EP3342850A1 - Article en dose unitaire soluble dans l'eau comprenant une polyamine zwitterionique - Google Patents

Article en dose unitaire soluble dans l'eau comprenant une polyamine zwitterionique Download PDF

Info

Publication number
EP3342850A1
EP3342850A1 EP17191804.8A EP17191804A EP3342850A1 EP 3342850 A1 EP3342850 A1 EP 3342850A1 EP 17191804 A EP17191804 A EP 17191804A EP 3342850 A1 EP3342850 A1 EP 3342850A1
Authority
EP
European Patent Office
Prior art keywords
water
detergent composition
unit dose
laundry detergent
dose article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17191804.8A
Other languages
German (de)
English (en)
Inventor
Colin Ure
Alan Thomas Brooker
Nigel Patrick Somerville Roberts
Robby Renilde Francois Keuleers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US15/838,497 priority Critical patent/US20180179478A1/en
Priority to PCT/US2017/065676 priority patent/WO2018125554A1/fr
Publication of EP3342850A1 publication Critical patent/EP3342850A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3796Amphoteric polymers or zwitterionic polymers

Definitions

  • the present invention is to a water-soluble unit dose article comprising a laundry detergent composition wherein the detergent comprises a zwitterionic polyamine, and methods of using said unit dose article.
  • Water-soluble unit dose articles are liked by consumers due to their convenience and ease of use during the laundry operation.
  • Such water-soluble unit dose articles often comprise liquid laundry detergent compositions.
  • Non-soap surfactants are added to provide cleaning benefits.
  • due to the compact nature of unit dose articles there is finite space available for formulating actives into the composition. Therefore, there is a desire to reduce the overall levels of non-soap surfactant used, as non-soap surfactants tend to account for approximately 40% to 50% by weight of the detergent composition.
  • removal of surfactants can detrimentally affect cleaning performance.
  • WO2009153184 and EP2476743B1 teach low non-soap surfactant compositions in which loss of cleaning performance is compensated by addition of ethoxylated polyethyleneimines. Despite this, there remains a desire to further improve the cleaning benefit in low non-soap surfactant water-soluble unit dose formulations above that seen with ethoxylated polyethyleneimines.
  • a water-soluble unit dose article comprising low non-soap surfactant formulation and a zwitterionic polyamine provided improved stain removal benefits, especially particulate soil removal from fabrics as compared to a low non-soap surfactant formulation comprising ethoxylated polyethyleneimine.
  • a first aspect of the present invention is a water-soluble unit dose article comprising a water-soluble film and a laundry detergent composition, wherein the laundry detergent composition is preferably selected from a liquid, a solid or a mixture thereof, and wherein said detergent composition comprises;
  • a second aspect of the present invention is a process for washing fabrics comprising the steps of;
  • FIG. 1 is a water-soluble unit dose article according to the present invention.
  • the present invention discloses a water-soluble unit dose article comprising a water-soluble film and a laundry detergent composition.
  • the laundry detergent composition is described in more detail below.
  • the water-soluble film is described in more detail below.
  • the water-soluble unit dose article comprises the water-soluble film shaped such that the unit-dose article comprises at least one internal compartment surrounded by the water-soluble film.
  • the unit dose article may comprise a first water-soluble film and a second water-soluble film sealed to one another such to define the internal compartment.
  • the water-soluble unit dose article is constructed such that the detergent composition does not leak out of the compartment during storage. However, upon addition of the water-soluble unit dose article to water, the water-soluble film dissolves and releases the contents of the internal compartment into the wash liquor.
  • the compartment should be understood as meaning a closed internal space within the unit dose article, which holds the detergent composition.
  • a first water-soluble film may be shaped to comprise an open compartment into which the detergent composition is added.
  • a second water-soluble film is then laid over the first film in such an orientation as to close the opening of the compartment. The first and second films are then sealed together along a seal region.
  • the unit dose article may comprise more than one compartment, even at least two compartments, or even at least three compartments.
  • the compartments may be arranged in superposed orientation, i.e. one positioned on top of the other. In such an orientation the unit dose article will comprise three films, top, middle and bottom.
  • the compartments may be positioned in a side-by-side orientation, i.e. one orientated next to the other.
  • the compartments may even be orientated in a 'tyre and rim' arrangement, i.e. a first compartment is positioned next to a second compartment, but the first compartment at least partially surrounds the second compartment, but does not completely enclose the second compartment.
  • one compartment maybe completely enclosed within another compartment.
  • the unit dose article comprises at least two compartments, one of the compartments may be smaller than the other compartment.
  • the unit dose article comprises at least three compartments, two of the compartments may be smaller than the third compartment, and preferably the smaller compartments are superposed on the larger compartment.
  • the superposed compartments preferably are orientated side-by-side.
  • the detergent composition according to the present invention may be comprised in at least one of the compartments. It may for example be comprised in just one compartment, or may be comprised in two compartments, or even in three compartments.
  • Each compartment may comprise the same or different compositions.
  • the different compositions could all be in the same form, or they may be in different forms.
  • the water-soluble unit dose article may comprise at least two internal compartments, wherein the laundry detergent composition is comprised in at least one of the compartments, preferably wherein the unit dose article comprises at least three compartments, wherein the detergent composition is comprised in at least one of the compartments.
  • the water-soluble unit dose article may comprise at least two compartments, preferably at least three compartments, wherein the laundry detergent composition is comprised within at least one compartment.
  • the laundry detergent composition may represent a culmination of ingredients located within all the compartments of the unit dose article.
  • FIG.1 discloses a water-soluble unit dose article (1) according to the present invention.
  • the water-soluble unit dose article (1) comprises a first water-soluble film (2) and a second water-soluble film (3) which are sealed together at a seal region (4).
  • the laundry detergent composition (5) is comprised within the water-soluble soluble unit dose article (1).
  • the water-soluble unit dose article comprises a laundry detergent composition.
  • the laundry detergent composition may be a liquid, a solid or a mixture thereof.
  • solid laundry detergent composition refers to any laundry detergent composition that is solid. Solid can include, particles, compressed solids or a mixture thereof.
  • liquid laundry detergent composition refers to any laundry detergent composition comprising a liquid capable of wetting and treating a fabric, and includes, but is not limited to, liquids, gels, pastes, dispersions and the like.
  • the liquid composition can include solids or gases in suitably subdivided form, but the liquid composition excludes forms which are non-fluid overall, such as tablets or granules.
  • the detergent composition can be used in a fabric hand wash operation or may be used in an automatic machine fabric wash operation.
  • the laundry detergent composition comprises a zwitterionic polyamine.
  • the zwitterionic polyamine is described in more detail below.
  • the water-soluble unit dose article may comprise between 0.01% to about 20%, preferably from 0. 1% to 10%, more preferably from 0.5% to 7%, even more preferably from 1% to 5%, most preferably from 2% to 4% by weight of the laundry detergent composition of the zwitterionic polyamine.
  • the laundry detergent composition comprises between 10% and 40%, preferably between 12% and 37%, more preferably between 15% and 35% by weight of the laundry detergent composition of a non-soap surfactant.
  • the non-soap surfactant optionally comprises a non-ionic surfactant and wherein the laundry detergent composition preferably comprises between 0% and 10%, preferably between 0.01% and 8%, more preferably between 0.1% and 6%, most preferably between 0.15% and 4% by weight of the laundry detergent composition of a non-ionic surfactant.
  • the non-ionic surfactant is selected from alcohol alkoxylate, an oxo-synthesised alcohol alkoxylate, Guerbet alcohol alkoxylates, alkyl phenol alcohol alkoxylates or a mixture thereof.
  • Suitable alcohol ethoxylate nonionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, guerbet, primary or secondary, and generally contains from 8 to 22 carbon atoms.
  • the starting alcohol can be naturally derived, e.g. starting from natural oils, or synthetically derived, e.g. alcohols obtained from for example oxo-, modified oxo- or Fischer-Tropsch processes. Examples of oxo-process derived alcohols include the Lial and Isalchem alcohols ex Sasol company and Lutensol alcohols ex BASF company.
  • modified-oxo process derived alcohols examples include the Neodol alcohols ex Shell company.
  • Fischer-Tropsch derived alcohols include Safol alcohols ex Sasol company.
  • the alkoxylate chain of alcohol ethoxylates is made up solely of ethoxylate groups.
  • the alcohol ethoxylate non-ionic surfactant comprises on average between 8 and 18, more preferably between 10 and 16 even more preferably between 12 and 15 carbon atoms in the alcohol carbon chain, and on average between 5 and 12, preferably between 6 and 10, more preferably between 7 and 8 ethoxy units in the ethoxylation chain.
  • the non-soap surfactant comprises linear alkylbenzene sulphonate and wherein the laundry detergent composition comprises between 5% and 20%, preferably between 10% and 17% by weight of the laundry detergent composition of the linear alkylbenzene sulphonate.
  • the non-soap surfactant comprises an alkyl sulphate, alkoxylated alkyl sulphate or a mixture thereof and wherein the laundry detergent composition comprises between 5% and 20%, preferably between 7% and 18%, more preferably between 10% and 17% by weight of the alkyl sulphate, alkoxylated alkyl sulphate or a mixture thereof.
  • the alkoxylated alkyl sulphate is an ethoxylated alkyl sulphate with an average degree of ethoxylation of between 0.5 and 7, preferably between 1 and 5, more preferably between 2 and 4, most preferably about 3.
  • the non-soap surfactant comprises a mixture of one or more alkoxylated alkyl sulphates, preferably ethoxylated alkyl sulphates, and optionally an alkyl sulphate, the mixture having an average degree of ethoxylation of between 0.5 and 7, preferably between 1 and 5, more preferably between 2 and 4, most preferably about 3.
  • the weight ratio of alkoxylated alkyl sulphate to linear alkylbenzene sulphonate is from 2:1 to 1:8 preferably from 1:1 to 1:5 most preferably from 1:1.25 to 1:4.
  • the weight ratio of non-soap anionic surfactant to non-ionic surfactant is from 1:1 to 40:1, preferably from 1:1 to 20:1, more preferably from 1.3:1 to 15:1, even more preferably from 1.5:1 to 10:1.
  • the laundry detergent composition comprises between 10% and 60%, preferably between 12% and 50%, most preferably between 15% and 40% by weight of the laundry detergent composition of a non-aqueous solvent.
  • the non-aqueous solvent is selected from 1,2-Propanediol, glycerol, sorbitol, dipropylene glycol, tripropyleneglycol, polypropylene glycol or a mixture thereof.
  • the water-soluble unit dose article comprises 15% or less by weight of the unit dose article of water, preferably the unit dose article comprises between 0.1% and 15%, more preferably between 1% and 12.5% by weight of the unit dose article of water.
  • the laundry detergent composition may comprise a polymer selected from amphiphilic graft copolymers, carboxymethyl cellulose, modified carboxymethylcellulose, polyester terephthalate polymers, hydroxyethylcellulose, modified hydroxyethylcellulose or a mixture thereof. Especially preferred are cationic modified hydroxyethylcellulose.
  • the laundry detergent composition comprises between 0.5% and 10%, preferably between 0.75% and 7%, more preferably between 1.5% and 5% by weight of the laundry detergent composition of the polymer.
  • the laundry detergent composition comprises between 0% and 10%, preferably between 0.1% and 7%, more preferably between 0.2% and 5% by weight of the laundry detergent composition of a fatty acid, a neutralised fatty acid soap or a mixture thereof.
  • the water-soluble unit dose article comprises less than 3%, preferably less than 2% by weight of the laundry detergent composition of ethoxylated polyethyleneimine.
  • the laundry detergent composition may comprise essentially no ethoxylated polyethyleneimine.
  • the laundry detergent composition may comprise low levels of an ethoxylated polyethyleneimine.
  • the laundry detergent composition may comprise between 0.01% and 3%, preferably between 0.01% and 2% by weight of the laundry detergent composition of an ethoxylated polyethyleneimine.
  • the laundry detergent composition comprises a zwitterionic polyamine.
  • the zwitterionic polyamine is selected from zwitterionic polyamines having the following formula :
  • R is C3-C20 preferably C5-C10 more preferably C6-C8 linear or branched alkylene, and mixtures thereof, most preferably linear C6.
  • R 1 is an anionic or partially anionic unit-capped polyalkyleneoxy unit having the formula : - (R2O)xR3, wherein R2 is C2-C4 linear or branched alkylene, and mixtures thereof, preferably C2 or branched C3 and mixtures thereof, more preferably C2 (ethylene); R3 is hydrogen, an anionic unit, and mixtures thereof, in which not all R3 groups are hydrogen; x is from about 5 to about 50, preferably from about 10 to about 40, even more preferably from about 15 to about 30, most preferably from about 20 to about 25. A preferred value for x is 24, especially when R 1 comprises entirely ethyleneoxy units.
  • the formulator chooses to form the alkyleneoxy units, the wider or narrower the range of alkyleneoxy units present.
  • the formulator will recognize that when ethoxylating a zwitterionic polyamine, only an average number or statistical distribution of alkyleneoxy units will be know. x values highlighted represent average values per polyalkoxy chain.
  • the range of alkyleneoxy units within the zwitterionic polyamine is plus or minus two units, more preferably plus or minus one unit. Most preferably each R 1 group comprises about the same average number of alkyleneoxy units.
  • R3 anionic units include -(CH2)pCO2M; -(CH2)qSO3M;-(CH2)qOS03M; -(CH2)qCH(SO2M)-CH2SO3M; -(CH2)qCH(OS02M)CH2OS03M; (CH2)qCH(SO3M)CH2SO3M; -(CH2)pP03M; -P03M ; -S03M and mixtures thereof; wherein M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance.
  • Preferred anionic units are -(CH2)pC02M; -S03M, more preferably -S03M (sulfonate group).
  • indices p and q are integers from 0 to 6, preferably 0 to 2, most preferably 0.
  • all M units can either be a hydrogen atom or a cation depending upon the form isolated by the artisan or the relative pH of the system wherein the compound is used.
  • preferred cations include sodium, potassium, ammonium, and mixtures thereof.
  • Q is a quaternizing unit selected from the group consisting of C1-C30 linear or branched alkyl, C6-C30 cycloalkyl, C7-C30 substituted or unsubstituted alkylenearyl, and mixtures thereof, preferably C1-C30 linear or branched alkyl, even more preferably C1-C10 or even C1-C5 linear or branched alkyl, most preferably methyl; the degree of quaternization preferably is more than 50%, more preferably more than 70%, even more preferably more than 90%, most preferably about 100%.
  • X is an anion present in sufficient amount to provide electronic neutrality, preferably a water soluble anion selected from the group consisting of chlorine, bromine, iodine, methylsulfate, and mixtures thereof, more preferably chloride.
  • the counter ion X will be derived from the unit which is used to perform the quaternization. For example, if methyl chloride is used as the quaternizing agent, chlorine (chloride ion) will be the counter ion X. Bromine (bromide ion) will be the dominant counter ion in the case where benzyl bromide is the quaternizing reagent.
  • n is from 0 to 4, preferably 0 to 2, most preferably 0.
  • R3 groups Preferably from about 10% to about 100%, more preferably from about 20% to about 70%, even more preferably from 30% to about 50%, most preferably from about 35% to about 45% of the R3 groups are an anionic unit, preferably a sulfonate unit, the remaining R3 units being hydrogen.
  • Particularly preferred zwitterionic polyamines are zwitterionic hexamethylene diamines according to the following formula:
  • R is an anionic or partially anionic unit-capped polyalkyleneoxy unit having the formula: - (R2O)xR3 wherein R2 is C2-C4 linear or branched alkylene, and mixtures thereof, preferably C2 or branched C3 and mixtures thereof, even more preferably C2 (ethylene); R3 is hydrogen, an anionic unit, and mixtures thereof, in which not all R3 groups are hydrogen; x is from about 5 to about 50, preferably from about 10 to about 40, even more preferably from about 15 to about 30, most preferably from about 20 to about 25. A preferred value for x is 24, especially when R comprises entirely ethyleneoxy units.
  • the formulator chooses to form the alkyleneoxy units, the wider or narrower the range of alkyleneoxy units present.
  • the formulator will recognize that when ethoxylating a zwitterionic polyamine, only an average number or statistical distribution of alkyleneoxy units will be know. x values highlighted represent average values per polyalkoxy chain.
  • the range of alkyleneoxy units within the zwitterionic polyamine is plus or minus two units, more preferably plus or minus one unit. Most preferably each R group comprises about the same average number of alkyleneoxy units.
  • R3 anionic units include -(CH2)pCO2M; -(CH2)qSO3M;-(CH2)qOS03M; -(CH2)qCH(SO2M)-CH2SO3M; -(CH2)qCH(OS02M)CH2OSO3M; - (CH2)qCH(SO3M)CH2SO3M; -(CH2)pP03M; -P03M ; -S03M and mixtures thereof; wherein M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance.
  • Preferred anionic units are -(CH2)pC02M; -S03M, more preferably -S03M (sulfonate group).
  • indices p and q are integers from 0 to 6, preferably 0 to 2, most preferably 0.
  • all M units can either be a hydrogen atom or a cation depending upon the form isolated by the artisan or the relative pH of the system wherein the compound is used.
  • preferred cations include sodium, potassium, ammonium, and mixtures thereof.
  • Q is a quaternizing unit selected from the group consisting of C1-C30 linear or branched alkyl, C6-C30 cycloalkyl, C7-C30 substituted or unsubstituted alkylenearyl, and mixtures thereof, preferably C1-C30 linear or branched alkyl, even more preferably C1-C10 or even C1-C5 linear or branched alkyl, most preferably methyl; the degree of quaternization preferably is more than 50%, more preferably more than 70%, even more preferably more than 90%, most preferably about 100%.
  • X is an anion present in sufficient amount to provide electronic neutrality, preferably a water soluble anion selected from the group consisting of chlorine, bromine, iodine, methylsulfate, and mixtures thereof, more preferably chloride.
  • the counter ion X will be derived from the unit which is used to perform the quaternization. For example, if methyl chloride is used as the quaternizing agent, chlorine (chloride ion) will be the counter ion X. Bromine (bromide ion) will be the dominant counter ion in the case where benzyl bromide is the quaternizing reagent.
  • R3 groups Preferably from about 10% to about 100%, more preferably from about 20% to about 70%, even more preferably from 30% to about 50%, most preferably from about 35% to about 45% of the R3 groups are an anionic unit, preferably a sulfonate unit, the remaining R3 units being hydrogen.
  • Most preferred compound is the zwitterionic hexamethylene diamine represented by the following formula: in which approximately 40% of the polyethoxy groups are sulfonated, the remaining polyethoxy groups being hydrogen capped.
  • the degree of quaternization preferably is more than 90%, most preferably about 100%.
  • the water soluble counter-anion is selected from the group consisting of chlorine, bromine, iodine, methylsulfate, and mixtures thereof, more preferably chloride.
  • the described zwitterionic polyamines can be made using techniques previously described in the art, and as such those skilled in the art would understand how to produce such compounds.
  • the polyamine is first alkoxylated for example ethoxylated with ethylene oxide, followed by a quaternization step for example by reacting the alkoxylated polyamine with dimethylsulfate, and finally an anionic group substitution step for example by reacting the quaternized alkoxylated polyamine with chlorosulfonic acid.
  • the film of the present invention is soluble or dispersible in water.
  • the water-soluble film preferably has a thickness of from 20 to 150 micron, preferably 35 to 125 micron, even more preferably 50 to 110 micron, most preferably about 76 micron.
  • the film has a water-solubility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out here after using a glass-filter with a maximum pore size of 20 microns:
  • Preferred film materials are preferably polymeric materials.
  • the film material can, for example, be obtained by casting, blow-moulding, extrusion or blown extrusion of the polymeric material, as known in the art.
  • Preferred polymers, copolymers or derivatives thereof suitable for use as pouch material are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum.
  • More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof.
  • the level of polymer in the pouch material for example a PVA polymer, is at least 60%.
  • the polymer can have any weight average molecular weight, preferably from about 1000 to 1,000,000, more preferably from about 10,000 to 300,000 yet more preferably from about 20,000 to 150,000.
  • polymers and/or copolymers can also be used as the pouch material, especially mixtures of polyvinylalcohol polymers and/or copolymers, especially mixtures of polyvinylalcohol homopolymers and/or anionic polyvinylalcohol copolymers preferably selected from sulphonated and carboxylated anionic polyvinylalcohol copolymers especially carboxylated anionic polyvinylalcohol copolymers.
  • the water soluble film comprises a blend of a polyvinylalcohol homopolymer and a carboxylated anionic polyvinylalcohol copolymer.
  • Preferred films exhibit good dissolution in cold water, meaning unheated distilled water.
  • Preferably such films exhibit good dissolution at temperatures of 24°C, even more preferably at 10°C.
  • good dissolution it is meant that the film exhibits water-solubility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out here after using a glass-filter with a maximum pore size of 20 microns, described above.
  • Preferred films are those supplied by Monosol under the trade references M8630, M8900, M8779, M8310.
  • the film may be opaque, transparent or translucent.
  • the film may comprise a printed area.
  • the area of print may be achieved using standard techniques, such as flexographic printing or inkjet printing.
  • the film may comprise an aversive agent, for example a bittering agent.
  • Suitable bittering agents include, but are not limited to, naringin, sucrose octaacetate, quinine hydrochloride, denatonium benzoate, or mixtures thereof.
  • Any suitable level of aversive agent may be used in the film. Suitable levels include, but are not limited to, 1 to 5000ppm, or even 100 to 2500ppm, or even 250 to 2000rpm.
  • a further aspect of the present invention is a process for washing fabrics comprising the steps of;
  • the wash process maybe conducted in a hand wash operation, an automatic wash machine operation or a mixture thereof.
  • a first water-soluble film may be shaped to comprise an open compartment into which the detergent composition is added.
  • a second water-soluble film is then laid over the first film in such an orientation as to close the opening of the compartment.
  • the first and second films are then sealed together along a seal region using known sealing means such as solvent, heat or a mixture thereof.
  • a particulate stain removal wash test was performed single variably comparing a water-soluble unit dose laundry formulation according to the invention comprising between 10% and 40% by weight of the composition of total non soap surfactant and a zwitterionic polyamine, with a comparative formula outside the scope of the invention comprising an ethoxylated polyimine soil release polymer instead known to be effective on particulate stain removal.
  • a short cotton cycle at 40°C and 9 gpg water hardness was selected on a Miele washing machine (model 3622). Total run time was 90 minutes.
  • 2.5 kg cotton ballast loads (sourced from Warwick Equest Ltd. Unit 55, Consett Business Park, Consett, County Durham, DH8 6BN) were added together with a soiled load (2 SBL2004 soiled ballast sheets ex wfk Testgewebe GmbH Christenfeld 10, D-41379 Bruggen-Bracht Germany order ref 10996) and together with stained cotton test fabrics (sourced from Warwick Equest Ltd. Unit 55, Consett Business Park, Consett, County Durham, DH8 6BN). Test products were added directly into the drum prior to starting the wash cycle. After washing ballast and soiled load and test fabrics were tumble dried in a Miele tumble dryer set to "extra dry".
  • the stained cotton test fabrics were washed with one of the test products described below. The results were then analysed by image analysis which is a method that enables to calculate the amount of stain that is removed. Stains are imaged before washing and after washing. The imaging calculates the amount of stain removed, reflected as a stain removal index (SRI - % stain removed). SRI of 100 means complete removal and SRI of zero means no removal.
  • the Laundry Image Analysis system measures stain removal on technical stain swatches.
  • the system utilizes a video camera to acquire colour images of swatches. An image of the swatch is taken before and after it is washed. The acquired image is then analysed by computer software (Procter and Gamble Global R&D computing). The software compares the unwashed stain to the washed stain, as well as the unwashed fabric to the washed fabric. The result is expressed as a stain removal index.
  • the following water-soluble unit dose laundry compositions were prepared through mixing of the individual components. 18.5g of Base product was added via a dosing ball in each wash test. Lutensol FP620 (ethoxylated polyimine polymer ex BASF - PEI600EO20) and Lutensit Z96 (zwitterionic polyamine ex BASF - zwitterionic hexamethylene diamine according to below formula : 100% quaternized and about 40% of the polyethoxy (EO24) groups are sulfonated) were added on top as 1% solutions in water adjusted to pH 7.5, prepared as described below. Fatty acid was directly added on top of the base product.
  • Lutensol FP620 ethoxylated polyimine polymer ex BASF - PEI600EO20
  • Lutensit Z96 zwitterionic polyamine ex BASF - zwitterionic hexamethylene diamine according to below formula : 100% quaternized and about 40% of the polyethoxy (EO24) groups are s
  • the particulate stain removal data summarized in table 1 and 2 below show the example compositions according to the invention comprising both between 10% and 40% by weight of the liquid laundry detergent composition of total non-soap surfactant and the zwitterionic polyamine to be more effective in particulate soil removal than comparative example formulations outside the scope of the invention single variable differing in soil removal polymer chemistry.
  • the effect has been shown within formulations not comprising a fatty acid (table 1) as well as for compositions comprising a fatty acid (table 2).
  • Table 1 % Particulate stain removal in nil fatty acid nonaqueous laundry liquid formulation Soil Comparative Example 1
  • Example 1 Difference in stain removal % Improvement in stain removal Black todd clay 56.4 61.1 4.7 8.3 Brown silica sand 15.0 22.8 7.8 52.0 Grass 81.7 83.3 1.6 2.0 Hoover dust 53.1 59.4 6.3 11.9 Humax Peat 30.6 34.5 3.9 12.7 NTC clay 33.2 37.8 4.6 13.9 Stanley clay 36.1 40.6 4.5 12.5 Average 43.7 48.5 4.8 16.2
  • Table 2 % Particulate stain removal in fatty acid comprising nonaqueous laundry liquid formulation Soil Comparative Example 2
  • Example 2 Difference in stain removal % Improvement in stain removal Black todd clay 65.0 65.9 0.9 1.4 Brown silica sand 29.0 33.5 4.5 15.5 Grass 86.6 86.7 0.1 0.1 Hoover dust 68.8 71.8 3.0 4.4 Humax Peat 45.0 47.5 2.5 5.6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP17191804.8A 2016-12-28 2017-09-19 Article en dose unitaire soluble dans l'eau comprenant une polyamine zwitterionique Withdrawn EP3342850A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/838,497 US20180179478A1 (en) 2016-12-28 2017-12-12 Water-soluble unit dose article comprising zwitterionic polyamine
PCT/US2017/065676 WO2018125554A1 (fr) 2016-12-28 2017-12-12 Article en dose unitaire hydrosoluble comprenant une polyamine zwitterionique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16207081 2016-12-28

Publications (1)

Publication Number Publication Date
EP3342850A1 true EP3342850A1 (fr) 2018-07-04

Family

ID=57614270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17191804.8A Withdrawn EP3342850A1 (fr) 2016-12-28 2017-09-19 Article en dose unitaire soluble dans l'eau comprenant une polyamine zwitterionique

Country Status (2)

Country Link
EP (1) EP3342850A1 (fr)
WO (1) WO2018125554A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786272A1 (fr) 2019-09-02 2021-03-03 BlueSun Consumer Brands, S.L. Composition de détergent à lessive liquide à dose unitaire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666579A1 (fr) * 2004-11-22 2006-06-07 The Procter & Gamble Company Poche contenant du liquide soluble dand l'eau
WO2007111888A1 (fr) * 2006-03-22 2007-10-04 The Procter & Gamble Company Composition de traitement liquide en doses unitaires
WO2009153184A1 (fr) 2008-06-16 2009-12-23 Unilever Plc Perfectionnements relatifs au nettoyage de tissus
EP2399979A1 (fr) * 2010-06-24 2011-12-28 The Procter & Gamble Company Articles à dose unitaire solubles comprenant un polymère cationique
US20120077725A1 (en) * 2010-09-20 2012-03-29 Xiaoru Jenny Wang Fabric care formulations and methods
EP2476743B1 (fr) 2011-04-04 2013-04-24 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Procédé de lavage du linge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666579A1 (fr) * 2004-11-22 2006-06-07 The Procter & Gamble Company Poche contenant du liquide soluble dand l'eau
WO2007111888A1 (fr) * 2006-03-22 2007-10-04 The Procter & Gamble Company Composition de traitement liquide en doses unitaires
WO2009153184A1 (fr) 2008-06-16 2009-12-23 Unilever Plc Perfectionnements relatifs au nettoyage de tissus
EP2399979A1 (fr) * 2010-06-24 2011-12-28 The Procter & Gamble Company Articles à dose unitaire solubles comprenant un polymère cationique
US20120077725A1 (en) * 2010-09-20 2012-03-29 Xiaoru Jenny Wang Fabric care formulations and methods
EP2476743B1 (fr) 2011-04-04 2013-04-24 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Procédé de lavage du linge

Also Published As

Publication number Publication date
WO2018125554A1 (fr) 2018-07-05

Similar Documents

Publication Publication Date Title
EP3342849B1 (fr) Article en dose unitaire soluble dans l'eau comprenant un polyéthylènéimine ethoxylaté
EP3517596B1 (fr) Procédé de fabrication d'une composition détergente liquide opaque
EP3647399A1 (fr) Article de dose unitaire soluble dans l'eau à compartiments multiples
US10323220B2 (en) Laundry detergent composition comprising a cyclic diamine and an amphoteric/anionic surfactant mixture
US20190048298A1 (en) Water-soluble unit dose article comprising an amphiphilic graft polymer and a polyester terephthalate
US11066514B2 (en) Soil release polymer composition comprising an anionic modified polyester
US20190284507A1 (en) Water-soluble unit dose article comprising zwitterionic polyamine
EP3330345A1 (fr) Utilisation d'un copolymère de greffage amphiphile comme inhibiteur de transfert de colorant
EP3342847B1 (fr) Article en dose unitaire soluble dans l'eau comprenant un polyamine zwitterionique
EP3342850A1 (fr) Article en dose unitaire soluble dans l'eau comprenant une polyamine zwitterionique
US20180179478A1 (en) Water-soluble unit dose article comprising zwitterionic polyamine
EP3363884A1 (fr) Utilisation d'une composition détergente liquide pour le lavage dans une dose unitaire soluble dans l'eau afin de réduire au minimum les effets défavorables d'une exposition accidentelle à cette composition
EP3495466A1 (fr) Utilisation d'une composition de détergent à lessive liquide
EP3441413A1 (fr) Article de dose unitaire soluble dans l'eau comprenant un polyester téréphtalate et une carboxyméthylcellulose
EP3591028A1 (fr) Utilisation d'un copolymère tribloc d'oxyde d'éthylène-oxyde de propylène-oxyde d'éthylène (eo/po/eo) dans un article à dose unitaire soluble dans l'eau pour en améliorer la résistance et minimiser son gonflement
EP3178914B1 (fr) Composition détergente liquide pour le lavage du linge
EP3441445A1 (fr) Article de dose unitaire soluble dans l'eau comprenant un polymère greffé amphiphile et une carboxyméthylcellulose
EP3363885A1 (fr) Utilisation d'une composition détergente liquide pour le lavage afin de réduire au minimum les effets vomitifs et comateux lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau
EP3363882A1 (fr) Utilisation d'une composition détergente liquide pour le lavage afin de réduire au minimum les effets défavorables lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau
US20240076587A1 (en) Water-soluble film and water-soluble unit dose article made therefrom
EP3623459B1 (fr) Article de dose unitaire soluble dans l'eau
EP3363887A1 (fr) Utilisation d'une composition de détergent à lessive liquide afin de réduire au minimum les effets indésirables lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau
EP3363888A1 (fr) Utilisation d'une composition détergente liquide pour le lavage afin de réduire au minimum les effets défavorables lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau
EP3363883A1 (fr) Utilisation d'une composition détergente liquide pour le lavage afin de réduire au minimum les effets défavorables lors d'une exposition accidentelle à des contenus d'articles de dose unitaire solubles dans l'eau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190105