EP3347137A1 - Dispositifs de distribution de micro-capsules - Google Patents

Dispositifs de distribution de micro-capsules

Info

Publication number
EP3347137A1
EP3347137A1 EP15767395.5A EP15767395A EP3347137A1 EP 3347137 A1 EP3347137 A1 EP 3347137A1 EP 15767395 A EP15767395 A EP 15767395A EP 3347137 A1 EP3347137 A1 EP 3347137A1
Authority
EP
European Patent Office
Prior art keywords
dispenser
composition
microcapsules
pump
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15767395.5A
Other languages
German (de)
English (en)
Inventor
Lee Burrowes
William John Cleveland Connolly
Andrew Graham MASTERS
James Samuel Richardson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP3347137A1 publication Critical patent/EP3347137A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1042Components or details
    • B05B11/1052Actuation means
    • B05B11/1056Actuation means comprising rotatable or articulated levers
    • B05B11/1057Triggers, i.e. actuation means consisting of a single lever having one end rotating or pivoting around an axis or a hinge fixedly attached to the container, and another end directly actuated by the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1081Arrangements for pumping several liquids or other fluent materials from several containers, e.g. for mixing them at the moment of pumping
    • B05B11/1084Arrangements for pumping several liquids or other fluent materials from several containers, e.g. for mixing them at the moment of pumping each liquid or other fluent material being pumped by a separate pump
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/87Application Devices; Containers; Packaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits
    • A61K2800/882Mixing prior to application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/0005Components or details
    • B05B11/0037Containers
    • B05B11/0038Inner container disposed in an outer shell or outer casing

Definitions

  • the present disclosure generally relates to a dispenser for dispensing a volatile solvent and microcapsules stored in separate reservoirs.
  • fragrances often contain perfume oils and/or other odoriferous materials that provide a scent for a limited period of time. It is also not uncommon to include a solvent for solubilizing the perfumes oils andor other odoriferous materials. At times, such solvents may be incompatible with other ingredients that may provide a benefit to the consumer. While dispensers that contain separate chambers for separating incompatible ingredients may exist, such dispensers may not be suitable for application in a fme fragrance context. Thus, there exists a need for dispensers that can keep some incompatible ingredients separate while delivering a suitable experience to the consumer.
  • a dispenser (10) comprising a first reservoir (50), the first reservoir (50) comprising a first pump (90) and a first composition (51); a second reservoir (60), the second reservoir (60) comprising a second pump (100) and a second composition (61); a first channel (110) having a proximal end (111) and a distal end (112); a second channel (120) having a proximal end (121) and a distal end (122); an exit orifice (40); a swirl chamber (130); and a lever assembly (190), the lever assembly (190) comprising an actuator (30) operatively associated with a pivot providing structure (170); wherein the proximal end (111) of the first channel (110) is in liquid communication with the first pump (90) and the distal end (112) of the first channel (110) is in liquid communication with the swirl chamber (130); wherein the proximal end (121) of the second channel (120) is in liquid communication with the second pump (100) and the distal end (122)
  • FIG. 1 is a front view of a dispenser
  • FIG. 2 is a cross sectional view of the side of a dispenser
  • FIG. 3 is a cross sectional view of the front of a dispenser
  • FIG. 4A is a cross sectional view of a dispenser having a lever assembly and in a first position
  • FIG. 4B is a cross sectional view of the dispenser of Fig. 4A in a second position
  • FIG. 4C is a cross sectional view of the dispenser of Fig. 4A in a third position
  • FIG. 5A is a perspective, front view of a dispenser having a lever assembly
  • FIG. 5B is a perspective view of the side of a dispenser having a lever assembly
  • FIG. 5C is a front view of a partial dispenser having a lever assembly
  • FIG. 5D is a top view of a dispenser having a lever assembly and a partially transparent top
  • FIG. 5E is a perspective view of a lever assembly
  • FIG. 5F is a perspective view of an actuator assembly
  • FIG. 6 is schematic of a cross section of a dispenser having a lever assembly
  • FIG. 7 is a graph comparing the force required to actuate the contents of two known fine fragrance products (Hugo Boss® and Gucci Guilty®) to a dispenser similar to Fig. 1 (labeled "PMC Dual Pack”); and
  • FIG. 8 is graph illustrating the relationship of the theoretical mechanical advantage to the actuation force required to dispel the contents of a dispenser having two pumps and dispensing a first and second composition.
  • composition means ingredients suitable for topical application on mammalian keratinous tissue. Such compositions may also be suitable for application to textiles or any other form of clothing including, but not limited to, doming made from synthetic fibers like nylons and polyesters, and clothing made from acetate, bamboo, cupro, hemp, flannel, jute, lyocell, PVC-polyvinyl chloride, rayon, recycled materials, rubber, soy, Tyvek, cotton, and other natural fibers.
  • Example orifice herein is shown as a passage from the swirl chamber to the external environment.
  • the stated ingredient may incidentally form as a byproduct or a reaction product of the other components of the composition.
  • Nonvolatile refers to those materials that liquid or solid under ambient conditions and have a measurable vapor pressure at 25° C. These materials typically have a vapor pressure of less than about 0.0000001 mmHg, and an average boiling point typically greater than about 250°
  • soluble means at least about 0.1 g of solute dissolves in 100 ml of solvent at 25° C and 1 atm of pressure.
  • Substantially free of means an amount of a material that is less than 1%, 0.5%, 0.25%, 0.1%, 0.05%, 0.01%, or 0.001% by weight of a composition.
  • Derivatives include but are not limited to, amide, ether, ester, amino, carboxyl, acetyl, and/or alcohol derivatives of a given chemical.
  • Skin care actives as used herein, means compounds that, when applied to the skin, provide a benefit or improvement to the skin. It is to be understood that skin care actives are useful not only for application to skin, but also to hair, nails and other mammalian keratinous tissue.
  • Volatile refers to those materials that are liquid or solid under ambient conditions and which have a measurable vapor pressure at 25° C. These materials typically have a vapor pressure of greater man about 0.0000001 mmHg, alternatively from about 0.02 mmHg to about 20 mmHg, and an average boiling point typically less than about 250° C, alternatively less than about 235° C.
  • Fine fragrances like colognes and perfumes, are often desired by consumers for their ability to deliver pleasant scents.
  • a drawback of such fine fragrances is that, because the fragrances are typically volatile, a consumer may have to reapply the fine fragrance after a short period of time in order to keep the same scent expressed. While consumers may desire a fine fragrance product with a longer duration of noticeability, mere appears to be no simple solution for extending the duration of noticeability.
  • many fine fragrance products on the market utilize an age old system including a volatile solvent and fragrance oils, said system often offering a short period of noticeability.
  • microcapsules have been included in certain products like deodorants in order to delay the release of a fragrance into the headspace.
  • the stability of microcapsules within a composition may be impacted by the ingredients in the composition. For example, some ingredients may cause the microcapsules to be unable to retain their integrity or the encapsulated fragrance to a certain level of degree over time.
  • the carrier that may be used for the microcapsules may have a high surface tension such that the composition containing the microcapsules is resistant to atomization.
  • the carrier is water
  • the high surface tension of water 73 dynes/cm at 20°C
  • the introduction of a suspending agent for the microcapsules may further exacerbate the problem because the suspending agent may increase the viscosity of the composition containing the water and microcapsules, making it less likely said composition can overcome its relatively high surface tension for atomization.
  • compositions having a high surface tension and a high viscosity are difficult to atomize without significant pressure generation. If the composition is not dispensed with sufficient atomization, such a dispenser may not be desirable for a high-end product like a fine fragrance.
  • the dispenser capable of dispensing the microcapsules should not require excessive force for actuation.
  • the amount of force required to active a pump typically consist of two elements: (1) the amount of force required to overcome the resistance of the compression of the pump return spring, and (2) the amount of force required to generate sufficient pressure on the sprayable product inside the pump exit orifice to enable break-up into droplets and create a consumer-desired mist spray. It is, however, possible to activate a pump by only overcoming (1), while not generating sufficient force for (2). This will result in the product leaving the exit orifice with insufficient pressure for break-up and resulting in a jet of product, or in extreme cases simply dribbling out of the exit orifice.
  • consumers are typically well practiced in the process of applying a fine fragrance from standard pumps such that they are aware of the forces required to normally activate a fine fragrance product.
  • a consumer may be unaware of the need for the application of additional force and may unknowingly apply a force similar to mat applied when using a standard fine fragrance product with a single pump. If such a situation occurs, said consumers may experience a non-desirable spray pattern due to the deficient amount of force applied such as by applying enough force to overcome (1) above, but not (2). If the dispenser having two pumps requires too much force to actuate the compositions stored, then such a dispenser may not be desirable for a high-end product like a fine fragrance.
  • the dispensers herein incorporate a lever assembly advantageously to reduce the actuation force required for a multi-pump design where one composition includes a volatile solvent and the other composition includes microcapsules.
  • the lever provides a mechanical advantage such that a consumer will perceive an actuation force similar to that of standard fine fragrance products with a single pump, while generating sufficient force to generate a desired spray pattern with a dual pump product.
  • the dispensers described herein also include at least two reservoirs, one for separately storing each of the first and second compositions.
  • the dispensers may also include a swirl chamber for atomizing the two compositions.
  • the first and second compositions preferably exit the dispenser via a common exit orifice.
  • the dispenser may mix the first and second composition via in-flight mixing by utilizing two exit orifices, one for each composition.
  • the dispensers also utilize at least two pumps fitted with pistons, one pump for pumping the first composition and a second pump for pumping the second composition to a swirl chamber and exit orifice.
  • the dispenser may also include a premix chamber, wherein each pump pumps each composition into a channel that serves to deliver the compositions from the reservoirs to a premix chamber.
  • the dispensers described herein may first mix the two compositions immediately prior to exit by first mixing the compositions within a premix chamber.
  • the premix chamber may have a volume sufficient to contain from 1% to 75% of the dispensed amount, alternatively from 2% to 20% of the dispensed amount, alternatively from 4% to 14% of the dispensed amount.
  • dispensers described herein provide an advantage over those dispensers that have more man one reservoir and retain greater than 75% of the mixture of the two compositions from each reservoir somewhere between the exit orifice and the reservoir when a premix chamber is included. In this regard, dispensers that retain greater than 75% will likely cause the next actuation to yield a mixture containing damaged microcapsules.
  • the premix chamber limits the extent of damaged microcapsules sprayed from the dispenser during each actuation event.
  • the premix chamber may have a volume sufficient to mix between 5 microliters and 15 microliters of the first and second compositions combined.
  • the premix chamber includes baffles to increase the extent of the mixing within the premix chamber.
  • the dispensers herein take advantage of the fact that the mixture of certain volatile solvents like ethanol with water results in a mixture with a lower surface tension than water, increasing the likelihood that the two compositions are appropriately aerosolized.
  • the microcapsules are less likely to be damaged upon exit.
  • Third, limiting the duration and extent of mixing also minimizes potential clogging.
  • the designs herein provide a consistent consumer experience by minimizing the amount of residual mixture left within the dispenser after each actuation event.
  • the size of the dispenser may be such as to allow it to be handheld.
  • the dispenser may include a first composition stored in a first reservoir and a second composition stored in a second reservoir.
  • the second composition may include a volatile solvent and a first fragrance.
  • the first composition may include a plurality of microcapsules and a carrier (e.g. water).
  • the first composition may further include a suspending agent.
  • the first and second compositions may each further include any other ingredient listed herein unless such an ingredient negatively affects the performance of the microcapsules.
  • Non-limiting examples of other ingredients include a coloring agent included in at least one of the first and second compositions and at least one non-encapsulated fragrance in the second composition.
  • the first composition may further include a non-encapsulated fragrance that may or may not differ from the encapsulated fragrance in chemical make-up.
  • the first composition may be substantially free of a material selected from the group consisting of a propellant, ethanol, a detersive surfactant, and combinations thereof; preferably free of a material selected from the group consisting of a propellant, ethanol, a detersive surfactant, and combinations thereof.
  • propellants include compressed air, nitrogen, inert gases, carbon dioxide, gaseous hydrocarbons like propane, n-butane, isobutene, cyclopropane, and mixtures thereof.
  • the second composition may be substantially free of a material selected from the group consisting of a propellant, microcapsules, a detersive surfactant, and combinations thereof; preferably free of a material selected from the group consisting of propellant, microcapsules, a detersive surfactant, and combinations thereof.
  • the dispenser may be configured to dispense a volume ratio of the second composition to the first composition at a ratio of from 10:1 to 1:10, from 5:1 to 1:5, from 3:1 to 1:3, from 2:1 to 1:2, or even 1:1 or 2:1, when the second composition comprises a volatile solvent and the first composition comprises a carrier and a plurality of microcapsules, according to the desires of the formulator.
  • the dispenser may dispense a first dose of the second composition and a second dose of the first composition such that the first dose and the second dose have a combined volume of from 30 microliters to 300 microliters, alternatively from 50 microliters to 140 microliters, alternatively from 70 microliters to 110 microliters.
  • the dispenser 10 may have a housing 20, an actuator 30 and an exit orifice 40.
  • the exit orifice may have a volume of 0.01 cubic millimeters to 0.20 cubic millimeters, such as when the exit orifice 40 has a volume of 0.03 cubic millimeters.
  • the housing 20 may not be necessary; a non-limiting example of which is when the reservoirs 50, 60 are made of glass. When the reservoirs are made of glass, the two reservoirs may be blown from the same piece of molten glass, appearing as a single bottle with two reservoirs.
  • the two reservoirs may be blown from separate pieces of molten glass, appearing as two bottles, each with a single reservoir, and joined together via a connector.
  • a non-limiting example of which is a reservoir within a reservoir.
  • the dispenser 10 may also contain a first reservoir 50 for storing a first composition 51 and a second reservoir 60 for storing a second composition 61.
  • the reservoirs 50, 60 may be of any shape or design.
  • the dispenser may be configured to dispense a non-similar volume ratio (not 1:1) of the first composition 51 to the second composition 61, as shown in Fig. 2.
  • the first reservoir 50 may have an open end 52 and a closed end 53.
  • the second reservoir may have an open end 62 and a closed end 63.
  • the open ends 52, 62 may be used to insert the pump and/or dip tubes into the reservoirs.
  • the open ends 52, 62 may also be used to supply the reservoirs with the compositions.
  • the open ends 52, 62 may be capped or otherwise sealed to prevent leakage from the reservoirs.
  • the first composition 51 may include microcapsules 55.
  • the dispenser may include a first dip tube 70 and a second dip tube 80, although the dip tubes are not necessary if alternative means are provided for airless communication between the reservoir and the pump, a non-limiting example of which is a delaminating bottle.
  • the dispenser may include a first pump 90 (shown as a schematic) in communication with the first dip tube 70.
  • the dispenser may also include a second pump 100 (shown as a schematic) in communication with the second dip tube 80.
  • the dispenser may also be configured to contain a first pump 90 and a second pump 100 with different output volumes. In some non-limiting examples, at least one pump may have an output of about 70 microliters and the other pump may have an output of about 50 microliters.
  • the first reservoir 50 may be configured to hold a smaller volume than the second reservoir 60 or vice versa when non-similar ratios of the first composition to the second composition are to be dispensed. If dip tubes are included, the first dip tube 70 may also be of a shorter length than the second dip tube 80 or vice versa.
  • the inner workings of the pumps are routine unless otherwise illustrated in the drawings. Such inner workings have been abbreviated and shown as schematic so as to not obscure the details of the teachings herein. Suitable pumps with outputs between 30 microliters to 140 microliter may be obtained from suppliers such as Aptargroup Inc., MeadWeastavo Corp., and Albea. Some examples of suitable pumps are the pre-compression pumps described in WO2012110744, EP0757592, EP0623060.
  • the first pump 90 may have a chamber 91 and the second pump 100 may have a chamber 101. As illustrated in Fig. 2, the first pump 90 and second pump 100 may be configured so that the chambers 91, 101 have different lengths and similar or the same diameters.
  • the pumps as illustrated herein are in some cases magnified to show the inner details and may be smaller in size than they appear as illustrated herein when said pumps are used for a fine fragrance.
  • the dispenser may include a first channel 110 and a second channel 120.
  • the channels 110, 120 have a volume of 5 millimeters to 15 millimeters, an example of which is when the channels have a volume of 8.4 cubic millimeters.
  • the first channel 110 may have a proximal end 111 and a distal end 112.
  • the 120 may have a proximal end 121 and a distal end 122.
  • the proximal end 111 of the first channel 110 is in communication with the exit tube 92 of the first pump 90.
  • the first channel 110 may be of a shorter length as compared to the second channel 120.
  • the second channel 120 may be disposed above the first channel 110 as illustrated in Fig. 2 or below the first channel 110.
  • the first channel and second channel may be substantially coplanar (i.e. exist side-by-side).
  • the exit tubes 92, 102 may have similar or different diameters which can provide for similar or different volumes.
  • the exit tubes have a diameter of 0.05 millimeters to 3 millimeters, an example of which is when one of the exit tubes has a diameter of 1.4 millimeters and the other exit tube has a diameter of 1 millimeter.
  • the exit tubes 92, 102 may have a volume of from 2 cubic millimeters to 10 cubic millimeters, such as when one exit tube has a volume of 7.70 cubic millimeters and the other exit tube as a volume of 3.93 cubic millimeters.
  • the channels 110, 120 may be configured such that one of the channels has a larger diameter than the other.
  • the channel with the larger diameter may be used to prevent clogging when particulates are contained within a composition.
  • the dispenser 120 serve to deliver the compositions to separate exit orifices, swirl chambers), and/or a premix chamber 150.
  • the premix chamber 150 may include inner baffles to facilitate mixing.
  • the dispenser may also include at least one feed to deliver the mixture of the first and second composition from the premix chamber ISO to the swirl chamber 130.
  • the swirl chamber 130 may impart on the first composition 51 and the second composition 61 a swirl motion.
  • the dispenser may include a first feed 270 in communication with the swirl chamber 130 and the premix chamber ISO, as illustrated in Fig. 2.
  • the dispenser may also include a second feed 280 in communication with the swirl chamber 130 and the premix chamber ISO.
  • the first feed 270 may be configured to have a different diameter as compared to the second feed 280.
  • the feeds 270, 280 may have a substantially similar diameter.
  • the dispenser may have more than two feeds.
  • the dispenser may have a single feed from the premix chamber to the swirl chamber.
  • the swirl chamber 130 may impart on the first composition SI and the second composition 61 a swirl motion.
  • the swirl chamber may be configured to deliver certain spray characteristics.
  • the fluid entering the swirl chamber may be provided a swirling or circular motion or other shape of motion within the swirl chamber 130, the characteristics of the motion being driven by the inward design of the swirl chamber 130.
  • the mixing of the two compositions in the premix chamber ISO may lower the surface tension of the compositions, and thereby, improving the level of atomization of the liquids.
  • Incorporation of a swirl chamber 130 may further promote atomization when compositions that vary in surface tension and viscosity are present in the reservoirs.
  • the swirl chamber may be used to impart a swirling motion onto the compositions, said swirling motion promoting the atomization of the compositions for delivery via the exit orifice 40 to the external environment.
  • the dispenser 10 may be configured to dispense a similar volume ratio (e.g. 1:1) of the first composition SI to the second composition 61, as shown in Fig. 3.
  • the reservoirs 50 and 60 may be of a similar size.
  • the first pump 90 and the second pump 100 may selected to deliver similar outputs.
  • the dispenser may be configured so that the chambers 91, 101 have similar or the same diameters while having the same or similar lengths that allow for the same or similar stroke lengths for the pistons.
  • the dispenser may be configured so that the reservoir supplying the composition containing the microcapsules is delivered via the longer channel when the channels are of different lengths.
  • the dispenser may be configured to dispense a non-similar volume ratio (not 1:1) of the first composition 51 to the second composition 6.
  • the first pump 90 and the second pump 100 may be configured so mat the chambers 91, 101 have different diameters while having the same or similar lengths that allow for the same or similar stroke lengths for the pistons, but different pump outputs. Such configurations may deliver in series dispensing of a larger volume of either composition 51, 61 by allowing for pistons of different stroke lengths.
  • the dispenser 10 also includes a lever assembly 190.
  • the lever assembly 190 includes an actuator 30 with a depressible area 230, wherein the actuator 30 is operatively associated with a pivot providing structure 170 such as a hinge.
  • the pivot providing structure 170 serves as a fulcrum for the lever assembly 190.
  • the lever assembly 190 may be operatively associated with a protrusion 210 that serves to transfer the force applied at the depressible area 230 to a spreader 180.
  • the protrusion 210 may be integral with the lever assembly 190 (as shown) or may be integral with the spreader 180.
  • the protrusion may be rounded on either the top side (as shown) or the bottom side depending on whether it is integral to the lever assembly 190 or the spreader 180.
  • the protrusion 210 may be offset from the center of the spreader 180.
  • Such a configuration may be utilized to distribute a different amount of a force to the pumps.
  • the longer arm (as measured from the center point of the spreader 180) of the protrusion 210 may activate the pump pumping the composition containing the microcapsules and the shorter lever arm may activate the pump pumping the composition containing the volatile solvent.
  • Such a design may be advantageous because the composition containing the microcapsules may have a higher viscosity than the composition containing the volatile solvent and more force may be required to pump the composition containing the microcapsules as compared to the composition containing the volatile solvent.
  • the dispenser 10 may have a first position 160 when no force is being applied to the depressible area 230.
  • the dispenser 10 may enter a second position 165 wherein the lever assembly 190 has moved in the direction of the pumps, driving the protrusion 210 to apply force to the spreader 180, resulting in the spreader 180 to move towards the reservoirs 50, 60 causing the first and second pumps to be operative.
  • the spreader 180 is operatively associated with plunger of the pumps such that movement of the spreader 180 will cause movement of the plungers within the pumps.
  • the first and second compositions are drawn from the pump chambers 91, 101 and into the first and second channels 110, 120 via the first and second pumps 90, 100.
  • the first and second channels 110, 120 may deliver the compositions directly to the swirl chamber 130 prior to exit via the exit orifice 40.
  • the first and second channels 110, 120 may deliver the contents to a premix chamber ISO prior to entry into the swirl chamber 130.
  • a feed 290 may be included to deliver the compositions from the premix chamber (150) to the swirl chamber (130). As shown in Fig.
  • the dispenser 10 may be in a third position 168, the third position resulting from the continued application of force to the depressible area 230 by the user, wherein the first and second pumps enter a resting state such that the first and second pumps are no longer operative and the spreader 180 and depressible area 230 are in a final position relative to the starting position as shown in Fig. 4A.
  • the dispenser 10 may include a lever assembly 190 having a protrusion 210 that is integral to the lever assembly 190 and serves to transfer the force applied from the depressible area 230 to the first and second pumps 90,100.
  • the lever assembly 190 includes a pivot providing structure 170 such as a hinge that is integral to the lever assembly 190.
  • the protrusion 210 of the lever assembly 190 may have a first engagement zone 212 and a second engagement zone 214. As shown in Fig.
  • the first engagement zone 212 may be in communication with the first pump contact zone 300 and the second engagement zone 214 may be in communication with second pump contact zone 310 when force is applied to the depressible area 230, leading to activation of the first and second pumps 90,100.
  • the first engagement zone 212 may be in physical contact with the first pump contact zone 300 and the second engagement zone 214 may be physical contact with second pump contact zone 310 prior to the application of force to the depressible area 230 such that said physical contact is not sufficient to activate pumps 90, 100.
  • the lever assembly 190 may have a total length of A + B from the pivot providing structure 170 (i.e. the pivot point) to the end 240 of the depressible area 230.
  • the length of A is calculated from the pivot point of the pivot providing structure 170 to the force point 250; the force point 250 being the midpoint of where contact is made with the protrusion 210.
  • the length of B is calculated from the force point 250 to the end 240 of the depressible area 230.
  • the ratio of A to B is from 10:1 to 1:10, preferably from 5:1 to 1:5, preferably from 3:1 to 1:3, more preferably about 1:1 to about 1:2.
  • A has a size of about 10 mm to about 50 mm and B has a size of about 10 mm to about 70 mm such that the length of A+B is about 20 mm to about 120 mm.
  • the theoretical mechanical advantage is defined as the ratio of A+B to A or mathematically expressed as (A+B)/A.
  • Figs. 4A-4C show a lever assembly 190 with a theoretical mechanical advantage of about 2.8. Thus, the dispenser shown in Figs. 4A-4C should theoretically require 2.8 times less force to drive the actuator 30 to the third position 168 as compared to a similar dispenser without a lever assembly.
  • in-market fine fragrance products such as Gucci Guilty® have an actuation force of from about 30 N to 40 N.
  • the "PMC Dual pack” represents a dual dispenser lacking a lever assembly and including a first composition containing microcapsules and a second composition containing a volatile solvent. Because of the requirement for two pumps, the actuation force required to actuate the two compositions of the "PMC Dual pack” is greater than 70 N. By incorporating the lever design disclosed herein, the actuation force required may be decreased for a dual pump dispenser product.
  • Fig. 8 shows the relationship between the theoretical mechanical advantage and the actual force required to bring the depressible area 230 of a dispenser having two pumps pumping a first and second composition wherein first composition comprises a volatile solvent and the second composition comprises microcapsules to a final position; the final position being the state where the two pumps are no longer operative.
  • the dispenser 10 having two pumps may have a lever assembly 190 that provides a mechanical advantage of about 1 to about 5, preferably from about 1.5 to about 4, more preferably from about 2 to about 3.
  • lever assembly significantly reduces the force that a user needs to apply to gain an acceptable spray pattern with a dual pump dispenser, ultimately ensuring that the user is able to achieve an adequate spray even when a customary amount of force is applied to the dual dispenser storing microcapsules and a volatile solvent separately.
  • valves to prevent reverse flow are to be included herein without deviating from the inventions herein.
  • a non-limiting example is a valve included to prevent reverse flow from the swirl chamber to the channels.
  • Other non-limiting minor improvements may include a mesh to prevent agglomerated particles from entering the pump.
  • compositions disclosed herein may be applied to one or more skin surfaces and/or one or more mammalian keratinous tissue surfaces as part of a user's daily routine or regimen. Additionally or alternatively, the compositions herein may be used on an "as needed" basis.
  • the composition may be applied to any article, such as a textile, or any absorbent article including, but not limited to, feminine hygiene articles, diapers, and adult incontinence articles.
  • any article such as a textile, or any absorbent article including, but not limited to, feminine hygiene articles, diapers, and adult incontinence articles.
  • combinations of the dispensers and compositions described herein are appropriately designed to be used as a fine fragrance spray, it is understood that such combinations may also be used as a body spray, feminine spray, adult incontinence spray, baby spray, or other spray.
  • the size, shape, and aesthetic design of the dispensers described herein may vary widely. COMPOSITIONS
  • compositions described herein may include a volatile solvent or a mixture of volatile solvents.
  • the volatile solvents may comprise greater than 10%, greater than 30%, greater than 40%, greater man 50%, greater than 60%, greater than 70%, or greater than 90%, by weight of the composition.
  • the volatile solvents useful herein may be relatively odorless and safe for use on human skin.
  • Suitable volatile solvents may include C 1 -C 4 alcohols and mixtures thereof.
  • Some non-limiting examples of volatile solvents include ethanol, methanol, propanol, isopropanol, butanol, and mixtures thereof.
  • the composition may comprise from 0.01% to 98%, by weight of the composition, of ethanol or other volatile solvent(s).
  • the composition may comprise a nonvolatile solvent or a mixture of nonvolatile solvents.
  • nonvolatile solvents include benzyl benzoate, diethyl phthalate, isopropyl myristate, propylene glycol, dipropylene glycol, triethyl citrate, and mixtures thereof.
  • the composition may comprise a fragrance.
  • fragrance is used to indicate any odoriferous material or a combination of ingredients including at least one odoriferous material. Any fragrance mat is cosmetically acceptable may be used in the composition.
  • the fragrance may be one that is a liquid or solid at room temperature.
  • the non-encapsulated fragrances may be present at a level from about 0.001% to about 40%, from about 0.1% to about 25%, from about 0.25% to about 20%, or from about 0.5% to about 15%, by weight of the composition.
  • Some fragrances can be considered to be volatiles and other f agrances can be considered to be or non-volatiles, as described and defined herein.
  • fragrances A wide variety of chemicals are known as fragrances, non-limiting examples of which include alcohols, aldehydes, ketones, ethers, Schiff bases, nitriles, and esters. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as fragrances.
  • Non-limiting examples of the fragrances useful herein include pro-fragrances such as acetal pro-fragrances, ketal pro-fragrances, ester pro- fragrances, hydrolyzable inorganic-organic pro-fragrances, and mixtures thereof.
  • the fragrances may be released from the pro-fragrances in a number of ways.
  • the fragrance may be released as a result of simple hydrolysis, or by a shift in an equilibrium reaction, or by a pH- change, or by enzymatic release.
  • the fragrances herein may be relatively simple in their chemical make-up, comprising a single chemical, or may comprise highly sophisticated complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
  • the fragrances may have a boiling point (BP) of about 500°C or lower, about 400°C or lower, or about 350°C or lower.
  • BP boiling point
  • the ClogP value of the individual fragrance materials may be about -0.5 or greater.
  • ClogP means the logarithm to the base 10 of the octanol/water partition coefficient.
  • the ClogP can be readily calculated from a program called "CLOGP” which is available from Daylight Chemical Information Systems Inc., Irvine Calif., USA or calculated using Advanced Chemistry Development (ACD Labs) Software VI 1.02 ( ⁇ 1994-2014 ACD/Labs). Octanol/water partition coefficients are described in more detail in U.S. Pat. No. 5,578,563.
  • aldehyde examples include but are not limited to: alpha- Amylcinnamaldehyde, Anisic Aldehyde, Decyl Aldehyde, Why aldehyde, Methyl n-Nonyl acetaldehyde, Methyl octyl acetaldehyde, Nonylaldehyde, Benzenecarboxaldehyde, Neral, Geranial, 2, 6 octadiene.1,1 diethoxy-3,7dimethyl-, 4-Isopropylbenzaldehyde, 2,4-Dimethyl-3- cyclohexene- 1-carboxaldehyde, alpha-Methyl-p-isopropylclihydrocinnamaldehyde, 3-(3- isopropylphenyl) butanal, alpha-Hexylcinnamaldehyde, 7-Hydroxy-3,7-dimethyl
  • esters include but are not limited to: Allyl cyclohexanepropionate, Allyl heptanoate, Allyl Amyl Glycolate, Allyl caproate, Amyl acetate (n-Pentyl acetate), Amyl Propionate, Benzyl acetate, Benzyl propionate, Benzyl salicylate, cis-3-Hexenylacetate, Citronellyl acetate, Citronellyl propionate, Cyclohexyl salicylate, Dihydro Isojasmonate Dimethyl benzyl carbinyl acetate, Ethyl acetate, Ethyl acetoacetate, Ethyl Butyrate, Ethyls- methyl butryrate, Ethyl-2-methyl pentanoate Fenchyl acetate (l,3,3-Trimethyl-2-norbornanyl acetate), Tricyclodecenyl acetate, Tricyclode
  • suitable alcohols include but are not limited to: Benzyl alcohol, beta- gamma-Hexenol (2-Hexen-l-ol), Cedrol, Citronellol, Cinnamic alcohol, p-Cresol, Cumic alcohol, Dihydromyrcenol, 3,7-Dimethyl-l-octanol, Dimethyl benzyl carbinol, Eucalyptol, Eugenol, Fenchyl alcohol, Geraniol, Hydratopic alcohol, Isononyl alcohol (3,5,5-Trimethyl-l- hexanol), Linalool, Methyl Chavicol (Estragole), Methyl Eugenol (Eugenyl methyl ether), Nerol, 2-Octanol, Patchouli alcohol, Phenyl Hexanol (3-Methyl-5-phenyl-l-pentanol), Phenethyl alcohol, alpha-Terpineol, Tetrahydr
  • ketones include but are not limited to: Oxacycloheptadec-10-en-2-one, Benzylacetone, Benzophenone, L-Carvone, cis-Jasmone, 4-(2,6,6-Trimethyl-3-cyclohexen-l-yl)- but-3-en-4-one, Ethyl amyl ketone, alpha-Ionone, Ionone Beta, Ethanone, Octahydro-2,3,8,8- tetramethyl-2-acetonaphthalene, alpha-Irone, 1 -(5,5-Dimethyl- 1 -cyclohexen-1 -yl)-4-penten- 1 - one, 3-Nonanone, Ethyl hexyl ketone, Menthone, 4-Methylacetophenone, gamma-Methyl Ionone Methyl pentyl ketone, Methyl Heptenone (6-Methyl-5-hepten-2
  • ethers include but are not limited to: p-Cresyl methyl ether, 4,6,6,7,8,8- Hexamethyl-l,3,4,6,7,8-hexahydro-cyclopenta(G)-2-benzopyran, beta-Naphthyl methyl ether, Methyl Iso Butenyl Tetrahydro Pyran, (Phantolide) 5-Acetyl-l, 1.2,3,3,6 hexamethylindan, (Tonalid )7-Acetyl-l,l,3,4,4,6-hexamethyltetralin, 2-Phenylethyl 3-methylbut-2-enyl ether, Ethyl geranyl ether, Phenylethyl isopropyl ether, and mixtures thereof.
  • alkenes include but are not limited to: Allo-Ocimene, Camphene, beta- Caryophyllene, Cadinene, Diphenylmethane, d-Limonene, Lymolene, beta-Myrcene, Para- Cymene, alpha-Pinene, beta-Pinene, alpha-Terpinene, gamma-Terpinene, Terpineolene, 7- Methyl-3-methylene-l,6-octadiene, and mixtures thereof.
  • nitriles include but are not limited to: 3,7-Dimethyl-6-octenenitrile, 3,7- Dimethyl-2(3), 6-nonadienenitrile, (2E, 6Z) 2,6-nonadienenitrile, n-dodecane nitrile, and mixtures thereof.
  • Schiffs Bases include but are not limited to: Citronellyl nitrile,
  • Non-limiting examples of f agrances include fragrances such as musk oil, civet, castoreum, ambergris, plant fragrances such as nutmeg extract, cardomon extract, ginger extract, cinnamon extract, patchouli oil, geranium oil, orange oil, mandarin oil, orange flower extract, cedarwood, vetyver, lavandin, ylang extract, tuberose extract, sandalwood oil, bergamot oil, rosemary oil, spearmint oil, peppermint oil, lemon oil, lavender oil, citronella oil, chamomille oil, clove oil, sage oil, neroli oil, labdanum oil, eucalyptus oil, verbena oil, mimosa extract, narcissus extract, carrot seed extract, jasmine extract, olibanum extract, rose extract, and mixtures thereof.
  • fragrances such as musk oil, civet, castoreum, ambergris
  • plant fragrances such as nutmeg extract, cardomon extract, ginger extract,
  • the composition may include a carrier for the microcapsules.
  • carriers include water, silicone oils like silicone DS, and other oils like mineral oil, isopropyl myristate, and fragrance oils.
  • the carrier should b e one that does not significantly affect the performance of the microcapsules.
  • Non-limiting examples of non-suitable carriers for the microcapsules include volatile solvents like 95% ethanol.
  • compositions containing microcapsules may include about 0.1% to about 95%, from about 5% to about 95%, or from 5% to 75%, by weight of the composition, of the carrier.
  • the composition may include from about 0.01% to about 40%, from about 0.1% to about 30%, or from about 0.1% to about 20%, by weight of the composition, of water.
  • the dose containing the mixture of the first and second compositions may contain about 0.01% to about 75%, from about 1% to about 60%, from about 0.01% to about 60%, or from about 5% to about 50%, by weight of the composition, of water.
  • the microcapsules may be any kind of microcapsule disclosed herein or known in the art.
  • the microcapsules may be included from about 0.01% to about 45%, by weight, of the composition.
  • the microcapsules may have a shell and a core material encapsulated by the shell.
  • the core material of the microcapsules may include one or more fragrances or perfume oils.
  • the shells of the microcapsules may be made from synthetic polymeric materials or naturally- occurring polymers. Synthetic polymers may be derived from petroleum oil, for example.
  • Non- limiting examples of synthetic polymers include nylon, polyethylenes, polyamides, polystyrenes, polyisoprenes, polycarbonates, polyesters, polyureas, polyurethanes, polyolefins, polysaccharides, epoxy resins, vinyl polymers, polyacrylates, and mixtures thereof.
  • Natural polymers occur in nature and may often be extracted from natural materials. Non-limiting examples of naturally occurring polymers are silk, wool, gelatin, cellulose, proteins, and combinations thereof.
  • the microcapsules may be friable microcapsules.
  • a friable microcapsule is configured to release its core material when its shell is ruptured. The rupture may be caused by forces applied to the shell during mechanical interactions.
  • the microcapsules may have a shell with a volume weighted fracture strength of from about 0.1 mega Pascals to about 15.0 mega Pascals, when measured according to the Fracture Strength Test Method described herein, or any incremental value expressed in 0.1 mega Pascals in this range, or any range formed by any of these values for fracture strength.
  • a microcapsule may have a shell with a volume weighted fracture strength of 0.8-15.0 mega Pascals (MPa), alternatively from 5.0-12.0 mega Pascals (MPa), or alternatively from 6.0-10.0 mega Pascals (MPa).
  • the microcapsules may have a median volume-weighted particle size of from 2 microns to 80 microns, from 10 microns to 30 microns, or from 10 microns to 20 microns, as determined by the Test Method for Determining Median Volume- Weighted Particle Size of Microcapsules described herein.
  • the microcapsules may have various core material to shell weight ratios.
  • the microcapsules may have a core material to shell ratio that is greater than or equal to: 70% to 30%, 75% to 25%, 80% to 20%, 85% to 15%, 90% to 10%, and 95% to 5%.
  • the microcapsules may have shells made from any material in any size, shape, and configuration known in the art. Some or all of the shells may include a polyacrylate material, such as a polyacrylate random copolymer.
  • the polyacrylate random copolymer may have a total polyacrylate mass, which includes ingredients selected from the group including: amine content of 0.2-2.0% of total polyacrylate mass; carboxylic acid of 0.6-6.0% of total polyacrylate mass; and a combination of amine content of 0.1-1.0% and carboxylic acid of 0.3-3.0% of total polyacrylate mass.
  • the polyacrylate material may form 5-100% of the overall mass, or any integer value for percentage in this range, or any range formed by any of these values for percentage.
  • the polyacrylate material may form at least 5%, at least 10%, at least 25%, at least 33%, at least 50%, at least 70%, or at least 90% of the overall mass.
  • each microcapsule may have a shell with an overall thickness of 1-300 nanometers, or any integer value for nanometers in this range, or any range formed by any of these values for thickness.
  • microcapsules may have a shell with an overall thickness of 2-200 nanometers.
  • the microcapsules may also encapsulate one or more benefit agents.
  • the benefit agent(s) include, but are not limited to, cooling sensates, warming sensates, perfume oils, oils, pigments, dyes, chromogens, phase change materials, and other kinds of benefit agent known in the art, in any combination.
  • the perfume oil encapsulated may have a ClogP of less than 4.5 or a ClogP of less than 4.
  • the perfume oil encapsulated may have a ClogP of less than 3.
  • the microcapsule may be anionic, cationic, zwitterionic, or have a neutral charge.
  • the benefit agents(s) may be in the form of solids and/or liquids.
  • the benefit agent(s) may be any kind of perfume oil(s) known in the art, in any combination.
  • the microcapsules may encapsulate a partitioning modifier in addition to the benefit agent.
  • partitioning modifiers include isopropyl myristate, mono-, di-, and tri-esters of C 4 -C 24 fatty acids, castor oil, mineral oil, soybean oil, hexadecanoic acid, methyl ester isododecane, isoparaffin oil, polydimethylsiloxane, brominated vegetable oil, and combinations thereof.
  • U.S. 2011-0268802 discloses other non-limiting examples of microcapsules and partitioning modifiers and is hereby incorporated by reference.
  • the microcapsule's shell may comprise a reaction product of a first mixture in the presence of a second mixture comprising an emulsifier, the first mixture comprising a reaction product of i) an oil soluble or dispersible amine with ii) a multifunctional acrylate or methacrylate monomer or oligomer, an oil soluble acid and an initiator, the emulsifier comprising a water soluble or water dispersible acrylic acid alkyl acid copolymer, an alkali or alkali salt, and optionally a water phase initiator.
  • said amine is an aminoalkyl acrylate or aminoalkyl methacrylate.
  • the microcapsules may include a core material and a shell surrounding the core material, wherein the shell comprises: a plurality of amine monomers selected from the group consisting of aminoalkyl acrylates, alkyl aminoalkyl acrylates, dialkyl aminoalykl acrylates, aminoalkyl methacrylates, alkylamino aminoalkyl methacrylates, dialkyl aminoalykl methacrylates, tertiarybutyl aminethyl methacrylates, diethylaminoethyl methacrylates, dimethylaminoethyl methacrylates, dipropylaminoethyl methacrylates, and mixtures thereof; and a plurality of multifunctional monomers or multifunctional oligomers.
  • a plurality of amine monomers selected from the group consisting of aminoalkyl acrylates, alkyl aminoalkyl acrylates, dialkyl aminoalykl acrylates, aminoalkyl methacrylates, alky
  • Non-limiting examples of emulsifiers include water-soluble salts of alkyl sulfates, alkyl ether sulfates, alkyl isothionates, alkyl carboxylates, alkyl sulfosuccinates, alkyl succinamates, alkyl sulfate salts such as sodium dodecyl sulfate, alkyl sarcosinates, alkyl derivatives of protein hydrolyzates, acyl aspartates, alkyl or alkyl ether or alkylaryl ether phosphate esters, sodium dodecyl sulphate, phospholipids or lecithin, or soaps, sodium, potassium or ammonium stearate, oleate or palmitate, alkylarylsulfonic acid salts such as sodium dodecylbenzenesulfonate, sodium dialkylsulfosuccinates, dioctyl sulfosuccinate, sodium
  • distearyldiammonium chloride and fatty amines, alkyldimethylbenzylammonium halides, alkyldimethylethylammonium halides, polyalkylene glycol ether, condensation products of alkyl phenols, aliphatic alcohols, or fatty acids with alkylene oxide, ethoxylated alkyl phenols, ethoxylated arylphenols, ethoxylated polyaryl phenols, carboxylic esters solubilized with a polyol, polyvinyl alcohol, polyvinyl acetate, or copolymers of polyvinyl alcohol polyvinyl acetate, polyacrylamide, poly(N- isopropylacrylamide), poly(2-hydroxypropyl methacrylate), poty(2-ethyl-2-oxazoline), poly(2- isopropenyl-2-oxazoline-co-methyl methacrylate), poly(methyl vinyl ether), and polyvinyl alcohol
  • the microcapsule may be spray-dried to form spray-dried microcapsules.
  • the composition may also contain one or more additional delivery systems for providing one or more benefit agents, in addition to the microcapsules.
  • the additional delivery system(s) may differ in kind from the microcapsules.
  • the additional delivery system may be an additional fragrance delivery system, such as a moisture-triggered fragrance delivery system.
  • moisture-triggered fragrance delivery systems include cyclic oligosaccaride, starch (or other polysaccharide material), starch derivatives, and combinations thereof. Said polysaccharide material may or may not be modified.
  • the plurality of microcapsules may include anionic, cationic, and non-ionic microcapsules, in any combination, when included in a composition with a pH range of from 2 to about 10, alternatively from about 3 to about 9, alternatively from about 4 to about 8.
  • the microcapsules may include a benefit agent comprising: a.) a perfume composition having a ClogP of less than 4.5; b.) a perfume composition comprising, based on total perfume composition weight, 60% perfume materials having a ClogP of less than 4.0; c.) a perfume composition comprising, based on total perfume composition weight, 35% perfume materials having a ClogP of less than 3.5; d.) a perfume composition comprising, based on total perfume composition weight, 40% perfume materials having a ClogP of less than 4.0 and at least 1% perfume materials having a ClogP of less man 2.0; e.) a perfume composition comprising, based on total perfume composition weight, 40% perfume materials having a ClogP of less than 4.0 and at least 15% perfume materials having a ClogP of less man 3.0; f.) a perfume composition comprising, based on total perfume composition weight, at least 1% butanoate esters and at least 1% of pentanoate esters; g.
  • the microcapsules may include a benefit agent comprising: one or more materials selected from the group consisting of (5-methyl-2-propan-2-ylcyclohexyl) acetate; 3,7-dimethyloct-6-en-l-al; 2-(phenoxy)ethyl 2-methylpropanoate; prop-2-enyl 2-(3- methylbutoxy)acetate; 3-methyl-l-isobutylburyl acetate; prop-2-enyl hexanoate; prop-2-enyl 3- cyclohexylpropanoate; prop-2-enyl heptanoate; (E)-l-(2,6,6-trimemyl-l-cyclohex-2-enyl)but-2- en- 1 -one; (E)-4-(2,6,6-trimethyl- 1 -cyclohex-2-enyl)but-3-en-2-one; (E)-3-methyl-4-(2,6,6- trimethyl- 1 -
  • compositions may also include a parent fragrance and one or more encapsulated fragrances that may or may not differ from the parent fragrance.
  • the composition may include a parent fragrance and a non-parent fragrance.
  • a parent fragrance refers to a fragrance that is dispersed throughout the composition and is typically not encapsulated when added to the composition.
  • a non-parent fragrance refers to a fragrance that differs from a parent fragrance included within the composition and is encapsulated with an encapsulating material prior to inclusion into the composition.
  • differences between a fragrance and a non-parent fragrance include differences in chemical make-up.
  • dried microcapsules may be incorporated into the composition, prepared by spray drying, fluid bed drying, tray drying, or other such drying processes that are available.
  • compositions described herein may include one or more suspending agents to suspend the microcapsules and other water-insoluble material dispersed in the composition.
  • concentration of the suspending agent may range from about 0.01% to about 90%, alternatively from about 0.01% to 15% by weight of the composition.
  • Non-limiting examples of suspending agents include anionic polymers, cationic polymers, and nonionic polymers.
  • Non-limiting examples of said polymers include vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carrageenan, pectin, agar, quince seed (Cydonia oblonga Mill), starch (rice, corn, potato, wheat), algae colloids (algae extract), microbiological polymers
  • suspending agents include cross-linked polyacrylate polymers like Carbomers with the trade names Carbopol ® 934, Carbopol ® 940, Carbopol* 950, Carbopol ® 980, Carbopol ® 981, Carbopol ® Ultrez 10, Carbopol ® Ultrez 20, Carbopol ® Ultrez 21, Carbopol ® Ultrez 30, Carbopol ® ETD2020, Carbopol ® ETD2050, Pemulen ® TR-1, and Pemulen ® TR-2, available from The Lubrizol Corporation; acrylates/steareth-20 methacrylate copolymer with trade name ACRYSOLTM 22 available from Rohm and Hass; acrylates/beheneth-25 methacrylate copolymers, trade names including Aculyn-28 available from Rohm and Hass, and VolarestTM FL available from Croda; nonoxynyl hydroxyethylcellulose with the trade name Amer
  • suspending agents include crystalline suspending agents which can be categorized as acyl derivatives, long chain amine oxides, and mixtures thereof.
  • suspending agents include ethylene glycol esters of fatty acids, in some aspects those having from about 16 to about 22 carbon atoms; ethylene glycol stearates, both mono and distearate, in some aspects, the distearate containing less than about 7% of the mono stearate; alkanol amides of fatty acids, having from about 16 to about 22 carbon atoms, or about 16 to 18 carbon atoms, examples of which include stearic monoethanolamide, stearic diethanolamide, stearic monoisopropanolamide and stearic monoethanolamide stearate; long chain acyl derivatives including long chain esters of long chain fatty acids (e.g., stearyl stearate, cetyl palmitate, etc.); long chain esters of long chain alkanol amides (e.g., stearamide diethanolamide distearate, stearamide monoethanolamide stearate); and glyceryl esters (e.
  • suspending agents include long chain acyl derivatives including N,N-dihydrocarbyl amido benzoic acid and soluble salts thereof (e.g., Na, K), particularly N,N-di(hydrogenated) and tallow amido benzoic acid species of this family,
  • Stepan Company Northfield, HI., USA.
  • Non-limiting examples of suitable long chain amine oxides for use as suspending agents include alkyl dimethyl amine oxides (e.g., stearyl dimethyl amine oxide).
  • suspending agents include primary amines having a fatty alkyl moiety having at least about 16 carbon atoms, examples of which include palmitamine or stearamine, and secondary amines having two fatty alkyl moieties each having at least about 12 carbon atoms, examples of which include dipalmitoylamine or di(hydrogenated tallow)amine.
  • Other non-limiting examples of suspending agents include di(hydrogenated tallow )phthalic acid amide, and cross-linked maleic anhydride-methyl vinyl ether copolymer.
  • compositions herein may include a coloring agent.
  • a coloring agent may be in the form of a pigment.
  • the term "pigment” means a solid that reflects light of certain wavelengths while absorbing light of other wavelengths, without providing appreciable luminescence.
  • Useful pigments include, but are not limited to, those which are extended onto inert mineral(s) (e.g., talk, calcium carbonate, clay) or treated with silicone or other coatings (e.g., to prevent pigment particles from re-agglomerating or to change the polarity (hydrophobicity) of the pigment.
  • Pigments may be used to impart opacity and color. Any pigment that is generally recognized as safe (such as those listed in C.T.F.A.
  • Non-limiting examples of pigments include body pigment, inorganic white pigment, inorganic colored pigment, pearling agent, and the like.
  • Non-limiting examples of pigments include talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, aluminum magnesium silicate, silica, titanium dioxide, zinc oxide, red iron oxide, yellow iron oxide, black iron oxide, ultramarine, polyethylene powder, methacrylate powder, polystyrene powder, silk powder, crystalline cellulose, starch, titanated mica, iron oxide titanated mica, bismuth oxychloride, and the like.
  • the aforementioned pigments can be used independently or in combination.
  • pigments include inorganic powders such as gums, chalk, Fuller's earth, kaolin, sericite, muscovite, phlogopite, synthetic mica, lepidolite, biotite, lithia mica, vermiculite, aluminum silicate, starch, smectite clays, alkyl and/or trialkyl aryl ammonium smectites, chemically modified magnesium aluminum silicate, organically modified montmorillonite clay, hydrated aluminum silicate, fumed aluminum starch octenyl succinate barium silicate, calcium silicate, magnesium silicate, strontium silicate, metal tungstate, magnesium, silica alumina, zeolite, barium sulfate, calcined calcium sulfate (calcined gypsum), calcium phosphate, fluorine apatite, hydroxyapatite, ceramic powder, metallic soap (zinc stearate, magnesium stearate,
  • Non-limiting examples of pigments include nanocolorants from BASF and multi-layer interference pigments such as Sicopearls from BASF.
  • the pigments may be surface treated to provide added stability of color and ease of formulation.
  • Non-limiting examples of pigments include aluminum, barium or calcium salts or lakes.
  • Some other non-limiting examples of coloring agents include Red 3 Aluminum Lake, Red 21 Aluminum Lake, Red 27 Aluminum Lake, Red 28 Aluminum Lake, Red 33 Aluminum Lake, Yellow 5 Aluminum Lake, Yellow 6 Aluminum Lake, Yellow 10 Aluminum Lake, Orange 5 Aluminum Lake and Blue 1 Aluminum Lake, Red 6 Barium Lake, Red 7 Calcium Lake.
  • a coloring agent may also be a dye.
  • Non-limiting examples include Red 6, Red 21,
  • Brown, Russet and Sienna dyes Yellow 5, Yellow 6, Red 33, Red 4, Blue 1, Violet 2, and mixtures thereof.
  • Other non-limiting examples of dyes include fluorescent dyes like fluorescein.
  • compositions may include other ingredients like antioxidants, ultraviolet inhibitors like sunscreen agents and physical sunblocks, cyclodextrins, quenchers, and/or skin care actives.
  • other ingredients include 2-ethylhexyl-p-methoxycinnamate; hexyl 2- [4-(diethylamino)-2-hydroxybenzoyl]benzoate; 4-tert-butyl-4'-methoxy dibenzoylmethane; 2- hydroxy-4-methoxybenzo-phenone; 2-phenylbenzimidazole-5 -sulfonic acid; octocrylene; zinc oxide; titanium dioxide; vitamins like vitamin C, vitamin B, vitamin A, vitamin E, and derivatives thereof; flavones and flavonoids; amino acids like glycine, tyrosine, etc.; carotenoids and carotenes; chelating agents like EDTA, lactates, citrates, and derivatives thereof.
  • the dispenser may include a first composition stored in a first reservoir and a second composition stored in the second reservoir.
  • the second composition may include a volatile solvent and a first fragrance.
  • the first composition may include a plurality of microcapsules and a carrier such as water.
  • the first composition my further include a suspending agent.
  • the first and second compositions may each further include any other ingredient listed herein unless such an ingredient negatively affects the performance of the microcapsules.
  • Non-limiting examples of other ingredients include a coloring agent included in at least one of the first and second compositions and at least one non-encapsulated fragrance in the first composition or second composition.
  • the first compositions may further include a non-encapsulated fragrance that may or may not differ from the encapsulated fragrance in chemical make-up.
  • the first composition may be substantially free of a material selected from the group consisting of a propellant, a volatile solvent like ethanol, a detersive surfactant, and combinations thereof; preferably free of a material selected from the group consisting of a propellant, a volatile solvent like ethanol, a detersive surfactant, and combinations thereof.
  • Non-limiting examples of propellants include compressed air, nitrogen, inert gases, carbon dioxide, gaseous hydrocarbons like propane, n- butane, isobutene, cyclopropane, and mixtures thereof.
  • the second composition may be substantially free of a material selected from the group consisting of a propellant, microcapsules, a detersive surfactant, and combinations thereof; preferably free of a material selected from the group consisting of propellant, microcapsules, a detersive surfactant, and combinations thereof.
  • At least some of the microcapsules included in such a dispenser may encapsulate a fragrance.
  • the fragrance encapsulated within the microcapsules may or may not differ in chemical make-up from the non-encapsulated fragrance included with the volatile solvent.
  • the first composition may include at least 50%, at least 75%, or even at least 90%, by weight of the composition, of water; a plurality of microcapsules; and from about 0.01% to about 90%, preferably from about 0.01% to about 15%, more preferably from about 0.5% to about 15%, by weight of the composition, of a suspending agent; wherein the composition is free of propellents, volatile solvents (e.g. ethanol), and detersive surfactants; wherein the microcapsules comprise a first fragrance and a shell that surrounds said first fragrance.
  • the first composition may be substantially free of, or alternatively, free of a wax, an antiperspirant, and combinations thereof.
  • the first composition may comprise about 20% or less, about 10% or less, about 7% or less, of the microcapsules. It is to be appreciated that because the first composition is to be atomized, the concentration of the microcapsules in the first composition should not be so high as to prevent suitable atomization.
  • test methods are disclosed in the Test Methods Section of the present application should be used to determine the respective values of the parameters of Applicants' invention as such invention is described and claimed herein.
  • ClogP The "calculated logP” (ClogP) is determined by the fragment approach of Hansen and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansen, P.G. Sammens, J.B. Taylor, and c.A. Ramsden, Eds. P. 295, Pergamon Press, 1990, incorporated herein by reference). ClogP values may be calculated by using the "CLOGP" program available from Daylight Chemical Information Systems Inc. of Irvine, California U.S. A.
  • Boiling point is measured by ASTM method D2887-04a, "Standard Test Method for
  • Volume weight fractions are determined via the method of single-particle optical sensing (SPOS), also called optical particle counting (OPC). Volume weight fractions are determined via an Accusizer 780/AD supplied by Particle Sizing Systems of Santa Barbara California, U.S.A. or equivalent.
  • SPOS single-particle optical sensing
  • OPC optical particle counting
  • VWFS Volume weighted fracture strength
  • Fracture strength! average fracture strength measured from a pool of 10 microcapsules (with similar particle size)
  • Volume fraction ! volume fraction determined via Accusizer of particle distribution corresponding to fracture strength
  • the spread around the fracture strength to determine the volume fraction is determined as follows:
  • a spread of about 10 micrometers is used, for particle batches with a mean particle sizes of about 30 micrometers and above, a spread of about 10 to 15 micrometers is used.
  • Chromatograph Chromatograph and integrate the peak areas to determine the total quantity of benefit agent extracted from each sample.
  • the benefit agent leakage is defined as:
  • microcapsules may be constructed for the extraction and isolation of microcapsules from finished products, and will recognize that such methods require validation via a comparison of the resulting measured values, as measured before and after the microcapsules' addition to and extraction from the finished product
  • the isolated microcapsules are then formulated in deionized water to form a capsule slurry for characterization for particle size distribution.
  • the median volume-weighted particle size of the microcapsules is measured using an Accusizer 780A, made by Particle Sizing Systems, Santa Barbara CA, or equivalent. The instrument is calibrated from 0 to 300 ⁇ using particle size standards (as available from Duke / Thermo-Fisher-Scientific Inc., Waltham, Massachusetts, USA). Samples for particle size evaluation are prepared by diluting about lg of capsule slurry in about 5g of de-ionized water and further diluting about lg of this solution in about 25g of water. About lg of the most dilute sample is added to the Accusizer and the testing initiated using the autodilution feature. The Accusizer should be reading in excess of 9200 counts/second. If the counts are less than 9200 additional sample should be added. Dilute the test sample until 9200 counts/second and then the evaluation should be initiated. After 2 minutes of testing the Accusizer will display the results, including the median volume-weighted particle size.
  • An oil solution consisting of 128.4g Fragrance Oil, 32. lg isopropyl myristate, 0.86g DuPont Vazo-67, 0.69g Wako Chemicals V-501, is added to a 35°C temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2" diameter, flat mill blade) and a nitrogen blanket applied at lOOcc/min.
  • the oil solution is heated to 70°C in 45 minutes, held at 75°C for 45 minutes, and cooled to 50°C in 75 minutes. This will be called oil solution A.
  • an aqueous solution is prepared consisting of 300g deionized water to which is dispersed 2.40 grams of Celvol 540 polyvinyl alcohol at 25 degrees Centigrade. The mixture is heated to 85 degrees Centigrade and held there for 45 minutes. The solution is cooled to 30 degrees Centigrade. 1.03 grams of Wako Chemicals V-501 initiator is added, along with 0.51 grams of 40% sodium hydroxide solution. Heat the solution to 50°C, and maintain the solution at that temperature.
  • oil solution A To the oil solution A, add 0.19 grams of tert-butyl amino ethyl methacrylate (Sigma Aldrich), 0.19 grams of beta-carboxy ethyl acrylate (Sigma Aldrich), and 15.41 grams of Sartomer CN975 (Sartomer, Inc.). Mix the acrylate monomers into the oil phase for 10 minutes. This will be called oil solution B. Use a Caframo mixer with a 4-blade pitched turbine agitator.
  • the resultant microcapsules have a median particle size of 12.6 microns, a fracture strength of 7.68 ⁇ 2.0 MPa, and a 51 % ⁇ 20% deformation at fracture.
  • An oil solution consisting of 96g Fragrance Oil, 64g isopropyl myristate, 0.86g DuPont Vazo-67, 0.69g Wako Chemicals V-501, is added to a 35°C temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2" diameter, flat mill blade) and a nitrogen blanket applied at lOOcc/min.
  • the oil solution is heated to 70°C in 45 minutes, held at 75°C for 45 minutes, and cooled to 50°C in 75 minutes. This will be called oil solution A.
  • an aqueous solution is prepared consisting of 300g deionized water to which is dispersed 2.40 grams of Celvol 540 polyvinyl alcohol at 25 degrees Centigrade.
  • the mixture is heated to 85 degrees Centigrade and held there for 45 minutes.
  • the solution is cooled to 30 degrees Centigrade. 1.03 grams of Wako Chemicals Y-501 initiator is added, along with 0.51 grams of 40% sodium hydroxide solution. Heat the solution to 50°C, and maintain the solution at that temperature.
  • oil solution A To the oil solution A, add 0.19 grams of tert-butyl amino ethyl methacrylate (Sigma Aldrich), 0.19 grams of beta-carboxy ethyl acrylate (Sigma Aldrich), and 15.41 grams of Sartomer CN975 (Sartomer, Inc.). Mix the acrylate monomers into the oil phase for 10 minutes. This will be called oil solution B. Use a Caframo mixer with a 4-blade pitched turbine agitator.
  • the resultant microcapsules have a median particle size of 12.6 microns, a fracture strength of 2.60 ⁇ 1.2 MPa, 37% ⁇ 15% deformation at fracture.
  • An oil solution consisting of 128.4g Fragrance Oil, 32. lg isopropyl myristate, 0.86g DuPont Vazo-67, 0.69g Wako Chemicals V-501, is added to a 35°C temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2" diameter, flat mill blade) and a nitrogen blanket applied at lOOcc/min.
  • the oil solution is heated to 70°C in 45 minutes, held at 75°C for 45 minutes, and cooled to 50°C in 75 minutes. This will be called oil solution A.
  • an aqueous solution is prepared consisting of 300g deionized water to which is dispersed 2.40 grams of Celvol 540 polyvinyl alcohol at 25 degrees Centigrade. The mixture is heated to 85 degrees Centigrade and held there for 45 minutes. The solution is cooled to 30 degrees Centigrade. 1.03 grams of Wako Chemicals V-501 initiator is added, along with 0.51 grams of 40% sodium hydroxide solution. Heat the solution to 50°C, and maintain the solution at mat temperature.
  • oil solution A To the oil solution A, add 0.19 grams of tert-butyl amino ethyl methacrylate (Sigma Aldrich), 0.19 grams of beta-carboxy ethyl acrylate (Sigma Aldrich), and 15.41 grams of Sartomer CN975 (Sartomer, Inc.). Mix the acrylate monomers into the oil phase for 10 minutes. This will be called oil solution B. Use a Caframo mixer with a 4-blade pitched turbine agitator.
  • the resultant microcapsules have a median particle size of 26.1 microns, a fracture strength of 1.94 ⁇ 1.2 MPa, 30% ⁇ 14% deformation at fracture.
  • An oil solution consisting of 128.4g Fragrance Oil, 32. lg isopropyl myristate, 0.86g DuPont Vazo-67, 0.69g Wako Chemicals V-501, is added to a 35°C temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2" diameter, flat mill blade) and a nitrogen blanket applied at lOOcc/min.
  • the oil solution is heated to 70°C in 45 minutes, held at 75°C for 45 minutes, and cooled to 50°C in 75 minutes. This will be called oil solution A.
  • an aqueous solution is prepared consisting of 300g deionized water to which is dispersed 2.40 grams of Celvol 540 polyvinyl alcohol at 25 degrees Centigrade. The mixture is heated to 85 degrees Centigrade and held mere for 45 minutes. The solution is cooled to 30 degrees Centigrade. 1.03 grams of Wako Chemicals V-501 initiator is added, along with 0.51 grams of 40% sodium hydroxide solution. Heat the solution to 50°C, and maintain the solution at that temperature.
  • oil solution A To the oil solution A, add 0.19 grams of tert-butyl amino ethyl methacrylate (Sigma Aldrich), 0.19 grams of beta-carboxy ethyl acrylate (Sigma Aldrich), and 15.41 grams of Sartomer CN975 (Sartomer, Inc.). Mix the acrylate monomers into the oil phase for 10 minutes. This will be called oil solution B. Use a Caframo mixer with a 4-blade pitched turbine agitator.
  • the resultant microcapsules have a median particle size of 10.0 microns, a fracture strength of 7.64 ⁇ 2.2 MPa, 56% ⁇ 20% deformation at fracture.
  • aqueous solution consisting of 6.06g Celvol 523 polyvinyl alcohol (Celanese Chemicals) and 193.94g deionized water, is added into a temperature controlled steel jacketed reactor at room temperature.
  • an oil solution consisting of 75g Scent A and 25g Desmodur N3400 (polymeric hexamethylene diisocyanate), is added into the reactor.
  • the mixture is emulsified with a propeller (4 tip, 2" diameter, flat mill blade; 2200 rpm) to desired emulsion droplet size.
  • the resulting emulsion is then mixed with a Z-bar propeller at 450 rpm.
  • aqueous solution consisting of 47g water and 2.68g tetraethylenepentamine, is added into the emulsion. And it is then heated to 60 °C, held at 60 °C for 8 hours, and allowed to cool to room temperature.
  • the median particle size of the resultant microcapsules is 10 microns.
  • the polyacrylate microcapsule with the characteristics displayed in Table 3 may be prepared as follows.
  • An oil solution consisting of 112.34g Fragrance Oil, 12.46g isopropyl myristate, 2.57g DuPont Vazo-67, 2.06g Wako Chemicals V-501, is added to a 35"C temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2" diameter, flat mill blade) and a nitrogen blanket applied at lOOcc/min.
  • the oil solution is heated to 70°C in 45 minutes, held at 75 * C for 45 minutes, and cooled to 50°C in 75 minutes. This will be called oil solution A.
  • an aqueous solution is prepared consisting of 300g deionized water to which is dispersed 2.40 grams of Celvol 540 polyvinyl alcohol at 25 degrees Centigrade. The mixture is heated to 85 degrees Centigrade and held there for 45 minutes. The solution is cooled to 30 degrees Centigrade. 1.03 grams of Wako Chemicals V-501 initiator is added, along with 0.51 grams of 40% sodium hydroxide solution. Heat the solution to 50°C, and maintain the solution at mat temperature.
  • oil solution A To the oil solution A, add 0.56 grams of tert-butyl amino ethyl methacrylate (Sigma Aldrich), 0.56 grams of beta-carboxy ethyl acrylate (Sigma Aldrich), and 46.23 grams of Sartomer CN975 (Sartomer, Inc.). Mix the acrylate monomers into the oil phase for 10 minutes. This will be called oil solution B. Use a Caframo mixer with a 4-blade pitched turbine agitator.
  • the microcapsules of Example 1 are pumped at a rate of 1 kg/hr into a co-current spray dryer (Niro Production Minor, 1.2 meter diameter) and atomized using a centrifugal wheel (100 mm diameter) rotating at 18,000 RPM. Dryer operating conditions are: air flow of 80 kg/hr, an inlet air temperature of 200 degrees Centigrade, an outlet temperature of 100 degrees Centigrade, dryer operating at a pressure of -150 millimeters of water vacuum. The dried powder is collected at the bottom of a cyclone. The collected microcapsules have an approximate particle diameter of 11 microns.
  • the equipment used the spray drying process may be obtained from the following suppliers: IKA Maschinene GmbH & Co. KG, Janke and Kunkel - Str. 10, D79219 Staufen, Germany; Niro A/S Gladsaxevej 305, P.O. Box 45, 2860 Soeborg, Denmark and Watson-Marlow Bredel Pumps Limited, Falmouth, Cornwall, TR11 4RU, England
  • microcapsules described in EXAMPLES 1-8 may be used as illustrated in the First Composition below at the indicated percentage.

Abstract

L'invention concerne un distributeur qui permet d'appliquer au moins deux compositions, le distributeur comprenant au moins deux réservoirs pour stocker les deux ou plus de deux compositions séparément, au moins deux pompes pour pomper les deux ou plus de deux compositions, une chambre de pré-mélange optionnelle pour mélanger les deux compositions avant leur distribution, au moins deux canaux pour distribuer les compositions à partir des réservoirs vers la chambre de pré-mélange ou la chambre de tourbillonnement, un orifice de sortie, un actionneur et un ensemble levier pour réduire la force d'actionnement requise pour activer les deux pompes ; la première composition comprenant des micro-capsules et la seconde composition comprenant un solvant volatil.
EP15767395.5A 2015-09-09 2015-09-09 Dispositifs de distribution de micro-capsules Withdrawn EP3347137A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/049118 WO2017044085A1 (fr) 2015-09-09 2015-09-09 Dispositifs de distribution de micro-capsules

Publications (1)

Publication Number Publication Date
EP3347137A1 true EP3347137A1 (fr) 2018-07-18

Family

ID=54151413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15767395.5A Withdrawn EP3347137A1 (fr) 2015-09-09 2015-09-09 Dispositifs de distribution de micro-capsules

Country Status (2)

Country Link
EP (1) EP3347137A1 (fr)
WO (1) WO2017044085A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL95045C (fr) 1953-06-30
US2730456A (en) 1953-06-30 1956-01-10 Ncr Co Manifold record material
US2800457A (en) 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US4552811A (en) 1983-07-26 1985-11-12 Appleton Papers Inc. Capsule manufacture
FR2662672B1 (fr) * 1990-05-31 1992-08-21 Aerosols & Bouchage Dispensateur de melange.
FR2686377B1 (fr) 1992-01-20 1994-03-25 Valois Pompe a precompression perfectionnee.
FR2719242B1 (fr) 1994-04-27 1996-07-12 Valois Sa Pompe à précompression perfectionnée.
US5578563A (en) 1994-08-12 1996-11-26 The Procter & Gamble Company Composition for reducing malodor impression on inanimate surfaces
CN1280088C (zh) 2000-09-06 2006-10-18 阿普尔顿纸张公司 原位微胶囊化胶粘剂
US20030216488A1 (en) * 2002-04-18 2003-11-20 The Procter & Gamble Company Compositions comprising a dispersant and microcapsules containing an active material
WO2006127453A2 (fr) 2005-05-23 2006-11-30 Appleton Papers Inc. Procédé de fabrication de capsule de type eau dans huile et microcapsules produites selon ce procédé
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
FR2971768B1 (fr) 2011-02-18 2013-03-22 Valois Sas Tete de distribution de produit fluide.

Also Published As

Publication number Publication date
WO2017044085A1 (fr) 2017-03-16

Similar Documents

Publication Publication Date Title
US9579676B1 (en) Dispensers for microcapsules
EP3151973B1 (fr) Rinçage de distributeurs pour fournir à l'utilisateur une régularité d'utilisation
US10086392B2 (en) Dispensers for dispensing microcapsules
US9839931B2 (en) Dispensers for dispensing microcapsules
EP3151972B1 (fr) Distributeur de lavage pour délivrer une expérience utilisateur cohérente
US9550200B2 (en) Dispensers for delivering a consistent consumer experience
EP3151977B1 (fr) Distributeur de lavage pour délivrer une expérience utilisateur cohérente
US20150352576A1 (en) Dispensers For Delivering A Consistent Consumer Experience
US9579677B2 (en) Flushing dispensers for delivering a consistent consumer experience
US9687867B2 (en) Dispensers for dispensing microcapsules
EP3359296A1 (fr) Distributeurs de microcapsules
US20180126400A1 (en) Flushing Dispensers for Delivering a Consistent Consumer Experience
EP3151976A1 (fr) Vidange de distributeurs garantissant à l'utilisateur une utilisation compatible
WO2017044087A1 (fr) Distributeurs de microcapsules
WO2017044085A1 (fr) Dispositifs de distribution de micro-capsules
WO2017044083A1 (fr) Distributeurs de distribution de microcapsules
WO2017044086A1 (fr) Distributeurs de microcapsules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20181113

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)