit kommt, so fördert Silizium insbesondere das Grafitteilchenwachstum. Es zeigt eine geringe Löslichkeit im Zementit und destabilisiert diesen. Auch aus diesem Grund ist ein zu hoher Si-Gehalt oberhalb 0,5 % zu vermeiden. Ein Mindestgehalt von 0,15 Gew.-% sollte jedoch dem Stahl zugegeben werden, um die positive Wirkung von Si im erfindungsgemäßen Stahl betriebssicher nutzen zu können. Indem der Si-Gehalt auf höchstens 0,3 Gew.-% beschränkt wird, kann eine besonders einfache Entfernung von auf dem Warmband haftenden Zunder durch ein zu diesem Zweck übliches und in konventioneller Weise ausgeführtes Beizen bewerkstelligt werden.Silicon increases the hardenability in the steel according to the invention and is therefore present in the steel according to the invention in contents of 0.15-0.5% by weight. At higher contents, scale that is difficult to remove can form on the hot strip. With increasing Si content, the hydrogen permeability is also reduced. If graphite is formed, silicon promotes graphite particle growth in particular. It shows a low solubility in cementite and destabilizes it. For this reason too high Si content above 0.5% should be avoided. However, a minimum content of 0.15% by weight should be added to the steel in order to be able to use the positive effect of Si in the steel according to the invention in a reliable manner. By the Si content is limited to a maximum of 0.3% by weight, a particularly simple removal of scale adhering to the hot strip can be accomplished by means of pickling which is customary for this purpose and carried out in a conventional manner.

Schwefel wirkt als Stahlbegleitelement im erfindungsgemäßen Stahl in mehrfacher Hinsicht ungünstig. Der S-Gehalt ist daher so gering wie möglich zu halten. Als günstig erweisen sich Gehalte von maximal 0,005 Gew.-% S, wobei durch eine Begrenzung auf maximal 0,0005 Gew.-% die negativen Einflüsse der Anwesenheit von S im erfindungsgemäßen Stahl besonders sicher ausgeschlossen werden. Durch die Begrenzung des S-Gehalts auf die erfindungsgemäß vorgegebenen Grenzen kann auch eine in Folge der höheren S-Gehalte entstehenden Einschlüsse eintretende Verminderung der Kerbschlagzähigkeit vermieden und eine Schädigung durch in den Stahl eindringenden Wasserstoff vermieden werden. Des Weiteren erfolgt die Minimierung des Schwefelgehalts auch, um die Abbindung des erfindungsgemäß vorgesehenen Titan-Gehalts zu Titancarbosulfid zu vermeiden.Sulfur acts as an accompanying steel element in the steel according to the invention in several ways. The S content should therefore be kept as low as possible. A maximum of 0.005% by weight of S has proven to be favorable, the limitation to a maximum of 0.0005% by weight particularly reliably preventing the negative influences of the presence of S in the steel according to the invention. By limiting the S content to the limits specified according to the invention, a reduction in the notched impact strength which occurs as a result of the higher S contents can also be avoided and damage by hydrogen penetrating into the steel can be avoided. Furthermore, the sulfur content is also minimized in order to avoid the setting of the titanium content provided according to the invention into titanium carbosulfide.

Um die angestrebt niedrigen S-Gehalte zu erreichen, wird bei der Erzeugung des erfindungsgemäßen Stahls neben einer üblichen Entschwefelungsbehandlung zusätzlich eine Calziumbehandlung durchgeführt. Dabei wird CaSi zugesetzt, wodurch Ca-Gehalte von 0,0005 - 0,004 Gew.-% an Ca im erfindungsgemäßen Stahl vorliegen. Auch muss der mit der CaSi-Zugabe einhergehende Anstieg des Si-Gehalts bei der Bemessung des Si-Gehalts berücksichtigt werden. Optimalerweise wird der Ca-Gehalt auf 0,0015 Gew.-% beschränkt, um die Bildung von Einschlüssen, die sich negativ auf die Zähigkeit auswirken könnten, besonders sicher zu vermeiden.In order to achieve the desired low S contents, a calcium treatment is also carried out in addition to a conventional desulfurization treatment when the steel according to the invention is produced. CaSi is added, as a result of which Ca contents of 0.0005-0.004% by weight of Ca are present in the steel according to the invention. The increase in Si content associated with the addition of CaSi must also be taken into account when measuring the Si content. Optimally, the Ca content is limited to 0.0015% by weight in order to particularly reliably avoid the formation of inclusions which could have a negative effect on toughness.

Geringe Zusätze von Phosphor von bis zu 0,030 Gew.-% können sich zwar günstig auf die Korrosions- und Festigkeitseigenschaften auswirken, bei höheren P-Gehalten besteht jedoch die Gefahr einer Versprödung. Um dies sicher zu vermeiden, kann der P-Gehalt eines erfindungsgemäßen Stahls auf höchstens 0,025 Gew.-% beschränkt sein. Um jedoch den günstigen Einfluss von P nutzen zu können, kann es zweckmäßig sein, einen Minimalgehalt an P von 0,001 Gew.-% im erfindungsgemäßen Stahl vorzusehen.Small additions of phosphorus of up to 0.030% by weight can have a favorable effect on the corrosion and strength properties, but at higher P contents there is a risk of embrittlement. To do this To avoid safely, the P content of a steel according to the invention can be limited to at most 0.025% by weight. However, in order to be able to use the favorable influence of P, it may be expedient to provide a minimum P content of 0.001% by weight in the steel according to the invention.

Chrom wirkt im erfindungsgemäßen Stahl sowohl härtbarkeits- als auch festigkeitssteigernd und ist ein Karbidbildner. Mit zunehmendem Cr- Gehalt wird jedoch die Wasserstoffdurchlässigkeit vermindert. Unterhalb von 0,3 Gew.-% Cr wäre jedoch die Steigerung der Härtbarkeit und Festigkeit zu gering, wogegen bei Cr-Gehalten von mehr als 1,0 Gew.-% die Wasserstoffdurchlässigkeit zu stark verringert würde. Cr verhindert auch das frühzeitige Auftreten von Grafit nach längeren Glühungen.Chromium increases the hardenability and strength in the steel according to the invention and is a carbide former. With increasing Cr content, however, the hydrogen permeability is reduced. Below 0.3% by weight of Cr, however, the increase in hardenability and strength would be too small, whereas if the Cr content was more than 1.0% by weight, the hydrogen permeability would be reduced too much. Cr also prevents the early appearance of graphite after long annealing.

Durch Grafitansammlung bedingte, beim Härteprozess entstehende Gefügelöcher müssen vermieden werden, um Wasserstoffansammlungen, die letztlich zum Werkstoffversagen führen würden, zu vermeiden. So setzen derartige Löcher als Fangstellen für Wasserstoff die Durchlässigkeit (Diffusion) für Wasserstoff herab. Zudem wirken sich die im Gefüge nach Grafitansammlungen zurückbleibenden Löcher negativ auf die Dauerfestigkeit aus. Chrom unterdrückt demgegenüber die Keimbildung und das Wachstum der Grafitteilchen.The void holes caused by the hardening process due to graphite accumulation must be avoided in order to avoid hydrogen accumulation, which would ultimately lead to material failure. Such holes as traps for hydrogen reduce the permeability (diffusion) for hydrogen. In addition, the holes remaining in the structure after graphite accumulations have a negative effect on the fatigue strength. Chromium, on the other hand, suppresses the nucleation and growth of the graphite particles.

Ein erfindungsgemäßer Stahl ist unter Nutzung dieser positiven Wirkung von Cr daher so ausgelegt, dass jede Entstehung von Grafit im Gefüge vermieden wird. Um dies zu erreichen, ist ein Cr-Gehalt von bis zu 1 Gew.-% im erfindungsgemäßen Stahl möglich. Jedoch zeigt sich, dass unter Berücksichtigung der positiven Einflüsse der anderen erfindungsgemäß vorgesehenen Legierungselemente Cr-Gehalte von bis zu 0,7 Gew.-% regelmäßig für diesen Zweck ausreichen. Durch eine Chrom-Zugabe von mindestens 0,3 Gew.-% kann eine unerwünschte Grafitbildung in Stählen mit gleichzeitigen Gehalten an Ni, Si, Mn, S und Al verhindert werden. Dabei ist der Cr-Gehalt als zusätzliche Bedingung für seinen Mindestwert so einzustellen, dass er mindestens einem Fünftel der Summe der Gehalte an Ni, Si, Mn, S und Al entspricht, dass also gilt:

        %Cr ≥ (%Ni + %Si + %Mn + %S + %Al)/5

  • mit %Ni: jeweiliger Ni-Gehalt des Stahls
  • %Si: jeweiliger Si-Gehalt des Stahls
  • %Mn: jeweiliger Mn-Gehalt des Stahls
  • %S: jeweiliger S-Gehalt des Stahls
  • %Al: jeweiliger Al-Gehalt des Stahls
Using this positive effect of Cr, a steel according to the invention is therefore designed in such a way that any formation of graphite in the structure is avoided. To achieve this, a Cr content of up to 1% by weight is possible in the steel according to the invention. However, it turns out that taking into account the positive influences of the other alloy elements provided according to the invention, Cr contents of up to 0.7% by weight are regularly sufficient for this purpose. An addition of chromium of at least 0.3% by weight can prevent undesirable graphite formation in steels with simultaneous contents of Ni, Si, Mn, S and Al. The Cr content must be set as an additional condition for its minimum value that it corresponds to at least one fifth of the sum of the contents of Ni, Si, Mn, S and Al, so that:

% Cr ≥ (% Ni +% Si +% Mn +% S +% Al) / 5

  • with% Ni: the respective Ni content of the steel
  • % Si: respective Si content of the steel
  • % Mn: respective Mn content of the steel
  • % S: respective S content of the steel
  • % Al: respective Al content of the steel

Diese Bedingung soll erfüllt werden, weil andernfalls der Grafit nicht sicher vermieden wird und bei den üblichen Austenitisierungstemperaturen des Härteprozesses viel langsamer in Lösung geht als der Zementit und somit viel weniger Kohlenstoff zur Erhöhung der Martensithärte zur Verfügung stände.This condition should be fulfilled because otherwise the graphite is not safely avoided and at the usual austenitizing temperatures of the hardening process it dissolves much more slowly than the cementite and thus much less carbon would be available to increase the martensite hardness.

Molybdän kann einem erfindungsgemäßen Stahl optional zugegeben werden, um seine Durchvergütbarkeit zu verbessern. Werden aus erfindungsgemäßem Stahl Stahlflachprodukte mit Dicken von bis zu 15 mm erzeugt, so sind zu diesem Zweck Gehalte von mindestens 0,006 Gew.-% ausreichend. Bei größeren Dicken sollte jedoch ebenfalls nicht mehr als 0,02 Gew.-% zulegiert werden, da andernfalls wieder die Gefahr der Grafitbildung im Gefüge besteht.Molybdenum can optionally be added to a steel according to the invention in order to improve its through-hardenability. If flat steel products with a thickness of up to 15 mm are produced from steel according to the invention, contents of at least 0.006% by weight are sufficient for this purpose. With larger thicknesses, however, no more than 0.02% by weight should also be added, since otherwise there is a risk of graphite formation in the structure.

Nickel wirkt im erfindungsgemäßen Stahl sowohl härtbarkeitssteigernd als auch, insbesondere bei tiefen Temperaturen, zähigkeitsverbessernd. Ein Mindestgehalt von 0,04 Gew.-% ist hierzu erforderlich. Weil aber bei zu hohen Ni-Gehalten die Grafitentstehung begünstigt würde, ist eine Obergrenze des Ni-Gehalts von 2 Gew.-% einzuhalten. Besonders sicher lässt sich die positive Wirkung von Ni bei gleichzeitiger Vermeidung negativer Auswirkungen dann nutzen, wenn der Ni-Gehalt auf maximal 0,35 Gew.-% begrenzt wird.In the steel according to the invention, nickel acts both to increase hardenability and, particularly at low temperatures, to improve toughness. A minimum content of 0.04% by weight is required for this. However, because the formation of graphite would be favored if the Ni contents were too high, an upper limit of the Ni content of 2% by weight must be observed. The positive effect of Ni can be used particularly safely while avoiding negative effects if the Ni content is limited to a maximum of 0.35% by weight.

Die Anwesenheit von Mangan kann insbesondere in Kombination mit der Anwesenheit von Nickel zu einer Ausweitung des Phasenraums des Austenits zu tiefen Temperaturen hin führen. Dieser unerwünschte Effekt wird durch die Begrenzung des Mn-Gehalts auf maximal 2 Gew.-%, insbesondere maximal 1,8 Gew.-%, vermieden. Ein Mindestgehalt von 0,8 Gew.-%, insbesondere 1,0 Gew.-% Mn sollte jedoch eingehalten werden, um eine sichere Schwefelabbindung in Form von Mangansulfiden zu gewährleisten und somit niedrigschmelzende Eutektika mit Eisen zu vermeiden.The presence of manganese, in particular in combination with the presence of nickel, can widen the phase space of the austenite lead to low temperatures. This undesirable effect is avoided by limiting the Mn content to a maximum of 2% by weight, in particular a maximum of 1.8% by weight. A minimum content of 0.8% by weight, in particular 1.0% by weight, of Mn should, however, be observed in order to ensure reliable sulfur binding in the form of manganese sulfides and thus to avoid low-melting iron eutectics.

Bor beeinflusst bereits in Gehalten von 0,0005 - 0,004 Gew.-% die Umwandlung des Stahls. Um diese Wirkung nutzen zu können, sollte die Legierung so eingestellt werden, dass eine Abbindung des Bors mit Stickstoff zu BN verhindert wird. Damit Bor seine härtbarkeitssteigernde Wirkung voll entfalten kann, muss es gelöst im Stahl vorliegen, darf also nicht mit Stickstoff abgebunden sein.Boron already affects the conversion of the steel in contents of 0.0005 - 0.004% by weight. In order to be able to use this effect, the alloy should be adjusted in such a way that the boron does not bind to BN. In order for boron to fully develop its hardening effect, it must be dissolved in the steel, so it must not be bound with nitrogen.

Um den im erfindungsgemäßen Stahl vorhandenen Stickstoff abzubinden, enthält der Stahl 0,005 - 0,1 Gew.-% Titan. Ti bildet Nitride, Karbonitride und Karbosulfide und bindet so die im Hinblick auf die Eigenschaften des Stahls ungünstigen Bestandteile Stickstoff und Schwefel und trägt gleichzeitig zur Steigerung der Festigkeit und Härte des erfindungsgemäßen Stahls bei. Zudem wird durch die Anwesenheit von Ti eine Kontrolle des Austenitkornwachstums möglich. Der Ti-Gehalt sollte minimal 0,005 Gew.-% und maximal 0,1 Gew.-% betragen, wobei sich Ti-Gehalte von bis zu 0,04 Gew.-% als besonders effektiv in Bezug auf die erfindungsgemäß genutzte Wirkung von Ti erwiesen haben. Um die günstigen Einflüsse von Ti besonders sicher nutzen zu können, kann ein Mindestgehalt von 0,01 Gew.-% vorgesehen sein. Damit stets eine für die Abbindung des im Stahl vorhandenen S-Gehalts "%S" und N-Gehalts "%N" ausreichende Menge an Ti im Stahl vorhanden ist, kann der jeweilige Ti-Gehalt "%Ti" auch nach folgender Bedingung eingestellt werden (in Gew.-%):
%S*1,5 + %N*3,5 + 0,005 % ≤ %Ti ≤ %S*1,5 + %N*3,5 + 0,010 %
In order to bind the nitrogen present in the steel according to the invention, the steel contains 0.005-0.1% by weight of titanium. Ti forms nitrides, carbonitrides and carbosulfides and thus binds the constituents nitrogen and sulfur, which are unfavorable with regard to the properties of the steel, and at the same time contributes to increasing the strength and hardness of the steel according to the invention. In addition, the presence of Ti makes it possible to control austenite grain growth. The Ti content should be a minimum of 0.005% by weight and a maximum of 0.1% by weight, with Ti contents of up to 0.04% by weight proving to be particularly effective in relation to the action of Ti used according to the invention to have. In order to be able to use the favorable influences of Ti particularly safely, a minimum content of 0.01% by weight can be provided. So that there is always a sufficient amount of Ti in the steel for setting the S content "% S" and N content "% N" in the steel, the respective Ti content "% Ti" can also be set according to the following condition (in% by weight):
% S * 1.5 +% N * 3.5 + 0.005% ≤% Ti ≤% S * 1.5 +% N * 3.5 + 0.010%

Niob ist in der erfindungsgemäßen Legierung nur als den unvermeidbaren Verunreinigungen zuzurechnendes Begleitelement in Gehalten vorgesehen, in denen es keine Wirkung entfaltet. Deshalb ist der Nb-Gehalt auf höchstens 0,004 Gew.-% beschränkt.In the alloy according to the invention, niobium is provided only as an accompanying element which is to be attributed to the unavoidable impurities in amounts in which it has no effect. Therefore, the Nb content is limited to at most 0.004% by weight.

Vanadium ist wie Titan ein Karbonitride, Nitride und Karbide bildendes Mikrolegierungselement, das festigkeits- und härtesteigernd wirkt und so zur Verschleißbeständigkeit des Stahls beiträgt. Um diese Effekte zu nutzen, beträgt der Minimalgehalt an Vanadium im erfindungsgemäßen Stahl 0,0080 Gew.-%. Bei Gehalten von mehr als 0,1 Gew.-% tritt dagegen keine weitere Steigerung des positiven Einflusses von V ein. Besonders effektiv lässt sich Vanadium in Gehalten von bis zu 0,05 Gew.-% im erfindungsgemäßen Stahl einsetzen.Like titanium, vanadium is a microalloying element that forms carbonitrides, nitrides and carbides, which increases strength and hardness and thus contributes to the wear resistance of steel. In order to use these effects, the minimum vanadium content in the steel according to the invention is 0.0080% by weight. With contents of more than 0.1% by weight, however, there is no further increase in the positive influence of V. Vanadium can be used particularly effectively in contents of up to 0.05% by weight in the steel according to the invention.

Stickstoff trägt vor allem im ungebundenen Zustand zur Dauerfestigkeit des erfindungsgemäßen Stahls bei. Hierzu ist ein Mindestgehalt von 0,0015 Gew.-% im erfindungsgemäßen Stahl vorgesehen. Jedoch würde ein zu hoher nicht abgebundener Stickstoffgehalt zur vorzeitigen Alterung und damit zu einem ungünstigeren Verarbeitungsverhalten des erfindungsgemäßen Stahls führen. Daher ist der N-Gehalt des Stahls auf höchstens 0,010 Gew.-% beschränkt. Negative Auswirkungen der Anwesenheit von Stickstoff können dadurch sicher vermieden werden, dass der Stickstoffgehalt auf maximal 0,0070 Gew.-%, insbesondere maximal 0,0040 Gew.-%, abgesenkt wird. Diese Mengen an im erfindungsgemäßen Stahl vorhandenem Stickstoff sind ausreichend, um bei gleichzeitiger Anwesenheit von V die Bildung einer für die Verbesserung der Verschleißbeständigkeit ausreichenden Menge an Nitriden, Karbiden und Mischformen dieser Ausscheidungen zu gewährleisten. Eine weitere positive Wirkung von Stickstoff besteht im erfindungsgemäßen Stahl darin, dass N bestehende Eisenkarbide stabilisiert und daher die Grafitbildung im Gefüge behindert. Auch für diesen Effekt ist ein Mindestgehalt von 15 ppm N im erfindungsgemäßen Stahl vorzuhalten.Nitrogen, especially in the unbound state, contributes to the fatigue strength of the steel according to the invention. For this purpose, a minimum content of 0.0015% by weight is provided in the steel according to the invention. However, too high a non-set nitrogen content would lead to premature aging and thus to less favorable processing behavior of the steel according to the invention. Therefore, the N content of the steel is limited to at most 0.010% by weight. Negative effects of the presence of nitrogen can be safely avoided by reducing the nitrogen content to a maximum of 0.0070% by weight, in particular a maximum of 0.0040% by weight. These amounts of nitrogen present in the steel according to the invention are sufficient to ensure, in the presence of V, the formation of an amount of nitrides, carbides and mixed forms of these precipitates which is sufficient to improve the wear resistance. Another positive effect of nitrogen in the steel according to the invention is that N stabilizes existing iron carbides and therefore hinders graphite formation in the structure. A minimum content of 15 ppm N in the steel according to the invention must also be maintained for this effect.

Der Wasserstoffgehalt im Warmband ist auf Werte von höchstens 1 ppm zu begrenzen, um wasserstoffbedingten Brüchen vorzubeugen. Nichtmetallische Einschlüsse können Orte für eine Wasserstoffansammlung werden und so die Wasserstoffdurchlässigkeit verringern. Damit einhergehend ergibt sich die Gefahr der Entstehung von wasserstoffinduzierten Rissen. Um dies zu verhindern, ist der Sauerstoffgehalt des erfindungsgemäßen Stahls auf maximal 0,0050 Gew.-%, insbesondere maximal 0,0030 Gew.-%, begrenzt.The hydrogen content in the hot strip must be limited to a maximum of 1 ppm to prevent breaks due to hydrogen. Non-metallic inclusions can become places for hydrogen accumulation, reducing hydrogen permeability. This is accompanied by the risk of hydrogen-induced cracks. To prevent this, the oxygen content of the steel according to the invention is limited to a maximum of 0.0050% by weight, in particular a maximum of 0.0030% by weight.

Die Anwesenheit größerer Mengen von Aluminium würde das Auftreten von Grafit bei der Erstarrung des erfindungsgemäßen Stahls begünstigen. Größere Grafitansammlungen lösen sich beim Härten jedoch kaum auf und können, wie erwähnt, sogar Löcher im Gefüge hinterlassen, an denen sich wiederum Wasserstoff ansammeln könnte. Um diese negativen Auswirkungen zu verhindern, ist der Al-Gehalt des erfindungsgemäßen Stahls auf maximal 0,05 Gew.-% begrenzt.The presence of large amounts of aluminum would favor the occurrence of graphite when the steel according to the invention solidifies. Larger graphite accumulations hardly dissolve during hardening and, as mentioned, can even leave holes in the structure where hydrogen could in turn accumulate. In order to prevent these negative effects, the Al content of the steel according to the invention is limited to a maximum of 0.05% by weight.

Kupfer ist im erfindungsgemäßen Stahl ebenfalls nur als Begleitelement vorhanden, dem keine positive Wirkung auf die angestrebten Eigenschaften des Stahls zukommt. Zu hohe Cu-Gehalte sollten vielmehr vermieden werden, da Cu in Verbindung mit Schwefel und Eisen niedrigschmelzende Verbindungen bildet, die beim Warmwalzen Oberflächenfehler und Kantenrisse auslösen können. Deshalb ist der Cu-Gehalt des erfindungsgemäßen Stahls auf höchstens 0,1 Gew.-% beschränkt. Besonders sicher kann die Gefahr der Entstehung insbesondere von Kantenrissen ausgeschlossen werden, wenn der Cu-Gehalt des erfindungsgemäßen Stahls auf höchstens 0,012 Gew.-% begrenzt wird.Copper is also only present in the steel according to the invention as an accompanying element, which has no positive effect on the desired properties of the steel. Rather, excessive Cu contents should be avoided, since Cu forms low-melting compounds in connection with sulfur and iron, which can cause surface defects and edge cracks during hot rolling. The Cu content of the steel according to the invention is therefore limited to a maximum of 0.1% by weight. The risk of edge cracking in particular can be excluded with particular certainty if the Cu content of the steel according to the invention is limited to at most 0.012% by weight.

Gegenüber bisher eingesetzten niedriglegierten Cr-Stählen erweist sich das erfindungsgemäße Legierungskonzept auf Basis der erfindungsgemäßen Kombination von Mn-, Ti-, B- und V-Gehalten in Verbindung mit einem höheren C-Gehalt sowie die zusätzliche Zugabe von Nickel als erfolgreich bei der Herstellung von warmgewalzten Stahlflachprodukten, insbesondere Warmbreitband. So wurden nicht nur optimierte mechanische Eigenschaften erzielt, die zu einer deutlich gesteigerten Dauerfestigkeit führten, sondern auch die Korrosionsanfälligkeit minimiert. Gegenüber den auf hochlegierten nichtrostenden Stählen beruhenden Stahlkonzepten ist mit der Erfindung aufgrund der ressourceschonenderen, exakt bemessenen Legierung von Nickel und Chrom eine wesentlich kostengünstigere Erzeugung möglich.Compared to previously used low-alloy Cr steels, the alloy concept according to the invention based on the combination of Mn, Ti, B and V contents in combination with a higher C content and the additional addition of nickel has proven to be successful in the production of hot rolled flat steel products, in particular Hot wide strip. This not only achieved optimized mechanical properties that led to a significantly increased fatigue strength, but also minimized susceptibility to corrosion. Compared to the steel concepts based on high-alloyed stainless steels, the invention enables a much more economical production due to the resource-saving, precisely dimensioned alloy of nickel and chromium.

Ein erfindungsgemäßes Stahlflachprodukt zeichnet sich dadurch aus, dass es aus einem erfindungsgemäßen Stahl besteht und dabei im ungehärteten Zustand ein zu mindestens 80 Vol.-% perlitisches, grafitfreies Gefüge besitzt. Die Grafitfreiheit macht den Stahl insbesondere zum Härten geeignet und minimiert die Gefahr der Einlagerung von Wasserstoff im Gefüge des Stahls, wodurch die Entstehung von Rissen begünstigt und die Dauerfestigkeit des Stahls herabgesetzt würde.A flat steel product according to the invention is characterized in that it consists of a steel according to the invention and in the uncured state has a pearlitic, graphite-free structure of at least 80% by volume. The absence of graphite makes the steel particularly suitable for hardening and minimizes the risk of hydrogen being embedded in the structure of the steel, which would favor the formation of cracks and reduce the fatigue strength of the steel.

Das erfindungsgemäß erzeugte und zusammengesetzte Stahlflachprodukt weist mechanische Eigenschaften und eine Verschleißbeständigkeit auf, die es in Kombination mit optimierten Dehnungseigenschaften besonders geeignet macht für den Einsatz mit schlagenden Belastungen, wie sie überall dort auftreten, wo mit entsprechenden Geräten Erd- oder Gesteinsbewegungen oder eine Bearbeitung von Vegetation vorgenommen werden. Beispiele hierfür sind die Land- oder Forstwirtschaft, aber auch der Bergbau, die Bauwirtschaft, dort insbesondere der Tiefbau, und desgleichen. So lassen sich aus erfindungsgemäßen Stahlflachprodukten beispielsweise hoch verschleißbeständige und dauerhaltbare Bauelemente von Pflügen, Eggen sowie Messer oder Schneidglieder und desgleichen herstellen, die in landwirtschaftlichen Geräten und Maschinen bei der Bodenbearbeitung oder im Ernteeinsatz benötigt werden.The steel flat product produced and assembled in accordance with the invention has mechanical properties and wear resistance, which, in combination with optimized elongation properties, make it particularly suitable for use with impact loads, such as occur wherever appropriate equipment is used to move earth or stone or to process vegetation be made. Examples of this are agriculture or forestry, but also mining, construction, especially civil engineering, and the like. For example, highly wear-resistant and durable components of plows, harrows and knives or cutting members and the like can be produced from flat steel products according to the invention, which are required in agricultural implements and machines for tillage or harvesting.

Im warmgewalzten, gebrauchsfertigen ungehärteten Zustand weisen erfindungsgemäße Stahlflachprodukte quer zur Walzrichtung gemessen eine Streckgrenze ReH von 450 - 650 MPa und eine Zugfestigkeit Rm von 750 - 950 MPa auf und besitzen eine Gleichmaßdehnung Ag von 5 - 15 % sowie eine Dehnung A80 von 15 - 30 %.In the hot-rolled, ready-to-use, unhardened state, flat steel products according to the invention, measured transversely to the rolling direction, have a yield strength ReH of 450-650 MPa and a tensile strength Rm of 750-950 MPa and have a uniform elongation Ag of 5 - 15% and an elongation A80 of 15 - 30%.

Dabei besteht das grafitfreie Gefüge von erfindungsgemäßen Stahlflachprodukten im ungehärteten Zustand neben den mindestens zu 80 Vol.-% Perlit aus in Summe höchstens 10 Vol.-% Bainit oder Martensit und als Rest aus Ferrit. Die Anteile von Bainit und Martensit am Gefüge des erfindungsgemäßen Stahls sind dabei so gering wie möglich zu halten. Auf diese Weise wird eine temperaturmäßig eng begrenzte Phasenumwandlung bei der späteren Härtung und somit ein homogenes Härtungsgefüge erreicht, so dass möglichst hohe Perlitgehalte von vorzugsweise mindestens 90 Vol.-% erreicht werden. Dies wiederum bewirkt einen homogenen Ausgangszustand, welcher zu einem entsprechend homogenen Härtungs- und Vergütungsgefüge führt.The graphite-free structure of flat steel products according to the invention in the unhardened state, in addition to the at least 80% by volume pearlite, consists in total of at most 10% by volume bainite or martensite and the rest consists of ferrite. The proportions of bainite and martensite in the structure of the steel according to the invention are to be kept as low as possible. In this way, a temperature change which is narrow in terms of temperature is achieved during the subsequent hardening and thus a homogeneous hardening structure, so that the highest possible pearlite contents of preferably at least 90% by volume are achieved. This in turn causes a homogeneous initial state, which leads to a correspondingly homogeneous hardening and tempering structure.

Nach dem Härten weisen erfindungsgemäße Stahlflachprodukte oder daraus erzeugte Bauteile ein Gefüge auf, das zu mindestens 99 Vol.-% aus Martensit und als Rest aus Restaustenit besteht.After hardening, flat steel products according to the invention or components produced therefrom have a structure which consists of at least 99% by volume of martensite and the remainder of residual austenite.

Derart beschaffene erfindungsgemäße Stahlflachprodukte erreichen im gehärteten Zustand eine Härte von 540 - 600 HV1.Steel flat products according to the invention obtained in this way achieve a hardness of 540-600 HV1 in the hardened state.

Dabei beträgt die im Kerbschlagbiegeversuch gemäß DIN EN ISO 148-1, Ausgabe Januar 2011, bei 25 °C an einer ISO-V-Normprobe ermittelte Kerbschlagzähigkeit von erfindungsgemäßen Stahlflachprodukten oder daraus hergestellten und anschließend gehärteten Bauteilen im gehärteten Zustand gemessen quer zur Walzrichtung bei Raumtemperatur mindestens 8 J/cm2. Die besondere Verschleißbeständigkeit von erfindungsgemäßen Stahlflachprodukten oder aus ihnen hergestellten Bauteilen drückt sich darin aus, dass ihre nach DIN 50100 ermittelte Dauerfestigkeit Pü50 nach dem Härten 220 - 400 MPa beträgt.The notched bar impact test according to DIN EN ISO 148-1, January 2011 edition, at 25 ° C on an ISO-V standard specimen, of notched steel products according to the invention or components made therefrom and subsequently hardened, measured in the hardened state, measured at right angles to the rolling direction at room temperature 8 J / cm 2 . The special wear resistance of flat steel products according to the invention or components made from them is expressed in that their fatigue strength Pü50, determined according to DIN 50100, is 220-400 MPa after hardening.

Kennzeichnend für die geringe Neigung von erfindungsgemäßen Stahlflachprodukten zur Aufnahme von Wasserstoff ist, dass der gemäß DIN ISO 17081, Ausgabe Juni 2014, bestimmte Wasserstoffdiffusionskoeffizient typischerweise 1,5*10-7 cm2/s bis 9*10-7 cm2/s, insbesondere 4,2*10-7 cm2/s bis 5,2*10-7 cm2/s beträgt. Für die im gehärteten Zustand gegebene Korrosionsanfälligkeit eines aus erfindungsgemäßem Stahl bestehenden Stahlflachprodukts oder eines daraus hergestellten Bauteils sind eine bestimmte Kombination aus Ausscheidungen und Martensitstruktur sowie die Vermeidung von maßgeblichen Löchern im Gefüge verantwortlich.It is characteristic of the low tendency of flat steel products according to the invention to absorb hydrogen that the hydrogen diffusion coefficient determined according to DIN ISO 17081, June 2014 edition, typically 1.5 * 10 -7 cm 2 / s to 9 * 10 -7 cm 2 / s, is in particular 4.2 * 10 -7 cm 2 / s to 5.2 * 10 -7 cm 2 / s. A certain combination of precipitations and martensite structure and the avoidance of significant holes in the structure are responsible for the susceptibility to corrosion of a steel flat product made of steel according to the invention or of a component produced therefrom in the hardened state.

Bei extrem abrasiver Belastung von erfindungsgemäßen Stahlflachprodukten oder daraus erzeugten Bauteilen besteht im praktischen Einsatz die Gefahr, dass sich das Stahlflachprodukt bzw. das betreffende Bauteil so stark erhitzt, dass eine Austenitisierung erfolgt. Im Anschluss erfolgt die Abkühlung mit einer so großen Geschwindigkeit, dass besonders harter Martensit entsteht. Hier hat es sich im Hinblick auf eine gute Standzeit der erfindungsgemäß beschaffenen Stahlflachprodukte oder Stahlbauteile als besonders vorteilhaft erwiesen, wenn der Wasserstoffdiffusionskoeffizient des Stahls 4,2*10-7 bis 5,2*10-7 cm2/s beträgt.In the case of extremely abrasive loading of flat steel products according to the invention or components produced therefrom, there is a risk in practical use that the flat steel product or the component in question heats up to such an extent that austenitization takes place. The cooling then takes place at such a high speed that particularly hard martensite is formed. With regard to a good service life of the flat steel products or steel components obtained according to the invention, it has proven particularly advantageous here if the hydrogen diffusion coefficient of the steel is 4.2 * 10 -7 to 5.2 * 10 -7 cm 2 / s.

Das erfindungsgemäße Verfahren zum Herstellen eines erfindungsgemäßen Stahlflachprodukts umfasst mindestens folgende Arbeitsschritte:

  1. a) Herstellen einer erfindungsgemäß legierten Stahlschmelze, wobei die Stahlherstellung eine Entstickung der Schmelze auf Werte unterhalb 100 ppm N und eine sekundärmetallurgische Ca-Behandlung umfasst;
  2. b) Vergießen der Stahlschmelze zu einem Vorprodukt, wobei es sich bei dem Vorprodukt um eine Bramme, eine Dünnbramme oder ein gegossenes Band handelt kann;
  3. c) Erwärmen des Vorprodukts auf eine 1150 - 1300 °C betragende Vorwärmtemperatur, wobei diese Erwärmung auch in einem Halten auf der jeweiligen Vorwärmtemperatur bestehen kann, wenn das Vorprodukt in ausreichend warmen Zustand in diesen Arbeitsschritt gelangt;
  4. d) Warmwalzen des Vorprodukts zu einem Warmband, wobei die Warmwalzanfangstemperatur 900 - 1150 °C und die Warmwalzendtemperatur 780 - 880 °C beträgt;
  5. e) Abkühlen des erhaltenen Warmbands auf eine 550 - 680 °C betragende Haspeltemperatur mit einer Abkühlgeschwindigkeit von 2 - 50 °C/s;
  6. f) Haspeln des Warmbands bei der Haspeltemperatur zu einem fest gewickelten Coil;
  7. g) Abkühlen des Coils mit einer mittleren Abkühlgeschwindigkeit, die im Coilkern 4,5 - 14,5 °C/h beträgt auf eine höchstens 100 °C betragende Grenztemperatur;
    und
  8. h) von der Grenztemperatur ausgehendes Abkühlen des Coils auf Raumtemperatur an ruhender Luft.
The method according to the invention for producing a flat steel product according to the invention comprises at least the following steps:
  1. a) production of a steel melt alloyed according to the invention, the steel production comprising a denitrification of the melt to values below 100 ppm N and a secondary metallurgical Ca treatment;
  2. b) pouring the molten steel into a preliminary product, which preliminary product can be a slab, a thin slab or a cast strip;
  3. c) heating the pre-product to a preheating temperature of 1150-1300 ° C, which heating can also consist in holding at the respective preheating temperature, if that Pre-product reaches this step in a sufficiently warm condition;
  4. d) hot rolling the preliminary product to a hot strip, the hot rolling starting temperature being 900-1150 ° C and the hot rolling end temperature 780-880 ° C;
  5. e) cooling the hot strip obtained to a reel temperature of 550-680 ° C with a cooling rate of 2-50 ° C / s;
  6. f) reeling the hot strip at the reel temperature into a tightly wound coil;
  7. g) cooling the coil at an average cooling rate which is 4.5-14.5 ° C / h in the coil core to a maximum temperature of 100 ° C;
    and
  8. h) cooling of the coil from the limit temperature to room temperature in still air.

Das erfindungsgemäße Verfahren zur Erzeugung eines Stahles ist so ausgelegt, dass es zuverlässig Stahlflachprodukte liefert, die sowohl im warmgewalzten ungehärteten Zustand, d.h. nach der Abkühlung im Coil, als auch nach den bei ihrer Weiterverarbeitung absolvierten Behandlungsschritten frei von Grafit sind.The method according to the invention for producing a steel is designed in such a way that it reliably supplies flat steel products which are both in the hot-rolled uncured state, i.e. after cooling in the coil, as well as after the treatment steps completed during their processing, are free of graphite.

Die Stahlherstellung umfasst dazu eine Entstickung der Schmelze auf Werte unterhalb 100 ppm N und eine sekundärmetallurgische Ca-Behandlung zur Erzielung minimaler S-Gehalte.Steel production involves denitrification of the melt to values below 100 ppm N and a secondary metallurgical Ca treatment to achieve minimal S contents.

Das Vergießen der erfindungsgemäß zusammengesetzten Stahlschmelze kann im Strang zur Herstellung von Brammen oder als endabmessungsnahes Bandgießen mit nachfolgendem Warmwalzen erfolgen.The casting of the molten steel according to the invention can take place in the strand for the production of slabs or as near-final-size strip casting with subsequent hot rolling.

Das jeweilige Vorprodukt wird zu einem Warmband mit einer Dicke von typischerweise mindestens 1,2 mm und maximal 20 mm warmgewalzt, wobei bei der Verarbeitung von gegossenem Band eine Mindestdicke von 4 mm eingehalten werden sollte, um ungünstige Auswirkungen von systembedingt auftretenden gröberen Einschlüssen zu vermeiden.The respective preliminary product is hot rolled to a thickness of typically at least 1.2 mm and a maximum of 20 mm, whereby a minimum thickness of 4 mm should be observed when processing cast strip in order to avoid the unfavorable effects of coarser inclusions that occur due to the system.

Die Vorwärmtemperatur, d.h. die Temperatur, auf die die Brammen vor dem Walzvorgang erhitzt werden, soll 1150 °C nicht unterschreiten, um eine möglichst vollständige Auflösung der im vorhergehenden Gießprozess gebildeten Ausscheidungen der Mikrolegierungselemente zu erreichen. Gleichzeitig soll die Vorwärmtemperatur nicht höher als 1300 °C sein, um die Entstehung von zu grobem Austenitkorn zu Beginn des Walzvorganges zu vermeiden.The preheating temperature, i.e. the temperature to which the slabs are heated before the rolling process should not fall below 1150 ° C. in order to achieve as complete a resolution as possible of the precipitates of the microalloying elements formed in the previous casting process. At the same time, the preheating temperature should not be higher than 1300 ° C to avoid the formation of coarse austenite grain at the beginning of the rolling process.

Grundsätzlich erfolgt die Phasenumwandlung im System Fe-C nach einem stabilen oder aber nach dem sogenannten metastabilen System. Endprodukte sind dann die Kohlenstoffverbindung Fe3C oder der reine Kohlenstoff in Form von Grafit. Auf diesen Vorgang der Phasenumwandlung wirken sich die Legierungselemente in der oben erläuterten Weise unterschiedlich aus.Basically, the phase change in the Fe-C system takes place according to a stable system or according to the so-called metastable system. The end products are the carbon compound Fe3C or the pure carbon in the form of graphite. The alloying elements have different effects on this phase change process in the manner explained above.

Eine besonders langsame, also hinsichtlich des stabilen Zustandsdiagramms verlaufende Abkühlung muss für die Grafitentstehung besonders förderlich sein. Die Erfindung berücksichtigt dies bei der Auslegung des Temperaturverlaufs bei der Warmbanderzeugung. Lange Verweilzeiten bei höheren Temperaturen können sich direkt oder indirekt über weitere Mechanismen auf die Grafitentstehung auswirken, indem einerseits beispielsweise die C-Diffusion bei höheren Temperaturen begünstigt ist und andererseits die stärkere Verzunderung des Bandes dazu beiträgt, dass die Abkühlung des Warmbands im Coil aufgrund der aneinander liegenden Windungen infolge geringerer Wärmeenergieabstrahlung verlangsamt wird. Dabei wirken sich einerseits die Abschwächung der Emission durch die Zunderschicht und andererseits die geringe Wärmeleitfähigkeit durch die Luftschicht aus. Hinzukommt, dass besonders dicke Zunderschichten leicht aufbrechen und zu Oberflächendefekten führen können. Demzufolge ist die Temperatursteuerung bei höheren Temperaturen auch in der Stufe des Vorwalzens für die spätere Grafitentstehung prägend.A particularly slow cooling, that is to say with respect to the stable state diagram, must be particularly beneficial for the formation of graphite. The invention takes this into account when designing the temperature profile during hot strip production. Long dwell times at higher temperatures can have a direct or indirect effect on the formation of graphite via other mechanisms, for example, on the one hand favoring C diffusion at higher temperatures and on the other hand the stronger scaling of the strip contributes to the cooling of the hot strip in the coil due to the mutual contact lying windings is slowed down due to lower heat energy radiation. The weakening of the emission by the scale layer and the low thermal conductivity by the air layer have an impact. On top of that break up particularly thick layers of scale easily and can lead to surface defects. As a result, the temperature control at higher temperatures is also decisive in the pre-rolling stage for the later graphite formation.

Um einerseits keine zu dicke, gegen Aufreißungen anfällige Zunderschicht zu erhalten, andererseits aber die entstandene Schicht ausreichend gleichmäßig dünn und festhaftend zu erhalten, ist vor diesem Hintergrund beim erfindungsgemäßen Verfahren eine Warmwalzanfangstemperatur von 900 - 1150 °C in Kombination mit einer Warmwalzendtemperatur von 780 - 880 °C vorgesehen.In order not to get too thick a scale layer susceptible to tearing on the one hand, but on the other hand to keep the resulting layer sufficiently uniformly thin and adherent, a hot rolling start temperature of 900-1150 ° C in combination with a hot rolling end temperature of 780-880 is required in the process according to the invention ° C provided.

Im Gegensatz zu Stählen mit kleineren C-Gehalten steigen bei Stählen mit relativ hohen C-Gehalten, wie sie erfindungsgemäß vorgesehen sind, bei Warmwalzendtemperaturen von weniger als 780 °C die zur Umformung nötigen Walzkräfte deutlich an. Um dies zu vermeiden, beträgt die Warmwalzendtemperatur beim erfindungsgemäßen Warmwalzen mindestens 780 °C. Oberhalb 880 °C entsteht jedoch ein zu grobes und damit umwandlungsträgeres Austenitkorn. Auch besteht bei höheren Warmwalzendtemperaturen das Risiko, dass bei der Austenitumwandlung während der Warmbandabkühlung harte Phasen entstehen, durch die die Zähigkeit des Stahls verschlechtert würde. Daher soll die Warmwalzendtemperatur erfindungsgemäß höchstens 880 °C betragen.In contrast to steels with lower C contents, the rolling forces required for forming increase significantly in the case of steels with relatively high C contents, as are provided according to the invention, at hot rolling end temperatures of less than 780 ° C. To avoid this, the hot rolling end temperature in hot rolling according to the invention is at least 780 ° C. Above 880 ° C, however, an austenite grain that is too coarse and therefore less prone to transformation occurs. At higher hot rolling temperatures, there is also a risk that austenite transformation will result in hard phases during hot strip cooling, which would impair the toughness of the steel. Therefore, the hot rolling end temperature according to the invention should not exceed 880 ° C.

Nach dem Warmwalzen wird das erhaltene Warmband auf eine Haspeltemperatur abgekühlt, die 550 - 580 °C beträgt. Diese Abkühlung kann in konventioneller Weise mittels eines geeigneten Mediums mit einer Abkühlgeschwindigkeit von typischerweise 2 - 50 °C/s durchgeführt werden.After hot rolling, the hot strip obtained is cooled to a coiling temperature which is 550-580 ° C. This cooling can be carried out in a conventional manner using a suitable medium at a cooling rate of typically 2-50 ° C./s.

Die Haspeltemperatur beträgt mindestens 550 °C, um zu verhindern, dass sich im Warmband anstatt des angestrebten Perlits nennenswerte Anteile an Bainit oder Martensit bilden. Bei einer zu hohen Haspeltemperatur von mehr als 680 °C wäre jedoch ein weiteres Austenitkornwachstum möglich, was sich ungünstig auf die Zähigkeit des Warmbandes auswirken könnte und auch beim späteren Abwickeln im abgekühlten Zustand Anrisse oder Brüche auslösen könnte. Um eine erhöhte Sicherheit gegen das Auftreten harter Phasen, insbesondere bei Vorhandensein von Seigerungen, zu erreichen, kann die Untergrenze der Haspeltemperatur auf 600 °C angehoben werden. Sollen optimierte Zähigkeitseigenschaften sicher gewährleistet werden, so kann die maximale Haspeltemperatur auf 650 °C begrenzt werden.The reel temperature is at least 550 ° C to prevent significant amounts of bainite or martensite from forming in the hot strip instead of the desired pearlite. If the reel temperature is too high of more than At 680 ° C, however, further austenite grain growth would be possible, which could have an unfavorable effect on the toughness of the hot strip and could also trigger cracks or breaks when it is subsequently unwound in the cooled state. The lower limit of the reel temperature can be raised to 600 ° C in order to achieve increased security against the occurrence of hard phases, particularly in the presence of segregations. If optimized toughness properties are to be guaranteed, the maximum reel temperature can be limited to 650 ° C.

Das in der voranstehend erläuterten Weise temperierte und zu einem festen Coil, in dem die Windungen des Warmbands dicht aneinander liegen, gewickelte Warmband wird im Coil auf eine Zieltemperatur, die im Bereich des Coilkerns höchstens 100 °C beträgt, abgekühlt. Die mittlere Abkühlungsgeschwindigkeit dieser Abkühlung beträgt im Coil-Kern 4,5 - 14,5 °C/h und kann in an sich bekannter Weise mittels Wasser- oder Luftabkühlung erreicht werden.The hot strip, which is tempered in the manner explained above and wound into a fixed coil in which the turns of the hot strip lie close together, is cooled in the coil to a target temperature which is at most 100 ° C. in the region of the coil core. The average cooling rate of this cooling in the coil core is 4.5-14.5 ° C / h and can be achieved in a manner known per se by means of water or air cooling.

Bei einer - erfindungsgemäß bevorzugten - Abkühlung an Luft sollte die Zieltemperatur im Kernbereich des Coils innerhalb von 40 - 120 Stunden erzielt sein, wobei sich hier Abkühldauern von 40 - 60 Stunden als besonders günstig erwiesen haben. Demgegenüber kann die Abkühlung im Bereich der freien Kanten und Oberflächen des Coils schneller erfolgen. Ein Abschrecken mit Kühlmedien jeglicher Art ist zu vermeiden.When cooling in air, which is preferred according to the invention, the target temperature in the core area of the coil should be reached within 40-120 hours, cooling times of 40-60 hours having proven particularly advantageous. In contrast, cooling in the area of the free edges and surfaces of the coil can take place more quickly. Avoid quenching with cooling media of any kind.

Um die erfindungsgemäß vorgegebenen Abkühlzeiten sicher einhalten zu können, sollte das Coilgewicht bei einer Abkühlung an Luft in der Praxis höchstens 38 t betragen. Andernfalls besteht das Risiko, dass sich in Folge einer zu langsam ablaufenden Abkühlung im Gefüge Grafit bildet.In order to be able to reliably adhere to the cooling times specified according to the invention, the coil weight should in practice be a maximum of 38 t when cooling in air. Otherwise there is a risk that graphite will form in the microstructure as a result of cooling that takes place too slowly.

Von den so erhaltenen warmgewalzten, typischerweise in Form von Stahltafel oder Stahlband vorliegenden Stahlflachprodukten können nach einem optional durchgeführten Einformglühen der Karbide im Haubenofen einzeln oder im Stapel bei Glühzeiten von 10 - 100 Stunden im Temperaturbereich von 660 - 740 °C, insbesondere bei Temperaturen von mehr als 660 °C bis weniger als 740 °C, durch ein geeignetes Verfahren, wie beispielsweise Laserschneiden oder Stanzen, Zuschnitte oder Platinen abgeteilt werden, aus denen anschließend die jeweils herzustellenden Bauteile in an sich bekannter Weise warm- oder kaltgeformt werden.Of the hot-rolled flat steel products obtained in this way, typically in the form of steel plate or steel strip, the carbides can be individually or in the hood furnace after an optional heat treatment Stacks at annealing times of 10-100 hours in the temperature range of 660-740 ° C, in particular at temperatures of more than 660 ° C to less than 740 ° C, can be divided by a suitable process, such as laser cutting or punching, blanks or blanks, from which the components to be manufactured are then hot or cold formed in a manner known per se.

Dabei lässt sich ein erfindungsgemäßes warmgewalztes Stahlflachprodukt in konventioneller Weise kaltwalzen, ohne dass es dabei zur Bildung von Grafit kommt, so dass sich auch aus dem erfindungsgemäßen Stahlflachprodukt kaltverformte Stahlflachprodukte oder Bauteile problemlos härten lassen und im gehärteten Zustand eine optimale Verschleißbeständigkeit und ebenso für den hier vorgesehenen Verwendungszweck optimale mechanische Eigenschaften besitzen.A hot-rolled flat steel product according to the invention can be cold-rolled in a conventional manner without graphite being formed, so that cold-formed flat steel products or components can also be hardened from the flat steel product according to the invention, and in the hardened state they have optimum wear resistance and also for the one provided here Have optimal mechanical properties.

Zur Maximierung ihrer Härte und Verschleißbeständigkeit können die erfindungsgemäßen Stahlflachprodukte oder die daraus geformten Bauteile einem Härteprozess unterzogen werden, bei dem sie

  • i) auf eine 830 - 950 °C betragende Austenitisierungstemperatur erwärmt,
  • j) über 3 - 60 min bei der Austenitisierungstemperatur gehalten und
  • k) anschließend mit einer Abkühlgeschwindigkeit von 40 - 250 °C/s abgeschreckt werden.
To maximize their hardness and wear resistance, the steel flat products according to the invention or the components formed therefrom can be subjected to a hardening process in which they
  • i) heated to an austenitizing temperature of 830-950 ° C,
  • j) held at the austenitizing temperature for 3 - 60 min and
  • k) then quenched at a cooling rate of 40-250 ° C / s.

Die Austenitisierungstemperatur im Arbeitsschritt i) soll 830 °C und die Haltezeit im Arbeitsschritt j) 3 min nicht unterschreiten, um ein ausreichend grobes Austenitkorn zu erzielen. Auf diese Weise wird aufgrund der Umwandlungsträgheit großer Austenitkörner die Umwandlung des Austenits in weichere Phasenanteile wie Ferrit oder Bainit vermieden und die Umwandlung in den Martensit gefördert, sodass nach dem Härten im jeweiligen Stahlflachprodukt oder Bauteil ein zu mindestens 99 % aus Martensit bestehendes Gefüge vorliegt.The austenitizing temperature in step i) should not be less than 830 ° C and the holding time in step j) should not be less than 3 minutes in order to achieve a sufficiently coarse austenite grain. In this way, the transformation inertia of large austenite grains prevents the transformation of the austenite into softer phase components such as ferrite or bainite and promotes the transformation into the martensite, so that after hardening in the respective Flat steel product or component has a structure consisting of at least 99% martensite.

Die Austenitisierungstemperatur soll jedoch 950 °C und die Haltezeit 60 min nicht überschreiten, um irreversible Gefügeschäden durch Überhitzen zu vermeiden.However, the austenitizing temperature should not exceed 950 ° C and the holding time 60 min in order to avoid irreversible structural damage from overheating.

Nach dem Austenitisieren werden das Stahlflachprodukt oder das daraus geformte Bauteil mit einer Abkühlungsgeschwindigkeit von 40 - 250 °C/s in an sich bekannter Weise beispielsweise mittels Wasser- oder Ölabkühlung abgeschreckt. Die Abkühlungsgeschwindigkeit beträgt mindestens 40 °C/s, um eine vollständige Umwandlung des Austenits in Martensit zu gewährleisten. Die Abkühlungsgeschwindigkeit ist gleichzeitig auf 250 °C/s beschränkt, um Härterisse zu vermeiden.After the austenitizing, the flat steel product or the component formed therefrom is quenched at a cooling rate of 40-250 ° C./s in a manner known per se, for example by means of water or oil cooling. The cooling rate is at least 40 ° C / s to ensure a complete transformation of the austenite into martensite. The cooling rate is also limited to 250 ° C / s to avoid hard cracks.

An das derart ausgeführte Härten kann sich eine Anlassbehandlung anschließen, bei der das Stahlflachprodukt oder das daraus erzeugte Bauteil über eine Dauer von 0,2 - 2 Stunden bei einer 150 - 350 °C, insbesondere 150 - 300 °C, betragenden Anlasstemperatur gehalten werden, um die Zähigkeit zu verbessern. Anschließend kann das jeweilige Stahlflachprodukt oder das daraus geformte Bauteil an Luft auf Raumtemperatur abgekühlt werden.The hardening carried out in this way can be followed by a tempering treatment in which the flat steel product or the component produced therefrom is kept at a tempering temperature of 150-350 ° C., in particular 150-300 ° C., for a period of 0.2-2 hours. to improve toughness. The respective flat steel product or the component formed from it can then be cooled in air to room temperature.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Es sind die Stahlschmelzen S1 - S6 mit den in Tabelle 1 angegebenen Zusammensetzungen erschmolzen und zu Brammen vergossen worden.The steel melts S1-S6 were melted with the compositions given in Table 1 and cast into slabs.

Aus den Stählen S1, S2, S3, S5 und S6 bestehende Brammen sind auf eine Vorwärmtemperatur T1 erwärmt und anschließend ausgehend von einer Warmwalzanfangstemperatur T2 und einer Warmwalzendtemperatur T3 in konventioneller Weise zu Warmbändern W1 - W8 mit einer Dicke von 2 - 6 mm warmgewalzt worden.Slabs consisting of steels S1, S2, S3, S5 and S6 have been heated to a preheating temperature T1 and then, starting from a hot rolling start temperature T2 and a hot rolling end temperature T3, were conventionally hot-rolled into hot strips W1 - W8 with a thickness of 2-6 mm.

Nach dem Warmwalzen sind die Warmbänder mit einer Abkühlgeschwindigkeit CR1 auf eine Haspeltemperatur T4 abgekühlt und bei dieser Haspeltemperatur T4 zu jeweils einem Coil, bei dem die Windungen dicht aufeinander lagen, gewickelt worden.After hot rolling, the hot strips were cooled to a reel temperature T4 at a cooling rate CR1 and were wound at this reel temperature T4 to form a coil, in which the turns were close to one another.

Anschließend sind die Warmbänder W1 - W8 über eine Abkühldauer t1 im Coil auf eine Zieltemperatur von 100 °C abgekühlt worden, wobei die Abkühlung im Kernbereich des Coils mit einer Abkühlgeschwindigkeit CR2 erfolgte. Nach der Abkühlung im Coil erfolgte die Abkühlung auf Raumtemperatur an Luft.The hot strips W1-W8 were then cooled to a target temperature of 100 ° C. over a cooling time t1 in the coil, the cooling taking place in the core area of the coil at a cooling rate CR2. After cooling in the coil, the mixture was cooled to room temperature in air.

Für die Gefüge der so erhaltenen Warmbandproben W1 - W5 sind der Perlitanteil P, der Ferritanteil F, die Summe der Bainit- und Martensitanteile B+M, der Grafitanteil G und der Restaustenitanteil RA bestimmt worden. Ebenso sind die Streckgrenze ReH, die Zugfestigkeit Rm, die Gleichmaßdehnung Ag und die Dehnung A80 für die Warmbandproben W1 - W5 bestimmt worden.The pearlite content P, the ferrite content F, the sum of the bainite and martensite contents B + M, the graphite content G and the residual austenite content RA have been determined for the structure of the hot strip samples W1-W5 thus obtained. The yield strength ReH, the tensile strength Rm, the uniform elongation Ag and the elongation A80 have also been determined for the hot strip samples W1 - W5.

Die bei der Erzeugung der Warmbandproben W1 - W8 eingestellten Parameter "Vorwärmtemperatur T1", "Warmwalzanfangstemperatur T2", "Warmwalzendtemperatur T3", "Abkühlgeschwindigkeit CR1", "Haspeltemperatur T4", "Abkühldauer t1" und "Abkühlgeschwindigkeit CR2" sind in Tabelle 2 angegeben. Ebenso sind in Tabelle 2 für die Warmbandproben W1 - W5 der "Perlitanteil P", der "Ferritanteil F", die "Summe der Bainit- und Martensitanteile B+M", der "Grafitanteil G" und der "Restaustenitanteil RA", die "Streckgrenze ReH", die "Zugfestigkeit Rm", die "Gleichmaßdehnung Ag" und die "Dehnung A80" genannt.The parameters "preheating temperature T1", "hot rolling start temperature T2", "hot rolling end temperature T3", "cooling speed CR1", "coiling temperature T4", "cooling time t1" and "cooling speed CR2" set in the production of hot strip samples W1-W8 are given in Table 2 . Likewise in Table 2 for the hot strip samples W1-W5 are the "pearlite fraction P", the "ferrite fraction F", the "sum of the bainite and martensite fractions B + M", the "graphite fraction G" and the "residual austenite fraction RA", the " Yield strength ReH ", the" tensile strength Rm ", the" uniform elongation Ag "and the" elongation A80 ".

Die Warmbandproben W1 - W5, W7, W8 haben zusätzlich jeweils einen Härteprozess durchlaufen, bei dem sie zunächst auf eine Austenitisierungstemperatur T6 erwärmt, dort über eine Austenitisierungsdauer t2 gehalten und nach Ende der Austenitisierungsdauer t2 mit einer Abkühlgeschwindigkeit CR3 abgeschreckt worden sind.The hot strip samples W1 - W5, W7, W8 each additionally went through a hardening process, in which they were first heated to an austenitizing temperature T6, held there for an austenitizing period t2 and quenched at the cooling rate CR3 after the end of the austenitizing period t2.

Die abgeschreckten Proben W1 - W5, W7, W8 haben dann eine Anlassbehandlung absolviert, bei der sie auf eine Anlasstemperatur T7 erwärmt und dort über eine Anlassdauer t3 gehalten worden sind. Nach Ende der Anlassdauer t3 sind die Proben W1 - W5, W7, W8 an Luft auf Raumtemperatur abgekühlt worden.The quenched samples W1-W5, W7, W8 then underwent a tempering treatment in which they were heated to a tempering temperature T7 and held there for a tempering period t3. After the end of the tempering period t3, the samples W1-W5, W7, W8 were cooled in air to room temperature.

Für die Gefüge der so gehärteten und angelassenen Proben H1 - H5, H7, H8 sind der Martensitanteil M, der Grafitanteil G und der Restaustenitanteil RA bestimmt worden. Ebenso sind die im Kerbschlagbiegeversuch nach DIN EN ISO 148-1, Ausgabe Januar 2011, bei 25 °C an einer ISO-V-Normprobe die Kerbschlagzähigkeit KBZ und gemäß DIN ISO 17081, Ausgabe Juni 2014,der Wasserstoffdiffusionskoeffizient k ermittelt worden.The martensite content M, the graphite content G and the residual austenite content RA have been determined for the structure of the samples H1 - H5, H7, H8 hardened and tempered in this way. Likewise, the notched impact strength KBZ was determined in an impact test according to DIN EN ISO 148-1, January 2011 edition, at 25 ° C on an ISO-V standard sample and, according to DIN ISO 17081, June 2014 edition, the hydrogen diffusion coefficient k.

Die betreffenden Parameter "Austenitisierungstemperatur T6", "Austenitisierungsdauer t2", "Abkühlgeschwindigkeit CR3", "Anlasstemperatur T7" und "Anlassdauer t3", der "Martensitanteil M", der "Grafitanteil G", der "Restaustenitanteil RA", die "Kerbschlagzähigkeit KBZ" und der "Wasserstoffdiffusionskoeffizient k" sind, soweit sie bestimmt worden sind, in Tabelle 3 aufgeführt.The relevant parameters "austenitizing temperature T6", "austenitizing time t2", "cooling rate CR3", "tempering temperature T7" and "tempering time t3", the "martensite content M", the "graphite content G", the "residual austenite content RA", the "notched impact strength KBZ "and the" hydrogen diffusion coefficient k ", insofar as they have been determined, are listed in Table 3.

Obwohl die drei Stähle S1 bis S3 von der Warmbandfertigung her mit bis auf die Haspeltemperatur nahezu identischen Produktionsparametern erzeugt worden sind, weisen sie dennoch abhängig von ihrer chemischen Zusammensetzung und der daraus resultierenden unterschiedlichen Austenitumwandlung unterschiedliche Gefüge auf.Although the three steels S1 to S3 were produced from the hot strip production with almost identical production parameters except for the coiling temperature, they still have different structures depending on their chemical composition and the resulting different austenite transformation.

Die metallografische Beurteilung der Phasenanteile von Perlit, Ferrit, Grafit und Restaustenit (RA) erfolgte bei 1000facher Vergrößerung lichtoptisch an Schliffen, wobei der Restaustenitanteil zusätzlich röntgenografisch überprüft worden ist.The metallographic assessment of the phase fractions of pearlite, ferrite, graphite and residual austenite (RA) was carried out light-optically on cuts at 1000x magnification, and the residual austenite fraction was additionally checked by X-ray.

Bedingt durch die aufgrund verschiedener Haspeltemperaturen unterschiedlichen Phasenanteile von Ferrit ergaben sich bei ansonsten gleicher chemischer Zusammensetzung mit höherem Ferritanteil geringere Festigkeitswerte und dafür höhere Dehnungswerte. Die mechanischen Eigenschaften Rm, ReH, Ag und A80 wurden im Zugversuch nach DIN EN ISO 6892-1 mit der Probenform 1 ermittelt.Due to the different phase proportions of ferrite due to different reel temperatures, the results were otherwise the same chemical composition with higher ferrite content lower strength values and therefore higher elongation values. The mechanical properties Rm, ReH, Ag and A80 were determined in the tensile test according to DIN EN ISO 6892-1 with sample form 1.

Die Warmbandprobe W5 enthält schon im ungehärteten Gefüge die unerwünschte Phase Grafit mit einem Anteil von 1,6 Vol.-%. Nach einer weiteren möglichen Kaltwalzung nebst vorheriger optionaler und nachfolgender optionaler Glühung im Coil muss hier mit einem Anwachsen der Grafitmenge gerechnet werden.The hot strip sample W5 already contains the undesired phase graphite in the unhardened structure with a proportion of 1.6% by volume. After a further possible cold rolling along with previous optional and subsequent optional annealing in the coil, an increase in the amount of graphite must be expected here.

Dagegen ist bei den aus dem erfindungsgemäßen Stahl S1 bestehenden Warmbandproben W1 und W2 kein Grafit im Gefüge vorhanden. Verantwortlich dafür ist wesentlich die chemische Zusammensetzung in ihrer Gesamtwirkung auf die Austenitumwandlung.In contrast, in the hot strip samples W1 and W2 consisting of the steel S1 according to the invention, no graphite is present in the structure. The chemical composition and its overall effect on austenite conversion are largely responsible for this.

Beispielsweise bei der aus dem nicht erfindungsgemäßen Stahl S3 bestehenden, nicht erfindungsgemäßen Warmbandprobe W5 ist dagegen die Legierung so gewählt, dass es zur Bildung von Grafit im Gefüge kommt und dementsprechend die Gefahr der Bildung von Löchern im Stahl besteht. Infolgedessen erfüllen gehärtete Bauteile, die aus der Warmbandprobe W5 hergestellt sind, nicht die an ein erfindungsgemäßes gehärtetes Stahlflachprodukt oder ein daraus hergestelltes Bauteil gestellten Anforderungen.For example, in the case of the hot strip specimen W5 which does not consist of steel S3 and which is not according to the invention, the alloy is selected such that graphite is formed in the structure and accordingly there is a risk of holes forming in the steel. As a result, hardened components which are produced from the hot strip specimen W5 do not meet the requirements placed on a hardened flat steel product according to the invention or a component produced therefrom.

Die Warmbandprobe W4 weist nach dem Warmwalzen höhere Ferritanteile auf als die Probe W1. Infolgedessen erreicht die aus dieser Warmbandprobe W4 erzeugte gehärtete Probe H4 nicht die erfindungsgemäß geforderte Gesamthärte. Als Grund für den vergleichbar hohen Ferritanteil ist der niedrige Ni-Gehalt anzusehen.After hot rolling, the hot strip sample W4 has higher ferrite fractions than the sample W1. As a result, the hardened sample H4 produced from this hot strip sample W4 does not achieve the total hardness required according to the invention. The reason for the comparably high proportion of ferrite is the low Ni content.

Überraschend hat sich herausgestellt, dass die gehärtete aus dem Stahl S1 bestehende Probe H1 nicht nur eine höhere Zähigkeit aufweist, sondern auch eine besonders günstige Dauerfestigkeit besitzt, die als Maß für die Standzeit von aus diesem Stahl hergestellten Bauteilen steht, die beispielsweise in landwirtschaftlichen Geräten verwendet werden.Surprisingly, it was found that the hardened sample H1 made of steel S1 not only has a higher toughness, but also has a particularly favorable fatigue strength, which is a measure of the service life of components made from this steel, which are used, for example, in agricultural equipment.

Beispielsweise die nicht erfindungsgemäßen gehärteten Proben H7 und H3 erreichen nach DIN 50100 ermittelte Dauerfestigkeiten Pü von nur maximal 183 MPa, wogegen die erfindungsgemäße Probe H1 mit 245 MPa einen deutlich besseren Dauerfestigkeitswert Pü in Kombination mit einer optimalen Zähigkeit besitzt. Dagegen weist zwar die nicht erfindungsgemäße Probe H8 eine hohe Härte, jedoch keine gute Kerbschlagzähigkeit auf.For example, the hardened samples H7 and H3 not according to the invention achieve endurance strengths Pü determined according to DIN 50100 of only a maximum of 183 MPa, whereas the sample H1 according to the invention with 245 MPa has a significantly better endurance strength value Pü in combination with optimal toughness. In contrast, the sample H8 not according to the invention has a high hardness, but not a good notched impact strength.

Der Verschleiß aufgrund stoßartiger Belastung ist durch die bereits erwähnten Kerbschlagbiegeversuche bei 25 °C an einer ISO-V-Normprobe erprobt worden. Dabei stellt sich gegenüber dem höher C-haltigen Stahl der Probe H8 sowie gegenüber dem geringer C-haltigen Stahl der Probe H7 bei der Probe H1 ein mehr als doppelt so hoher Wert heraus.The wear due to impact loads has been tested by the notched impact tests mentioned above at 25 ° C on an ISO-V standard sample. The result is more than twice the value of the higher carbon steel of sample H8 and the lower carbon steel of sample H7 in sample H1.

Für die erfindungsgemäße Variante H1 wurde nach DIN 50100 eine Dauerfestigkeit Pü50 von 245 MPa ermittelt, während die nicht erfindungsgemäße Probe H7 nur Pü-Werte von weniger als 190 MPa erzielte.For the variant H1 according to the invention, a fatigue strength Pü50 of 245 MPa was determined in accordance with DIN 50100, while the sample H7 not according to the invention achieved only Pü values of less than 190 MPa.

Die nicht erfindungsgemäße, aus dem nicht erfindungsgemäßen Stahl S4 bestehende Probe H6 war für eine Einsatzhärtung vorgesehen und hat daher den erfindungsgemäßen Härteprozess nicht durchlaufen. Der für diese Probe H6 zum Vergleich ermittelte Wasserstoffdiffusionskoeffizient betrug 1,87*10-6 cm2/s.

Figure imgb0001
Tabelle 2 Probe Nr. Stahl T1 T2 T3 CR1 T4 CR2 t1 P F B+M G RA Reh Rm Ag A80 °C °C/s °C °C/h H Vol.-% MPa % W1 S1 1200 1100 840 40 654 12 52 80 20 0 0 0 450 750 15 30 W2 S1 1200 1100 840 40 646 12 52 90 10 0 0 0 650 950 5 15 W3 S2 1200 1100 840 40 645 12 52 90 10 0 0 0 250 550 15 30 W4 S2 1200 1100 840 40 654 12 52 70 30 0 0 0 380 740 8 15 W5 S3 1200 1100 840 40 650 12 52 48 50 0 1,6 0 340 505 14 29 W6 S4 1200 1100 840 40 650 12 52 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. W7 S5 1200 1100 840 40 650 12 52 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. W8 S6 1200 1100 840 40 650 12 52 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. "n.a." = Nicht ausgewertet Tabelle 3 Probe Warm band Stahl T6 t2 CR3 T7 t3 M G RA HV1 Pü50 KBZ K °C min. K/s °C h % HV1 MPa J/cm2 cm2/s H1 W1 S1 860 30 42 230 1 100 0 0 575 245 12 4,210-7 H2 W2 S1 860 30 42 230 1 100 0 0 n.a. n.a. n.a. 5,1910-7 H3 W3 S2 860 30 42 230 1 100 0 0 403 137 n.a. n.a. H4 W4 S2 860 30 42 230 1 100 0 0 407 n.a. n.a. n.a. H5 W5 S3 860 30 42 230 1 98 1,5 0 n.a. n.a. n.a. n.a. H6 W6 S4 Keine Härtung 1,8710-6 H7 W7 S5 860 30 42 230 1 100 0 0 545 183 4 n.a. H8 W8 S6 860 30 42 230 1 100 0 0 560 n.a. 5 n.a. "n.a." = Nicht ausgewertet The sample H6 not according to the invention and consisting of the steel S4 not according to the invention was intended for case hardening and therefore did not go through the hardening process according to the invention. The hydrogen diffusion coefficient determined for this sample H6 for comparison was 1.87 * 10-6 cm 2 / s.
Figure imgb0001
Table 2 Sample No. stole T1 T2 T3 CR1 T4 CR2 t1 P F B + M G RA deer Rm Ag A80 ° C ° C / s ° C ° C / h H Vol .-% MPa % W1 S1 1200 1100 840 40 654 12 52 80 20th 0 0 0 450 750 15 30th W2 S1 1200 1100 840 40 646 12 52 90 10th 0 0 0 650 950 5 15 W3 S2 1200 1100 840 40 645 12 52 90 10th 0 0 0 250 550 15 30th W4 S2 1200 1100 840 40 654 12 52 70 30th 0 0 0 380 740 8th 15 W5 S3 1200 1100 840 40 650 12 52 48 50 0 1.6 0 340 505 14 29 D6 S4 1200 1100 840 40 650 12 52 n / A n / A n / A n / A n / A n / A n / A n / A n / A W7 S5 1200 1100 840 40 650 12 52 n / A n / A n / A n / A n / A n / A n / A n / A n / A W8 S6 1200 1100 840 40 650 12 52 n / A n / A n / A n / A n / A n / A n . a. n / A n / A "na" = not evaluated sample Warm band stole T6 t2 CR3 T7 t3 M G RA HV1 Pü50 KBZ K ° C min. K / s ° C H % HV1 MPa J / cm 2 cm 2 / s H1 W1 S1 860 30th 42 230 1 100 0 0 575 245 12 4.2 10 -7 H2 W2 S1 860 30th 42 230 1 100 0 0 n . a. n / A n / A 5.19 10 -7 H3 W3 S2 860 30th 42 230 1 100 0 0 403 137 n / A n / A H4 W4 S2 860 30th 42 230 1 100 0 0 407 n / A n / A n / A H5 W5 S3 860 30th 42 230 1 98 1.5 0 n / A n / A n / A n / A H6 D6 S4 No hardening 1.87 10 -6 H7 W7 S5 860 30th 42 230 1 100 0 0 545 183 4th n / A H8 W8 S6 860 30th 42 230 1 100 0 0 560 n / A 5 n / A "na" = not evaluated

Claims (6)

  1. Steel, which consists of (in % by weight) C: 0.4 to 0.7%, Si: 0.15 to 0.5% Mn: 0.8 to 2.0% Cr: 0.3 to 1.0%,
    wherein the Cr content %Cr in each case meets the following condition:

            %Cr≥(%Ni + %Si + %Mn + %S + %Al)/5

    with %Ni: respective Ni content of the steel
    %Si: respective Si content of the steel
    %Mn: respective Mn content of the steel
    %S: respective S content of the steel
    %Al: respective Al content of the steel
    N: 0.0015 to 0.010% Ni: 0.04 to 2% Ti: 0.005 to 0.1% V: 0.0080 to 0.1% B: 0.0005 to 0.004% Ca: 0.0005 to 0.004% P: ≤ 0.030% S: ≤ 0.005% Al: ≤ 0.05% Cu: ≤ 0.1% Nb: ≤ 0.004% H: ≤ 0.0001% O: ≤ 0.0050%
    and optionally Mo: 0.006 to 0.02%,
    remainder iron and unavoidable impurities.
  2. Hot-rolled flat steel product, manufactured from a steel according to claim 1 and with a structure which is graphite-free in the unhardened state, which consists of at least 80% by volume perlite, of in total at most 10% by volume bainite or martensite and as the remainder of ferrite, wherein the flat steel product has, in the ready-to-use, unhardened state measured transverse to the rolling direction, a yield strength ReH of 450 to 650 MPa and a tensile strength Rm of 750 to 950 MPa and wherein the flat steel product, in the unhardened state, has a uniform elongation Ag of 5 to 15% and an elongation A80 of 15 to 30%.
  3. Hot-rolled flat steel product, manufactured from a hot-rolled flat steel product according to claim 2, with a structure, which is in the hardened state and consists of at least 99% by volume martensite and as the remainder of residual austenite, wherein the hardness of the flat steel product, in the hardened state, is 540 to 600 HV1, wherein the flat steel product, in the hardened state, has a fatigue strength Pü50 of 220 to 400 MPa, wherein the hydrogen diffusion coefficient of the flat steel product in the hardened state is 1.5*10-7 cm2/s to 9*10-7 cm2/s and wherein the notch impact strength of the flat steel product in the hardened state measured transverse to the rolling direction at room temperature is at least 8 J/cm2, wherein these parameters are measured according to the standards indicated in the description.
  4. Method of manufacturing a flat steel product formed according to claims 2 to 3, comprising at least the following work steps:
    a) manufacturing a steel melt alloyed according to claim 1, wherein the steel manufacture comprises denitrifying the melt to values below 100 ppm N and a secondary metallurgical Ca treatment;
    b) casting the steel melt into an intermediate product;
    c) heating the intermediate product to a pre-heating temperature of 1150 to 1300°C;
    d) hot rolling the intermediate product into a hot strip, wherein the hot rolling starting temperature is 900 to 1150°C and the hot rolling end temperature is 780 to 880°C;
    e) cooling the obtained hot strip to a coiling temperature of 550 to 680°C at a cooling speed of 2 to 50°C/s;
    f) coiling the hot strip at the coiling temperature into a firmly wound coil;
    g) cooling the coil at a medium cooling speed which is 4.5 to 14.5°C/h in the coil core to a boundary temperature of at most 100°C;
    h) cooling the coil proceeding from the boundary temperature to room temperature in stationary air in order to obtain a hot-rolled flat steel product in the unhardened state with graphite-free structure;
    i) optionally hardening the flat steel product or the component formed from the flat steel product by heating the flat steel product or the respective component to an austenitization temperature of 830 to 950°C, holding it for 3 to 60 mins at the austenitization temperature and then quenching it at a cooling speed of 40 to 250°C/s;
    j) optionally passing through an annealing treatment, in the case of which the flat steel product or the components formed therefrom are held at an annealing temperature of 150 to 350°C after hardening for a duration of 0.2 to 2 hours.
  5. Method according to claim 4, characterised in that the coiling temperature is 600 to 650°C.
  6. Method according to any one of claims 4 or 5, characterised in that the cooling duration in work step g) is 40 to 120 hours.
EP15763888.3A 2015-09-11 2015-09-11 Steel, hot-rolled flat steel produkt, and manufacturing method of the product Active EP3347500B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/070880 WO2017041862A1 (en) 2015-09-11 2015-09-11 Steel, hot-rolled flat steel product produced from a steel of this type, and method for the production thereof

Publications (2)

Publication Number Publication Date
EP3347500A1 EP3347500A1 (en) 2018-07-18
EP3347500B1 true EP3347500B1 (en) 2020-05-20

Family

ID=54145756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15763888.3A Active EP3347500B1 (en) 2015-09-11 2015-09-11 Steel, hot-rolled flat steel produkt, and manufacturing method of the product

Country Status (2)

Country Link
EP (1) EP3347500B1 (en)
WO (1) WO2017041862A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018122901A1 (en) 2018-09-18 2020-03-19 Voestalpine Stahl Gmbh Process for the production of ultra high-strength steel sheets and steel sheet therefor
EP3719147A1 (en) * 2019-04-01 2020-10-07 ThyssenKrupp Steel Europe AG Hot-rolled flat steel product and method for its production
DE102020206298A1 (en) * 2020-05-19 2021-11-25 Thyssenkrupp Steel Europe Ag Flat steel product and process for its manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328182A (en) * 1999-05-13 2000-11-28 Sanyo Special Steel Co Ltd Free-cutting steel for machine structure excellent in hot workability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017041862A1 (en) 2017-03-16
EP3347500A1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
EP2855717B1 (en) Steel sheet and method to manufacture it
EP2710158B1 (en) High strength steel flat product and method for its production
EP3571324B1 (en) Hot-rolled flat steel product consisting of a complex-phase steel having a predominantly bainitic microstructure and method for producing such a flat steel product
DE69834932T2 (en) ULTRA-HIGH-RESISTANT, WELDABLE STEEL WITH EXCELLENT ULTRATED TEMPERATURE TOOLNESS
EP3332047B1 (en) Production method of a flexibly-rolled steel sheet product and its use
EP3305935B1 (en) High strength flat steel product and use of a high strength flat steel product
WO2016177420A1 (en) Flat steel product and method for the production thereof
WO2018108653A1 (en) Hot-rolled flat steel product and method for the production thereof
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
WO2009021897A1 (en) Dual-phase steel, flat product made of such dual-phase steel and method for producing a flat product
EP3591078B1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
EP2840159B1 (en) Method for producing a steel component
EP3688203B1 (en) Flat steel product and production method thereof
EP3797176A1 (en) Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof
EP2489748A9 (en) Hot-rolled steel surface product produced from a complex phase steel and method for the manufacture
WO2020239905A1 (en) Component produced by forming a sheet steel blank, and method for the production of said component
EP2690184A1 (en) Produit plat en acier laminé à froid et son procédé de fabrication
DE102015222183A1 (en) Hot-rolled steel and method of making the same
EP3347500B1 (en) Steel, hot-rolled flat steel produkt, and manufacturing method of the product
EP3658307B1 (en) Sheet metal component, produced by hot working a flat steel product, and method for the production thereof
EP3872206B1 (en) Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product
WO2021063746A1 (en) Method for producing a steel product and corresponding steel product
EP4211279A1 (en) Hot-rolled flat steel product and method for producing a hot-rolled flat steel product
EP3964591A1 (en) Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP STEEL EUROPE AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015012627

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038000000

Ipc: C21D0009220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/22 20060101AFI20191122BHEP

Ipc: C22C 38/02 20060101ALI20191122BHEP

Ipc: C22C 38/00 20060101ALI20191122BHEP

Ipc: C22C 38/50 20060101ALI20191122BHEP

Ipc: C22C 38/42 20060101ALI20191122BHEP

Ipc: C22C 38/54 20060101ALI20191122BHEP

Ipc: C21D 8/02 20060101ALI20191122BHEP

Ipc: C22C 38/48 20060101ALI20191122BHEP

Ipc: C22C 38/46 20060101ALI20191122BHEP

Ipc: C22C 38/44 20060101ALI20191122BHEP

Ipc: C22C 38/04 20060101ALI20191122BHEP

Ipc: C22C 38/40 20060101ALI20191122BHEP

Ipc: C21D 1/25 20060101ALI20191122BHEP

INTG Intention to grant announced

Effective date: 20191213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012627

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1272645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200920

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200821

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012627

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200911

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200911

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210921

Year of fee payment: 7

Ref country code: FR

Payment date: 20210922

Year of fee payment: 7

Ref country code: NL

Payment date: 20210920

Year of fee payment: 7

Ref country code: IT

Payment date: 20210922

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210920

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20221001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1272645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015012627

Country of ref document: DE