EP3332063B1 - Method for producing paper - Google Patents

Method for producing paper Download PDF

Info

Publication number
EP3332063B1
EP3332063B1 EP16750742.5A EP16750742A EP3332063B1 EP 3332063 B1 EP3332063 B1 EP 3332063B1 EP 16750742 A EP16750742 A EP 16750742A EP 3332063 B1 EP3332063 B1 EP 3332063B1
Authority
EP
European Patent Office
Prior art keywords
weight
units
mol
acid
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16750742.5A
Other languages
German (de)
French (fr)
Other versions
EP3332063A1 (en
Inventor
Anton Esser
Hans-Joachim Haehnle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solenis Technologies Cayman LP
Original Assignee
Solenis Technologies Cayman LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solenis Technologies Cayman LP filed Critical Solenis Technologies Cayman LP
Publication of EP3332063A1 publication Critical patent/EP3332063A1/en
Application granted granted Critical
Publication of EP3332063B1 publication Critical patent/EP3332063B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/38Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing crosslinkable groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/38Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing crosslinkable groups
    • D21H17/40Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing crosslinkable groups unsaturated
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/24Addition to the formed paper during paper manufacture
    • D21H23/26Addition to the formed paper during paper manufacture by selecting point of addition or moisture content of the paper
    • D21H23/28Addition before the dryer section, e.g. at the wet end or press section
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard

Definitions

  • the invention relates to a process for the production of paper and board, comprising adding this aqueous suspension to a paper stock, dewatering the paper stock obtained and then pressing the paper sheet and drying it.
  • Paper production is a process in which a solid phase consisting of cellulose or wood fibers and various inorganic additives is separated from an aqueous phase.
  • the initial concentration of the solid phase in the paper stock suspension (thin stock) is typically in a range between 15 g/l and 1.5 g/l.
  • the separation of the solid phase and the aqueous phase takes place in several stages and can be modulated within these stages through the choice of mechanical parameters or the targeted addition of chemical additives.
  • the paper stock is dewatered by spraying it onto a screen or by injecting it between two screens, which are referred to as the bottom screen or top screen, depending on their position relative to the injected paper stock.
  • the water is separated from the paper stock solely by gravity or by a combination of gravity and centrifugal forces and runs off through the openings of the wires.
  • retention and drainage aids also plays an important role in wire drainage.
  • chemical additives include, in particular, high-molecular, slightly cationic polyacrylamides, cationic starch, but also polymers based on vinylformamide and ethyleneimine. That's how she describes it US6273998 the use of vinylamine copolymers in combination with microparticles such as bentonite as a retention aid that is added to the paper stock in the wet-end process.
  • EP-A-950138 the two-stage treatment of paper stock with a cationic polymer and microparticles and after shearing in the second stage with a cross-linked anionic polymer.
  • WO-A-04/087818 WO-A-05/012637 and WO-A-2006/066769 describe aqueous slurries of finely divided fillers which have been treated with water-soluble amphoteric copolymers based on polyvinylamine. These slurries make it possible to increase the filler content in paper while retaining the paper properties, in particular dry strength.
  • the dryness achieved in the wire section depends not only on the mechanical requirements of the wire section and the choice of chemical additives, but also very much on the paper stock system and the basis weight of the paper web. Even if the primary goal is efficient dewatering of the paper stock, good end properties of the paper should continue to be achieved will. Dewatering too quickly can lead to premature immobilization of the paper fibers and thus lead to poor strength properties or poor optical properties.
  • Initial wet structural strength is the strength of a wet paper that has never been dried. This is the strength of a wet paper as it is in papermaking after it has passed through the wire and press sections of the paper machine. It typically contains about 50% water.
  • An increase in the initial wet structure strength allows the application of higher pull-off forces and thus faster operation of the paper machine (cf. EP-A-0 780 513 ) or the use of larger amounts of filler.
  • the WO 2009/156274 teaches the use of amphoteric copolymers, which can be obtained by copolymerization of N-vinylcarboxamide with anionic comonomers and subsequent hydrolysis of the vinylcarboxamide, as a paper stock additive to increase the initial wet structural strength of paper.
  • the treatment takes place, for example, in the thick stock or in the thin stock in the paper manufacturing process.
  • the DE 60115692 T2 describes a process for making paper from paperboard, comprising forming a cellulosic suspension, flocculating the suspension, draining the suspension on a screen to form a sheet and then drying the sheet, characterized in that the suspension is flocculated using a flocculation system comprising a siliceous material and organic microparticles having an unswollen particle diameter of less than 750 nanometers.
  • the invention was based on the object of increasing the initial wet structure strength of the still moist paper web before the transition to the drying section during the production of paper, in order to achieve higher machine speeds in the paper production process compared to known methods.
  • the designation for the molded body made of fibrous material changes.
  • paper should be understood to mean a mass per unit area of 7 g/m 2 to 225 g/m 2 and cardboard should be understood to mean a mass per unit area of from 225 g/m 2 .
  • Paper stock also referred to as pulp
  • pulp is understood below to mean a mixture of substances consisting of one or more types of fibrous substances, fillers and various auxiliary substances suspended in water before sheet formation.
  • Total paper stock is the paper stock after the addition of all filler slurries and auxiliaries. If it is a reference to the total dry paper stock, also referred to as total paper stock (solid), this is to be understood as the mass that results from the dryness determination according to DIN EN ISO 638 DE.
  • Fillers are provided as so-called aqueous slurry and mixed with the rest of the paper stock.
  • the term filler includes calcium carbonate, which can be used in the form of ground (GCC) lime, chalk, marble or precipitated calcium carbonate (PCC).
  • filler is to be understood as meaning particles with an average particle size (volume average) of ⁇ 10 ⁇ m, preferably from 0.3 to 5 ⁇ m, in particular from up to 0.5 to 2 ⁇ m.
  • the mean particle size (volume mean) of the fillers is generally determined in the context of this document using the method of quasi-elastic light scattering (DIN-ISO 13320-1), for example using a Mastersizer 2000 from Malvern Instruments Ltd. Fillers usually have a BET specific surface area of ⁇ 20 m 2 /g.
  • Aqueous slurry is understood to mean a composition containing filler, which generally has a filler content of ⁇ 5% by weight, based on the aqueous slurry.
  • the suspension preferably contains 10 to 70% by weight, in particular 20 to 60% by weight, of filler.
  • the aqueous suspension of the filler can also contain additional organic or inorganic auxiliaries.
  • an aqueous slurry which comprises at least one inorganic filler, a water-soluble amphoteric polymer and microparticles.
  • the water-soluble amphoteric polymer can be obtained by copolymerizing the monomer mixture comprising the monomers a) and b) and subsequent complete or partial hydrolysis of the —CO—R 1 groups of the polymer.
  • the choice of the monomer composition and the degree of hydrolysis ensures that the difference in the proportions of the cationic and the anionic monomer units in moles, based in each case on the total number of moles of all monomer units, is an absolute maximum of 10 mol%.
  • the ratio of amidine units to amine units is, for example, 100:1 to 1:30, preferably 40:1 to 1:15, particularly preferably 8:1 to 1:8.
  • cationic units are the sum of amine and amidine units
  • anionic units include the acid units which are formed during the copolymerization from the monomers of group (b) and which are present in the form of the free acid groups and/or in present in salt form.
  • group (a) monomers are open-chain N-vinylamide compounds of the formula (I), such as N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N- ethylacetamide, N-vinylpropionamide and N-vinyl-N-methylpropionamide and N-vinylbutyramide.
  • the monomers of group (a) can be used alone or as a mixture in the copolymerization with the monomers of the other groups. From this group, preference is given to using N-vinylformamide in the copolymerization.
  • copolymers to be used according to the invention contain at least one monomer from group (b) that is a monoethylenically unsaturated monomer having at least one free acid group or at least one acid group in salt form.
  • the acid group can be present as a free acid group or in a salt form.
  • Preferred salts are the water-soluble salts such as alkali metal, alkaline earth metal or ammonium salts.
  • Suitable bases for the partial or complete neutralization of the acid groups of the monomers (b) are, for example, alkali metal or alkaline earth metal bases, ammonia, amines and/or alkanolamines.
  • alkali metal or alkaline earth metal bases ammonia, amines and/or alkanolamines.
  • alkali metal or alkaline earth metal bases ammonia, amines and/or alkanolamines.
  • Suitable monomers of this group (b) are, for example, monoethylenically unsaturated sulfonic acids, phosphonic acids, monocarboxylic acids and dicarboxylic acids and their salts. Also suitable are monoethylenically unsaturated monoesters of phosphonic acids, monoamides of phosphonic acids, and dicarboxylic acid anhydrides. Suitable monomers (b) are also esters of phosphoric acid with alcohols having a polymerizable, ⁇ , ⁇ -ethylenically unsaturated double bond. One or the two remaining protons of the phosphoric acid group can be neutralized by suitable bases. In addition, another acid function can be esterified with alcohols that do not have any polymerizable double bonds.
  • saturated alcohols for esterifying phosphoric acid are C 1 -C 6 -alkanols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, n-hexanol and their isomers.
  • Possible group (b) monomers are, for example, monoethylenically unsaturated carboxylic acids having 3 to 8 carbon atoms and the water-soluble salts such as alkali metal, alkaline earth metal or ammonium salts of these carboxylic acids.
  • This group of monomers includes, for example, acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, glutaconic acid, aconitic acid, methylenemalonic acid, allylacetic acid, vinylacetic acid and crotonic acid.
  • the dicarboxylic acid anhydrides of the abovementioned acids are also suitable.
  • the aforementioned monomers (b) can be used individually or in the form of any desired mixtures.
  • the copolymers can optionally contain at least one further monomer of group (c) in copolymerized form.
  • these monomers are nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids such as acrylonitrile and methacrylonitrile.
  • acrylonitrile and methacrylonitrile When such copolymers are hydrolyzed, 5 ring amidines are then obtained.
  • Examples of representatives of this group (c) are, for example, methyl (meth)acrylate (the wording "...(meth)acrylate” means both “...methacrylate” and “...acrylate”), methyl ethacrylate, ethyl(meth )acrylate, ethyl ethacrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, tert-butyl ethacrylate, n-octyl (meth)acrylate, 1,1,3,3- tetramethylbutyl (meth)acrylate, ethylhexyl (meth)acrylate, and mixtures thereof.
  • Suitable additional monomers (c) are also the esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols, preferably C 2 -C 12 -amino alcohols. These can be C 1 -C 8 monoalkylated or dialkylated on the amine nitrogen.
  • suitable acid components of these esters are acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, maleic anhydride, monobutyl maleate and mixtures thereof. Acrylic acid, methacrylic acid and mixtures thereof are preferably used.
  • N-methylaminomethyl (meth)acrylate N-methylaminoethyl (meth)acrylate, N,N-dimethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)- acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate and N,N-dimethylaminocyclohexyl (meth)acrylate.
  • Suitable additional monomers (c) are also acrylamide, methacrylamide, N-methyl(meth)acrylamide (the wording "...(meth)acrylamide” stands for “...acrylamide” and for “...methacrylamide”), N-ethyl(meth)acrylamide, n-propyl(meth)acrylamide, N-(n-butyl)-(meth)acrylamide, tert-butyl(meth)acrylamide, n-octyl(meth)acrylamide, 1,1, 3,3-tetramethylbutyl (meth)acrylamide, ethylhexyl (meth)acrylamide and mixtures thereof.
  • Also suitable as monomers (c) are 2-hydroxyethyl (meth)acrylate, 2-hydroxyethyl ethacrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate and mixtures thereof.
  • Suitable monomers (c) are also N-vinyllactams and their derivatives, which can have, for example, one or more C 1 -C 6 -alkyl substituents (as defined above). These include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.
  • esters of vinyl alcohol and allyl alcohol with C 1 -C 30 monocarboxylic acids are also suitable.
  • N-vinylimidazoles and alkylvinylimidazoles are also suitable as monomers (c) are N-vinylimidazoles and alkylvinylimidazoles, in particular methylvinylimidazoles such as 1-vinyl-2-methylimidazole, 3-vinylimidazole N-oxide, 2- and 4-vinylpyridine N-oxides and betaine derivatives and quaternization products of these monomers .
  • Suitable additional monomers are also ethylene, propylene, isobutylene, butadiene, styrene, ⁇ -methyl styrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.
  • the aforementioned monomers (c) can be used individually or in the form of any desired mixtures.
  • a further modification of the copolymers is possible by using, in the copolymerization, monomers (d) which contain at least two double bonds in the molecule, e.g Polyalkylene glycols or polyols such as pentaerythritol, sobit or glucose. Also suitable are allyl and vinyl ethers of polyalkylene glycols or polyols such as pentaerythritol, sobit or glucose. If at least one monomer of group (d) is used in the copolymerization, the amounts used are up to 2 mol%, for example 0.001 to 1 mol%.
  • a monomer mixture is used for the polymerization, with at least one monoethylenically unsaturated monomer selected as component (b). from the group consisting of monocarboxylic acids, dicarboxylic acids and dicarboxylic acid anhydrides, said monomer having at least one free acid group or at least one acid group in salt form.
  • a monomer mixture is used for the polymerization whose monoethylenically unsaturated monomer with at least one free acid group or at least one acid group in salt form (component (b) is selected from the group consisting of sulfonic acids, phosphonic acids, monoesters of phosphonic acids, monoamides of phosphonic acids and esters of phosphoric acid with alcohols having a polymerizable ⁇ , ⁇ -ethylenically unsaturated double bond.
  • component (b) is selected from the group consisting of sulfonic acids, phosphonic acids, monoesters of phosphonic acids, monoamides of phosphonic acids and esters of phosphoric acid with alcohols having a polymerizable ⁇ , ⁇ -ethylenically unsaturated double bond.
  • the hydrolysis of the polymers obtained by the process described above is carried out by known processes by the action of acids, bases or enzymes, for example hydrochloric acid, sodium hydroxide or potassium hydroxide.
  • the originally anionic copolymer receives cationic groups as a result of the hydrolysis and thus becomes amphoteric.
  • amidine units (II) and (III) are formed by reacting adjacent vinylamine units of the formula (VI) with vinylformamide units or those of the formula IV and V by reacting adjacent vinylamine units of the formula (VI) with acrylonitrile or methacrylonitrile groups (if present in the polymer).
  • the hydrolysis of the copolymers is, for example, in EP-B-0 672 212 on page 4, lines 38 - 58 and on page 5, lines 1 - 25 and in the examples of EP 528 409 revealed in detail.
  • amphoteric polymer is preferably used in which the hydrolysis was carried out in the presence of bases, preferably in the presence of sodium hydroxide solution.
  • Their degree of hydrolysis is equivalent to the molar percentage total content of the primary amino groups and amidine groups of the polymers, based on the N-vinylcarboxamide units originally present.
  • amphoteric copolymers which contain N-vinylformamide in copolymerized form as component (a) are of particular industrial importance.
  • the water-soluble amphoteric polymers are prepared by customary methods known to those skilled in the art. Suitable methods are for example in EP-A-0 251 182 , WO-A-94/13882 and EP-B-0 672 212 described, to which reference is made here. Furthermore, the production of the in WO-A-04/087818 and WO-A-05/012637 described water-soluble amphoteric polymers.
  • the water-soluble amphoteric polymers can be prepared by solution, precipitation, suspension or emulsion polymerization.
  • Solution polymerization in aqueous media is preferred.
  • Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent, e.g. an alcohol such as methanol, ethanol, n-propanol, isopropanol, etc.
  • the polymerization temperatures are preferably in a range from about 30 to 200.degree. C., particularly preferably 40 to 110.degree.
  • the polymerization usually takes place under atmospheric pressure, but it can also take place under reduced or superatmospheric pressure.
  • a suitable pressure range is between 0.1 and 5 bar.
  • the monomers (b) containing acid groups are preferably used in the salt form.
  • the pH is preferably adjusted to a value in the range from 6 to 9 for the copolymerization.
  • the pH can be kept constant during the polymerization by using a conventional buffer or by measuring the pH and adding acid or base accordingly.
  • the monomers can be polymerized with the aid of free-radical initiators.
  • the peroxo and/or azo compounds customary for this purpose can be used as initiators for the radical polymerization, for example alkali metal or ammonium peroxydisulfates, diacetyl peroxide, dibenzoyl peroxide, succinyl peroxide, di-tert-butyl peroxide, tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl permaleate, cumene hydroperoxide, diisopropyl peroxydicarbamate, bis-(o-toluoyl)-peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, tert-butyl perisobutyrate, tert-butyl peracetate, di-tert.
  • initiator mixtures or redox initiator systems such as, for example, ascorbic acid/iron(II) sulfate/sodium peroxodisulfate, tert-butyl hydroperoxide/sodium disulfite, tert-butyl hydroperoxide/sodium hydroxymethanesulfinate, H 2 O 2 /Cul.
  • the polymerization can be carried out in the presence of at least one regulator.
  • regulators the usual compounds known to those skilled in the art, such as sulfur compounds, e.g. B. mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan and tribromochloromethane or other compounds which regulate the molecular weight of the polymers obtained can be used.
  • the average molar mass M w of the water-soluble amphoteric polymer is, for example, at least 10,000, preferably at least 100,000 daltons and in particular at least 500,000 daltons.
  • the molar masses of the polymers are then, for example, from 10,000 to 10 million, preferably from 100,000 to 5 million (determined, for example, by light scattering on their non-hydrolyzed precursor).
  • This molar mass range corresponds, for example, to K values of 5 to 300, preferably 10 to 250 (determined according to H. Fikentscher in 5% strength aqueous common salt solution at 25° C. and a polymer concentration of 0.1% by weight).
  • aqueous slurry Other components of the aqueous slurry are microparticles.
  • the microparticle can have either an organic or an inorganic character.
  • Suitable polymeric microparticles include anionic microparticles. These organic polymers have limited solubility in water and may be crosslinked. Unswollen organic microparticles have a particle size of less than 750 nm.
  • Anionic organic microparticles such as those in U.S. 6,524,439 are obtainable by hydrolysis of an acrylamide polymer microparticle or by polymerization of anionic monomers such as (meth)acrylic acid and its salts, 2-acrylamido-2-methylpropanesulfonates, sulfoethyl (meth)acrylates, vinylsulfonic acid, styrenesulfonic acid, maleic acid or other dibasic acids or their salts and mixtures thereof.
  • anionic monomers such as (meth)acrylic acid and its salts, 2-acrylamido-2-methylpropanesulfonates, sulfoethyl (meth)acrylates, vinylsulfonic acid, styrenesulfonic acid, maleic acid or other dibasic acids or their salts and mixtures thereof.
  • anionic monomers can also be copolymerized with nonionic monomers such as (meth)acrylamide, N-alkylacrylamides, N,N-dialkylacrylamides, methyl (meth)acrylate, acrylonitrile, N-vinylmethylacetamide, N-vinylmethylformamide, vinyl acetate, N- vinylpyrrolidone and mixtures thereof.
  • nonionic monomers such as (meth)acrylamide, N-alkylacrylamides, N,N-dialkylacrylamides, methyl (meth)acrylate, acrylonitrile, N-vinylmethylacetamide, N-vinylmethylformamide, vinyl acetate, N- vinylpyrrolidone and mixtures thereof.
  • the polymerization of the monomers into microparticles is typically carried out in the presence of a multifunctional crosslinking agent.
  • a multifunctional crosslinking agent such as crosslinkers are for example in U.S. 6,524,439 described, and have at least two double bonds or one double bond and one reactive group or two reactive groups.
  • crosslinkers for example, its N,N-methylene-bis-(meth)acrylamide, Polyethyleneglycoldi(meth)acrylate, N-vinylacrylamide, divinylbenzene, triallylammonium salts, N-methylallylacrylamideglycidyl(meth)acrylate, acrolein, methylolacrylamide, dialdehydes such as glyoxal, diepoxy compounds and epichlorohydrin.
  • the multifunctional crosslinking agent is used in an amount that gives a sufficiently crosslinked polymer.
  • at least 4 ppm of multifunctional crosslinking agent can be used per mole of monomer.
  • a quantity of from 4 to 6000 ppm, particularly preferably from 20 to 4000 ppm, and in particular from 40 to 2000 ppm, of multifunctional crosslinking agent is preferably used per mole of monomers.
  • the polymerization can be carried out in the presence of at least one regulator.
  • Such polymerizations for the production of polymer particles are, for example, in U.S. 5,961,840 , U.S. 5,919,882 , 5,171,808 and U.S. 5,167,766 described.
  • the usual compounds known to those skilled in the art such as sulfur compounds, e.g. B. mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan and tribromochloromethane or other compounds which regulate the molecular weight of the polymers obtained can be used.
  • sulfur compounds e.g. B. mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan and tribromochloromethane or other compounds which regulate the molecular weight of the polymers obtained
  • sulfur compounds e.g. B. mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl
  • the polymerisation to form a microparticle usually takes place by means of inverse emulsion polymerisation or inverse microemulsion polymerisation and is generally known to the person skilled in the art.
  • Such polymerizations are for example in the US2003/0192664 (Page 6) whose teaching is expressly referred to.
  • Anionic organic microparticles are preferred, in particular copolymers of acrylamide and one or more anionic monomers.
  • Preferred anionic organic microparticles when unswollen, have an average particle diameter of ⁇ 750 nm, preferably ⁇ 500 nm, particularly in the range from 25 to 300 nm.
  • the anionic organic microparticles preferably contain 0 - 99 parts by weight a nonionic monomer 1 - 100 parts by weight an anionic monomer each based on the total weight of all monomers.
  • the anionic organic microparticles particularly preferably contain 10 - 90 parts by weight a nonionic monomer 10 - 90 parts by weight an anionic monomer each based on the total weight of all monomers.
  • the anionic organic microparticles particularly preferably contain 20 - 80 parts by weight a nonionic monomer 20 - 80 parts by weight an anionic monomer each based on the total weight of all monomers.
  • the anionic organic microparticles have a charge density of at least 2 meq/g.
  • inorganic microparticles In contrast to inorganic fillers, which have a BET specific surface area of ⁇ 20 m 2 /g, inorganic microparticles have a BET specific surface area of ⁇ 100 m 2 /g (BET measurement (DIN ISO 9277:2003-05) .
  • the inorganic microparticles are selected from bentonite, colloidal silica and silicates.
  • Bentonite is generally understood to mean phyllosilicates which are swellable in water. These are primarily the clay mineral montmorillonite and similar clay minerals such as nontronite, hectorite, saponite, sauconite, beidellite, allevardite, illite, halloysite, attapulgite and sepiolite.
  • These layered silicates are preferably activated prior to their use, i.e. converted into a water-swellable form, by treating the layered silicates with an aqueous base such as aqueous solutions of sodium hydroxide, potassium hydroxide, soda or potash.
  • the inorganic microparticles used are preferably bentonite in the form treated with sodium hydroxide solution.
  • the flake diameter of the bentonite dispersed in water in the form treated with caustic soda is 1 to 2 ⁇ m, for example, and the flake thickness is about 1 nm.
  • the bentonite has a specific surface area of 150 to 800 m 2 /g.
  • Typical bentonites are, for example, in the EP-B-0235893 described.
  • bentonite is typically added to the cellulose suspension in the form of an aqueous bentonite slurry. This bentonite slurry can contain up to 10% by weight of bentonite. Normally, the slurries contain approx. 3 - 5% by weight of bentonite.
  • Products from the group consisting of silicon-based particles, silica microgels, silica sols, aluminum silicates, borosilicates, polyborosilicates or zeolites can be used as colloidal silicic acid. These have a specific surface area of 200-1000 m 2 /g and an average particle size distribution of 1-250 nm, normally in the range 40-100 nm EP-A-0041056 , EP-A-0185068 and US-A-5176891 described.
  • Clay or kaolin is a hydrous aluminum silicate with a plate-like structure.
  • the crystals have a layered structure and an aspect ratio (ratio of diameter to thickness) of up to 30:1.
  • the particle size is at least 50% smaller than 2 ⁇ m.
  • a weight ratio of fillers to inorganic microparticles of at least 30:1 is preferably selected.
  • the aqueous slurry generally has a solids content of ⁇ 3% by weight, preferably ⁇ 8% by weight, in particular ⁇ 12% by weight, based on the aqueous slurry.
  • the proportion of the water-soluble, amphoteric polymer is generally 0.01-1% by weight, preferably 0.05-0.6% by weight, based on the filler (solid).
  • aqueous suspensions containing, preferably consisting of water, 5-70% by weight of filler, based on the aqueous suspension, and 0.001-1% by weight of water-soluble amphoteric polymer and 0.01-1% by weight of microparticles, each based on Filler (solid).
  • the aqueous slurry is metered into a paper stock.
  • All fibers from softwood and deciduous wood commonly used in the paper industry can be used as paper stock.
  • Mechanical pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure groundwood, semi-chemical pulp, high-yield pulp, and refiner mechanical pulp (RMP).
  • Sulphate, sulfite and soda pulp for example, can be used as pulp.
  • Preference is given to using unbleached pulp which is also referred to as unbleached kraft pulp.
  • Suitable annual plants for the production of paper pulp are, for example, rice, wheat, sugar cane and kenaf.
  • Waste paper can also be used to produce the pulps, either on its own or in a mixture with other fibrous materials.
  • the waste paper can come from a deinking process, for example. However, it is not necessary for the waste paper to be used to be subjected to such a process. Furthermore, fiber mixtures made from a primary material and recycled coated broke can also be used.
  • the aqueous slurry is added to an aqueous suspension of fibers.
  • this is done in the absence of other process chemicals commonly used in papermaking.
  • the water-soluble, amphoteric polymers can be added in the papermaking process, for example, in an amount of 0.01 to 1.00% by weight, based on dry fiber.
  • Typical application rates are, for example, 0.1 to 10 kg, preferably 0.3 to 4 kg, of the water-soluble, amphoteric polymer per tonne of dry fibrous material. In most cases, the amounts of amphoteric polymer used are 0.5 to 2.5 kg of polymer (solid), based on ton of dry fiber.
  • the process chemicals customarily used in papermaking can be used in the usual amounts in the process according to the invention, e.g. These substances are preferably added to the paper stock only after the fibrous stock has been treated according to the invention.
  • a paper machine consists of the following units: headbox, wire section, press section and dryer section.
  • the dewatering effect within the wire section is achieved by mechanical forces (gravity, centrifugal force).
  • hydrodynamic measures are also used. These usually lead to a negative pressure being created on the screens. These measures are particularly useful when dewatering has reached a level where the first capillary effects in the wet paper structure play a role.
  • sheet formation takes place in the wire section up to a dry content of the paper sheet of at least 18% by weight, preferably 19% by weight, in particular 20% by weight.
  • Sheet formation in the wire section preferably takes place up to a dry content of the paper sheet of at most 25% by weight.
  • sheet formation takes place in the wire section up to a dry content of the paper sheet in the range from 19 to 22% by weight.
  • the moist nonwoven is couched onto the press felt by a take-off suction device (suction roll or static vacuum element).
  • the task of the press felt is to transport the fibrous web through press nips of various modifications.
  • the dry content of the web is up to a maximum of 55% by weight.
  • the dry content increases with the pressure exerted on the paper web running through the press. The pressure and thus the dry content of the paper web can be varied over a relatively wide range in many paper machines.
  • the method according to the invention enables tear-free operation of the paper machine.
  • the paper web or paper sheet produced in the process shows a significantly increased initial wet structural strength.
  • the degree of hydrolysis of the water-soluble amphoteric polymers was determined by enzymatic analysis of the formic acid/formates released during the hydrolysis (test set from Boehringer Mannheim).
  • the structural composition of the polymers was calculated from the monomer mixture used, the degree of hydrolysis and the vinylamine/amidine ratio determined by means of 13 C-NMR spectroscopy.
  • the composition ratio is in mol% unless otherwise specified.
  • the dry content is determined in accordance with DIN EN ISO 638 DE using the heating cabinet method.
  • the dry content of the sheet of paper is the ratio of the mass of a sample that has been dried to a constant mass at a temperature of (105 ⁇ 2) °C under defined conditions to the mass of the sample before drying.
  • the dry content is given as a percentage by mass.
  • the K values were H. Fikentscher, Cellulose Chemistry, Volume 13, 48-64 and 71-74 measured under the specified conditions.
  • the information in brackets indicates the concentration of the polymer solution and the solvent.
  • the solids content of the polymers was determined by distributing 0.5 to 1.5 g of the polymer solution in a metal lid with a diameter of 4 cm and then drying it in a circulating air drying cabinet at 140° C. for two hours. The ratio of the mass of the sample after drying under the above conditions to the mass when the sample was taken gives the solids content of the polymer.
  • the average molecular weight M w is understood here, above and below, as the mass-average molecular weight M w , as can be determined by light scattering. The molecular weight was determined on the unhydrolyzed precursor.
  • amphoteric polymers were used to produce slurries.
  • Table 1 Water-soluble amphoteric polymers used polymer Composition vinyl formamide units/acrylic acid units/vinylamine + amidine units Mean Molecular Weight [daltons] P1 40/30/30 500000 p2 5/45/50 400000 P3 65/20/15 650000 P4 30/40/30 400000 P5 30/30/40 400000 P6 40/30/30 500000
  • the amount of berntonite suspension added was calculated in such a way that the proportion of bentonite (solid) corresponds to 0.3% by weight, based on PCC (solid). After a further 30 seconds, the number of revolutions of the Heiltof stirrer was reduced to 200 rpm.
  • the bentonite suspension was prepared according to the recommendations in the technical data sheet (Hydrocoll) for use as microparticles to support flocculation processes. This applies in particular to the sufficient swelling of the bentonite before use. The pH of the mixture is then adjusted to 8.5.
  • suspension A1 The procedure for preparing suspension A1 was followed, using the polymers P2 to P6 and microparticles listed in Table 1, the amounts or However, concentrations were maintained. Slurry 6 was made with ground calcium carbonate instead of precipitated calcium carbonate. Table 2 shows the compositions of the slurries produced.
  • Table 2 Preparation of the slurries siltation polymer filler microparticles A1 P1 PCC bentonite A2 p2 PCC bentonite A3 P3 PCC bentonite A4 P4 PCC bentonite A5 P5 PCC bentonite A6 P6 GCC bentonite A7 P6 PCC silica sol A8 p2 PCC silica sol PCC: precipitated calcium carbonate GCC: ground calcium carbonate
  • the amount of micropolymer solution added was calculated such that the solid fraction of micropolymer in the PCC slurry corresponds to 0.07% by weight of the solid PCC fraction. After a further 30 seconds, the number of revolutions of the Heiltof stirrer was reduced to 200 rpm and left at this until the slurry was used further. The pH of the mixture was then adjusted to 8.5.
  • the pH of the fibrous material was in the range between 7 and 8.
  • the ground material was then diluted to a solids concentration of 0.8% by weight by adding water.
  • An optical brightener (Blankophor PSG) and a cationic starch (HiCat 5163 A) were then added to the diluted pulp.
  • the cationic starch was digested beforehand as a 10% strength by weight starch slurry in a jet cooker at 130° C. and a residence time of 1 minute.
  • the dosage of the optical brightener was 0.3% by weight of commercial product, based on the total paper stock (solid).
  • the dosage of the cationic starch was 0.8% by weight of starch (solids), based on the total paper stock (solids).
  • sheets were produced which each contained about 25% by weight of an untreated PCC and 25% by weight of an untreated GCC.
  • the sheets of paper with a basis weight of 100g/sqm were produced on a dynamic sheet former from TechPap France.
  • the paper stock suspension was sprayed onto a screen that was clamped into a vertical, rapidly rotating drum is.
  • the dewatering and sheet formation in this system is determined not only by the sheet structure but above all by the centrifugal forces within the rotating drum.
  • the centrifugal force acting on the resulting sheet structure can also be varied.
  • the result is a variation in sheet drainage that leads to a variation in dryness in the wet paper structure. What is meant here is the dry content of the wet paper structure immediately after removal from a water-permeable base (wire) that is clamped in the drum of the dynamic sheet former.
  • the number of revolutions of the drum was varied in 5 steps between 600 and 1100 revolutions per minute, as a result of which dry contents in the range between 14% by weight and 21% by weight can be set.
  • the amount of filler added for sheet formation must be slightly adjusted upwards as the number of revolutions of the drum increases, since filler retention decreases with increasing dewatering. A small portion of the sheet structure, while still wet, is used to determine the dryness immediately after the wet paper sheet is removed from the wire of the dynamic sheet former.
  • the wet strength and the initial wet strength of paper are to be distinguished from the initial wet structural strength, because both properties are measured on papers which, after drying, are moistened again to a defined water content.
  • the initial wet strength is an important parameter when evaluating non-permanently wet-strength papers. A paper that has been dried and then moistened again has a completely different wet strength than a moist paper that is present immediately after it has passed through the wire and press sections of a paper machine.
  • the determination of the initial wet structure strength on the wet paper is carried out using the Voith method (cf. M. Schwarz and K. Bechtel "Initial structural strength during sheet formation", in Kliblatt für Textilfabrikation 131, pages 950 - 957 (2003) No. 16 . to do this, the wet sheets, after pressing in the static press, were knocked off onto a plastic base and transferred to a cutting base. The sample strips were then cut from the sheet with a defined length and width. These were pressed under constant pressure until the desired dry content was reached. Four solids contents in the range between 42% and 58% were set in each case for examining the paper sheets obtained according to the examples given above.
  • the initial wet structural strength at 50% dry content was determined using a fitting method described in the reference above.
  • the actual measurement of the initial wet structure strength was carried out on a vertical tensile testing machine with a special clamping device.
  • the force determined in the tractor was converted into the so-called INF index, which is independent of the area mass.
  • INF index is independent of the area mass.
  • Reference examples PCC 4 and PCC5 and reference example GCC9 and GCC10 show that setting the dry content above 18% by weight alone (in this case by setting the rotational speed of the dynamic sheet former), without additional treatment of the filler slurry with a 2-component system, leads to none significant increase in the INF(50%) index.
  • Examples 84, 85, 89, 90, 94 and 95 show that treatment of the filler with only the water-soluble amphoteric polymer or only the microparticles also has no effect when the dry content exceeds 18%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Making Paper Articles (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Electronic Switches (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Papier und Karton umfassend die Zugabe dieser wässrigen Anschlämmung zu einem Papierstoff, Entwässern des erhaltenen Papierstoffes und anschließendem Pressen des Papierblattes und Trocknen.The invention relates to a process for the production of paper and board, comprising adding this aqueous suspension to a paper stock, dewatering the paper stock obtained and then pressing the paper sheet and drying it.

Die Herstellung von Papier ist ein Prozess, bei dem eine feste Phase bestehend aus Cellulose bzw. Holzfaser und diversen anorganischen Zuschlagstoffen von einer wässrigen Phase getrennt wird. Die Anfangskonzentration der festen Phase in der Papierstoffsuspension (Dünnstoff) liegt dabei typischerweise in einem Bereich zwischen 15 g/l und 1,5 g/l. Die Trennung von fester Phase und wässriger Phase erfolgt in mehreren Stufen und kann innerhalb dieser Stufen durch die Wahl mechanischer Parameter oder die gezielte Zugabe chemischer Additive moduliert werden. In der ersten Stufe erfolgt die Entwässerung des Papierstoffs durch das Aufspritzen auf ein Sieb bzw. durch das Einspritzen zwischen zwei Siebe, die je nach relativer Lage zum eingespritzten Papierstoff als Untersieb bzw. Obersieb bezeichnet werden. Je nach Auslegung der sogenannten Siebpartie wird das Wasser alleine durch Schwerkraft oder durch eine Kombination von Schwerkraft und Fliehkräften von dem Papierstoff getrennt und läuft durch die Öffnungen der Siebe ab.Paper production is a process in which a solid phase consisting of cellulose or wood fibers and various inorganic additives is separated from an aqueous phase. The initial concentration of the solid phase in the paper stock suspension (thin stock) is typically in a range between 15 g/l and 1.5 g/l. The separation of the solid phase and the aqueous phase takes place in several stages and can be modulated within these stages through the choice of mechanical parameters or the targeted addition of chemical additives. In the first stage, the paper stock is dewatered by spraying it onto a screen or by injecting it between two screens, which are referred to as the bottom screen or top screen, depending on their position relative to the injected paper stock. Depending on the design of the so-called wire section, the water is separated from the paper stock solely by gravity or by a combination of gravity and centrifugal forces and runs off through the openings of the wires.

Eine wichtige Rolle bei der Siebentwässerung spielt auch der Einsatz chemischer Additive, der sogenannten Retentions- und Entwässerungsmittel. Dazu zählen insbesondere hochmolekulare, leicht kationische Polyacrylamide, kationische Stärke aber auch Polymere auf Basis von Vinylformamid und Ethylenimin. So beschreibt die US 6273998 die Verwendung von Vinylamin-Copolymeren in Kombination mit Mikropartikeln wie Bentonit als Retentionsmittel, das zum Papierstoff im Wet-End-Prozess zugesetzt wird.The use of chemical additives, the so-called retention and drainage aids, also plays an important role in wire drainage. These include, in particular, high-molecular, slightly cationic polyacrylamides, cationic starch, but also polymers based on vinylformamide and ethyleneimine. That's how she describes it US6273998 the use of vinylamine copolymers in combination with microparticles such as bentonite as a retention aid that is added to the paper stock in the wet-end process.

Weiterhin lehrt die EP-A-950138 die zweistufige Behandlung von Papierstoff mit einem kationischen Polymer und Mikropartikeln und nach erfolgter Scherung in der zweiten Stufe mit einem vernetzten anionischen Polymer.Furthermore, she teaches EP-A-950138 the two-stage treatment of paper stock with a cationic polymer and microparticles and after shearing in the second stage with a cross-linked anionic polymer.

WO-A-04/087818 , WO-A-05/012637 und WO-A-2006/066769 beschreiben wässrige Anschlämmungen von feinteiligen Füllstoffen, die mit wasserlöslichen amphoteren Copolymerisaten auf Basis von Polyvinylamin behandelt wurden. Diese Anschlämmungen ermöglichen eine Erhöhung des Füllstoffgehalts in Papieren unter Erhalt der Papiereigenschaften insbesondere der Trockenfestigkeit. WO-A-04/087818 , WO-A-05/012637 and WO-A-2006/066769 describe aqueous slurries of finely divided fillers which have been treated with water-soluble amphoteric copolymers based on polyvinylamine. These slurries make it possible to increase the filler content in paper while retaining the paper properties, in particular dry strength.

Der in der Siebpartie erreichte Trockengehalt hängt neben den mechanischen Voraussetzungen der Siebpartie und der Wahl der chemischen Additive sehr stark von dem Papierstoffsystem und dem Flächengewicht der Papierbahn ab. Auch wenn primär eine effiziente Entwässerung des Papierstoffs ein Ziel ist, so sollen weiterhin gute Endeigenschaften des Papiers erzielt werden. Eine zu schnelle Entwässerung kann zu einer verfrühten Immobilisierung der Papierfasern führen und damit zu schlechten Festigkeitseigenschaften oder zu schlechten optischen Eigenschaften führen.The dryness achieved in the wire section depends not only on the mechanical requirements of the wire section and the choice of chemical additives, but also very much on the paper stock system and the basis weight of the paper web. Even if the primary goal is efficient dewatering of the paper stock, good end properties of the paper should continue to be achieved will. Dewatering too quickly can lead to premature immobilization of the paper fibers and thus lead to poor strength properties or poor optical properties.

Eine wichtige Eigenschaft, die ebenfalls vom Trockengehalt der Papierbahn abhängt, ist die sogenannte initiale Nassgefügefestigkeit INF. Von der initialen Nassgefügefestigkeit zu unterscheiden sind die Nassfestigkeit und die initiale Nassfestigkeit von Papier, weil beide Eigenschaften an Papieren gemessen werden, die nach dem Trocknen wieder auf einen definierten Wassergehalt angefeuchtet werden. Unter initialer Nassgefügefestigkeit (engl.: initial wet web strength) wird die Festigkeit eines nassen Papiers verstanden, das niemals getrocknet wurde. Es handelt sich hierbei um die Festigkeit eines nassen Papiers, wie es bei der Papierherstellung nach Durchlaufen der Sieb- und Pressenpartie der Papiermaschine vorliegt. Es enthält typischer Weise ca. 50 % Wasser. Eine Erhöhung der initialen Nassgefügefestigkeit erlaubt die Anwendung höherer Abzugskräfte und damit ein schnelleres Betreiben der Papiermaschine (vgl. EP-A-0 780 513 ) oder den Einsatz größerer Mengen Füllstoff.An important property, which also depends on the dry content of the paper web, is the so-called initial wet structural strength INF. The wet strength and the initial wet strength of paper are to be distinguished from the initial wet structural strength, because both properties are measured on papers which, after drying, are moistened again to a defined water content. Initial wet web strength is the strength of a wet paper that has never been dried. This is the strength of a wet paper as it is in papermaking after it has passed through the wire and press sections of the paper machine. It typically contains about 50% water. An increase in the initial wet structure strength allows the application of higher pull-off forces and thus faster operation of the paper machine (cf. EP-A-0 780 513 ) or the use of larger amounts of filler.

Die WO 2009/156274 lehrt die Verwendung von amphoteren Copolymeren, die erhältlich sind durch Copolymerisation von N-Vinylcarbonsäureamid mit anionischen Comonomeren sowie anschließender Hydrolyse des Vinylcarbonsäureamids als Papierstoffadditiv zur Erhöhung der initialen Nassgefügefestigkeit von Papier. Die Behandlung erfolgt z.B. im Dickstoff oder im Dünnstoff im Papierherstellungsprozess.the WO 2009/156274 teaches the use of amphoteric copolymers, which can be obtained by copolymerization of N-vinylcarboxamide with anionic comonomers and subsequent hydrolysis of the vinylcarboxamide, as a paper stock additive to increase the initial wet structural strength of paper. The treatment takes place, for example, in the thick stock or in the thin stock in the paper manufacturing process.

Weiterhin lehrt die WO 2014/029593 ein Verfahren zur Herstellung von Papier mit hoher initialer Nassgefügefestigkeit unter Zusatz eines wasserlösliches amphoteres Copolymers, welches durch Hofmannabbau eines Acrylamid- und/oder Methacrylamid-haltigen Polymers erhalten wurde, und Pressen des gebildeten Papierblattes in der Pressenpartie auf einen definierten Feststoffgehalt von ≥48 Gew.-%.Furthermore, she teaches WO 2014/029593 a process for the production of paper with a high initial wet structural strength with the addition of a water-soluble amphoteric copolymer, which was obtained by Hofmann degradation of a polymer containing acrylamide and/or methacrylamide, and pressing the paper sheet formed in the press section to a defined solids content of ≥48 wt. -%.

Die DE 60115692 T2 beschreibt ein Verfahren zum Herstellen von Papier aus Pappe, umfassend das Bilden einer Zellulosesuspension, das Ausflocken der Suspension, das Abtropfen der Suspension auf einem Sieb, um ein Blatt zu bilden, und das anschließende Trocknen des Blatts, dadurch gekennzeichnet, dass die Suspension ausgeflockt wird unter Verwendung von einem Flockungssystem, umfassend ein kieselsäurehaltiges Material und organische Mikropartikel, die einen ungequollenen Partikeldurchmesser von weniger als 750 Nanometer aufweisen.the DE 60115692 T2 describes a process for making paper from paperboard, comprising forming a cellulosic suspension, flocculating the suspension, draining the suspension on a screen to form a sheet and then drying the sheet, characterized in that the suspension is flocculated using a flocculation system comprising a siliceous material and organic microparticles having an unswollen particle diameter of less than 750 nanometers.

Der Erfindung lag die Aufgabe zugrunde, bei der Herstellung von Papier die initiale Nassgefügefestigkeit der noch feuchten Papierbahn vor dem Übergang in die Trockenpartie zu erhöhen, um gegenüber bekannten Verfahren im Papierherstellungsprozeß höhere Maschinengeschwindigkeiten zu erreichen.The invention was based on the object of increasing the initial wet structure strength of the still moist paper web before the transition to the drying section during the production of paper, in order to achieve higher machine speeds in the paper production process compared to known methods.

Demgemäß wurde ein Verfahren zur Herstellung von Papier und Karton gefunden, umfassend

  • das Bereitstellen einer wässrigen Anschlämmung enthaltend Füllstoff, wenigstens ein wasserlösliches, amphoteres Polymer und Mikropartikel,
    • Zugabe dieser wässrigen Anschlämmung zu einem Papierstoff
  • Entwässern des erhaltenen Papierstoffes, unter Blattbildung in der Siebpartie, bis zu einem Trockengehalt des Papierblattes auf mindestens 18 Gew.-%
    • und anschließendem Pressen des Papierblattes und Trocknen, wobei das wasserlösliche, amphotere Polymere erhältlich ist durch Copolymerisieren eines nomerengemisches umfassend
      1. a) wenigstens einem N-Vinylcarbonsäureamid der allgemeinen Formel
        Figure imgb0001
        worin R1 und R2 unabhängig voneinander für H oder C1- bis C6-Alkyl stehen,
      2. b) wenigstens einem monoethylenisch ungesättigten Monomer mit mindestens einer freien Säuregruppe oder mindestens einer Säuregruppe in Salzform
      3. c) gegebenenfalls wenigstens einem von den Komponenten (a) und (b) verschiedenen monoethylenisch ungesättigten Monomer, und
      4. d) gegebenenfalls wenigstens einer Verbindung, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweist,
    und anschließende teilweise oder vollständige Hydrolyse der Gruppen -CO-R1 des Polymerisats, wobei die Differenz der Anteile der kationischen und der anionischen Monomereinheiten in Mol, jeweils bezogen auf die Gesamtmolzahl aller Monomereinheiten, absolut maximal 10 Mol% beträgt, wobei der Füllstoff Calciumcarbonat ist,
    wobei die Mikropartikel ein Copolymer aus Acrylamid und einem oder mehreren anionischen Monomeren sind, oder die Mikropartikel anorganische Mikropartikel sind, ausgewählt aus Bentonit, kolloidale Kieselsäure und Silikate.
Accordingly, a process for the manufacture of paper and board has been found comprising
  • the provision of an aqueous suspension containing filler, at least one water-soluble, amphoteric polymer and microparticles,
    • Addition of this aqueous slurry to a paper stock
  • Dewatering of the resulting paper stock, with sheet formation in the wire section, until the paper sheet has a dry content of at least 18% by weight
    • and then pressing the paper sheet and drying, wherein the water-soluble, amphoteric polymer is obtainable by copolymerizing a monomeric mixture comprising
      1. a) at least one N-vinylcarboxamide of the general formula
        Figure imgb0001
        wherein R 1 and R 2 independently represent H or C 1 - to C 6 -alkyl,
      2. b) at least one monoethylenically unsaturated monomer having at least one free acid group or at least one acid group in salt form
      3. c) optionally at least one monoethylenically unsaturated monomer different from components (a) and (b), and
      4. d) optionally at least one compound which has at least two ethylenically unsaturated double bonds in the molecule,
    and subsequent partial or complete hydrolysis of the -CO-R 1 groups of the polymer, the difference in the proportions of the cationic and anionic monomer units in moles, based in each case on the total number of moles of all monomer units, being a maximum of 10 mol% in absolute terms, the filler being calcium carbonate ,
    wherein the microparticles are a copolymer of acrylamide and one or more anionic monomers, or the microparticles are inorganic microparticles selected from bentonite, colloidal silica and silicates.

Es wurde gefunden, dass der Trockengehalt der Papierbahn am Ende der Siebpartie und vor dem mechanischen Pressvorgang einen großen Einfluss auf die Wirkung der Füllstoffbehandlung mit einem mehrkomponentigen System hat.It was found that the dry content of the paper web at the end of the wire section and before the mechanical pressing process has a major impact on the effect of filler treatment with a multi-component system.

Je nach flächenbezogener Masse, umgangssprachlich auch als Flächengewicht bezeichnet, ändert sich die Bezeichnung für den aus Faserstoff bestehenden Formkörper. Dabei soll nachfolgend unter Papier eine flächenbezogene Masse von 7 g/m2 bis 225 g/m2 und unter Karton eine flächenbezogene Masse von ab 225 g/m2 zu verstehen sein.Depending on the area-related mass, colloquially also referred to as basis weight, the designation for the molded body made of fibrous material changes. In the following, paper should be understood to mean a mass per unit area of 7 g/m 2 to 225 g/m 2 and cardboard should be understood to mean a mass per unit area of from 225 g/m 2 .

Unter Papierstoff (auch als Pulpe bezeichnet), wird nachfolgend ein aus einer oder mehreren Arten Faserstoffen, Füllstoffen und aus verschiedenen Hilfsstoffen bestehendes in Wasser suspendiertes Stoffgemisch vor der Blattbildung verstanden.Paper stock (also referred to as pulp) is understood below to mean a mixture of substances consisting of one or more types of fibrous substances, fillers and various auxiliary substances suspended in water before sheet formation.

Unter Gesamtpapierstoff ist der Papierstoff nach Zusatz aller Füllstoffanschlämmungen und Hilfsstoffe zu verstehen. Sofern es sich um einem Bezug auf trockenen Gesamtpapierstoff handelt, auch als Gesamtpapierstoff (fest) bezeichnet, ist darunter die Masse zu verstehen, die sich aus der Trockengehaltsbestimmung nach DIN EN ISO 638 DE ergibt.Total paper stock is the paper stock after the addition of all filler slurries and auxiliaries. If it is a reference to the total dry paper stock, also referred to as total paper stock (solid), this is to be understood as the mass that results from the dryness determination according to DIN EN ISO 638 DE.

Füllstoffe werden als sogenannte wässrige Anschlämmung bereitgestellt und mit dem übrigen Papierstoff vermischt. Der Begriff Füllstoff umfasst dabei im Rahmen dieser Anmeldung Calciumcarbonat, das in Form von gemahlenen (GCC) Kalk, Kreide, Marmor oder präzipitiertem Calciumcarbonat (PCC) eingesetzt werden kannFillers are provided as so-called aqueous slurry and mixed with the rest of the paper stock. In the context of this application, the term filler includes calcium carbonate, which can be used in the form of ground (GCC) lime, chalk, marble or precipitated calcium carbonate (PCC).

Unter Füllstoff sind im Rahmen dieser Erfindung Teilchen mit einer mittleren Teilchengröße (Volumen-Mittel) ^10 µm, bevorzugt von 0,3 bis 5 µm, insbesondere von bis 0,5 bis 2 µm zu verstehen. Die Bestimmung der mittleren Teilchengröße (Volumen-Mittel) der Füllstoffe erfolgt im Rahmen dieser Schrift generell nach der Methode der quasielastischen Lichtstreuung (DIN-ISO 13320-1) beispielsweise mit einem Mastersizer 2000 der Fa. Malvern Instruments Ltd.. Füllstoffe haben in der Regel eine spezifische Oberflächen nach BET von ≤20 m2/g.In the context of this invention, filler is to be understood as meaning particles with an average particle size (volume average) of ≧10 μm, preferably from 0.3 to 5 μm, in particular from up to 0.5 to 2 μm. The mean particle size (volume mean) of the fillers is generally determined in the context of this document using the method of quasi-elastic light scattering (DIN-ISO 13320-1), for example using a Mastersizer 2000 from Malvern Instruments Ltd. Fillers usually have a BET specific surface area of ≤20 m 2 /g.

Unter wässriger Anschlämmung ist eine Zusammensetzung enthaltend Füllstoff zu verstehen, die in der Regel einen Füllstoffgehalt von ≥ 5 Gew., bezogen auf die wässrige Anschlämmung, aufweist. Bevorzugt enthält die Anschlämmung 10 bis 70 Gew.-%, insbesondere 20 bis 60 Gew.-% Füllstoff. Die wässrige Anschlämmung des Füllstoffs kann außerdem noch zusätzliche organische oder anorganische Hilfsmittel enthalten.Aqueous slurry is understood to mean a composition containing filler, which generally has a filler content of ≧5% by weight, based on the aqueous slurry. The suspension preferably contains 10 to 70% by weight, in particular 20 to 60% by weight, of filler. The aqueous suspension of the filler can also contain additional organic or inorganic auxiliaries.

Erfindungsgemäß wird eine wässrige Anschlämmung bereitgestellt, die mindestens einen anorganischen Füllstoff, ein wasserlösliches amphoteres Polymer und Mikropartikel umfasst. Das wasserlösliche amphotere Polymer ist erhältlich durch Copolymerisierung des Monomerengemisches umfassend die Monomere a) und b) und anschließende vollständige oder teilweise Hydrolyse der Gruppen -CO-R1 des Polymerisats. Über die Wahl der Monomerzusammensetzung sowie des Hydrolysegrades erreicht man, dass die Differenz der Anteile der kationischen und der anionischen Monomereinheiten in Mol, jeweils bezogen auf die Gesamtmolzahl aller Monomereinheiten, absolut maximal 10 Mol% beträgt.According to the invention, an aqueous slurry is provided which comprises at least one inorganic filler, a water-soluble amphoteric polymer and microparticles. The water-soluble amphoteric polymer can be obtained by copolymerizing the monomer mixture comprising the monomers a) and b) and subsequent complete or partial hydrolysis of the —CO—R 1 groups of the polymer. The choice of the monomer composition and the degree of hydrolysis ensures that the difference in the proportions of the cationic and the anionic monomer units in moles, based in each case on the total number of moles of all monomer units, is an absolute maximum of 10 mol%.

Die wasserlöslichen amphoteren Polymere enthalten folgende Struktureinheiten:

  • Amidineinheiten
    Figure imgb0002
  • Amineinheiten
    Figure imgb0003
    wobei die Substituenten R1 und R2 in den Formeln II, II undVI die in Formel I angegebene Bedeutung haben und X- in den Formeln II und III ein Anion bedeutet,
und Einheiten von ethylenisch ungesättigten Säuren der Gruppe (b) in Form der freien Säuren und/oder in Salzform.The water-soluble amphoteric polymers contain the following structural units:
  • amidine units
    Figure imgb0002
  • amine units
    Figure imgb0003
    where the substituents R 1 and R 2 in the formulas II, II and VI have the meaning given in formula I and X - in the formulas II and III is an anion,
and moieties of ethylenically unsaturated acids of group (b) in free acid form and/or in salt form.

Bei den hydrolysierten Copolymeren beträgt beispielsweise das Verhältnis von Amidineinheiten zu Amineinheiten 100 : 1 bis 1 : 30, bevorzugt 40 : 1 bis 1 :15, besonders bevorzugt 8 : 1 bis 1 : 8.In the case of the hydrolyzed copolymers, the ratio of amidine units to amine units is, for example, 100:1 to 1:30, preferably 40:1 to 1:15, particularly preferably 8:1 to 1:8.

Unter kationischen Einheiten ist in diesem Zusammenhang die Summe aus Amin- und Amidineinheiten zu verstehen, während unter anionischen Einheiten die Säureeinheiten subsummiert werden, die bei der Copolymerisation aus den Monomeren der Gruppe (b) entstehen und die in Form der freien Säuregruppen und/oder in Salzform vorliegen.In this context, cationic units are the sum of amine and amidine units, while anionic units include the acid units which are formed during the copolymerization from the monomers of group (b) and which are present in the form of the free acid groups and/or in present in salt form.

Beispiele für Monomere der Gruppe (a) sind offenkettige N-Vinylamidverbindungen der Formel (I) wie beispielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N-Vinylpropionamid und N-Vinyl-N-methylpropionamid und N-Vinylbutyramid. Die Monomeren der Gruppe (a) können allein oder in Mischung bei der Copolymerisation mit den Monomeren der anderen Gruppen eingesetzt werden. Aus dieser Gruppe wird vorzugsweise N-Vinylformamid bei der Copolymerisation eingesetzt.Examples of group (a) monomers are open-chain N-vinylamide compounds of the formula (I), such as N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N- ethylacetamide, N-vinylpropionamide and N-vinyl-N-methylpropionamide and N-vinylbutyramide. The monomers of group (a) can be used alone or as a mixture in the copolymerization with the monomers of the other groups. From this group, preference is given to using N-vinylformamide in the copolymerization.

Die erfindungsgemäß einzusetzenden Copolymere enthalten wenigstens ein Monomer der Gruppe (b), dass ein monoethylenisch ungesättigtes Monomer mit mindestens einer freien Säuregruppe oder mindestens einer Säuregruppe in Salzform ist.The copolymers to be used according to the invention contain at least one monomer from group (b) that is a monoethylenically unsaturated monomer having at least one free acid group or at least one acid group in salt form.

Die Säuregruppe kann als freie Säuregruppe oder in Salzform vorliegen. Bevorzugt Salze sind die wasserlöslichen Salze wie Akalimetall-, Erdalkalimetall- oder Ammoniumsalze.The acid group can be present as a free acid group or in a salt form. Preferred salts are the water-soluble salts such as alkali metal, alkaline earth metal or ammonium salts.

Geeignete Basen zur teilweisen oder vollständigen Neutralisation der Säuregruppen der Monomere (b) sind beispielsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak, Amine und/oder Alkanolamine. Beispiele hierfür sind Natriumhydroxid, Kaliumhydroxid, Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Magnesiumhydroxid, Magnesiumoxid, Calciumhydroxid, Calciumoxid, Triethanolamin, Ethanolamin, Morpholin, Diethylentriamin oder Tetraethylenpentamin.Suitable bases for the partial or complete neutralization of the acid groups of the monomers (b) are, for example, alkali metal or alkaline earth metal bases, ammonia, amines and/or alkanolamines. Examples of these are sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylenepentamine.

Geeignete Monomere dieser Gruppe (b) sind beispielsweise monoethylenisch ungesättigte Sulfonsäuren, Phosphonsäuren, Monocarbonsäuren und Dicarbonsäuren sowie jeweils deren Salzen. Weiterhin geeignet sind monoethylenisch ungesättigte Monoester von Phosphonsäuren, Monoamide von Phosphonsäuren, und Dicarbonsäureanhydride. Geeignete Monomere (b) sind weiterhin Ester der Phosphorsäure mit Alkoholen mit einer polymersierbaren, α,β-ethylenisch ungesättigten Doppelbindung. Dabei kann eines oder können die beiden übrigen Protonen der Phosphorsäuregruppe durch geeignete Basen neutralisiert werden. Zusätzlich kann eine weitere Säurefunktion mit Alkoholen, die keine polymerisierbaren Doppelbindungen aufweisen, verestert werden.Suitable monomers of this group (b) are, for example, monoethylenically unsaturated sulfonic acids, phosphonic acids, monocarboxylic acids and dicarboxylic acids and their salts. Also suitable are monoethylenically unsaturated monoesters of phosphonic acids, monoamides of phosphonic acids, and dicarboxylic acid anhydrides. Suitable monomers (b) are also esters of phosphoric acid with alcohols having a polymerizable, α,β-ethylenically unsaturated double bond. One or the two remaining protons of the phosphoric acid group can be neutralized by suitable bases. In addition, another acid function can be esterified with alcohols that do not have any polymerizable double bonds.

Geeignete gesättigte Alkohole zur Veresterung der Phosphorsäure sind beispielsweise C1-C6-Alkanole, wie beispielsweise Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec-Butanol, tert.-Butanol, n-Pentanol, n-Hexanol sowie deren Isomere.Examples of suitable saturated alcohols for esterifying phosphoric acid are C 1 -C 6 -alkanols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, n-hexanol and their isomers.

Als Monomere der Gruppe (b) kommen beispielsweise monoethylenisch ungesättigte Carbonsäuren mit 3 bis 8 C-Atomen sowie die wasserlöslichen Salze wie Akalimetall-, Erdalkalimetall-oder Ammoniumsalze dieser Carbonsäuren infrage. Zu dieser Gruppe von Monomeren gehören beispielsweise Acrylsäure, Methacrylsäure, Dimethacrylsäure, Ethacrylsäure, α-Chloracrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, Mesaconsäure, Citraconsäure, Glutaconsäure, Aconitsäure, Methylenmalonsäure, Allylessigsäure, Vinylessigsäure und Crotonsäure. Weiterhin geeignet sind die Dicarbonsäureanhydride obengenannter Säuren.Possible group (b) monomers are, for example, monoethylenically unsaturated carboxylic acids having 3 to 8 carbon atoms and the water-soluble salts such as alkali metal, alkaline earth metal or ammonium salts of these carboxylic acids. This group of monomers includes, for example, acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, α-chloroacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, glutaconic acid, aconitic acid, methylenemalonic acid, allylacetic acid, vinylacetic acid and crotonic acid. The dicarboxylic acid anhydrides of the abovementioned acids are also suitable.

Zu den Monomeren (b) zählen weiterhin beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Sulfoethylacrylat, Sulfoethylmethacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3-acryloxypropylsulfonsäure, 2-Hydroxy-3-methacryloxypropylsulfonsäure, Styrolsulfonsäure, Acrylamidomethylenphosphonsäure, 2-Acrylamido-2-methylpropansulfon-säure, Vinylphosphonsäure, N-Vinylaminomethylenphosphonsäure (CH2=CH-NH-CH2-PO3H), Vinylphosphonsäuremonomethylester, Allylphosphonsäure, Allylphosphonsäuremonomethylester, Acrylamidomethylpropylphosphonsäure, (Meth)acrylethylenglykolphosphat und Phosphorsäuremonoallylester.The monomers (b) also include, for example, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloxypropylsulfonic acid, 2-hydroxy-3-methacryloxypropylsulfonic acid, styrenesulfonic acid, acrylamidomethylenephosphonic acid, 2-acrylamido-2-methylpropanesulfone acid, vinylphosphonic acid, N-vinylaminomethylenephosphonic acid (CH 2 =CH-NH-CH 2 -PO 3 H), vinylphosphonic acid monomethyl ester, allylphosphonic acid, allylphosphonic acid monomethyl ester, acrylamidomethylpropylphosphonic acid, (meth)acrylic ethylene glycol phosphate and phosphoric acid monoallyl ester.

Die zuvor genannten Monomere (b) können einzeln oder in Form von beliebigen Mischungen eingesetzt werden.The aforementioned monomers (b) can be used individually or in the form of any desired mixtures.

Die Copolymerisate können zur Modifizierung gegebenenfalls wenigstens ein weiteres Monomer der Gruppe (c) in einpolymerisierter Form enthalten. Vorzugsweise sind diese Monomere Nitrile von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren, wie beispielsweise Acrylnitril und Methacrylnitril. Bei der Hydrolyse solcher Copolymerisate werden dann 5 Ring-Amidine erhalten.For modification, the copolymers can optionally contain at least one further monomer of group (c) in copolymerized form. Preferably, these monomers are nitriles of α,β-ethylenically unsaturated mono- and dicarboxylic acids such as acrylonitrile and methacrylonitrile. When such copolymers are hydrolyzed, 5 ring amidines are then obtained.

Weiterhin geeignete Monomere der Gruppe (c) sind:
Ester α,β-ethylenisch ungesättigter Mono- und Dicarbonsäuren mit einwertigen C1-C30-Alka-no-len, C2-C30-Alkandiolen und C2-C30-Aminoalkoholen, Amiden α,β-ethylenisch ungesättigter Monocarbonsäuren und deren N-Alkyl- und N,N-Dialkylderivaten, Estern von Vinylalkohol und Allylalkohol mit C1-C30-Monocarbonsäuren, N-Vinyllactamen, stickstoffhaltigen Heterocyclen und Lactone mit α,β-ethylenisch ungesättigten Doppelbindungen, Vinylaromaten, Vinylhalogeniden, Vinylidenhalogeniden, C2-C8-Monoolefinen und Mischungen davon.
Further suitable monomers of group (c) are:
Esters of α,β-ethylenically unsaturated mono- and dicarboxylic acids with monobasic C 1 -C 30 alkanols, C 2 -C 30 alkanediols and C 2 -C 30 amino alcohols, amides of α,β-ethylenically unsaturated monocarboxylic acids and their N-alkyl and N,N-dialkyl derivatives, esters of vinyl alcohol and allyl alcohol with C 1 -C 30 monocarboxylic acids, N-vinyl lactams, nitrogen-containing heterocycles and lactones with α,β-ethylenically unsaturated double bonds, vinyl aromatic compounds, vinyl halides, vinylidene halides, C C 2 -C 8 mono-olefins and mixtures thereof.

Beispiele für Vertreter dieser Gruppe (c) sind z.B. Methyl(meth)acrylat (die Formulierung "...(meth)acrylat" bedeutet jeweils "...methacrylat" als auch "...acrylat"), Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, n-Butyl(meth)acrylat, Isobutyl(meth)acrylat, tert.-Butyl-(meth)acrylat, tert.-Butylethacrylat, n-Ocytl(meth)acrylat, 1,1,3,3-Tetramethylbutyl-(meth)acrylat, Ethylhexyl(meth)acrylat und Mischungen davon.Examples of representatives of this group (c) are, for example, methyl (meth)acrylate (the wording "...(meth)acrylate" means both "...methacrylate" and "...acrylate"), methyl ethacrylate, ethyl(meth )acrylate, ethyl ethacrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, tert-butyl ethacrylate, n-octyl (meth)acrylate, 1,1,3,3- tetramethylbutyl (meth)acrylate, ethylhexyl (meth)acrylate, and mixtures thereof.

Geeignete zusätzliche Monomere (c) sind weiterhin die Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Aminoalkoholen, vorzugsweise C2-C12-Aminoalkoholen. Diese können am Aminstickstoff C1-C8-monoalkyliert oder-dialkyliert sein. Als Säurekomponente dieser Ester eignen sich z.B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat und Gemische davon. Bevorzugt werden Acrylsäure, Methacrylsäure und deren Gemische eingesetzt. Dazu zählen beispielsweise N-Methylaminomethyl(meth)acrylat, N-Methylaminoethyl(meth)acrylat, N,N-Dimethylamino-methyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)-acrylat, N,N-Dimethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat.Suitable additional monomers (c) are also the esters of α,β-ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols, preferably C 2 -C 12 -amino alcohols. These can be C 1 -C 8 monoalkylated or dialkylated on the amine nitrogen. Examples of suitable acid components of these esters are acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, maleic anhydride, monobutyl maleate and mixtures thereof. Acrylic acid, methacrylic acid and mixtures thereof are preferably used. These include, for example, N-methylaminomethyl (meth)acrylate, N-methylaminoethyl (meth)acrylate, N,N-dimethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)- acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate and N,N-dimethylaminocyclohexyl (meth)acrylate.

Geeignete zusätzliche Monomere (c) sind weiterhin Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid (die Formulierung "...(meth)acrylamid" steht jeweils für "...acrylamid" sowie für "...methacrylamid"), N-Ethyl(meth)acrylamid, n-Propyl(meth)acrylamid, N-(n-Butyl)-(meth)acrylamid, tert.-Butyl(meth)acrylamid, n-Octyl(meth)acrylamid, 1,1,3,3-Tetramethylbutyl-(meth)acrylamid, Ethylhexyl(meth)acrylamid und Mischungen davon.Suitable additional monomers (c) are also acrylamide, methacrylamide, N-methyl(meth)acrylamide (the wording "...(meth)acrylamide" stands for "...acrylamide" and for "...methacrylamide"), N-ethyl(meth)acrylamide, n-propyl(meth)acrylamide, N-(n-butyl)-(meth)acrylamide, tert-butyl(meth)acrylamide, n-octyl(meth)acrylamide, 1,1, 3,3-tetramethylbutyl (meth)acrylamide, ethylhexyl (meth)acrylamide and mixtures thereof.

Weiterhin sind als Monomere (c) geeignet 2-Hydroxyethyl(meth)acrylat, 2-Hydroxyethyl-ethacrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxybutyl-(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6-Hydroxyhexyl(meth)acrylat und Mischungen davon.Also suitable as monomers (c) are 2-hydroxyethyl (meth)acrylate, 2-hydroxyethyl ethacrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate and mixtures thereof.

Darüber hinaus sind als weitere Monomere (c) N-[2-(Dimethylamino)ethyl]acrylamid, N-[2-(Di-methylamino)ethyl]methacrylamid, N-[3-(Dimethylamino)propyl]acrylamid, N-[3-(Dimethyl-amino)propyl]methacrylamid, N-[4-(Dimethylamino)butyl]acrylamid, N-[4-(Dimethylamino)butyl]-methacrylamid, N-[2-(Diethylamino)ethyl]acrylamid, N-[2-(Diethylamino)ethyl]methacrylamid und Mischungen davon geeignet.In addition, as further monomers (c) N-[2-(dimethylamino)ethyl]acrylamide, N-[2-(dimethylamino)ethyl]methacrylamide, N-[3-(dimethylamino)propyl]acrylamide, N-[ 3-(dimethylamino)propyl]methacrylamide, N-[4-(dimethylamino)butyl]acrylamide, N-[4-(dimethylamino)butyl]methacrylamide, N-[2-(diethylamino)ethyl]acrylamide, N- [2-(diethylamino)ethyl]methacrylamide and mixtures thereof.

Geeignete Monomere (c) sind weiterhin N-Vinyllactame und deren Derivate, die z.B. einen oder mehrere C1-C6-Alkylsubstituenten (wie oben definiert) aufweisen können. Dazu zählen N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam und deren Mischungen.Suitable monomers (c) are also N-vinyllactams and their derivatives, which can have, for example, one or more C 1 -C 6 -alkyl substituents (as defined above). These include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.

Ebenfalls geeignet sind Estern von Vinylalkohol und Allylalkohol mit C1-C30-Monocarbonsäuren.Also suitable are esters of vinyl alcohol and allyl alcohol with C 1 -C 30 monocarboxylic acids.

Weiterhin sind als Monomere (c) N-Vinylimidazole und Alkylvinylimidazole geeignet, insbesondere Methylvinylimidazole wie beispielsweise 1-Vinyl-2-methylimidazol, 3-Vinylimidazol-N-oxid, 2- und4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere.Also suitable as monomers (c) are N-vinylimidazoles and alkylvinylimidazoles, in particular methylvinylimidazoles such as 1-vinyl-2-methylimidazole, 3-vinylimidazole N-oxide, 2- and 4-vinylpyridine N-oxides and betaine derivatives and quaternization products of these monomers .

Geeignete zusätzliche Monomere sind weiterhin Ethylen, Propylen, Isobutylen, Butadien, Styrol, α-Methylstyrol, Vinylacetat, Vinylpropionat, Vinylchlorid, Vinylidenchlorid, Vinylfluorid, Vinylidenfluorid und Mischungen davon.Suitable additional monomers are also ethylene, propylene, isobutylene, butadiene, styrene, α-methyl styrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.

Die zuvor genannten Monomere (c) können einzeln oder in Form von beliebigen Mischungen eingesetzt werden.The aforementioned monomers (c) can be used individually or in the form of any desired mixtures.

Eine weitere Modifizierung der Copolymerisate ist dadurch möglich, dass man bei der Copolymerisation Monomere (d) einsetzt, die mindestens zwei Doppelbindungen im Molekül enthalten, z.B. Triallylamin, Methylenbisacrylamid, Glykoldiacrylat, Glykoldimethacrylat, Glycerintriacrylat, Pentaerythrittriallylether, mindestens zweifach mit Acrylsäure und/oder Methacrylsäure veresterte Polyalkylenglykole oder Polyole wie Pentaerythrit, Sobit oder Glukose. Ebenfalls geeignet sind Allyl und Vinylether von Polyalkylenglykole oder Polyole wie Pentaerythrit, Sobit oder Glukose. Falls mindestens ein Monomer der Gruppe (d) bei der Copolymerisation eingesetzt wird, so betragen die angewendeten Mengen bis zu 2 Mol-%, z.B. 0,001 bis 1 Mol-%.A further modification of the copolymers is possible by using, in the copolymerization, monomers (d) which contain at least two double bonds in the molecule, e.g Polyalkylene glycols or polyols such as pentaerythritol, sobit or glucose. Also suitable are allyl and vinyl ethers of polyalkylene glycols or polyols such as pentaerythritol, sobit or glucose. If at least one monomer of group (d) is used in the copolymerization, the amounts used are up to 2 mol%, for example 0.001 to 1 mol%.

In einer bevorzugten Ausführungsform wird zur Polymerisation ein Monomergemisch eingesetzt, mit wenigstens einem monoethylenisch ungesättigten Monomer als Komponente (b) ausgewählt aus der Gruppe bestehend aus Monocarbonsäuren, Dicarbonsäuren und Dicarbonsäureanhydriden, wobei dieses Monomer mindestens eine freie Säuregruppe oder mindestens einer Säuregruppe in Salzform aufweist.In a preferred embodiment, a monomer mixture is used for the polymerization, with at least one monoethylenically unsaturated monomer selected as component (b). from the group consisting of monocarboxylic acids, dicarboxylic acids and dicarboxylic acid anhydrides, said monomer having at least one free acid group or at least one acid group in salt form.

In einer weiteren bevorzugten Ausführungsform wird zur Polymerisation ein Monomergemisch eingesetzt, dessen monoethylenisch ungesättigten Monomer mit mindestens einer freien Säuregruppe oder mindestens einer Säuregruppe in Salzform (Komponente (b) ausgewählt wird aus der Gruppe bestehend aus Sulfonsäuren, Phosphonsäuren, Monoestern von Phosphonsäuren, Monoamiden von Phosphonsäuren und Estern der Phosphorsäure mit Alkoholen mit einer polymersierbaren, α,β-ethylenisch ungesättigten Doppelbindung.In a further preferred embodiment, a monomer mixture is used for the polymerization whose monoethylenically unsaturated monomer with at least one free acid group or at least one acid group in salt form (component (b) is selected from the group consisting of sulfonic acids, phosphonic acids, monoesters of phosphonic acids, monoamides of phosphonic acids and esters of phosphoric acid with alcohols having a polymerizable α,β-ethylenically unsaturated double bond.

Typische wasserlösliche amphotere Polymer sind erhältlich sind durch Copolymerisieren einer Monomerzusammensetzung und anschließende teilweise oder vollständige Hydrolyse der Gruppen -CO-R1 des Polymerisats, wobei die Monomerzusammensetzung aus

  1. a) 1 bis 99 Gew.-%, bevorzugt 5 bis 95 Gew.-%, insbesondere 20 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der zur Polymerisation eingesetzten Monomere, wenigstens eines N-Vinylcarbonsäureamids der allgemeinen Formel
    Figure imgb0004
    worin R1 und R2 unabhängig voneinander für H oder C1- bis C6-Alkyl stehen,
  2. b) 1 bis 99 Gew.-%, bevorzugt 5 bis 95 Gew.-%, insbesondere 10 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der zur Polymerisation eingesetzten Monomere, wenigstens eines monoethylenisch ungesättigten Monomers mit mindestens einer freien Säuregruppe oder mindestens einer Säuregruppe in Salzform, bevorzugt wenigstens eines Monomers, das ausgewählt ist aus der Gruppe bestehend aus Monocarbonsäuren, Dicarbonsäuren und Dicarbonsäureanhydriden,
  3. c) 0 bis 90 Gew.-%, bevorzugt 0,1 bis 85 Gew.-%, insbesondere 1 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der zur Polymerisation eingesetzten Monomere, wenigstens einem von den Komponenten (a) und (b) verschiedenen monoethylenisch ungesättigten Monomer, und
  4. d) 0 bis 5 Gew.-%, bevorzugt 0,0001 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der zur Polymerisation eingesetzten Monomere, wenigstens einer Verbindung, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweist,
besteht.Typical water-soluble amphoteric polymers are obtainable by copolymerizing a monomer composition and subsequent partial or complete hydrolysis of the -CO-R 1 groups of the polymer, the monomer composition consisting of
  1. a) 1 to 99% by weight, preferably 5 to 95% by weight, in particular 20 to 90% by weight, based on the total weight of the monomers used for the polymerization, of at least one N-vinylcarboxamide of the general formula
    Figure imgb0004
    wherein R 1 and R 2 independently represent H or C 1 - to C 6 -alkyl,
  2. b) 1 to 99% by weight, preferably 5 to 95% by weight, in particular 10 to 80% by weight, based on the total weight of the monomers used for the polymerization, of at least one monoethylenically unsaturated monomer having at least one free acid group or at least an acid group in salt form, preferably at least one monomer selected from the group consisting of monocarboxylic acids, dicarboxylic acids and dicarboxylic acid anhydrides,
  3. c) 0 to 90% by weight, preferably 0.1 to 85% by weight, in particular 1 to 80% by weight, based on the total weight of the monomers used for the polymerization, of at least one of components (a) and ( b) different monoethylenically unsaturated monomer, and
  4. d) 0 to 5% by weight, preferably 0.0001 to 3% by weight, based on the total weight of the monomers used for the polymerization, of at least one compound which has at least two ethylenically unsaturated double bonds in the molecule,
consists.

Beispielsweise sind solche wasserlöslichen amphoteren Polymere bevorzugt, die durch Copolymerisieren von

  1. a) wenigstens einem N-Vinylcarbonsäureamid der allgemeinen Formel
    Figure imgb0005
    worin R1 und R2 unabhängig voneinander für H oder C1- bis C6-Alkyl stehen,
  2. b) wenigstens einem Monomer, das ausgewählt ist unter monoethylenisch ungesättigten Carbonsäuren mit 3 bis 8 C-Atomen und deren wasserlöslichen Salzen wie Alkalimetall-, Erdalkalimetall- und Ammoniumsalzen dieser Carbonsäuren,
  3. c) gegebenenfalls wenigstens einem von den Komponenten (a) und (b) verschiedenen monoethylenisch ungesättigten Monomer, und
  4. d) gegebenenfalls wenigstens eine Verbindung, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweist,
und anschließende teilweise oder vollständige Hydrolyse der Gruppen -CO-R1 aus den in das Copolymerisat einpolymerisierten Monomeren (a) erhältlich sind.For example, preferred are those water-soluble amphoteric polymers obtained by copolymerizing
  1. a) at least one N-vinylcarboxamide of the general formula
    Figure imgb0005
    wherein R 1 and R 2 independently represent H or C 1 - to C 6 -alkyl,
  2. b) at least one monomer selected from monoethylenically unsaturated carboxylic acids having 3 to 8 carbon atoms and their water-soluble salts such as alkali metal, alkaline earth metal and ammonium salts of these carboxylic acids,
  3. c) optionally at least one monoethylenically unsaturated monomer different from components (a) and (b), and
  4. d) optionally at least one compound which has at least two ethylenically unsaturated double bonds in the molecule,
and subsequent partial or complete hydrolysis of the -CO-R 1 groups from the monomers (a) polymerized into the copolymer.

Besonders bevorzugt sind solche wasserlöslichen, amphoteren Polymere, die erhältlich sind durch Copolymerisieren von

  1. a) N-Vinylformamid,
  2. b) Acrylsäure, Methacrylsäure und/oder deren Allkalimetall- oder Ammoniumsalzen, und
  3. c) gegebenenfalls anderen monoethylenisch ungesättigten Monomeren
und anschließende Abspaltung der -CO-R1-Gruppe aus den Copolymerisaten.Particularly preferred are those water-soluble, amphoteric polymers that are obtainable by copolymerizing
  1. a) N-vinylformamide,
  2. b) acrylic acid, methacrylic acid and/or their alkali metal or ammonium salts, and
  3. c) optionally other monoethylenically unsaturated monomers
and subsequent elimination of the -CO-R 1 group from the copolymers.

Die Hydrolyse der nach dem oben beschriebenen Verfahren erhaltenen Polymere erfolgt nach bekannten Verfahren durch Einwirkung von Säuren, Basen oder Enzymen, beispielsweise Salzsäure, Natronlauge oder Kalilauge. Hierbei entstehen aus den einpolymerisierten Monomeren (a) der oben angegebenen Formel (I) durch Abspaltung der -CO-R1-Gruppe Copolymerisate, die Vinylamineinheiten (VI) und/oder Amidineinheiten (II - V)

Figure imgb0006
Figure imgb0007
Figure imgb0008
wobei in den Amidineinheiten (II) bis (V) X- jeweils ein Anion bedeutet und die Substituenten R1 und R2 in den Formeln II - VI jeweils die in Formel I angegebene Bedeutung haben.The hydrolysis of the polymers obtained by the process described above is carried out by known processes by the action of acids, bases or enzymes, for example hydrochloric acid, sodium hydroxide or potassium hydroxide. This results from the copolymerized monomers (a) of the above formula (I) by splitting off the -CO-R 1 group, to give copolymers which contain vinylamine units (VI) and/or amidine units (II - V)
Figure imgb0006
Figure imgb0007
Figure imgb0008
where in the amidine units (II) to (V) X - is in each case an anion and the substituents R 1 and R 2 in the formulas II - VI each have the meaning given in formula I.

Das ursprünglich anionische Copolymerisat erhält durch die Hydrolyse kationische Gruppen und wird somit amphoter.The originally anionic copolymer receives cationic groups as a result of the hydrolysis and thus becomes amphoteric.

Die Amidineinheiten (II) und (III) entstehen durch Reaktion benachbarter Vinylaminheiten der Formel (VI) mit Vinylformamideinheiten bzw. die der Formel IV und V durch Reaktion benachbarter Vinylamineinheiten der Formel (VI) mit Acrylnitril- oder Methacrylnitrilgruppen (sofern im Polymer enthalten).The amidine units (II) and (III) are formed by reacting adjacent vinylamine units of the formula (VI) with vinylformamide units or those of the formula IV and V by reacting adjacent vinylamine units of the formula (VI) with acrylonitrile or methacrylonitrile groups (if present in the polymer).

Die Hydrolyse der Copolymeren ist beispielsweise in EP-B-0 672 212 auf Seite 4, Zeilen 38 - 58 und auf Seite 5, Zeilen 1 - 25 und in den Beispielen von EP 528 409 detailliert offenbart.The hydrolysis of the copolymers is, for example, in EP-B-0 672 212 on page 4, lines 38 - 58 and on page 5, lines 1 - 25 and in the examples of EP 528 409 revealed in detail.

Bevorzugt wird ein amphoteres Polymer eingesetzt, bei dem die Hydrolyse in Gegenwart von Basen, bevorzugt in Gegenwart von Natronlauge, durchgeführt wurde.An amphoteric polymer is preferably used in which the hydrolysis was carried out in the presence of bases, preferably in the presence of sodium hydroxide solution.

Bevorzugt werden teil- und vollhydrolysierte Polymere mit einem Hydrolysegrad ≥10 Mol%, bevorzugt ≥20 Mol%, insbesondere ≥30 Mol%. Deren Hydrolysegrad ist gleichbedeutend mit dem molar gerechneten prozentualen Gesamtgehalt der primären Aminogruppen und Amidingruppen der Polymere bezogen auf die ursprünglich vorhandenen N-Vinylcarbonsäureamideinheiten.Preference is given to partially and fully hydrolyzed polymers with a degree of hydrolysis of ≧10 mol %, preferably ≧20 mol %, in particular ≧30 mol %. Their degree of hydrolysis is equivalent to the molar percentage total content of the primary amino groups and amidine groups of the polymers, based on the N-vinylcarboxamide units originally present.

Das amphotere Polymer enthält beispielsweise

  1. (i) 1 bis 98 Mol-%, vorzugsweise 1 bis 75 Mol-% Vinylcarbonsäureamideinheiten,
  2. (ii) 1 bis 98 Mol-%, vorzugsweise 1 bis 55 Mol-% Einheiten von monoethylenisch ungesättigten Sulfonsäuren, Phosphonsäuren, Phosphorsäureestern, Derivaten davon, oder Einheiten von monoethylenisch ungesättigten Mono- und Dicarbonsäuren, deren Salzen und Dicarbonsäureanhydriden,
    bevorzugt 1 bis 98 Mol-%, vorzugsweise 1 bis 55 Mol-% Einheiten mindestens einer monoethylenisch ungesättigten Carbonsäure mit 3 bis 8 C-Atomen,
  3. (iii) 1 bis 98 Mol-%, vorzugsweise 1 bis 55 Mol-% Vinylamineinheiten der Formel (VI) und/oder Amidineinheiten der Formel (II), (III), (IV) und/oder (V), und
  4. (iv) bis zu 50 Mol-% Einheiten von anderen monoethylenisch ungesättigten Verbindungen.
The amphoteric polymer contains, for example
  1. (i) 1 to 98 mol%, preferably 1 to 75 mol% of vinylcarboxamide units,
  2. (ii) 1 to 98 mol%, preferably 1 to 55 mol% of units of monoethylenically unsaturated sulfonic acids, phosphonic acids, phosphoric acid esters, derivatives thereof, or units of monoethylenically unsaturated mono- and dicarboxylic acids, their salts and dicarboxylic acid anhydrides,
    preferably 1 to 98 mol%, preferably 1 to 55 mol% of units of at least one monoethylenically unsaturated carboxylic acid having 3 to 8 carbon atoms,
  3. (iii) 1 to 98 mol%, preferably 1 to 55 mol% of vinylamine units of formula (VI) and/or amidine units of formula (II), (III), (IV) and/or (V), and
  4. (iv) up to 50 mole % of units from other monoethylenically unsaturated compounds.

Besonders bevorzugt sind amphotere Polymere enthaltend, insbesondere bestehend aus

  1. (i) 5 bis 70 Mol-% Vinylcarbonsäureamideinheiten,
  2. (ii) 3 bis 30 Mol-% Einheiten von monoethylenisch ungesättigten Sulfonsäuren, Phosphonsäuren und Salzen davon, und
  3. (iii) 10 bis 60 Mol-% Vinylamineinheiten der Formel VI in Salzform und gegebenenfalls Amidineinheiten der Formel (II) und/oder (III).
Particular preference is given to containing amphoteric polymers, in particular consisting of
  1. (i) 5 to 70 mol% vinylcarboxamide units,
  2. (ii) 3 to 30 mol% of units of monoethylenically unsaturated sulfonic acids, phosphonic acids and salts thereof, and
  3. (iii) 10 to 60 mol% of vinylamine units of formula VI in salt form and optionally amidine units of formula (II) and/or (III).

Gemäß einer weiteren Ausführungsform sind amphotere Polymere besonders bevorzugt, enthaltend, insbesondere bestehend aus

  1. (i) 5 bis 70 Mol-% Vinylcarbonsäureamideinheiten,
  2. (ii) 5 bis 45 Mol-% Einheiten von Acrylsäure, Methacrylsäure, Salzen und Gemischen davon,
    und
  3. (iii) 10 bis 60 Mol-% Vinylamineinheiten der Formel VI in Salzform und/oder Amidineinheiten der Formel (II) und/oder (III).
According to a further embodiment, amphoteric polymers are particularly preferred, containing, in particular consisting of
  1. (i) 5 to 70 mol% vinylcarboxamide units,
  2. (ii) 5 to 45 mol% units of acrylic acid, methacrylic acid, salts and mixtures thereof,
    and
  3. (iii) 10 to 60 mol% of vinylamine units of formula VI in salt form and/or amidine units of formula (II) and/or (III).

Von besonderer technischer Bedeutung sind gemäß aller zuvorgenannter Ausführungsformen diejenigen amphoteren Copolymere, die als Komponente (a) N-Vinylformamid einpolymerisiert enthalten.According to all of the aforementioned embodiments, those amphoteric copolymers which contain N-vinylformamide in copolymerized form as component (a) are of particular industrial importance.

Die Herstellung der wasserlöslichen amphoteren Polymere, erfolgt nach üblichen, dem Fachmann bekannten Verfahren. Geeignete Verfahren sind z.B. in der EP-A-0 251 182 , WO-A-94/13882 und EP-B-0 672 212 beschrieben, worauf hier Bezug genommen wird. Weiterhin wird auf die Herstellung der in WO-A-04/087818 und WO-A-05/012637 beschriebenen, wasserlöslichen amphoteren Polymere Bezug genommen.The water-soluble amphoteric polymers are prepared by customary methods known to those skilled in the art. Suitable methods are for example in EP-A-0 251 182 , WO-A-94/13882 and EP-B-0 672 212 described, to which reference is made here. Furthermore, the production of the in WO-A-04/087818 and WO-A-05/012637 described water-soluble amphoteric polymers.

Die Herstellung der wasserlöslichen amphoteren Polymere kann durch Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation erfolgen. Bevorzugt ist die Lösungspolymerisation in wässrigen Medien. Geeignete wässrige Medien sind Wasser und Gemische aus Wasser und mindestens einem wassermischbaren Lösungsmittel, z.B. einem Alkohol, wie Methanol, Ethanol, n-Propanol, Isopropanol etc.The water-soluble amphoteric polymers can be prepared by solution, precipitation, suspension or emulsion polymerization. Solution polymerization in aqueous media is preferred. Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent, e.g. an alcohol such as methanol, ethanol, n-propanol, isopropanol, etc.

Die Polymerisationstemperaturen liegen vorzugsweise in einem Bereich von etwa 30 bis 200°C, besonders bevorzugt 40 bis 110 °C. Die Polymerisation erfolgt üblicherweise unter atmosphärischem Druck, sie kann jedoch auch unter vermindertem oder erhöhtem Druck ablaufen. Ein geeigneter Druckbereich liegt zwischen 0,1 und 5 bar.The polymerization temperatures are preferably in a range from about 30 to 200.degree. C., particularly preferably 40 to 110.degree. The polymerization usually takes place under atmospheric pressure, but it can also take place under reduced or superatmospheric pressure. A suitable pressure range is between 0.1 and 5 bar.

Die Säuregruppen-haltigen Monomere (b) werden vorzugsweise in der Salzform eingesetzt. Der pH-Wert wird zur Copolymerisation vorzugsweise auf einen Wert im Bereich von 6 bis 9 eingestellt. Durch Einsatz eines üblichen Puffers oder durch Messung des pH-Werts und entsprechende Zugabe von Säure oder Base kann der pH-Wert während der Polymerisation konstant gehalten werden.The monomers (b) containing acid groups are preferably used in the salt form. The pH is preferably adjusted to a value in the range from 6 to 9 for the copolymerization. The pH can be kept constant during the polymerization by using a conventional buffer or by measuring the pH and adding acid or base accordingly.

Zur Herstellung der Polymerisate können die Monomeren mit Hilfe von Radikale-bildenden Initiatoren polymerisiert werden.To prepare the polymers, the monomers can be polymerized with the aid of free-radical initiators.

Als Initiatoren für die radikalische Polymerisation können die hierfür üblichen Peroxo- und/oder Azo-Verbindungen eingesetzt werden, beispielsweise Alkali- oder Ammoniumperoxidisulfate, Diacetylperoxid, Dibenzoylperoxid, Succinylperoxid, Di-tert.-butylperoxid, tert.-Butylperbenzoat, tert.-Butylperpivalat, tert.-Butylperoxy-2-ethylhexa-noat, tert.-Butylpermaleinat, Cumolhydroperoxid, Diisopropylperoxidicarbamat, Bis-(o-toluoyl)-peroxid, Didecanoylperoxid, Dioctanoylperoxid, Dilauroylperoxid, tert.-Butylperisobutyrat, tert.-Butylperacetat, Di-tert.-amylperoxid, tert.-Butylhydroperoxid, Azo-bis-isobutyronitril, Azo-bis-(2-amidonopropan)dihydrochlorid oder 2-2'-Azo-bis-(2-methyl-butyronitril). Geeignet sind auch Initiatormischungen oder Redox-Initiator-Systeme, wie z.B. Ascorbinsäure/Eisen(II)sulfat/Natriumperoxodisulfat, tert.-Butyl-hydroper-oxid/Natriumdisulfit, tert.-Butylhydroperoxid/Natriumhydroxymethansulfinat, H2O2/Cul.The peroxo and/or azo compounds customary for this purpose can be used as initiators for the radical polymerization, for example alkali metal or ammonium peroxydisulfates, diacetyl peroxide, dibenzoyl peroxide, succinyl peroxide, di-tert-butyl peroxide, tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl permaleate, cumene hydroperoxide, diisopropyl peroxydicarbamate, bis-(o-toluoyl)-peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, tert-butyl perisobutyrate, tert-butyl peracetate, di-tert. -amyl peroxide, tert-butyl hydroperoxide, azo-bis-isobutyronitrile, azo-bis-(2-amidonopropane) dihydrochloride or 2-2'-azo-bis-(2-methyl-butyronitrile). Also suitable are initiator mixtures or redox initiator systems, such as, for example, ascorbic acid/iron(II) sulfate/sodium peroxodisulfate, tert-butyl hydroperoxide/sodium disulfite, tert-butyl hydroperoxide/sodium hydroxymethanesulfinate, H 2 O 2 /Cul.

Zur Einstellung des Molekulargewichts kann die Polymerisation in Gegenwart wenigstens eines Reglers erfolgen. Als Regler können die üblichen, dem Fachmann bekannten Verbindungen, wie Schwefelverbindungen, z. B. Mercaptoethanol, 2-Ethylhexylthioglycolat, Thioglycolsäure, Natriumhypophosphit, Ameisensäure oder Dodecylmercaptan sowie Tribromchlormethan oder andere Verbindungen, die regelnd auf das Molekulargewicht der erhaltenen Polymerisate wirken, eingesetzt werden.To adjust the molecular weight, the polymerization can be carried out in the presence of at least one regulator. As regulators, the usual compounds known to those skilled in the art, such as sulfur compounds, e.g. B. mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan and tribromochloromethane or other compounds which regulate the molecular weight of the polymers obtained can be used.

Die mittlere Molmasse Mw des wasserlöslichen amphoteren Polymers beträgt beispielsweise mindestens 10 000, vorzugsweise mindestens 100 000 Dalton und insbesondere mindestens 500 000 Dalton. Die Molmassen der Polymere betragen dann z.B. 10 000 bis 10 Millionen, vorzugsweise 100 000 bis 5 Millionen (z.B. bestimmt durch Lichtstreuung an ihrer nicht hydrolysierten Vorstufe). Dieser Molmassenbereich entspricht beispielsweise K-Werten von 5 bis 300, vorzugsweise 10 bis 250 (bestimmt nach H. Fikentscher in 5%iger wässriger Kochsalzlösung bei 25 °C und einer Polymerkonzentration von 0,1 Gew.-%).The average molar mass M w of the water-soluble amphoteric polymer is, for example, at least 10,000, preferably at least 100,000 daltons and in particular at least 500,000 daltons. The molar masses of the polymers are then, for example, from 10,000 to 10 million, preferably from 100,000 to 5 million (determined, for example, by light scattering on their non-hydrolyzed precursor). This molar mass range corresponds, for example, to K values of 5 to 300, preferably 10 to 250 (determined according to H. Fikentscher in 5% strength aqueous common salt solution at 25° C. and a polymer concentration of 0.1% by weight).

Weiterer Bestandteile der wässrigen Anschlämmung sind Mikropartikel.Other components of the aqueous slurry are microparticles.

Das Mikropartikel kann dabei sowohl organischen oder anorganischen Charakter haben.The microparticle can have either an organic or an inorganic character.

Geeignete polymere Mikropartikel umfassen anionische Mikropartikel. Diese organischen Polymere haben eine begrenzte Löslichkeit in Wasser und können vernetzt sein. Organische Mikropartikel haben ungequollen eine Teilchengröße von kleiner 750 nm.Suitable polymeric microparticles include anionic microparticles. These organic polymers have limited solubility in water and may be crosslinked. Unswollen organic microparticles have a particle size of less than 750 nm.

Anionische organische Mikropartikel, wie sie beispielsweise in der US 6,524,439 beschrieben werden, sind erhältlich durch Hydrolyse eines Acrylamidpolymer Mikropartikels oder durch Polymerisation von anionischen Monomeren wie (Meth)acrylsäure sowie ihren Salze, 2-Acrylamido-2-methylpropanesulfonate, Sulfoethyl(meth)acrylate, Vinylsulfonsäure, Styrolsulfonsäure, Maleinsäure oder andere zweibasige Säuren oder ihre Salze sowie Mischungen davon.Anionic organic microparticles, such as those in U.S. 6,524,439 are obtainable by hydrolysis of an acrylamide polymer microparticle or by polymerization of anionic monomers such as (meth)acrylic acid and its salts, 2-acrylamido-2-methylpropanesulfonates, sulfoethyl (meth)acrylates, vinylsulfonic acid, styrenesulfonic acid, maleic acid or other dibasic acids or their salts and mixtures thereof.

Diese anionischen Monomere können weiterhin copolymerisiert sein mit nichtionischen Monomeren wie (Meth)acrylamid, N-Alkylacrylamiden, N,N-Dialkylacrylamiden, Methyl(meth)acrylat, Acrylonitril, N-Vinyl-methylacetamid, N-Vinyl-methylformamid, Vinylacetat, N-vinylpyrrolidon und Mischungen davon.These anionic monomers can also be copolymerized with nonionic monomers such as (meth)acrylamide, N-alkylacrylamides, N,N-dialkylacrylamides, methyl (meth)acrylate, acrylonitrile, N-vinylmethylacetamide, N-vinylmethylformamide, vinyl acetate, N- vinylpyrrolidone and mixtures thereof.

Die Polymerisation der Monomere zu Mikropartikeln wird typischerweise in Gegenwart eines multifunktionellen Vernetzers durchgeführt. Derartige Vernetzer werden beispielsweise in der US 6,524,439 beschrieben, und haben mindestens zwei Doppelbindungen oder eine Doppelbindung und eine reaktive Gruppe oder zwei reaktive Gruppen. Beispielhaft seinen N,N-Methylen-bis-(meth)acrylamid, Polyethyleneglycoldi(meth)acrylat, N-Vinylacrylamid, Divinylbenzene, Triallylammoniumsalze, N-Methylallylacrylamideglycidyl(meth)acrylat, ,Acrolein, Methylolacrylamide, Dialdehyde wie Glyoxal, Diepoxyverbindungen sowie Epichlorohydrin genannt.The polymerization of the monomers into microparticles is typically carried out in the presence of a multifunctional crosslinking agent. Such crosslinkers are for example in U.S. 6,524,439 described, and have at least two double bonds or one double bond and one reactive group or two reactive groups. For example, its N,N-methylene-bis-(meth)acrylamide, Polyethyleneglycoldi(meth)acrylate, N-vinylacrylamide, divinylbenzene, triallylammonium salts, N-methylallylacrylamideglycidyl(meth)acrylate, acrolein, methylolacrylamide, dialdehydes such as glyoxal, diepoxy compounds and epichlorohydrin.

Der multifunktionelle Vernetzer wird in einer Menge eingesetzt, die ein hinreichend vernetztes Polymer ergibt. So können mindestens 4 ppm multifunktioneller Vernetzer auf ein Mol Monomere eingesetzt werden. Bevorzugt wird eine Menge von 4 bis 6000 ppm, besonders bevorzugt von 20 bis 4000 ppm, und insbesondere von 40 bis 2000 ppm, multifunktioneller Vernetzer auf ein Mol Monomere eingesetzt.The multifunctional crosslinking agent is used in an amount that gives a sufficiently crosslinked polymer. For example, at least 4 ppm of multifunctional crosslinking agent can be used per mole of monomer. A quantity of from 4 to 6000 ppm, particularly preferably from 20 to 4000 ppm, and in particular from 40 to 2000 ppm, of multifunctional crosslinking agent is preferably used per mole of monomers.

Zur Einstellung des Molekulargewichts kann die Polymerisation in Gegenwart wenigstens eines Reglers erfolgen. Derartige Polymerisationen zur Herstellung von Polymerteilchen werden beispielsweise in der US 5,961,840 , US 5,919,882 , 5, 171,808 und US 5,167,766 beschrieben.To adjust the molecular weight, the polymerization can be carried out in the presence of at least one regulator. Such polymerizations for the production of polymer particles are, for example, in U.S. 5,961,840 , U.S. 5,919,882 , 5,171,808 and U.S. 5,167,766 described.

Als Regler können die üblichen, dem Fachmann bekannten Verbindungen, wie Schwefelverbindungen, z. B. Mercaptoethanol, 2-Ethylhexylthioglycolat, Thioglycolsäure, Natriumhypophosphit, Ameisensäure oder Dodecylmercaptan sowie Tribromchlormethan oder andere Verbindungen, die regelnd auf das Molekulargewicht der erhaltenen Polymerisate wirken, eingesetzt werden.As regulators, the usual compounds known to those skilled in the art, such as sulfur compounds, e.g. B. mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan and tribromochloromethane or other compounds which regulate the molecular weight of the polymers obtained can be used.

Die Polymerisation zu einem Mikropartikel erfolgt üblicherweise mittels inverser Emulsionspolymerisation oder inverser Mikroemulsionspolymerisation und ist dem Fachmann allgemein bekannt. Derartige Polymerisationen werden beispielsweise in der US 2003/0192664 (Seite 6) beschrieben auf deren Lehre ausdrücklich Bezug genommen wird.The polymerisation to form a microparticle usually takes place by means of inverse emulsion polymerisation or inverse microemulsion polymerisation and is generally known to the person skilled in the art. Such polymerizations are for example in the US2003/0192664 (Page 6) whose teaching is expressly referred to.

Die Herstellung der Mikropartikel erfolgt in der Regel mittels

  1. a) Zubereiten einer W/O Emulsion mit einer Ölphase als kontinuierlicher Phase und einer wässrigen diskontinuierlichen Phase, indem eine wässrige Lösung der Monomere in einem Kohlenwasserstoff in Gegenwart eines Tensids emulgiert wird und
  2. b) Durchführen einer freien radikalischen Polymerisation.
The microparticles are usually produced by means of
  1. a) preparing a W/O emulsion having an oil phase as a continuous phase and an aqueous discontinuous phase, by emulsifying an aqueous solution of the monomers in a hydrocarbon in the presence of a surfactant and
  2. b) performing a free radical polymerization.

Bevorzugt werden anionische organische Mikropartikel, insbesondere Copolymere aus Acrylamid und einem oder mehreren anionischen Monomeren.Anionic organic microparticles are preferred, in particular copolymers of acrylamide and one or more anionic monomers.

Bevorzugte anionische organische Mikropartikel haben ungequollen einen mittleren Teilchendurchmesser von ≤750 nm, bevorzugt von ≤500 nm, besonders insbesonderen im Bereich von 25 bis 300 nm.Preferred anionic organic microparticles, when unswollen, have an average particle diameter of ≦750 nm, preferably ≦500 nm, particularly in the range from 25 to 300 nm.

Die anionischen organischen Mikropartikel enthalten bevorzugt 0 - 99 Gew.-Teile eines nichtionischen Monomers 1 - 100 Gew.-Teile eines anionischen Monomers jeweils bezogen auf das Gesamtgewicht aller Monomere.The anionic organic microparticles preferably contain 0 - 99 parts by weight a nonionic monomer 1 - 100 parts by weight an anionic monomer each based on the total weight of all monomers.

Die anionischen organischen Mikropartikel enthalten besonders bevorzugt 10 - 90 Gew.-Teile eines nichtionischen Monomers 10 - 90 Gew.-Teile eines anionischen Monomers jeweils bezogen auf das Gesamtgewicht aller Monomere.The anionic organic microparticles particularly preferably contain 10 - 90 parts by weight a nonionic monomer 10 - 90 parts by weight an anionic monomer each based on the total weight of all monomers.

Die anionischen organischen Mikropartikel enthalten besonders bevorzugt 20 - 80 Gew.-Teile eines nichtionischen Monomers 20 - 80 Gew.-Teile eines anionischen Monomers jeweils bezogen auf das Gesamtgewicht aller Monomere.The anionic organic microparticles particularly preferably contain 20 - 80 parts by weight a nonionic monomer 20 - 80 parts by weight an anionic monomer each based on the total weight of all monomers.

Die anionischen organischen Mikroteilchen haben eine Ladungsdichte von mindestens 2 meq/g. Geeignet ist eine Ladungsdichte im Bereich von 2 bis 18 meq/g, bevorzugt von 3 bis 15 meq/g, insbesondere von 5 bis 12 meq/g.The anionic organic microparticles have a charge density of at least 2 meq/g. A charge density in the range from 2 to 18 meq/g, preferably from 3 to 15 meq/g, in particular from 5 to 12 meq/g, is suitable.

Anorganische Mikropartikel weisen im Gegensatz zu anorganischen Füllstoffen, die eine spezifische Oberflächen nach BET von ≤20 m2/g haben, eine spezifische Oberfläche nach BET von ≥100 m2/g auf (BET-Messung (DIN ISO 9277:2003-05).In contrast to inorganic fillers, which have a BET specific surface area of ≤20 m 2 /g, inorganic microparticles have a BET specific surface area of ≥100 m 2 /g (BET measurement (DIN ISO 9277:2003-05) .

Die anorganischen Mikropartikel sind ausgewählt aus Bentonit, kolloidale Kieselsäure und Silikate. Unter Bentonit werden allgemein Schichtsilikate verstanden, die in Wasser quellbar sind. Es handelt sich hierbei vor allem um das Tonmineral Montmorrillonit sowie ähnliche Tonmineralien wie Nontronit, Hectorit, Saponit, Sauconit, Beidellit, Allevardit, Illit, Halloysit, Attapulgit und Sepi- olit. Diese Schichtsilikate werden vorzugsweise vor ihrer Anwendung aktiviert, d.h. in eine in Wasser quellbare Form überführt, indem man die Schichtsilikate mit einer wässrigen Base wie wässrigen Lösungen von Natronlauge, Kalilauge, Soda oder Pottasche behandelt.The inorganic microparticles are selected from bentonite, colloidal silica and silicates. Bentonite is generally understood to mean phyllosilicates which are swellable in water. These are primarily the clay mineral montmorillonite and similar clay minerals such as nontronite, hectorite, saponite, sauconite, beidellite, allevardite, illite, halloysite, attapulgite and sepiolite. These layered silicates are preferably activated prior to their use, i.e. converted into a water-swellable form, by treating the layered silicates with an aqueous base such as aqueous solutions of sodium hydroxide, potassium hydroxide, soda or potash.

Vorzugsweise verwendet man als anorganische Mikropartikel Bentonit in der mit Natronlauge behandelten Form. Der Plättchendurchmesser des in Wasser dispergierten Bentonits beträgt in der mit Natronlauge behandelten Form beispielsweise 1 bis 2 µm, die Dicke der Plättchen liegt bei etwa 1 nm. Je nach Typ und Aktivierung hat der Bentonit eine spezifische Oberfläche von 150 bis 800 m2/g. Typische Bentonite werden z.B. in der EP-B-0235893 beschrieben. Im Pa- pierherstellungsprozess wird Bentonit zu der Cellulosesuspension typischerweise in Form einer wässrigen Bentonitslurry zugesetzt. Diese Bentonitslurry kann bis zu 10 Gew.-% Bentonit enthalten. Normalerweise enthalten die Slurries ca. 3 - 5 Gew.-% Bentonit.The inorganic microparticles used are preferably bentonite in the form treated with sodium hydroxide solution. The flake diameter of the bentonite dispersed in water in the form treated with caustic soda is 1 to 2 μm, for example, and the flake thickness is about 1 nm. Depending on the type and activation, the bentonite has a specific surface area of 150 to 800 m 2 /g. Typical bentonites are, for example, in the EP-B-0235893 described. In the papermaking process, bentonite is typically added to the cellulose suspension in the form of an aqueous bentonite slurry. This bentonite slurry can contain up to 10% by weight of bentonite. Normally, the slurries contain approx. 3 - 5% by weight of bentonite.

Als kollodiale Kieselsäure können Produkte aus der Gruppe von Siliciumbasierenden Partikel, Silica-Microgele, Silica-Sole, Aluminiumsilicate, Borosilikate, Polyborosilikate oder Zeolite eingesetzt werden. Diese haben eine spezifische Oberfläche von 200 - 1000 m2/g und eine durchschnittliche Teilchengrößenverteilung von 1 - 250 nm, normalerweise im Bereich 40 - 100 nm. Die Herstellung solcher Komponenten wird z.B. in EP-A-0041056 , EP-A-0185068 und US-A-5176891 beschrieben.Products from the group consisting of silicon-based particles, silica microgels, silica sols, aluminum silicates, borosilicates, polyborosilicates or zeolites can be used as colloidal silicic acid. These have a specific surface area of 200-1000 m 2 /g and an average particle size distribution of 1-250 nm, normally in the range 40-100 nm EP-A-0041056 , EP-A-0185068 and US-A-5176891 described.

Clay oder auch Kaolin ist ein wasserhaltiges Aluminiumsilikat mit plättchenförmiger Struktur. Die Kristalle haben eine Schichtstruktur und ein aspect ratio (Verhältnis Durchmesser zu Dicke) von bis zu 30:1. Die Teilchengröße liegt bei mindestens 50 % kleiner 2 µm.Clay or kaolin is a hydrous aluminum silicate with a plate-like structure. The crystals have a layered structure and an aspect ratio (ratio of diameter to thickness) of up to 30:1. The particle size is at least 50% smaller than 2 μm.

Im Fall von anorganischen Mikropartikeln wird vorzugsweise ein Gewichtsverhältnis von Füllstoffen zu anoranischen Mikropartikeln von mindestens 30 : 1 gewählt.In the case of inorganic microparticles, a weight ratio of fillers to inorganic microparticles of at least 30:1 is preferably selected.

Die wässrige Anschlämmung hat in der Regel einen Feststoffgehaltgehalt von ≥ 3 Gew.-%, bevorzugt ≥ 8 Gew.-%, insbesondere ≥ 12 Gew.-%, bezogen auf die wässrige Änschlämmung.The aqueous slurry generally has a solids content of ≧3% by weight, preferably ≧8% by weight, in particular ≧12% by weight, based on the aqueous slurry.

Der Anteil der Mikropartikel in der wässrigen Anschlämmung beträgt beispielsweise

  • 0,01 - 1 Gew.-% bezogen auf Füllstoff (fest). Bevorzugt wird ein Mikropartikelanteil von
  • 0,05 - 0,6 Gew.-% bezogen auf den Füllstoff (fest).
The proportion of microparticles in the aqueous slurry is, for example
  • 0.01 - 1% by weight based on filler (solid). A microparticle content of is preferred
  • 0.05 - 0.6% by weight based on the filler (solid).

Der Anteil des wasserlöslichen, amphoteren Polymers beträgt im Allgemeinen 0,01 - 1 Gew.-%, bevorzugt 0,05 - 0,6 Gew.-% bezogen auf den Füllstoff (fest).The proportion of the water-soluble, amphoteric polymer is generally 0.01-1% by weight, preferably 0.05-0.6% by weight, based on the filler (solid).

Bevorzugt werden wässrige Anschlämmungen enthaltend, bevorzugt bestehend aus Wasser, 5 - 70 Gew.-% Füllstoff bezogen auf die wässrige Anschlämmung, und 0,001 - 1 Gew. % wasserlösliches amphoteres Polymer und 0,01 - 1 Gew.-% Mikropartikel, jeweils bezogen auf Füllstoff (fest).Preference is given to aqueous suspensions containing, preferably consisting of water, 5-70% by weight of filler, based on the aqueous suspension, and 0.001-1% by weight of water-soluble amphoteric polymer and 0.01-1% by weight of microparticles, each based on Filler (solid).

Bevorzugt werden Anschlämmungen, in denen das Verhältnis wasserlösliches amphoteres Polymer / Mikropartikel 5 : 1 bis 1 : 5, bevorzugt 3 : 1 bis 1 : 3 beträgt.Preference is given to slurries in which the water-soluble amphoteric polymer/microparticle ratio is 5:1 to 1:5, preferably 3:1 to 1:3.

Erfindungsgemäß wird die wässrige Anschlämmung zu einem Papierstoff dosiert.According to the invention, the aqueous slurry is metered into a paper stock.

Als Papierstoff Verwendung finden können alle in der Papierindustrie üblicherweise eingesetzten Fasern aus Nadel- und Laubhölzern z.B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemo-thermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical Pulp (RMP). Als Zellstoff kommen beispielsweise Sulfat-, Sulfit- und Natronzellstoffe in Betracht. Vorzugsweise verwendet man ungebleichten Zellstoff, der auch als ungebleichter Kraftzellstoff bezeichnet wird. Geeignete Einjahrespflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf. Zur Herstellung der Pulpen kann auch Altpapier verwendet werden, das entweder allein oder in Mischung mit anderen Faserstoffen eingesetzt wird. Das Altpapier kann beispielsweise aus einem Deinking-Prozess stammen. Es ist aber nicht erforderlich, dass das einzusetzende Altpapier einem solchen Prozess unterworfen wird. Weiterhin kann man auch von Fasermischungen aus einem Primärstoff und zurückgeführtem gestrichenem Ausschuss ausgehen.All fibers from softwood and deciduous wood commonly used in the paper industry, for example mechanical pulp, bleached and unbleached cellulose and paper pulp from all annual plants, can be used as paper stock. Mechanical pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure groundwood, semi-chemical pulp, high-yield pulp, and refiner mechanical pulp (RMP). Sulphate, sulfite and soda pulp, for example, can be used as pulp. Preference is given to using unbleached pulp, which is also referred to as unbleached kraft pulp. Suitable annual plants for the production of paper pulp are, for example, rice, wheat, sugar cane and kenaf. Waste paper can also be used to produce the pulps, either on its own or in a mixture with other fibrous materials. The waste paper can come from a deinking process, for example. However, it is not necessary for the waste paper to be used to be subjected to such a process. Furthermore, fiber mixtures made from a primary material and recycled coated broke can also be used.

Erfindungsgemäß wird zu einer wässrigen Suspension von Fasern die wässrige Anschlämmung zugesetzt. Vorzugsweise erfolgt dies in Abwesenheit anderer Prozesschemikalien, die üblicherweise bei der Papierherstellung eingesetzt werden. Die wasserlöslichen, amphoteren Polymeren können im Papierherstellungsprozess z.B. in einer Menge von 0,01 bis 1,00 Gew.-%, bezogen auf trockenen Faserstoff zugesetzt werden.According to the invention, the aqueous slurry is added to an aqueous suspension of fibers. Preferably, this is done in the absence of other process chemicals commonly used in papermaking. The water-soluble, amphoteric polymers can be added in the papermaking process, for example, in an amount of 0.01 to 1.00% by weight, based on dry fiber.

Typische Aufwandmengen sind beispielsweise 0,1 bis 10 kg, vorzugsweise 0,3 bis 4 kg des wasserlöslichen, amphoteren Polymerisats, pro Tonne eines trockenen Faserstoffs. In den meisten Fällen betragen die eingesetzten Mengen an amphoterem Polymerisat 0,5 bis 2,5 kg Polymer (fest), bezogen pro Tonne trockenen Faserstoff.Typical application rates are, for example, 0.1 to 10 kg, preferably 0.3 to 4 kg, of the water-soluble, amphoteric polymer per tonne of dry fibrous material. In most cases, the amounts of amphoteric polymer used are 0.5 to 2.5 kg of polymer (solid), based on ton of dry fiber.

Bei dem erfindungsgemäßen Verfahren können die üblicherweise bei der Papierherstellung verwendeten Prozesschemikalien in den üblichen Mengen eingesetzt werden, z.B. Retentionsmittel, Entwässerungsmittel, andere Trockenverfestiger wie beispielsweise Stärke, Pigmente, Füllstoffe, optische Aufheller, Entschäumer, Biozide und Papierfarbstoffe. Diese Stoffe werden dem Papierstoff vorzugsweise erst nach der erfindungsgemäßen Behandlung des Faserstoffs zugesetzt.The process chemicals customarily used in papermaking can be used in the usual amounts in the process according to the invention, e.g. These substances are preferably added to the paper stock only after the fibrous stock has been treated according to the invention.

Schematisch besteht eine Papiermaschine aus den aufeinanderfolgenden Einheiten: Stoffauflauf, Siebpartie, Pressenpartie und Trockenpartie. Die Entwässerungswirkung innerhalb der Siebpartie wird durch mechanische Kräfte erreicht (Schwerkraft, Fliehkraft). Zusätzlich finden auch hydrodynamische Maßnahmen Anwendung. Diese führen in der Regel dazu, dass an den Sieben ein Unterdruck entsteht. Diese Maßnahmen sind vor allem dann sinnvoll wenn die Entwässerung einen Grad erreicht hat, bei dem erste Kapillareffekte in dem nassen Papiergefüge eine Rolle spielen.Schematically, a paper machine consists of the following units: headbox, wire section, press section and dryer section. The dewatering effect within the wire section is achieved by mechanical forces (gravity, centrifugal force). In addition, hydrodynamic measures are also used. These usually lead to a negative pressure being created on the screens. These measures are particularly useful when dewatering has reached a level where the first capillary effects in the wet paper structure play a role.

Erfindungsgemäß erfolgt die Blattbildung in der Siebpartie bis zu einem Trockengehalt des Papierblattes von mindestens 18 Gew.-%, bevorzugt 19 Gew.-% insbesondere 20 Gew.-%. Bevorzugt erfolgt die Blattbildung in der Siebpartie bis zu einem Trockengehalt des Papierblattes von höchstens 25 Gew.-%. Gemäß einer bevorzugten Variante erfolgt die Blattbildung in der Siebpartie bis zu einem Trockengehalt des Papierblattes im Bereich von 19 bis 22 Gew.-%.According to the invention, sheet formation takes place in the wire section up to a dry content of the paper sheet of at least 18% by weight, preferably 19% by weight, in particular 20% by weight. Sheet formation in the wire section preferably takes place up to a dry content of the paper sheet of at most 25% by weight. According to a preferred variant, sheet formation takes place in the wire section up to a dry content of the paper sheet in the range from 19 to 22% by weight.

In der Pressenpartie wird das feuchte Faservlies von einem Abnahmesauger (Saugwalze oder statisches Unterdruckelement) auf den Pressfilz abgegautscht. Die Aufgabe des Pressfilzes ist der Transport der Faserstoffbahn durch Pressnips verschiedener Modifikationen. Der Trockengehalt der Bahn beträgt je nach Auslegung der Pressenpartie und der Zusammensetzung des Papierstoffes bis zu maximal 55 Gew.-%. Dabei steigt der Trockengehalt mit dem in der Presse auf die durchlaufende Papierbahn ausgeübten Druck. Der Druck und damit der Trockengehalt der Papierbahn kann in vielen Papiermaschinen über einen relativ großen Bereich variiert werden.In the press section, the moist nonwoven is couched onto the press felt by a take-off suction device (suction roll or static vacuum element). The task of the press felt is to transport the fibrous web through press nips of various modifications. Depending on the design of the press section and the composition of the paper stock, the dry content of the web is up to a maximum of 55% by weight. The dry content increases with the pressure exerted on the paper web running through the press. The pressure and thus the dry content of the paper web can be varied over a relatively wide range in many paper machines.

Das erfindungsgemäße Verfahren ermöglicht einen abrissfreieren Betrieb der Papiermaschine. Die im Verfahren entstehende Papierbahn bzw. Papierblatt zeigt eine deutlich erhöhte initiale Nassgefügefestigkeit.The method according to the invention enables tear-free operation of the paper machine. The paper web or paper sheet produced in the process shows a significantly increased initial wet structural strength.

Die Prozentangaben in den Beispielen sind Gewichtsprozent, sofern nichts anderes angegeben ist.Percentages in the examples are by weight unless otherwise noted.

Beispieleexamples

Der Hydrolysegrad der wasserlöslichen amphoteren Polymere wurde durch enzymatische Analyse der bei der Hydrolyse freigesetzten Ameisensäure/Formiate bestimmt (Testset der Firma Boehringer Mannheim).The degree of hydrolysis of the water-soluble amphoteric polymers was determined by enzymatic analysis of the formic acid/formates released during the hydrolysis (test set from Boehringer Mannheim).

Die strukturelle Zusammensetzung der Polymerisate wurde aus der eingesetzten Monomerenmischung, dem Hydrolysegrad und dem mittels 13C-NMR-Spektrokopie bestimmten Verhältnis von Vinylamin/Amidin errechnet. Das Zusammensetzungsverhältnis ist, sofern nicht anders angegeben in Mol%.The structural composition of the polymers was calculated from the monomer mixture used, the degree of hydrolysis and the vinylamine/amidine ratio determined by means of 13 C-NMR spectroscopy. The composition ratio is in mol% unless otherwise specified.

Die Bestimmung des Trockengehaltes erfolgt gemäß DIN EN ISO 638 DE mit dem Wärmeschrankverfahren. Unter Trockengehalt des Papierblattes versteht man das Verhältnis der Masse einer Probe, die bei einer Temperatur von (105 ± 2) °C unter definierten Bedingungen bis zu einer konstanten Masse getrocknet wurde, zur Masse der Probe vor dem Trocknen. Der Trockengehalt wird als Massenanteile in Prozent angegeben.The dry content is determined in accordance with DIN EN ISO 638 DE using the heating cabinet method. The dry content of the sheet of paper is the ratio of the mass of a sample that has been dried to a constant mass at a temperature of (105 ± 2) °C under defined conditions to the mass of the sample before drying. The dry content is given as a percentage by mass.

In Analogie zur Bestimmung des Trockengehaltes des Papierblattes erfolgt die Bestimmung des Trockengehaltes des Gesamtpapierstoffes und des Faserstoffes. Hieraus ergibt sich die Angabe Gesamtpapierstoff (fest) bzw. Faserstoff (fest).In analogy to the determination of the dry content of the paper sheet, the determination of the dry content of the total paper stock and the fibrous stock takes place. This results in the indication of total paper stock (solid) or fibrous stock (solid).

Die K-Werte wurden nach H. Fikentscher, Cellulosechemie, Band 13, 48-64 und 71-74 unter den jeweils angegebenen Bedingungen gemessen. Die Angaben in Klammer geben die Konzentration der Polymerlösung sowie das Lösungsmittel an.The K values were H. Fikentscher, Cellulose Chemistry, Volume 13, 48-64 and 71-74 measured under the specified conditions. The information in brackets indicates the concentration of the polymer solution and the solvent.

Festgehalte der Polymere wurden bestimmt, indem 0,5 bis 1,5 g der Polymerlösung in einer Blechdeckel mit 4 cm Durchmesser verteilt wurde und anschließend in einem Umlufttrockenschrank bei 140°C zwei Stunden getrocknet wurde. Das Verhältnis der Masse der Probe nach Trocknung unter obigen Bedingungen zur Masse bei der Probenahme ergibt den Festgehalt des Polymers.The solids content of the polymers was determined by distributing 0.5 to 1.5 g of the polymer solution in a metal lid with a diameter of 4 cm and then drying it in a circulating air drying cabinet at 140° C. for two hours. The ratio of the mass of the sample after drying under the above conditions to the mass when the sample was taken gives the solids content of the polymer.

Aschegehalt: ISO 2144Ash content: ISO 2144

Unter dem mittleren Molekulargewicht Mw versteht man hier, im Vorrausgehenden und im Folgenden das massenmittlere Molekulargewicht MW, wie es durch Lichtstreuung ermittelt werden kann. Das Molekulargewicht wurde an der nicht hydrolysierten Vorstufe bestimmt.The average molecular weight M w is understood here, above and below, as the mass-average molecular weight M w , as can be determined by light scattering. The molecular weight was determined on the unhydrolyzed precursor.

Verwendete Einsatzstoffe:

  • Bentonit (Hydrocol® der Fa. BASF)
  • Colloidales Silica (EKA NP der Fa. Akzo Nobel)
  • Acrylamid-haltiges strukturiertes anionisches Mikropartikel (Telioform® M300 der Fa. BASF) Retentionsmittel: Percol® 540. der Firma BASF SE) kationisches Polyacrylamid in Form einer 1 gew.-%igen Lösung
Materials used:
  • Bentonite (Hydrocol ® from BASF)
  • Colloidal silica (EKA NP from Akzo Nobel)
  • Acrylamide-containing structured anionic microparticle (Telioform® M300 from BASF) retention aid: Percol® 540 from BASF SE) cationic polyacrylamide in the form of a 1% strength by weight solution

Herstellung von Anschlämmungen A1 - A16Production of slurries A1 - A16

Die nachfolgenden amphoteren Polymere wurde zur Herstellung von Anschlämmungen eingesetzt. Tabelle 1: Eingesetzte wasserlösliche amphotere Polymere Polymer Zusammensetzung Vinylformamideinheiten/Acrylsäureeinheiten/Vinylamin-+Amidineinheiten Mittleres Molekulargew. [Dalton] P1 40/30/30 500000 P2 5/45/50 400000 P3 65/20/15 650000 P4 30/40/30 400000 P5 30/30/40 400000 P6 40/30/30 500000 The following amphoteric polymers were used to produce slurries. Table 1: Water-soluble amphoteric polymers used polymer Composition vinyl formamide units/acrylic acid units/vinylamine + amidine units Mean Molecular Weight [daltons] P1 40/30/30 500000 p2 5/45/50 400000 P3 65/20/15 650000 P4 30/40/30 400000 P5 30/30/40 400000 P6 40/30/30 500000

Anschlämmung A1Slurry A1

0,7 g einer 12 gew.-%igen wässrigen Lösung des Polymers P1 wurden in einem Becherglas vorgelegt und anschließend mit 30 g Wasser verdünnt. Anschließend gab man 150 g einer 20 gew.-%igen Anschlämmung von präzipitiertem Calciumcarbonat (PCC) in Wasser zu. Während der Zugabe der PCC-Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 Umdrehungen pro Minute (UpM) gerührt. Etwa 30 Sekunden nach der Zugabe der PCC-Anschlämmung wurde bei laufendem Rühraggregat eine 1 gew.-%-ige Anschlämmung von Bentonit (Hydrocoll der Fa. BASF) zugegeben. Die zugegebene Menge der Berntonit-Anschlämmung wurde so berechnet, dass der Anteil Bentonit (fest) 0,3 Gew.-% bezogen auf PCC (fest) entspricht. Nach weiteren 30 Sekunden wurde die Umdrehungszahl des Heiltof-Rührers auf 200 UpM reduziert. Die Bentonit-Anschlämmung wurde gemäß den Empfehlungen im Technischen Merkblatt (Hydrocoll) für den Einsatz als Mikropartikel zur Unterstützung von Flockungsprozessen vorbereitet. Dies betrifft insbesondere die ausreichend Quellung des Bentonits vor dem Einsatz. Der pH-Wert der Mischung wird anschließend auf 8,5 eingestellt.0.7 g of a 12% strength by weight aqueous solution of the polymer P1 were placed in a beaker and then diluted with 30 g of water. 150 g of a 20% strength by weight slurry of precipitated calcium carbonate (PCC) in water were then added. During and after the addition of the PCC slurry, the mixture was stirred at 1000 revolutions per minute (rpm) with the aid of a Heiltof stirrer. About 30 seconds after the addition of the PCC suspension, a 1% strength by weight suspension of bentonite (Hydrocoll from BASF) was added with the stirring unit running. The amount of berntonite suspension added was calculated in such a way that the proportion of bentonite (solid) corresponds to 0.3% by weight, based on PCC (solid). After a further 30 seconds, the number of revolutions of the Heiltof stirrer was reduced to 200 rpm. The bentonite suspension was prepared according to the recommendations in the technical data sheet (Hydrocoll) for use as microparticles to support flocculation processes. This applies in particular to the sufficient swelling of the bentonite before use. The pH of the mixture is then adjusted to 8.5.

Anschlämmung A2 - A8Slurry A2 - A8

Es wurde wie zur Herstellung von Anschlämmung A1 vorgegangen, wobei die in der Tabelle 1 angegebenen Polymere P2 bis P6 und Mikropartikel eingesetzt wurden, die Mengen bzw. Konzentrationen jedoch beibehalten wurden. Anschlämmung 6 wurde mit gemahlenem Calciumcarbonat anstelle von präzipitiertem Calciumcarbonat hergestellt. Die Zusammensetzungen der hergestellten Anschlämmungen sind Tabelle 2 zu entnehmen. Tabelle 2: Herstellung der Anschlämmungen Anschlämmung Polymer Füllstoff Mikropartikel A1 P1 PCC Bentonit A2 P2 PCC Bentonit A3 P3 PCC Bentonit A4 P4 PCC Bentonit A5 P5 PCC Bentonit A6 P6 GCC Bentonit A7 P6 PCC Silica-Sol A8 P2 PCC Silica-Sol PCC: präzipitiertem Calciumcarbonat
GCC: gemahlenes Calciumcarbonat
The procedure for preparing suspension A1 was followed, using the polymers P2 to P6 and microparticles listed in Table 1, the amounts or However, concentrations were maintained. Slurry 6 was made with ground calcium carbonate instead of precipitated calcium carbonate. Table 2 shows the compositions of the slurries produced. Table 2: Preparation of the slurries siltation polymer filler microparticles A1 P1 PCC bentonite A2 p2 PCC bentonite A3 P3 PCC bentonite A4 P4 PCC bentonite A5 P5 PCC bentonite A6 P6 GCC bentonite A7 P6 PCC silica sol A8 p2 PCC silica sol PCC: precipitated calcium carbonate
GCC: ground calcium carbonate

Anschlämmung A9Slurry A9

0,7 g einer 12 gew.-%igen wässrigen Lösung des Polymers P6 wurden in einem Becherglas vorgelegt und anschließend mit 30g Wasser verdünnt. Anschließend gab man 150 g einer 20 gew.-%igen Anschlämmung von präzipitiertem Calciumcarbonat (PCC) in Wasser zu. Während der Zugabe der PCC-Anschlämmung und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 Umdrehungen pro Minute (UpM) gerührt. Etwa 30 Sekunden nach der Zugabe der PCC-Anschlämmung wurde bei laufendem Rühraggregat eine 1 gew.-%ige Lösung eines Acrylamid-haltigen strukturierten anionischen Mikropolymeren (Telioform M300 der Fa. BASF) zugegeben. Die zugegebene Menge der Mikropolymerlösung wurde so berechnet, dass der Festanteil des Mikropolymeren in der PCC- Anschlämmung 0,07 Gew.-% des Anteils an festem PCC entspricht. Nach weiteren 30 Sekunden wurde die Umdrehungszahl des Heiltof-Rührers auf 200 UpM reduziert und bis zur weiteren Verwendung der Anschlämmung dabei belassen. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt.0.7 g of a 12% strength by weight aqueous solution of the polymer P6 were placed in a beaker and then diluted with 30 g of water. 150 g of a 20% strength by weight slurry of precipitated calcium carbonate (PCC) in water were then added. During and after the addition of the PCC slurry, the mixture was stirred at 1000 revolutions per minute (rpm) using a Heiltof stirrer. About 30 seconds after the addition of the PCC slurry, a 1% by weight solution of an acrylamide-containing structured anionic micropolymer (Telioform M300 from BASF) was added with the stirring unit running. The amount of micropolymer solution added was calculated such that the solid fraction of micropolymer in the PCC slurry corresponds to 0.07% by weight of the solid PCC fraction. After a further 30 seconds, the number of revolutions of the Heiltof stirrer was reduced to 200 rpm and left at this until the slurry was used further. The pH of the mixture was then adjusted to 8.5.

Anschlämmung A10Slurry A10

Es wurde wie zur Herstellung von Anschlämmung A9 vorgegangen, mit dem Unterschied, dass anstelle von Polymer P6 nun Polymer P2 eingesetzt wurde.The procedure for preparing slurry A9 was repeated, with the difference that polymer P2 was now used instead of polymer P6.

Anschlämmung A11Slurry A11

9 g einer 1 gew.-%igen Anschlämmung von Bentonit (Hydrocoll der Fa. BASF) wurden in einem Becherglas vorgelegt. Die Bentonit-Anschlämmung wurde gemäß den Empfehlungen im Technischen Merkblatt (Hydrocoll) für den Einsatz als Mikropartikel zur Unterstützung von Flockungsprozessen vorbereitet. Anschließend gab man 150 g einer 20 gew.-%igen Anschlämmung von präzipitiertem Calciumcarbonat (PCC) in Wasser zu. Das Verhältnis der Festanteile von Bentonit zu PCC in der resultierenden Anschlämmung betrug 3 zu 1000. Während der Zugabe der PCC-Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 Umdrehungen pro Minute (UpM) gerührt. Etwa 30 Sekunden nach der Zugabe der PCC-Anschlämmung wurden bei laufendem Rühraggregat 21 g einer 0,4 gew.-%igen wässrigen Lösung des Polymers P6 zugegeben. Nach weiteren 30 Sekunden wurde die Umdrehungszahl des Heiltof-Rührers auf 200 UpM zurückgefahren und bis zur weiteren Verwendung der Anschlämmung dabei belassen. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt.9 g of a 1% strength by weight slurry of bentonite (Hydrocoll from BASF) were placed in a beaker. The bentonite slurry was used as microparticles to support flocculation processes in accordance with the recommendations in the Technical Data Sheet (Hydrocoll). prepared. 150 g of a 20% strength by weight suspension of precipitated calcium carbonate (PCC) in water were then added. The ratio of the solids content of bentonite to PCC in the resulting slurry was 3 to 1000. During the addition of the PCC slurry and thereafter, the mixture was stirred at 1000 revolutions per minute (rpm) using a Heiltof stirrer. About 30 seconds after the addition of the PCC suspension, 21 g of a 0.4% strength by weight aqueous solution of the polymer P6 were added with the stirring unit running. After a further 30 seconds, the number of revolutions of the Heiltof stirrer was reduced to 200 rpm and left at this until the slurry was used further. The pH of the mixture was then adjusted to 8.5.

Anschlämmung A12 - A14Slurry A12 - A14

Es wurde wie zur Herstellung von Anschlämmung A11 vorgegangen, wobei die in der Tabelle 1 angegebenen Polymere P und Mikropartikel eingesetzt wurden, die Mengen bzw. Konzentrationen jedoch beibehalten wurden. Anschlämmung A16 wurde mit gemahlenem Calciumcarbonat anstelle von präzipitiertem Calciumcarbonat hegestellt. Die Zusammensetzungen der hergestellten Anschlämmungen sind Tabelle 3 zu entnehmen. Tabelle 3: Herstellung der Anschlämmungen Anschlämmung Polymer Füllstoff Mikropartikel Mikropartikel [g] A11 P6 PCC Bentonit 0,09 A12 P2 PCC Bentonit 0,09 A13 P6 PCC Silica-Sol 0,09 A14 P2 PCC Silica-Sol 0,09 PCC: präzipitiertem Calciumcarbonat The procedure for preparing slurry A11 was repeated, using the polymers P and microparticles listed in Table 1, but the amounts and concentrations were retained. Slurry A16 was made with ground calcium carbonate instead of precipitated calcium carbonate. Table 3 shows the compositions of the slurries produced. Table 3: Preparation of the slurries siltation polymer filler microparticles microparticles [g] A11 P6 PCC bentonite 0.09 A12 p2 PCC bentonite 0.09 A13 P6 PCC silica sol 0.09 A14 p2 PCC silica sol 0.09 PCC: precipitated calcium carbonate

Anschlämmung A15Slurry A15

21 g einer 0,1 gew.-%igen Lösung eines Acrylamid-haltigen strukturierten anionischen Mikropolymeren (M300 der Fa. BASF) wurde in einem Becherglas vorgelegt. Anschließend gab man 150 g einer 20 gew.-%igen Anschlämmung von präzipitiertem Calciumcarbonat (PCC) in Wasser zu. Das Verhältnis der Festanteile von Mikropolymer zu PCC in der resultierenden Anschlämmung betrug 0,7 zu 1000. Während der Zugabe der PCC-Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 Umdrehungen pro Minute (UpM) gerührt. Etwa 30 Sekunden nach der Zugabe der PCC-Anschlämmung wurden bei laufendem Rühraggregat 21 g einer 0,4 gew.-%igen wässrigen Lösung des Polymers P6 zugegeben. Nach weiteren 30 Sekunden wurde die Umdrehungszahl des Heiltof-Rührers auf 200 UpM zurückgefahren und bis zur weiteren Verwendung der Anschlämmung dabei belassen. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt.21 g of a 0.1% strength by weight solution of an acrylamide-containing structured anionic micropolymer (M300 from BASF) were placed in a beaker. 150 g of a 20% strength by weight suspension of precipitated calcium carbonate (PCC) in water were then added. The ratio of the solids content of micropolymer to PCC in the resulting slurry was 0.7 to 1000. During the addition of the PCC slurry and thereafter, the mixture was stirred at 1000 revolutions per minute (rpm) using a Heiltof stirrer. About 30 seconds after the addition of the PCC suspension, 21 g of a 0.4% strength by weight aqueous solution of the polymer P6 were added with the stirring unit running. After a further 30 seconds, the number of revolutions of the Heiltof stirrer was reduced to 200 rpm and left at this until the slurry was used further. The pH of the mixture was then adjusted to 8.5.

Anschlämmung A16Slurry A16

Es wurde wie zur Herstellung von Anschlämmung A15 vorgegangen, mit dem Unterschied, dass anstelle von Polymer P6 nun Polymer P2 eingesetzt wurde.The procedure for preparing suspension A15 was repeated, with the difference that polymer P2 was now used instead of polymer P6.

Anschlämmung A17 (nicht erfindungsgemäß)Slurry A17 (not according to the invention)

Es wurde wie zur Herstellung von Anschlämmung A1 vorgegangen, mit dem Unterschied, dass keine Mikropartikel zugesetzt wurden.The procedure for preparing slurry A1 was followed, with the difference that no microparticles were added.

Anschlämmung A18 (nicht erfindungsgemäß)Slurry A18 (not according to the invention)

Es wurde wie zur Herstellung von Anschlämmung A2 vorgegangen, mit dem Unterschied, dass keine Mikropartikel zugesetzt wurden.The procedure for preparing slurry A2 was followed, with the difference that no microparticles were added.

Anschlämmung A19 (nicht erfindungsgemäß)Slurry A19 (not according to the invention)

Es wurde wie zur Herstellung von Anschlämmung A11 vorgegangen, mit dem Unterschied, dass kein wasserlösliches, amphoteres Polymer zugesetzt wurden.The procedure for preparing slurry A11 was followed, with the difference that no water-soluble, amphoteric polymer was added.

Vorbehandlung der FaserstoffsuspensionPretreatment of the pulp suspension

Eine Mischung aus gebleichtem Birkensulfat und gebleichtem Kiefernsulfat wurde im Verhältnis von 70/30 bei einer Feststoffkonzentration von 4 Gew.-% im Laborpulper stippenfrei aufgeschlagen, bis ein Mahlgrad von 29 - 32 erreicht ist. Der pH-Wert des Faserstoffes lag dabei im Bereich zwischen 7 und 8. Der gemahlene Stoff wurde anschließend durch Zugabe von Wasser auf eine Feststoffkonzentration von 0,8 Gew.-% verdünnt. Dem verdünnten Faserstoff wurden anschließend ein optischer Aufheller (Blankophor PSG) sowie eine kationische Stärke (HiCat 5163 A) zugegeben.A mixture of bleached birch sulphate and bleached pine sulphate in a ratio of 70/30 at a solids concentration of 4 wt. The pH of the fibrous material was in the range between 7 and 8. The ground material was then diluted to a solids concentration of 0.8% by weight by adding water. An optical brightener (Blankophor PSG) and a cationic starch (HiCat 5163 A) were then added to the diluted pulp.

Der Aufschluss der kationischen Stärke erfolgte zuvor als 10 gew.-%ige Stärkeslurry in einem Jet-Kocher bei 130°C und 1 Minute Verweilzeit. Die Dosiermenge des optischen Aufhellers betrug 0,3 Gew.-% Handelsware, bezogen auf Gesamtpapierstoff (fest). Die Dosiermenge der kationischen Stärke betrug 0,8 Gew.-% Stärke (fest), bezogen auf den Gesamtpapierstoff (fest).The cationic starch was digested beforehand as a 10% strength by weight starch slurry in a jet cooker at 130° C. and a residence time of 1 minute. The dosage of the optical brightener was 0.3% by weight of commercial product, based on the total paper stock (solid). The dosage of the cationic starch was 0.8% by weight of starch (solids), based on the total paper stock (solids).

Herstellung von Papierblättern nach dem erfindungsgemäßen Verfahren:Production of paper sheets according to the method according to the invention:

Um das Verhalten der oben beschriebenen wässrigen Anschlämmungen bei der Herstellung füllstoffhaltiger Papiere zu ermitteln, legte man jeweils 500 ml der verdünnten Papierstoffsuspension vor und dosierte zu dieser jeweils eine der in den Beispielen und Vergleichsbeispielen beschriebenen Füllstoffanschlämmungen sowie ein kationisches Polyacrylamid (Percol) als Retentionsmittel. Die Dosiermenge des Retentionsmittels betrug dabei 0,01 Gew.-% Percol bezogen auf Gesamtpapierstoff (fest). Die Menge der zur Papierstoffsuspension dosierten Füllstoffanschlämmung wurde mit Hilfe mehrerer Vorversuche so eingestellt, dass der Aschegehalt der aus Papierstoff und Anschlämmung gefertigten Papierblätter 25 Gew.-% betrug.In order to determine the behavior of the aqueous slurries described above in the production of paper containing filler, 500 ml of the diluted paper stock suspension were introduced and metered into this in each case one of the filler slurries described in the examples and comparative examples and a cationic polyacrylamide (Percol) as a retention aid. The dosage of the retention aid was 0.01% by weight of Percol, based on the total paper stock (solid). The amount of filler slurry metered into the paper stock suspension was adjusted with the aid of several preliminary tests so that the ash content of the paper sheets made from paper stock and slurry was 25% by weight.

Zum Vergleich wurden Blätter hergestellt, die jeweils ca. 25 Gew.-% eines unbehandelten PCC's sowie 25 Gew.-% eines unbehandelten GCC's enthalten.For comparison, sheets were produced which each contained about 25% by weight of an untreated PCC and 25% by weight of an untreated GCC.

Die Herstellung der Papierblätter mit einem Flächengewicht von 100g/qm erfolgte auf einem dynamischen Blattbildner der Fa. TechPap Frankreich. Dabei wurde die Papierstoffsuspension auf ein Sieb gesprüht, dass in eine senkrecht stehende, schnell rotierende Trommel eingespannt ist. Die Entwässerung und Blattbildung in diesem System wird neben der Blattstruktur vor allem durch die Fliehkräfte innerhalb der rotierenden Trommel bestimmt. Durch die Variation der Rotationsgeschwindigkeit der Trommel kann die auf die entstehende Blattstruktur wirkende Fliehkraft ebenfalls variiert werden. Das Resultat ist eine Variation der Blattentwässerung die zu einer Variation des Trockengehaltes im nassen Papiergefüge führt. Gemeint ist hier der Trockengehalt des nassen Papiergefüges unmittelbar nach der Abnahme von einer wasserdurchlässigen Unterlage (Sieb), die in der Trommel des dynamischen Blattbildners eingespannt ist.The sheets of paper with a basis weight of 100g/sqm were produced on a dynamic sheet former from TechPap France. The paper stock suspension was sprayed onto a screen that was clamped into a vertical, rapidly rotating drum is. The dewatering and sheet formation in this system is determined not only by the sheet structure but above all by the centrifugal forces within the rotating drum. By varying the speed of rotation of the drum, the centrifugal force acting on the resulting sheet structure can also be varied. The result is a variation in sheet drainage that leads to a variation in dryness in the wet paper structure. What is meant here is the dry content of the wet paper structure immediately after removal from a water-permeable base (wire) that is clamped in the drum of the dynamic sheet former.

Die Umdrehungszahl der Trommel wurde in 5 Stufen zwischen 600 und 1100 Umdrehungen pro Minute variiert, wodurch Trockengehalte im Bereich zwischen 14 Gew.-% und 21 Gew.-% einstellt werden können. Die für die Blattbildung zugegebene Menge der Füllstoffmenge muss mit zunehmender Umdrehungszahl der Trommel leicht nach oben angepasst werden, da mit zunehmender Entwässerung die Füllstoffretention abnimmt. Ein kleiner Teil des noch nassen Blattgefüges wird zur unmittelbaren Bestimmung des Trockengehaltes nach der Abnahme des nassen Papierblattes vom Sieb des dynamischen Blattbildners verwendet.The number of revolutions of the drum was varied in 5 steps between 600 and 1100 revolutions per minute, as a result of which dry contents in the range between 14% by weight and 21% by weight can be set. The amount of filler added for sheet formation must be slightly adjusted upwards as the number of revolutions of the drum increases, since filler retention decreases with increasing dewatering. A small portion of the sheet structure, while still wet, is used to determine the dryness immediately after the wet paper sheet is removed from the wire of the dynamic sheet former.

Anwendungstechnische Prüfung:Application test: Bestimmung der initialen NassgefügefestigkeitDetermination of the initial wet structure strength

Von der initialen Nassgefügefestigkeit zu unterscheiden sind die Nassfestigkeit und die initiale Nassfestigkeit von Papier, weil beide Eigenschaften an Papieren gemessen werden, die nach dem Trocknen wieder auf einen definierten Wassergehalt angefeuchtet werden. Die initiale Nassfestigkeit ist ein wichtiger Parameter bei der Beurteilung von nicht permanent nassfesten Papieren. Ein getrocknetes und danach wieder angefeuchtetes Papier hat eine ganz andere Nassfestigkeit als ein feuchtes Papier, das direkt nach dem Durchlaufen der Sieb- und Pressenpartie einer Papiermaschine vorliegt.The wet strength and the initial wet strength of paper are to be distinguished from the initial wet structural strength, because both properties are measured on papers which, after drying, are moistened again to a defined water content. The initial wet strength is an important parameter when evaluating non-permanently wet-strength papers. A paper that has been dried and then moistened again has a completely different wet strength than a moist paper that is present immediately after it has passed through the wire and press sections of a paper machine.

Die Bestimmung der initialen Nassgefügefestigkeit an dem nassen Papier erfolgt jeweils nach dem Voith-Verfahren (vgl. M.Schwarz und K. Bechtel "Initiale Gefügefestigkeit bei der Blattbildung", in Wochenblatt für Papierfabrikation 131, Seiten 950 - 957 (2003) Nr. 16 . dazu wurden die nassen Blätter nach dem Pressen in der statischen Presse auf eine Kunststoffunterlage abgeschlagen und auf eine Schneideunterlage übertragen. Anschließend wurden die Probenstreifen mit einer definierten Länge und Breite aus dem Blatt geschnitten. Unter konstantem Druck wurden diese solange gepresst, bis der gewünschte Trockengehalt erreicht war. Für die Untersuchung der nach den oben angegebenen Beispielen erhaltenen Papierblätter wurden jeweils vier Trockengehalte im Bereich zwischen 42% und 58% eingestellt. Aus diesen Werten wurde mit Hilfe eines in der oberen Literaturstelle beschriebenen Anpassungsverfahrens die initiale Nassgefügefestigkeit bei 50% Trockengehalt bestimmt. Die eigentliche Messung der initialen Nassgefügefestigkeit erfolgte an einer vertikalen Zugprüfmaschine mit einer speziellen Klemmeinrichtung. Die in der Zugmaschine bestimmte Kraft wurde in den Flächenmassenunabhängigen sogenannten INF-Index umgerechnet. Für eine genaue Beschreibung der Klemmeinrichtung, des Messablaufs, der Bestimmung des Trockengehaltes im Papier und der Datenverarbeitung kann die oben angegebene Literaturstelle herangezogen werden.The determination of the initial wet structure strength on the wet paper is carried out using the Voith method (cf. M. Schwarz and K. Bechtel "Initial structural strength during sheet formation", in Wochenblatt für Papierfabrikation 131, pages 950 - 957 (2003) No. 16 . to do this, the wet sheets, after pressing in the static press, were knocked off onto a plastic base and transferred to a cutting base. The sample strips were then cut from the sheet with a defined length and width. These were pressed under constant pressure until the desired dry content was reached. Four solids contents in the range between 42% and 58% were set in each case for examining the paper sheets obtained according to the examples given above. From these values, the initial wet structural strength at 50% dry content was determined using a fitting method described in the reference above. The actual measurement of the initial wet structure strength was carried out on a vertical tensile testing machine with a special clamping device. The force determined in the tractor was converted into the so-called INF index, which is independent of the area mass. For a precise description of the clamping device, the measuring procedure, the determination of the dry content in the paper and the data processing, the reference given above can be consulted.

Die Ergebnisse der Prüfungen sind in Tabelle 4 wiedergegeben Tabelle 4 Beispiel Anschlämmung Trockengehalt vor Presse [Gew.-%] INF(50%)-Index [Nm/g] Referenz PCC 1 PCC unbehandelt 14,6 1,8 Referenz PCC 2 PCC unbehandelt 15,3 1,7 Referenz PCC 3 PCC unbehandelt 17,1 2,1 Referenz PCC 4 PCC unbehandelt 18,6 1,9 Referenz PCC 5 PCC unbehandelt 19,5 1,7 Referenz GCC 6 GCC unbehandelt 14,9 2,1 Referenz GCC 7 GCC unbehandelt 16,1 2,0 Referenz GCC 8 GCC unbehandelt 17,8 1,8 Referenz GCC 9 GCC unbehandelt 18,6 1,7 Referenz GCC 10 GCC unbehandelt 19,4 1,9 1 1 14,8 2,4 2 1 15,7 2,2 3 1 17,2 2,4 4E 1 18,3 3,9 5E 1 19,5 4,2 6 2 15,3 2,2 7 2 16,8 2,4 8 2 17,5 2,5 9E 2 18,2 3,6 10E 2 19,4 3,9 11 3 15,5 1,9 12 3 16,2 2,3 13 3 17,6 2,6 14E 3 18,4 3,4 15E 3 20,1 3,8 16 4 15,3 2,1 17 4 15,9 2,1 18 4 17,4 2,4 19E 4 18,5 3,6 20E 4 19,7 3,8 21 5 14,9 2,1 22 5 16,3 2,4 23 5 17,2 2,3 24E 5 18,9 3,6 25E 5 19,8 3,7 26 6 15,8 2,2 27 6 16,5 2,3 28 6 17,3 2,7 29E 6 18,7 4,1 30E 6 19,5 4,5 31 7 15,2 2,3 32 7 16,6 2,3 33 7 17,4 2,6 34E 7 18,6 3,5 35E 7 19,4 3,8 36 8 14,5 1,9 37 8 15,3 2,4 38 8 16,8 2,4 39E 8 18,3 3,6 40E 8 19,5 3,7 41 9 15,6 2,1 42 9 16,4 2,1 43 9 17,3 2,2 44E 9 18,3 3,6 45E 9 19,6 3,5 46 10 15,6 1,8 47 10 16,4 2,1 48 10 17,3 2,3 49E 10 18,7 3,4 50E 10 19,6 3,7 51 11 15,7 2,2 52 11 16,4 2,2 53 11 17,7 2,4 54E 11 18,6 3,6 55E 11 19,9 3,7 56 12 14,8 2,2 57 12 16,1 2,3 58 12 17,1 2,6 59E 12 18,2 3,5 60E 12 18,9 3,8 61 13 15,2 2,3 62 13 16,7 2,4 63 13 17,6 2,7 64E 13 18,6 3,8 65E 13 19,4 4,0 66 14 15,3 2,1 67 14 16,4 2,3 68 14 17,3 2,3 69E 14 18,4 3,5 70E 14 19,3 3,9 71 15 14,8 2,0 72 15 15,6 2,1 73 15 16,9 2,4 74E 15 18,4 3,5 75E 15 19,1 3,5 76 16 15,4 1,8 77 16 16,6 2,1 78 16 17,6 2,4 79E 16 18,4 3,3 80E 16 19,6 3,6 81 17 16,1 2,2 82 17 16,9 2,2 83 17 17,3 2,3 84 17 18,7 2,3 85 17 19,8 2,4 86 18 15,7 2,1 87 18 16,4 2,4 88 18 17,2 2,3 89 18 18,4 2,5 90 18 19,3 2,4 91 19 15,6 2,2 92 19 16,7 2,1 93 19 17,8 2,4 94 19 18,6 2,2 95 19 19,7 2,3 The results of the tests are given in Table 4 Table 4 example siltation Dry content before press [% by weight] INF(50%) index [Nm/g] Reference PCC 1 PCC untreated 14.6 1.8 Reference PCC 2 PCC untreated 15.3 1.7 Reference PCC 3 PCC untreated 17.1 2.1 Reference PCC 4 PCC untreated 18.6 1.9 Reference PCC 5 PCC untreated 19.5 1.7 Reference GCC 6 GCC untreated 14.9 2.1 Reference GCC 7 GCC untreated 16.1 2.0 Reference GCC 8 GCC untreated 17.8 1.8 Reference GCC 9 GCC untreated 18.6 1.7 Reference GCC 10 GCC untreated 19.4 1.9 1 1 14.8 2.4 2 1 15.7 2.2 3 1 17.2 2.4 4E 1 18.3 3.9 5E 1 19.5 4.2 6 2 15.3 2.2 7 2 16.8 2.4 8th 2 17.5 2.5 9E 2 18.2 3.6 10E 2 19.4 3.9 11 3 15.5 1.9 12 3 16.2 2.3 13 3 17.6 2.6 14E 3 18.4 3.4 15E 3 20.1 3.8 16 4 15.3 2.1 17 4 15.9 2.1 18 4 17.4 2.4 19E 4 18.5 3.6 20E 4 19.7 3.8 21 5 14.9 2.1 22 5 16.3 2.4 23 5 17.2 2.3 24E 5 18.9 3.6 25E 5 19.8 3.7 26 6 15.8 2.2 27 6 16.5 2.3 28 6 17.3 2.7 29E 6 18.7 4.1 30E 6 19.5 4.5 31 7 15.2 2.3 32 7 16.6 2.3 33 7 17.4 2.6 34E 7 18.6 3.5 35E 7 19.4 3.8 36 8th 14.5 1.9 37 8th 15.3 2.4 38 8th 16.8 2.4 39E 8th 18.3 3.6 40E 8th 19.5 3.7 41 9 15.6 2.1 42 9 16.4 2.1 43 9 17.3 2.2 44E 9 18.3 3.6 45E 9 19.6 3.5 46 10 15.6 1.8 47 10 16.4 2.1 48 10 17.3 2.3 49E 10 18.7 3.4 50E 10 19.6 3.7 51 11 15.7 2.2 52 11 16.4 2.2 53 11 17.7 2.4 54E 11 18.6 3.6 55E 11 19.9 3.7 56 12 14.8 2.2 57 12 16.1 2.3 58 12 17.1 2.6 59E 12 18.2 3.5 60E 12 18.9 3.8 61 13 15.2 2.3 62 13 16.7 2.4 63 13 17.6 2.7 64E 13 18.6 3.8 65E 13 19.4 4.0 66 14 15.3 2.1 67 14 16.4 2.3 68 14 17.3 2.3 69E 14 18.4 3.5 70E 14 19.3 3.9 71 15 14.8 2.0 72 15 15.6 2.1 73 15 16.9 2.4 74E 15 18.4 3.5 75E 15 19.1 3.5 76 16 15.4 1.8 77 16 16.6 2.1 78 16 17.6 2.4 79E 16 18.4 3.3 80E 16 19.6 3.6 81 17 16.1 2.2 82 17 16.9 2.2 83 17 17.3 2.3 84 17 18.7 2.3 85 17 19.8 2.4 86 18 15.7 2.1 87 18 16.4 2.4 88 18 17.2 2.3 89 18 18.4 2.5 90 18 19.3 2.4 91 19 15.6 2.2 92 19 16.7 2.1 93 19 17.8 2.4 94 19 18.6 2.2 95 19 19.7 2.3

Alle erfindungsgemäßen Beispiele sind in der Tabelle mit einem "E" gekennzeichnet.All examples according to the invention are marked with an "E" in the table.

Aus den in Tabelle 4 aufgeführten Daten können folgende Schlüsse gezogen werden:
Die erfindungsgemäß durchgeführten Beispiele zeigen einen deutlich erhöhten Naßgefügefestigkeitsindex INF(50%) der Blätter. Wenn der Trockengehalt deutlich darunter liegt, liegt der INF(50%)-Index nur leicht über dem einer unbehandelten Füllstoffanschlämmung.
The following conclusions can be drawn from the data presented in Table 4:
The examples carried out according to the invention show a significantly increased wet structural strength index INF(50%) of the sheets. If the dry content is significantly lower, the INF(50%) index is only slightly above that of an untreated filler slurry.

Referenzbeispiele PCC 4 und PCC5 und Referenzbeispiel GCC9 und GCC10 belegen, dass die Einstellung des Trockengehaltes über 18 Gew.-% allein (in dem Fall über die Einstellung der Rotationsgeschwindigkeit des dynamischen Blattbildners), ohne zusätzliche Behandlung der Füllstoffanschlämmung mit einem 2-Komponentensystem zu keiner signifikanten Erhöhung des INF(50%)-Index führt.Reference examples PCC 4 and PCC5 and reference example GCC9 and GCC10 show that setting the dry content above 18% by weight alone (in this case by setting the rotational speed of the dynamic sheet former), without additional treatment of the filler slurry with a 2-component system, leads to none significant increase in the INF(50%) index.

Beispiele 84, 85, 89, 90, 94 und 95 zeigen, dass die Behandlung des Füllstoffs mit jeweils nur dem wasserlöslichen amphoteren Polymer oder nur den Mikropartikeln, ebenfalls keinen Effekt bei Überschreitung des Trockengehaltes über 18% bewirken.Examples 84, 85, 89, 90, 94 and 95 show that treatment of the filler with only the water-soluble amphoteric polymer or only the microparticles also has no effect when the dry content exceeds 18%.

Claims (9)

  1. Method for the production of paper and board comprising
    - providing an aqueous slurry comprising filler, at least one water-soluble amphoteric polymer and microparticles,
    - adding said aqueous slurry to a paper stock
    - dewatering the resulting paper stock, with sheet formation in the wire section, up to a dry content of the paper sheet of at least 18 % by weight
    - and subsequent pressing of the paper sheet and drying,
    wherein the water-soluble, amphoteric polymer is obtainable by copolymerizing a monomer mixture comprising
    a) at least one N-vinylcarboxamide of the general formula
    Figure imgb0011
    in which R1 and R2 independently of one another represent H or C1 to C6 alkyl,
    b) at least one monoethylenically unsaturated monomer having at least one free acid group or at least one acid group in salt form
    c) optionally at least one monoethylenically unsaturated monomer which is different from components (a) and (b), and
    d) optionally at least one compound having at least two ethylenically unsaturated double bonds in the molecule,
    followed by partial or complete hydrolysis of the -CO-R1 groups of the polymerizate,
    wherein the difference between the proportions of cationic and anionic monomer units in moles, based in each case on the total number of moles of all monomer units, is not more than 10 mol% in absolute terms,
    wherein the filler is calcium carbonate,
    wherein the microparticles are a copolymer of acrylamide and one or more anionic monomers, or the microparticles are inorganic microparticles selected from bentonite, colloidal silica and silicates.
  2. Method according to Claim 1, wherein the monomer mixture comprises
    a) 5 to 95% by weight, based on the total weight of the monomers used for the polymerization, of at least one N-vinylcarboxamide of the general formula
    Figure imgb0012
    in which R1 and R2 independently of one another are H or C1 to C6 alkyl,
    b) 5 to 95% by weight, based on the total weight of the monomers used for the polymerization, of at least one monoethylenically unsaturated monomer having at least one free acid group or at least one acid group in salt form,
    c) 0 to 90% by weight, based on the total weight of the monomers used for the polymerization, of at least one monoethylenically unsaturated monomer other than components (a) and (b), and
    d) 0 to 5% by weight, based on the total weight of the monomers used for the polymerization, of at least one compound having at least two ethylenically unsaturated double bonds in the molecule.
  3. Method according to any one of Claims 1 to 2, wherein the water-soluble amphoteric polymer is obtainable by copolymerizing
    a) N-vinylformamide,
    b) at least one monoethylenically unsaturated monomer selected from acrylic acid, methacrylic acid, alkali metal salts of acrylic acid and/or methacrylic acid and ammonium salts of acrylic acid and/or methacrylic acid, and
    c) optionally other monoethylenically unsaturated monomers
    and subsequent partial or complete hydrolysis of the -CO-R1 groups of the polymerizate,
    wherein the difference between the proportions of cationic and anionic monomer units in moles, in each case based on the total number of moles of all monomer units, in absolute terms is not more than 10 mol%.
  4. Method according to Claim 1, wherein the water-soluble amphoteric polymer comprises
    (i) 1 to 98 mol% vinyl carboxamide units,
    (ii) 1 to 98 mol% of units of monoethylenically unsaturated sulfonic acids, phosphonic acids, phosphoric acid esters, derivatives thereof, or units of monoethylenically unsaturated mono- and dicarboxylic acids, salts thereof and dicarboxylic acid anhydrides,
    (iii) 1 to 98 mol% of vinylamine units and/or amidine units, and
    (iv) up to 50 mol% of units of other monoethylenically unsaturated compounds.
  5. Method according to any one of Claims 1 or 4, wherein the water-soluble amphoteric polymer comprises
    (i) 5 to 70 mol% vinyl carboxamide units,
    (ii) 5 to 45 mol% of units selected from acrylic acid, methacrylic acid, salts of acrylic acid and salts of methacrylic acid, and
    (iii) 10 to 60 mol% of units of vinylamine units and optionally amidine units.
  6. Method according to any one of Claims 1 to 5, wherein the proportion of microparticles in the aqueous slurry is 0.01 - 1% by weight based on the filler.
  7. Method according to any one of Claims 1 to 6, wherein the proportion of the water-soluble, amphoteric polymer is 0.01 - 1% by weight based on the filler.
  8. Method according to any one of Claims 1 to 7, wherein the aqueous slurry comprises water, 5 - 70% by weight filler based on the aqueous slurry, and 0.001 - 1% by weight water-soluble amphoteric polymer based on the filler and 0.01 - 1% by weight microparticles based on filler.
  9. Method according to any one of Claims 1 to 8, wherein sheet formation in the wire section is carried out up to a dry content of the paper sheet of at least 19% by weight.
EP16750742.5A 2015-08-06 2016-08-04 Method for producing paper Active EP3332063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15179980 2015-08-06
PCT/EP2016/068622 WO2017021483A1 (en) 2015-08-06 2016-08-04 Method for producing paper

Publications (2)

Publication Number Publication Date
EP3332063A1 EP3332063A1 (en) 2018-06-13
EP3332063B1 true EP3332063B1 (en) 2022-10-05

Family

ID=53783145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16750742.5A Active EP3332063B1 (en) 2015-08-06 2016-08-04 Method for producing paper

Country Status (6)

Country Link
US (1) US10626558B2 (en)
EP (1) EP3332063B1 (en)
JP (1) JP6779976B2 (en)
CN (1) CN107923127B (en)
ES (1) ES2948357T3 (en)
WO (1) WO2017021483A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3695051B1 (en) * 2017-10-11 2024-06-19 Solenis Technologies Cayman, L.P. Method for forming paper or cardboard
EP3850021A1 (en) * 2018-09-14 2021-07-21 Solenis Technologies Cayman, L.P. Method for the hydrolysis of a polymer
CN113039224B (en) * 2018-09-14 2023-04-28 索理思科技开曼公司 Method for producing paper or board
JPWO2020235515A1 (en) * 2019-05-20 2020-11-26

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU546999B2 (en) 1980-05-28 1985-10-03 Eka A.B. Adding binder to paper making stock
JPS612524A (en) 1984-06-15 1986-01-08 Sekisui Chem Co Ltd Manufacture of thermoplastic resin pipe
GB8602121D0 (en) 1986-01-29 1986-03-05 Allied Colloids Ltd Paper & paper board
CA1283748C (en) 1986-06-25 1991-04-30 Takaharu Itagaki Vinylamine copolymer, flocculating agent and paper strength increasingagent using the same, as well as process for producing the same
US5176891A (en) 1988-01-13 1993-01-05 Eka Chemicals, Inc. Polyaluminosilicate process
US6191242B1 (en) 1988-12-19 2001-02-20 Cytec Technology Corp. Process for making high performance anionic polymeric flocculating agents
US5167766A (en) 1990-06-18 1992-12-01 American Cyanamid Company Charged organic polymer microbeads in paper making process
US5171808A (en) 1990-06-11 1992-12-15 American Cyanamid Company Cross-linked anionic and amphoteric polymeric microparticles
DE69210914T2 (en) 1991-08-20 1997-01-16 Mitsubishi Chem Corp Cationic polymeric flocculant
DE4241117A1 (en) 1992-12-07 1994-06-09 Basf Ag Use of hydrolyzed copolymers of N-vinylcarboxamides and monoethylenically unsaturated carboxylic acids in papermaking
US6273998B1 (en) 1994-08-16 2001-08-14 Betzdearborn Inc. Production of paper and paperboard
US20030192664A1 (en) 1995-01-30 2003-10-16 Kulick Russell J. Use of vinylamine polymers with ionic, organic, cross-linked polymeric microbeads in paper-making
US5919682A (en) 1995-08-24 1999-07-06 Board Of Regents, University Of Texas System Overproduction of neuronal nitric oxide synthase
DE19548294C1 (en) 1995-12-22 1997-04-03 Voith Sulzer Papiermasch Gmbh Paper-making machine
ID22818A (en) 1996-12-31 1999-12-09 Ciba Spec Chem Water Treat Ltd THE PROCESS OF MAKING PAPER AND MATERIALS FOR USE IN THIS PROCESS
MY140287A (en) 2000-10-16 2009-12-31 Ciba Spec Chem Water Treat Ltd Manufacture of paper and paperboard
DE10315363A1 (en) * 2003-04-03 2004-10-14 Basf Ag Aqueous slurries of finely divided fillers, process for their preparation and their use for the production of filler-containing papers
DE10334133A1 (en) 2003-07-25 2005-02-24 Basf Ag Aqueous composition and its use for papermaking
WO2006066769A2 (en) 2004-12-17 2006-06-29 Basf Aktiengesellschaft Papers with a high filler material content and high dry strength
US8172983B2 (en) * 2007-09-12 2012-05-08 Nalco Company Controllable filler prefloculation using a dual polymer system
EP2304106B1 (en) * 2008-06-24 2018-09-12 Basf Se Production of paper
CN104583493B (en) * 2012-08-22 2019-06-07 巴斯夫欧洲公司 The method for producing paper, card and cardboard
BR112015007620A2 (en) * 2012-10-05 2017-07-04 Specialty Minerals Michigan Inc cargo suspension and use in papermaking

Also Published As

Publication number Publication date
CN107923127B (en) 2021-09-03
CN107923127A (en) 2018-04-17
US20180216294A1 (en) 2018-08-02
JP6779976B2 (en) 2020-11-04
JP2018523764A (en) 2018-08-23
ES2948357T3 (en) 2023-09-11
WO2017021483A1 (en) 2017-02-09
US10626558B2 (en) 2020-04-21
EP3332063A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
EP2304106B1 (en) Production of paper
EP2491177B1 (en) Process for fabricating paper, paperboard and cardboard with high wet strength
EP2443284B2 (en) Method for increasing dry strength of paper, paperboard and cardboard
EP2164907B1 (en) Aqueous suspensions of fine particulate fillers, method for producing the same and use thereof for producing papers having a high filler content and a high dry strength
EP1819877B1 (en) Method for producing high dry strength paper, paperboard or cardboard
EP2288750B1 (en) Method for producing paper, paperboard and cardboard with a high dry strength
EP2164906B1 (en) Aqueous suspensions of fine particulate fillers, method for producing the same and use thereof for producing papers having a high filler content and a high dry strength
EP2393982B1 (en) Method for producing paper, card and board with high dry strength
EP3332063B1 (en) Method for producing paper
WO1990011404A1 (en) Process for manufacturing paper, paperboard and cardboard in the presence of copolymerizates containing n-vinyl formamide units
EP1654419B1 (en) Aqueous composition and use thereof for paper production
WO2010145990A1 (en) Method for reducing deposits in the drying section in the manufacture of paper, paperboard, and cardboard
EP2723943B1 (en) Method for producing paper, paperboard, and cardboard
EP2888404B1 (en) Method for producing paper, paperboard and cardboard
EP3697963B1 (en) Method for producing multiple ply paper
EP3695051B1 (en) Method for forming paper or cardboard
WO2006136556A2 (en) Method for producing paper, paperboard, and cardboard

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLENIS TECHNOLOGIES CAYMAN, L.P.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522830

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015331

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015331

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2948357

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230911

26N No opposition filed

Effective date: 20230706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 8

Ref country code: GB

Payment date: 20230828

Year of fee payment: 8

Ref country code: FI

Payment date: 20230825

Year of fee payment: 8

Ref country code: ES

Payment date: 20230901

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 8

Ref country code: DE

Payment date: 20230829

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A