EP3330177B1 - Organe de commande, aeronef a voilure tournante et procede - Google Patents

Organe de commande, aeronef a voilure tournante et procede Download PDF

Info

Publication number
EP3330177B1
EP3330177B1 EP17200291.7A EP17200291A EP3330177B1 EP 3330177 B1 EP3330177 B1 EP 3330177B1 EP 17200291 A EP17200291 A EP 17200291A EP 3330177 B1 EP3330177 B1 EP 3330177B1
Authority
EP
European Patent Office
Prior art keywords
control
aircraft
control member
shaft
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17200291.7A
Other languages
German (de)
English (en)
Other versions
EP3330177A1 (fr
Inventor
Jean-Romain Bihel
Zouhair SASSI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters SAS
Original Assignee
Airbus Helicopters SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Helicopters SAS filed Critical Airbus Helicopters SAS
Publication of EP3330177A1 publication Critical patent/EP3330177A1/fr
Application granted granted Critical
Publication of EP3330177B1 publication Critical patent/EP3330177B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • B64C13/14Initiating means actuated personally lockable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/04Initiating means actuated personally
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/08Controlling members for hand actuation by rotary movement, e.g. hand wheels
    • G05G1/10Details, e.g. of discs, knobs, wheels or handles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • B64C13/042Initiating means actuated personally operated by hand
    • B64C13/0421Initiating means actuated personally operated by hand control sticks for primary flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • B64C13/044Initiating means actuated personally operated by feet, e.g. pedals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8227Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising more than one rotor

Definitions

  • the present invention relates to a control member, a rotary wing aircraft comprising such a control member, and a method applied by the aircraft.
  • a helicopter type rotary wing aircraft for example comprises at least one main rotor which at least partially participates in the lift and propulsion of this aircraft.
  • a system allows at least to control the yaw movement of the aircraft.
  • a helicopter has three axes of control.
  • a first axis is to use a first command to control the vector of the lift vector of the aircraft.
  • a second axis is to use a second command to control the orientation of this lift vector, and
  • a third axis is to use a third command to control the yaw motion of the aircraft.
  • a helicopter may comprise a main rotor involved in its propulsion and lift.
  • a helicopter may comprise an auxiliary rotor participating at least in the control of the yaw movement.
  • the aircraft includes piloting controls operable by a pilot to control the evolution of this aircraft.
  • a collective lever collectively controls the pitch of the main rotor blades to adjust the lift of the aircraft.
  • a cyclic stick cyclically controls the pitch of the main rotor blades to adjust the orientation of the lift vector of the aircraft.
  • a rudder collectively adjusts the pitch of the auxiliary rotor blades to control the yaw motion of the helicopter.
  • a helicopter may comprise two main rotors, possibly coaxial.
  • a collective lever can collectively control the pitch of the main rotor blades to adjust the lift of the aircraft.
  • a cyclic stick can make it possible to control cyclically the pitch of the blades of the main rotors to adjust the orientation of the lift vector of the aircraft.
  • a rudder can be used to adjust the yaw torque exerted by at least one main rotor on the fuselage of the aircraft, to control the yaw movement of the aircraft.
  • hybrid Another type of rotary wing aircraft called “hybrid” for convenience includes at least one rotor that participates at least partially in the lift and propulsion of this aircraft.
  • the aircraft comprises a device for controlling the yaw movement of the aircraft.
  • This aircraft also comprises a motor system capable of exerting, at least in the direction of advancement of the aircraft, a thrust called “additional thrust” for convenience.
  • This additional thrust is described as “additional” insofar as this thrust is axially independent of the thrust possibly exerted by the rotary wing.
  • such a hydride rotary wing aircraft comprises a fourth steering axis.
  • This fourth control axis consists of using a fourth command to drive the additional thrust standard.
  • a hybrid rotary wing aircraft may comprise a main rotor that participates at least partially the lift and propulsion of this aircraft.
  • this hybrid rotary wing aircraft comprises two engine systems respectively provided with two propellers participating at least partially in the propulsion of the aircraft and in the control of the yaw movement of this aircraft.
  • a collective pitch lever may collectively control the pitch of the main rotor blades to adjust the lift vector standard of the aircraft.
  • a cyclic stick can be used to cyclically control the pitch of the main rotor blades to adjust the orientation of the lift vector of the aircraft.
  • a thrust control may allow a pilot to collectively adjust an average pitch of the propeller blades to control the additional thrust generated jointly by the propellers.
  • a rudder can be used to adjust the distribution of this additional thrust between the two propellers to control the yaw movement of the aircraft through the application of different thrusts using the propellers.
  • This rudder can for example be used to adjust a differential pitch, the pitch of the blades of a helix being for example equal to the sum of the average pitch and the half of the differential pitch, the pitch of the blades of the other helix being for example equal to the difference of the average pitch and the half of the differential pitch.
  • the thrust control can take the form of an electrical control command "all or nothing".
  • this thrust command When the thrust control is maneuvered, this thrust command generates an order of increase or decrease of the average pitch of the propeller blades. This order is transmitted to actuators to change the pitch of the blades of the two propellers in the same way.
  • an actuator is arranged on a mechanical transmission chain controlling a hydraulic distributor, the hydraulic distributor supplying a hydraulic cylinder capable of generating a movement of the blades of a propeller.
  • the document FR 1518834 has a lever control.
  • This lever is mobile. The movement is guided by a guide having an A-shaped guide slot (lambda).
  • the lever carries a rotating handle controlling the fuel intake of a power unit.
  • the document GB 790560 presents an aircraft command.
  • This control comprises a tube movable in rotation about a transverse axis of rotation.
  • the tube is connected to a control rod of the collective pitch of the blades of a rotor. A rotation of the tube then induces a modification of this collective step.
  • this control is provided with a rod passing through the tube.
  • This rod extends longitudinally from a handle projecting towards the front of the tube towards an end projecting towards the rear of the tube.
  • This end is articulated to a mobility system controlling the position of a valve.
  • the handle is rotatable relative to the tube about a longitudinal axis between a first position and a second position.
  • a rotation of the tube about its transverse axis of rotation induces only a modification of the collective pitch of the rotor blades.
  • a rotation of the tube about its transverse axis of rotation induces a change in the collective pitch of the rotor blades and the position of the valve controlled by the handle.
  • the present invention therefore aims to provide an innovative control member operable by a pilot and may in particular be used to control a thrust of an aircraft.
  • the invention thus aims at a control member operable by a pilot, said control member being intended to control a motor system exerting a thrust in an aircraft, the control member comprising a handle and a mobile assembly arranged on the handle and movable relative to this handle, the movable assembly comprising a handle.
  • Such a motor system may for example take the form of a reactor or a propeller.
  • the handle is linked to the handle by a helical connection so that a rotation of the handle around the handle generates a translation of the handle and the moving assembly along the handle, the handle being movable in translation in a first direction of translation for example to impose an increase in thrust, the handle being movable in translation in a second direction of translation opposite to the first direction of translation and for example intended to impose a decrease in said thrust.
  • the thrust is subsequently considered to be positive when this thrust permits advance the aircraft, according to a direction of travel from the tail to the nose of the aircraft, and negative otherwise.
  • increase refers to an increase in thrust. Such an increase can in particular make it possible to reverse the direction of the thrust by transforming a negative thrust into a positive thrust.
  • An increase in the thrust may be to impose an acceleration of the aircraft along the direction of travel.
  • decrease refers to a decrease in thrust. Such a decrease can in particular make it possible to reverse the direction of the thrust by transforming a positive thrust into a negative thrust. A decrease in the thrust may be to impose a deceleration of the aircraft according to the direction of travel.
  • the mobile assembly of the control member has a handle helically connected to the handle.
  • a handle may take the form of a cylinder which locally surrounds a tube of the handle.
  • control member does not comprise a handle that is only mobile in rotation, contrary to the document FR 1518834 for example, or only mobile in translation.
  • the handle performs a rotation-translation movement from the helical link. As the handle is turned around the handle, this handle is moved in translation.
  • a pilot can intuitively move the handle to increase or reduce the thrust exerted by each motor system controlled by the control member.
  • a pilot grasping the handle of one hand can exert a major effort on a mechanical transmission connected to the movable assembly.
  • the total effort exerted by the pilot on the mechanical transmission results from a combination of a force developed in rotation by his hand to turn the handle and a force developed in translation exerted by the driver's arm.
  • Such a combination of effort can not be achieved with a conventional handle, and may be advantageous for moving elements requiring significant control efforts.
  • a helically connected handle can be positioned precisely by a pilot relative to the handle, unlike a handle movable only in translation.
  • control means embodied by the movable assembly of the control member is purely mechanical. Its operation is embodied by the rotary actuation of a handle, which generates a translation action of the mobile assembly comprising the same handle.
  • This mobile assembly is mounted on the handle, for example a handle controlling the collective pitch of a main rotor, and its operation may not influence the control generated by the stick as such.
  • this controller can tend to be robust, ergonomic, practical, and to be used intuitively.
  • This control member can thus be used on a hybrid helicopter to control the thrust exerted collectively by the propellers.
  • the handle may for example allow emergency management of the thrust exerted by the propellers.
  • the rotation of the handle generates, through a helical assembly, a longitudinal movement of the handle on the handle to help the pilot to understand the direction of the variation of thrust (acceleration forward, deceleration backwards) .
  • the rotational movement of the handle may furthermore be indexed to the movement of a needle of a thrust needle indicator of the dashboard.
  • the controller may further include one or more of the following features.
  • control member may comprise a mechanical movement transmission, said mechanical motion transmission comprising at least one movable link mechanically fixed to the moving assembly.
  • mechanical motion transmission designates a mechanical system provided with at least one link that can be moved at least partially linearly.
  • a transmission may for example comprise at least one ball drive having a blade movable in translation, a cable control having a cable movable in translation, a connecting rod ...
  • the mechanical motion transmission then extends from an input portion comprising a link linked to the moving assembly to an output portion.
  • a single link extends from the input portion to the output portion.
  • the translation of the moving assembly following the rotation of the handle generates an identical translation of the input portion and a movement of the output portion.
  • the output portion performs a translation of the same amplitude and / or in the same direction as the input portion and the moving assembly.
  • the movable assembly may comprise a base that cooperates with the handle, the handle being articulated to the base by a pivot connection conferring a degree of freedom in rotation to the handle relative to the base and around the handle, the base being mounted on the handle by a slide connection, the handle being movable in rotation with respect to the base and being secured in translation of the base, the base being movable only in translation relative to the handle.
  • the mechanical transmission of motion is fixed to the base.
  • the moving assembly may be adapted to control a control actuator requiring a displacement of this moving assembly over a control amplitude to cover a whole range of operation of this driving actuator.
  • the moving assembly When not operating, the moving assembly is in a position centered between a first stop and a second stop, the first stop and the second stop being reached by the moving assembly from the centered position following a translational movement of the assembly. mobile according to said control amplitude.
  • the handle can be a backup control system.
  • the handle can be rendered inoperative in certain operating phases, for example outside a case of failure of a main control interface driving the control actuator or outside training phases.
  • This device then makes it possible to ensure that the moving assembly can drive the control actuator over the entire range of operation of this control actuator, regardless of the state of the control actuator when the handle is made operative.
  • the handle is free to rotate over a maximum amplitude of plus or minus 270 degrees which generates a translation of the moving assembly of plus or minus 75 millimeters with respect to the centered position and a predetermined positive direction of movement.
  • a rotation of the handle 270 degrees in a first direction of rotation induces a translation of 75 millimeters in the first direction of translation.
  • a rotation of the handle 270 degrees in a second direction of rotation induces a translation of 75 millimeters in the second direction of translation.
  • the maximum displacement capacity of the moving assembly is then 150 millimeters, which is twice the total useful stroke provided for the control actuator.
  • the thrust force developed by the driver is of the order of 10 daN (decanewton) output handle.
  • the handle may extend longitudinally from a proximal end to a free end, the proximal end being provided with a hinge giving the handle a degree of freedom in rotation about an axis of rotation.
  • the first direction of translation can go from the proximal end to the free end.
  • the first direction is parallel if necessary with the forward direction of the aircraft.
  • the handle may be arranged between said proximal end and said free end, the handle being independent of the handle for a rotation of the handle about its axis of rotation does not induce a movement of the handle along of the handle.
  • the invention also relates to an aircraft.
  • This aircraft is provided with at least one engine system exerting a thrust, the thrust being regulated by at least one control actuator, the control actuator being controlled by a chain of transmission of a movement opening on the control actuator .
  • the aircraft then comprises at least one control member according to the invention, this control member being mechanically connected to the transmission chain of a movement and being intended to move the transmission chain of a movement.
  • the transmission chain of a movement may comprise at least one control actuator, this control actuator being controlled by an avionic control interface requested by a pilot.
  • control interface designates a device activated by a pilot, such as for example a button or the like, a touch screen, a voice command, etc.
  • avionics means that the control interface generates an electrical, electrical, digital, or optical signal to drive a change of state of the actuator, namely the relative displacement of two parts of this actuator.
  • the control member requires the extension or retraction of the actuator in the context of a linear actuator, a rotation of a rod in the context of a rotary actuator, or a deformation within the scope of a piezoelectric actuator.
  • This command interface can be a main system used by default.
  • control member does not require a change of state of the control actuator, but moves this control actuator mechanically.
  • the control member may be a backup means used in the event of failure of the control interface or during training phases.
  • the aircraft may comprise two propeller-driven systems, the thrust exerted by each propeller of a motor system being controlled by modifying a pitch of the blades of this propeller, the aircraft may comprise a control system operable by a pilot for modifying the thrusts exerted by the two propellers in a different manner, the control member making it possible to modify the thrusts exerted by the two propellers in the same way, the transmission chain of a movement comprising at least one combiner connected to the control member and the control system and the two propellers, the combiner mechanically combining a displacement generated by the control member and a displacement generated by the control system.
  • the combiner may be of a known type.
  • teaching the document FR 3027871 is applicable.
  • control member may comprise a mechanical transmission of motion integral in translation of the movable assembly
  • a lever may be articulated on the one hand to the mechanical transmission of movement and on the other hand to the chain of motion. transmission of a movement, said lever being rotatable about a hinge axis.
  • a simple lever serves as an interface between the two subsystems, which is simple to implement.
  • the aircraft may comprise a plurality of control members each comprising a mechanical movement transmission connected to the movable assembly of the associated control member, each mechanical movement transmission being articulated to the lever.
  • a pilot control and a co-pilot command are of the type of the control device according to the invention.
  • the mobile assemblies of the two control members are then connected to the same lever. The combination of orders between these two control devices is thus naturally by this common lever.
  • the hinge axis can extend between two extreme zones of the lever, the mechanical transmission of movement and the transmission chain of a movement can be articulated to the lever between the axis of articulation and the same extremal zone.
  • the lever may not generate a change of direction of a movement.
  • the aircraft may comprise a immobilization system operable by a pilot to immobilize the lever in normal operation, namely for example as long as the control actuator can be controlled without maneuvering the handle of the control member.
  • the lever In normal and therefore nominal operation, the lever is locked in one position. If necessary, the lever serves as an anchor point for an electrically controlled piloting actuator. By cons, the lever is unlocked if necessary to allow control of the control actuator by the movable assembly of a control member according to the invention.
  • the immobilization system may be provided with a mechanical system which comprises a locking finger movable in translation and a lever orifice, the locking finger being engaged in said orifice to prevent rotation of the lever in normal operation and being disengaged from this port to allow a rotation of the lever in manual operation.
  • the finger can be integral in translation with a gripping means to be maneuvered by a pilot.
  • the invention also relates to a method for controlling a motor system of an aircraft according to this invention.
  • the handle is rotated in a first direction of rotation to translate it along the handle in the first direction of translation to increase the thrust exerted by the engine system, and the handle is turned in a second direction of rotation to translate it along the handle in the second direction of translation to reduce the thrust exerted by the engine system.
  • the aircraft may have an indicator having a scale illustrating thrust values and a needle pointing on this scale a value of a current thrust, said needle rotating according to a first direction of displacement when the thrust increases and in a second direction of displacement when the thrust decreases, said first direction of rotation is identical to said first direction of movement, said second direction of rotation is identical to said second direction of displacement.
  • the handle can move longitudinally homogeneously to the given thrust order as indicated above.
  • the handle can move in rotation homogeneously to the displacement of the needle illustrating this thrust on an indicator.
  • a rotation of the handle in a dextral direction can induce a displacement of the needle in the same direction dextrorsum.
  • the figure 1 has a control member 40 according to the invention in three dimensions, and the figure 2 represents kinematically the control member 40.
  • This control member 40 is intended to control a driving system 10 exerting a thrust, for example in an aircraft 1.
  • the control member 40 has a handle 41.
  • This handle 41 extends from an end called “proximal end 42" to an end called “free end 43".
  • the proximal end 42 can be hinged to a floor by a hinge 70.
  • This hinge 70 can give the handle 41 a degree of freedom in rotation only about an axis of rotation AX2.
  • the handle 41 may represent a collective lever, the rotation of the control sleeve according to known methods a modification of a collective pitch of a rotor blades.
  • a collective pitch lever is hereinafter referred to as a "collective joystick” so as not to be confused with an interface lever according to the invention.
  • the free end 43 may carry various control buttons.
  • this free end 43 may carry an avionic control interface 18 controlling said thrust under normal conditions.
  • control member has an additional mechanical control arranged on the handle.
  • This control takes the form of a mobile assembly 50 which is arranged on the handle 41 and movable in translation along the handle 41.
  • the moving assembly 50 comprises a handle 55.
  • a handle 55 may take the form of a cylinder surrounding the handle.
  • This handle 55 is linked to the handle 41 by a helical connection 57.
  • Such a helical connection 57 may comprise at least two guide members including a helical rail 58 having a predetermined screw pitch and a pin 59 sliding in the helical rail 58.
  • One of said two guide members is then integral with the handle 41 and the other guide member is integral with the handle 55.
  • a helical rail 58 is hollowed in a surface of the handle 41 and a pin 59 protrudes from an inner surface of the handle 55 to be arranged in the rail.
  • a helical rail 58 is dug in an inner surface of the handle, and a pin 59 protrudes from the surface of the handle to be arranged in the helical rail of the handle.
  • a rotation of the handle 55 about an axis of extension of the handle 41 generates a translation of the handle 55 and the moving assembly 50 along the extension axis.
  • Such an axis of extension may represent an axis of symmetry of the portion of the handle along which the moving assembly moves.
  • the handle 55 is independent of the handle 41.
  • a rotation of the handle about its axis of rotation AX2 does not induce a movement of the handle 55 and the movable assembly 50 relative to the handle 41.
  • control member 40 presented comprises a mechanical transmission of movement 36.
  • This mechanical transmission of movement 36 is mechanically fixed to the moving assembly 50 for transferring an order given by the moving assembly through a displacement.
  • the mobile assembly 50 may comprise a base 60 which cooperates with the handle 55.
  • the handle 55 is then connected to the base 60 by a pivot connection 62 which confers a degree of freedom in rotation to the handle 55 relative to the base 60.
  • the base takes the form of a housing 61 in which is disposed one end of the handle. This end can only rotate around the axis of extension relative to the housing 61, the operating clearances.
  • the base 60 is fixed to the handle 41 by a slide link 65.
  • the slide link 65 may comprise two guide means including an elongated rail 66 and a pin 67 sliding in the elongate rail 66, one of the two guide means being integral with the handle 41 and the other guide member being integral with the base 60.
  • an elongated rail 66 is hollowed in the handle 41 and a pin 67 is fixed to the base 60 to slide in the elongated rail 66.
  • the rail Longiline 66 may be disposed following the helical rail 58 where appropriate.
  • the handle 55 is rotatable relative to the base 60.
  • the handle 55 and the base 60 are integral in translation along the handle 41.
  • a link of the mechanical transmission of movement 36 is advantageously fixed to the base 60, not to undergo the rotational movement of the handle 55 and move only in translation.
  • a rotation of the handle 55 according to a first direction of rotation 103 can induce a displacement in translation of the moving assembly 50 in a first translational direction 101, for example to require an increase in the thrust exerted by the controlled drive systems.
  • a rotation of the handle 55 in a second direction of rotation 104 opposite to the first direction of rotation 103 can induce a displacement in translation of the moving assembly 50 in a second direction of translation 102 opposite the first direction of translation , for example to require a decrease in said thrust.
  • the first translational direction 101 may be directed substantially in the direction of advance AV of an aircraft and the proximal end 42 towards the free end 43.
  • substantially in the direction of advance AV means that the direction of translation is parallel to a vertical plane passing through the direction of travel, and perpendicular to the pitch axis of the aircraft for example.
  • the first direction of rotation and the second direction of rotation may be homogeneous with the operation of an indicator 80.
  • the aircraft may comprise an indicator 80 which has a scale 81 illustrating thrust values.
  • the indicator 80 has a rotating needle 83 which points on this scale a value of a current thrust, namely the thrust developed by the motor systems.
  • This needle 83 rotates in a first direction of movement 105 when the thrust increases, and in a second direction of movement 106 when the thrust decreases.
  • the second direction of movement 106 is opposed to the first direction of movement 105.
  • a pilot can rotate the handle 55 in the first direction of rotation 103 to translate it along the handle 41 in the first direction of translation 101 in order to increase the thrust exerted by the motor systems 10 controlled, and rotates the handle 55 in the second direction of rotation 104 to translate it along the handle in the second direction of translation 102 to reduce the thrust exerted by the controlled motor systems 10.
  • first direction of rotation 103 may be identical to the first direction of displacement 105
  • second direction of rotation 104 is identical to the second direction of displacement 106.
  • the maneuver of the mobile unit is thus highly intuitive.
  • the moving assembly can be moved between two extreme positions, and for example between a first stop 201 and a second stop 202.
  • said movable assembly 50 When the moving assembly is rendered inoperative for example, said movable assembly 50 may be in a position called "centered POS0 position" not visible on the figure 1 . In this centered position, the moving assembly 50 is equidistant from the first stop 201 and the second stop 202.
  • this mobile assembly 50 is intended to control at least one control actuator 14 requiring a displacement of the moving assembly 50 over a predetermined control amplitude to cover the entire operating range of this control actuator 14, said distance is equal to said control amplitude. From the centered POS0 position, the first stop 201 or the second stop 202 are reached by the moving assembly 50 following a translational movement of the moving assembly according to said control amplitude.
  • the figure 4 presents an aircraft 1 according to the invention.
  • This aircraft 1 is provided with at least one control member 40 for controlling at least one engine system 10.
  • This engine system exerts a thrust for moving the aircraft 1.
  • This aircraft 1 comprises a fuselage 2 which extends longitudinally in a direction of advance AV of the aircraft from a tail 3 to a nose 4.
  • the aircraft 1 may be a rotorcraft. Therefore, the aircraft can comprise at least one rotor 3 which at least partially participates in the lift of the aircraft or even its propulsion. Such a rotor 3 can be carried by the fuselage 2. This rotor comprises a plurality of blades with variable pitch.
  • this aircraft also comprises at least one engine system capable of exerting a thrust, at least in the direction of advance of the aircraft.
  • the aircraft 1 comprises two engine systems 10 provided respectively with two propellers 11, 12.
  • the two propellers 11, 12 can be arranged transversely on either side of the fuselage and carried by a wing 7.
  • Each propeller 11, 12 comprises a plurality of blades 13 with variable pitch.
  • the propellers 11, 12 and the rotor 3 can be set in motion by a conventional power plant.
  • a power plant may include at least one motor and various power transmission boxes for example.
  • the aircraft comprises a cyclic control maneuverable by a pilot to cyclically control the pitch of the blades of the rotor in the usual manner.
  • the cyclic control may take the form of a conventional cyclic stick for example.
  • the aircraft comprises a collective command 7 operable by a pilot to collectively control in a usual manner the pitch of the rotor blades 3.
  • the collective control can take the form of a joystick collective pitch for example.
  • the collective control and the control member 40 can form one and the same equipment.
  • an avionic control interface may allow a pilot to collectively adjust the thrust exerted by the propellers, for example by adjusting a mean pitch of the propeller blades.
  • a control system 16 possibly a rudder, can for example be used to adjust a differential pitch, the pitch of the blades of a helix being for example equal to the sum of the average pitch and the half of the differential pitch, the not blades of the other helix being for example equal to the difference of the average pitch and the half of the differential pitch.
  • control member 40 can then represent a backup system for controlling the average pitch in the event of failures of the avionic control interface 18 or during driving training for example.
  • the collective control 7 can then include the handle 41 of the control member 40.
  • the avionic control interface can be carried by the handle 41.
  • control member 40 according to the invention can also be arranged on other types of aircraft, for example to control the thrust of a reactor.
  • the figure 5 schematically illustrates a pilot architecture on an aircraft of the type of the figure 4 .
  • the pitch of the blades 13 of each propeller can be modified.
  • the aircraft comprises for each propeller an actuator referred to as a "control actuator 14" which modifies the pitch of the associated blades on command.
  • control actuators 14 are controlled by a conventional control chain called "motion transmission chain 20" for convenience. This chain of transmission of a movement can be controlled by the control system 16 and the control interface 18.
  • This control interface 18 may be an avionic control generating a signal transmitted to at least one actuator 17 of the chain of transmission of a movement.
  • Such an actuator is referred to as a "steering actuator" for convenience.
  • the driving actuators and the rudder are mechanically connected to a combiner 22, this combiner 22 being connected to each control actuator 14.
  • This combiner 22 may take the form of a conventional combiner.
  • this architecture has a mechanical backup system that can be used, particularly in the event of a failure of the control interface 18.
  • This emergency system includes at least one control member 40 according to the invention.
  • the figure 5 illustrates the presence possible a control member 40 operable by a pilot and a control member 40 operable by a co-pilot.
  • Each control member 40 comprises a mobile assembly 50 which is movable in translation and mechanically connected by a mechanical transmission of movement 36 to a single lever 31.
  • This lever 31 is thus articulated on the one hand to each mechanical transmission of movement 36 and the other hand to the chain of transmission of a movement 20.
  • lever cooperates with an immobilization system 37 which renders the lever 31 inoperative on request.
  • the lever When the lever is inoperative under normal operating conditions, the lever serves as anchor point of the control actuators 17. A change of state of the control actuators 17 in fact induces a movement of the combiner.
  • the control member does not control the control actuators.
  • the mobile assemblies of each control member are immobile in their reference systems.
  • the figure 6 presents the various organs of the architecture of the figure 2 .
  • each movable assembly 50 of the control members 40 is connected to a common lever 31 by a mechanical movement transmission 36.
  • a mechanical transmission may comprise a sheath 361 bearing against a support 362.
  • the mechanical transmission of movement 36 may comprise a cable or a blade passing through the sheath to be fixed (e) to the movable assembly 50 and the lever 31.
  • the lever 31 is articulated to a stationary member of the aircraft by a hinge which gives the lever 31 a degree of freedom in rotation about an axis of articulation AX1.
  • the lever extending along the length between two end zones 32, 33, the hinge axis AX1 is positioned between these end zones 32, 33.
  • each mechanical transmission of movement 36 is optionally articulated to the lever 31 between the hinge axis AX1 and a particular end zone.
  • an immobilization system 37 possible makes it possible to immobilize on request the lever 31.
  • This immobilization system 37 may comprise a rod whose end represents a locking pin 38.
  • This locking pin 38 can be inserted into a port 39 of the lever 31 to prevent rotation of the lever 31 about its axis of articulation AX1.
  • the rod may also comprise a gripping means 380. Therefore, a pilot can seize the gripping means 380 to release the locking finger from the orifice 39 in order to release the lever 31.
  • the transmission chain of a movement 20 is articulated to the lever 31 between this hinge axis AX1 and the same particular end zone.
  • this lever thus serves as an anchor point of the transmission chain of a movement.
  • this transmission chain of a movement 20 comprises at least one control actuator 17 controlled by a control interface 18 or by an automatic control system.
  • this transmission chain of a movement 20 may comprise connecting rods, return means, a combiner 22 ...
  • This combiner 22 may be connected by ball drives, or even by connecting rods to the control actuators 14.
  • the transmission chain of a movement 20 is shown schematically.
  • control actuators 17 are controlled to change state and transmit a moving order by a mechanical control connected to each control actuator 14.
  • the lever 31 then isolates the chain of transmission of a movement of control members 40.
  • a displacement of a moving assembly 50 induces a displacement of at least one link of a mechanical transmission of movement 36, a rotation of the lever 31, and then a displacement of members of the transmission chain of a movement 20, and finally an input of the control actuators 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Control Devices (AREA)
  • Transmission Devices (AREA)

Description

  • La présente invention concerne un organe de commande, un aéronef à voilure tournante comprenant un tel organe de commande, et un procédé appliqué par l'aéronef.
  • Un aéronef à voilure tournante de type hélicoptère par exemple comporte au moins un rotor principal qui participe au moins partiellement à la sustentation et à la propulsion de cet aéronef.
  • En outre, un système permet au moins de contrôler le mouvement en lacet de l'aéronef.
  • Dès lors, un tel hélicoptère comporte trois axes de pilotage. Un premier axe consiste à utiliser une première commande pour contrôler la norme du vecteur portance de l'aéronef. Un deuxième axe consiste à utiliser une deuxième commande pour commander l'orientation de ce vecteur portance, et un troisième axe consiste à utiliser une troisième commande pour commander le mouvement en lacet de l'aéronef.
  • Par exemple, un hélicoptère peut comprendre un rotor principal participant à sa propulsion et sa sustentation. De plus, un hélicoptère peut comprendre un rotor auxiliaire participant au moins au contrôle du mouvement en lacet.
  • Dès lors, l'aéronef comporte des commandes de pilotage manoeuvrables par un pilote pour contrôler les évolutions de cet aéronef.
  • Ainsi, un levier de pas collectif permet de contrôler collectivement le pas des pales du rotor principal pour régler la portance de l'aéronef. Un manche cyclique permet de contrôler cycliquement le pas des pales du rotor principal pour régler l'orientation du vecteur portance de l'aéronef. Enfin, un palonnier permet de régler collectivement le pas des pales du rotor auxiliaire pour contrôler le mouvement en lacet de l'hélicoptère.
  • Selon une autre réalisation, un hélicoptère peut comprendre deux rotors principaux, éventuellement coaxiaux.
  • Dès lors, un levier de pas collectif peut permettre de contrôler collectivement le pas des pales des rotors principaux pour régler la portance de l'aéronef. Un manche cyclique peut permettre de contrôler cycliquement le pas des pales des rotors principaux pour régler l'orientation du vecteur portance de l'aéronef. Enfin, un palonnier peut permettre de régler le couple en lacet exercé par au moins un rotor principal sur le fuselage de l'aéronef, afin de contrôler le mouvement en lacet de l'aéronef.
  • Un autre type d'aéronef à voilure tournante dit « hybride » par commodité comporte au moins un rotor qui participe au moins partiellement à la sustentation et à la propulsion de cet aéronef. De plus, l'aéronef comporte un dispositif permettant de contrôler le mouvement en lacet de l'aéronef. Cet aéronef comprend aussi un système moteur apte à exercer, au moins selon le sens d'avancement de l'aéronef, une poussée dite « poussée additionnelle » par commodité. Cette poussée additionnelle est qualifiée d'« additionnelle » dans la mesure où cette poussée est axialement indépendante de la poussée éventuellement exercée par la voilure tournante.
  • Outre les trois axes de pilotage usuels, un tel aéronef à voilure tournante hydride comprend un quatrième axe de pilotage. Ce quatrième axe de pilotage consiste à utiliser une quatrième commande pour piloter la norme de la poussée additionnelle.
  • Par exemple, un aéronef à voilure tournante hybride peut comprendre un rotor principal qui participe au moins partiellement à la sustentation et à la propulsion de cet aéronef. De plus, cet aéronef à voilure tournante hybride comporte deux systèmes moteurs munis respectivement de deux hélices participant au moins partiellement à la propulsion de l'aéronef et au contrôle du mouvement en lacet de cet aéronef.
  • Un levier de pas collectif peut permettre de contrôler collectivement le pas des pales du rotor principal pour régler la norme du vecteur portance de l'aéronef. Un manche cyclique peut permettre de contrôler cycliquement le pas des pales du rotor principal pour régler l'orientation du vecteur portance de l'aéronef.
  • En outre, une commande de poussée peut permettre à un pilote de régler collectivement un pas moyen des pales des hélices pour piloter la poussée additionnelle générée conjointement par les hélices.
  • De plus, un palonnier peut permettre de régler la répartition de cette poussée additionnelle entre les deux hélices pour contrôler le mouvement en lacet de l'aéronef au travers de l'application de poussées différentes à l'aide des hélices. Ce palonnier peut par exemple permettre de régler un pas différentiel, le pas des pales d'une hélice étant par exemple égal à la somme du pas moyen et de la moitié du pas différentiel, le pas des pales de l'autre hélice étant par exemple égal à la différence du pas moyen et de la moitié du pas différentiel.
  • La commande de poussée peut prendre la forme d'une commande de pilotage électrique « tout ou rien ». Lorsque la commande de poussée est manoeuvrée, cette commande de poussée génère un ordre d'augmentation ou de réduction du pas moyen des pales des hélices. Cet ordre est transmis à des actionneurs pour modifier le pas des pales des deux hélices de la même manière. Par exemple, un actionneur est agencé sur une chaîne de transmission mécanique contrôlant un distributeur hydraulique, ce distributeur hydraulique alimentant un vérin hydraulique apte à engendrer un mouvement des pales d'une hélice.
  • Les documents FR 1518834 et GB 790560 sont cités à titre illustratif uniquement car ces documents n'ont pas trait à la commande d'hélices d'un hélicoptère hybride.
  • Le document FR 1518834 présente une commande à levier. Ce levier est mobile. Le mouvement est guidé par un guide présentant une fente de guidage en forme de À (lambda). En outre, le levier porte une poignée tournante pilotant l'admission de carburant d'un groupe moteur.
  • Le document GB 790560 présente une commande d'aéronef. Cette commande comporte un tube mobile en rotation autour d'un axe de rotation transversal. Le tube est relié à une tige de contrôle du pas collectif des pales d'un rotor. Une rotation du tube induit alors une modification de ce pas collectif.
  • Le document US 2514212 est aussi connu.
  • De plus, cette commande est munie d'une tige traversant le tube. Cette tige s'étend longitudinalement d'une poignée en saillie vers l'avant du tube vers une extrémité en saillie vers l'arrière du tube. Cette extrémité est articulée à un système de mobilité pilotant la position d'une valve. La poignée peut effectuer un mouvement rotatif par rapport au tube autour d'un axe longitudinal entre une première position et une deuxième position.
  • Lorsque la poignée se trouve dans la première position, une rotation du tube autour de son axe de rotation transversal induit uniquement une modification du pas collectif des pales du rotor. Par contre, lorsque la poignée se trouve dans la deuxième position, une rotation du tube autour de son axe de rotation transversal induit une modification du pas collectif des pales du rotor et de la position de la valve contrôlée par la poignée.
  • Par suite, les documents FR 1518834 et GB 790560 présentent des commandes munies de poignées tournantes uniquement.
  • La présente invention a alors pour objet de proposer un organe de commande innovant manoeuvrable par un pilote et pouvant notamment être utilisé pour piloter une poussée d'un aéronef.
  • L'invention vise ainsi un organe de commande manoeuvrable par un pilote, cet organe de commande étant destiné à piloter un système moteur exerçant une poussée dans un aéronef, l'organe de commande comportant un manche et un ensemble mobile agencé sur le manche et mobile par rapport à ce manche, l'ensemble mobile comprenant une poignée.
  • Un tel système moteur peut par exemple prendre la forme d'un réacteur ou encore d'une hélice.
  • La poignée est liée au manche par une liaison hélicoïdale afin qu'une rotation de la poignée autour du manche génère une translation de la poignée et de l'ensemble mobile le long du manche, la poignée étant mobile en translation selon un premier sens de translation par exemple destiné à imposer une augmentation de la poussée, la poignée étant mobile en translation selon un deuxième sens de translation opposé au premier sens de translation et par exemple destiné à imposer une diminution de ladite poussée.
  • Par commodité, la poussée est considérée par la suite comme étant positive lorsque cette poussée permet de faire avancer l'aéronef, selon un sens d'avancement allant de la queue vers le nez de l'aéronef, et négative dans le cas contraire.
  • Le terme « augmentation » fait référence à une augmentation de la poussée. Une telle augmentation peut notamment permettre d'inverser le sens de la poussée en transformant une poussée négative en poussée positive. Une augmentation de la poussée peut revenir à imposer une accélération de l'aéronef selon le sens d'avancement.
  • Le terme « diminution » fait référence à une diminution de la poussée. Une telle diminution peut notamment permettre d'inverser le sens de la poussée en transformant une poussée positive en poussée négative. Une diminution de la poussée peut revenir à imposer une décélération de l'aéronef selon le sens d'avancement.
  • Dès lors, l'ensemble mobile de l'organe de commande présente une poignée en liaison hélicoïdale sur le manche. Une telle poignée peut prendre la forme d'un cylindre qui entoure localement un tube du manche.
  • Dès lors, l'organe de commande ne comporte pas une poignée mobile uniquement en rotation, contrairement au document FR 1518834 par exemple, ou uniquement mobile en translation. La poignée réalise un mouvement de rotation-translation de part la liaison hélicoïdale. Au fur et à mesure que la poignée est tournée autour du manche, cette poignée est déplacée en translation.
  • Ainsi, un pilote peut déplacer intuitivement la poignée pour augmenter ou réduire la poussée exercée par chaque système moteur commandé par l'organe de commande.
  • En outre, un pilote se saisissant de la poignée d'une main peut exercer un effort important sur une transmission mécanique reliée à l'ensemble mobile. En effet, l'effort total exercé par le pilote sur la transmission mécanique résulte d'une combinaison d'un effort développé en rotation par sa main pour tourner la poignée et d'un effort développé en translation exercé par le bras du pilote. Une telle combinaison d'effort ne peut pas être atteinte avec une poignée usuelle, et peut s'avérer avantageuse pour déplacer des éléments nécessitant des efforts de commande importants.
  • De plus, une poignée à liaison hélicoïdale peut être positionnée précisément par un pilote par rapport au manche, contrairement à une poignée mobile uniquement en translation.
  • Enfin, le moyen de commande matérialisé par l'ensemble mobile de l'organe de commande est purement mécanique. Son fonctionnement se matérialise par l'actionnement rotatif d'une poignée, qui génère une action de translation de l'ensemble mobile comprenant cette même poignée. Cet ensemble mobile est monté sur le manche, par exemple un manche contrôlant le pas collectif d'un rotor principal, et son fonctionnement peut ne pas influencer la commande générée par le manche en tant que tel.
  • De par sa structure et pour les raisons évoquées précédemment, cet organe de commande peut tendre à être robuste, ergonomique, pratique, et à être utilisé de manière intuitive.
  • Cet organe de commande peut ainsi être utilisé sur un hélicoptère hybride pour piloter la poussée exercée collectivement par les hélices. Dans ce cas, la poignée peut par exemple permettre la gestion de secours de la poussée exercée par les hélices. La rotation de la poignée génère, grâce à un montage hélicoïdal, un déplacement longitudinal de la poignée sur le manche afin d'aider le pilote à appréhender le sens de la variation de poussée (accélération vers l'avant, décélération vers l'arrière). Eventuellement, le mouvement de rotation de la poignée peut de surcroit être indexé sur le mouvement d'une aiguille d'un indicateur à aiguille de poussée du tableau de bord.
  • L'organe de commande peut de plus comporter une ou plusieurs des caractéristiques qui suivent.
  • Ainsi, l'organe de commande peut comporter une transmission mécanique de mouvement, ladite transmission mécanique de mouvement comprenant au moins un lien mobile fixé mécaniquement à l'ensemble mobile.
  • L'expression « transmission mécanique de mouvement » désigne un système mécanique muni d'au moins un lien pouvant être déplacé au moins partiellement de manière linéaire. Une telle transmission peut par exemple comprendre au moins une commande à billes présentant une lame mobile en translation, une commande à câble présentant un câble mobile en translation, une bielle...
  • La transmission mécanique de mouvement s'étend alors d'une portion d'entrée comprenant un lien lié à l'ensemble mobile vers une portion de sortie. Par exemple, un unique lien s'étend de la portion d'entrée à la portion de sortie. La translation de l'ensemble mobile suite à la rotation de la poignée génère une translation identique de la portion d'entrée puis un mouvement de la portion de sortie. Par exemple, la portion de sortie effectue une translation de même amplitude et/ou de même sens que la portion d'entrée et l'ensemble mobile.
  • Un ordre de déplacement est ainsi généré purement mécaniquement.
  • Selon un autre aspect, l'ensemble mobile peut comporter un socle qui coopère avec la poignée, la poignée étant articulée au socle par une liaison pivot conférant un degré de liberté en rotation à la poignée par rapport au socle et autour du manche, le socle étant monté sur le manche par une liaison glissière, la poignée étant mobile en rotation par rapport au socle et étant solidaire en translation du socle, le socle étant uniquement mobile en translation par rapport au manche.
  • Eventuellement, la transmission mécanique de mouvement est fixée au socle.
  • L'utilisation d'une poignée et d'un socle attaché à une transmission mécanique de mouvement, permet de ne déplacer la portion d'entrée de la transmission mécanique liée au socle qu'en translation.
  • Selon un autre aspect, l'ensemble mobile peut être destiné à commander un actionneur de commande nécessitant un déplacement de cet ensemble mobile sur une amplitude de commande pour couvrir toute une plage de fonctionnement de cet actionneur de pilotage. Hors fonctionnement, l'ensemble mobile est dans une position centrée entre une première butée et une deuxième butée, la première butée et la deuxième butée étant atteintes par l'ensemble mobile à partir de la position centrée suite à un mouvement translatif de l'ensemble mobile selon ladite amplitude de commande.
  • La poignée peut être un système de commande de secours. Ainsi, la poignée peut être rendue inopérante dans certaines phases de fonctionnement, par exemple en dehors d'un cas de panne d'une interface de commande principale pilotant l'actionneur de commande ou en dehors de phases d'entraînement.
  • Ce dispositif permet alors de s'assurer que l'ensemble mobile peut piloter l'actionneur de commande sur toute la plage de fonctionnement de cet actionneur de commande, quel que soit l'état de l'actionneur de commande lorsque la poignée est rendue opérante.
  • Par exemple, la poignée est libre en rotation sur une amplitude maximale de plus ou moins 270 degrés qui engendre une translation de l'ensemble mobile de plus ou moins 75 millimètres au regard de la position centrée et d'un sens de déplacement positif prédéterminé. Autrement dit et à partir de la position centrée, une rotation de la poignée de 270 degrés selon un premier sens de rotation induit une translation de 75 millimètres selon le premier sens de translation. De même, et à partir de la position centrée, une rotation de la poignée de 270 degrés selon un deuxième sens de rotation induit une translation de 75 millimètres selon le deuxième sens de translation.
  • La capacité de déplacement maximale de l'ensemble mobile est alors de 150 millimètres, soit le double de la course totale utile prévue pour l'actionneur de commande.
  • A titre illustratif, l'effort de poussé développé par le pilote est de l'ordre de 10 daN (décanewton) en sortie de poignée.
  • Selon un autre aspect, le manche peut s'étendre longitudinalement d'une extrémité proximale à une extrémité libre, l'extrémité proximale étant munie d'une articulation conférant au manche un degré de liberté en rotation autour d'un axe de rotation.
  • Le premier sens de translation peut aller de l'extrémité proximale à l'extrémité libre.
  • En particulier, le premier sens est parallèle le cas échéant avec le sens d'avancement vers l'avant de l'aéronef.
  • Le fonctionnement de la commande est alors intuitif car le déplacement de l'ensemble mobile vers l'avant du manche implique une variation de la poussée longitudinale vers l'avant (accélération) de l'aéronef. A l'inverse, un actionnement de la poignée vers l'arrière implique une variation de la poussée longitudinale vers l'arrière (décélération).
  • Selon un autre aspect, la poignée peut être agencée entre la ladite extrémité proximale et ladite extrémité libre, la poignée étant indépendante du manche pour qu'une rotation du manche autour de son axe de rotation n'induise pas un déplacement de la poignée le long du manche.
  • Outre un organe de commande, l'invention vise aussi un aéronef. Cet aéronef est muni d'au moins un système moteur exerçant une poussée, la poussée étant réglée par au moins un actionneur de commande, l'actionneur de commande étant piloté par une chaîne de transmission d'un mouvement débouchant sur l'actionneur de commande. L'aéronef comporte alors au moins un organe de commande selon l'invention, cet organe de commande étant relié mécaniquement à la chaîne de transmission d'un mouvement et étant destiné à déplacer la chaîne de transmission d'un mouvement.
  • Par ailleurs, la chaîne de transmission d'un mouvement peut comporter au moins un actionneur de pilotage, cet actionneur de pilotage étant piloté par une interface de commande avionique sollicitée par un pilote.
  • Le terme « interface de commande » désigne un organe activé par un pilote, tel que par exemple un bouton ou équivalent, un écran tactile, une commande vocale...
  • Le terme « avionique » signifie que l'interface de commande génère un signal électrique, électrique, numérique, ou optique pour piloter un changement d'état de l'actionneur, à savoir le déplacement relatif de deux pièces de cet actionneur. Par exemple, l'organe de commande requiert l'extension ou la rétraction de l'actionneur dans le cadre d'un actionneur linéaire, une rotation d'une tige dans le cadre d'un actionneur rotatif, ou une déformation dans le cadre d'un actionneur piézoélectrique.
  • Cette interface de commande peut être un système principal utilisé par défaut.
  • A l'inverse, l'organe de commande ne requiert pas un changement d'état de l'actionneur de pilotage, mais déplace cet actionneur de pilotage mécaniquement. L'organe de commande peut être un moyen de secours utilisé en cas de panne de l'interface de commande ou durant des phases d'entraînement.
  • Selon un autre aspect, l'aéronef pouvant comprendre deux systèmes moteurs à hélices, la poussée exercée par chaque hélice d'un système moteur étant pilotée en modifiant un pas des pales de cette hélice, l'aéronef peut comporter un système de commande manoeuvrable par un pilote pour modifier les poussées exercées par les deux hélices de manière différente, l'organe de commande permettant de modifier les poussées exercées par les deux hélices de la même manière, la chaîne de transmission d'un mouvement comportant au moins un combinateur relié à l'organe de commande et au système de commande ainsi qu'aux deux hélices, le combinateur combinant mécaniquement un déplacement généré par l'organe de commande et un déplacement généré par le système de commande.
  • Le combinateur peut être d'un type connu. Par exemple, l'enseignement du document FR 3027871 est applicable.
  • Selon un autre aspect, l'organe de commande pouvant comprendre une transmission mécanique de mouvement solidaire en translation de l'ensemble mobile, un levier peut être articulé d'une part à la transmission mécanique de mouvement et d'autre part à la chaîne de transmission d'un mouvement, ledit levier étant mobile en rotation autour d'un axe d'articulation.
  • Un simple levier permet de servir d'interface entre les deux sous-systèmes, ce qui s'avère simple à mettre en oeuvre.
  • L'aéronef peut comporter plusieurs organes de commande comprenant chacun une transmission mécanique de mouvement reliée à l'ensemble mobile de l'organe de commande associé, chaque transmission mécanique de mouvement étant articulée au levier.
  • Par exemple, une commande pilote et une commande copilote sont du type de l'organe de commande selon l'invention. Les ensembles mobiles des deux organes de commande sont alors reliés à un même levier. La conjugaison des ordres entre ces deux organes de commande se fait ainsi naturellement par ce levier commun.
  • Selon un autre aspect, l'axe d'articulation pouvant s'étendre entre deux zones extrémales du levier, la transmission mécanique de mouvement et la chaîne de transmission d'un mouvement peuvent être articulées au levier entre l'axe d'articulation et la même zone extrémale.
  • Le levier ne génère éventuellement pas un changement de direction d'un mouvement.
  • Selon un autre aspect, l'aéronef peut comporter un système d'immobilisation manoeuvrable par un pilote pour immobiliser le levier en fonctionnement normal, à savoir par exemple tant que l'actionneur de commande peut être piloté sans manoeuvrer la poignée de l'organe de commande.
  • En fonctionnement normal et donc nominal, le levier est verrouillé dans une position. Le cas échéant, le levier sert de point d'ancrage d'un actionneur de pilotage piloté électriquement. Par contre, le levier est déverrouillé si nécessaire pour permettre le pilotage de l'actionneur de commande par l'ensemble mobile d'un organe commande selon l'invention.
  • Le système d'immobilisation peut être muni d'un système mécanique qui comprend un doigt de blocage mobile en translation et un orifice du levier, le doigt de blocage étant engagé dans ledit orifice pour interdire une rotation du levier en fonctionnement normal et étant désengagé de cet orifice pour autoriser une rotation du levier en fonctionnement manuel.
  • Le doigt peut être solidaire en translation d'un moyen de préhension pour pouvoir être manoeuvré par un pilote.
  • L'invention vise aussi un procédé pour commander un système moteur d'un aéronef selon cette invention.
  • Selon ce procédé, on tourne la poignée selon un premier sens de rotation pour la faire translater le long du manche selon le premier sens de translation afin d'augmenter la poussée exercée par le système moteur, et on tourne la poignée selon un deuxième sens de rotation pour la faire translater le long du manche selon le deuxième sens de translation afin de réduire la poussée exercée par le système moteur.
  • Eventuellement, l'aéronef pouvant avoir un indicateur présentant une échelle illustrant des valeurs de poussée et une aiguille pointant sur cette échelle une valeur d'une poussée courante, ladite aiguille effectuant une rotation selon un premier sens de déplacement lorsque la poussée augmente et selon un deuxième sens de déplacement lorsque la poussée diminue, ledit premier sens de rotation est identique audit premier sens de déplacement, ledit deuxième sens de rotation est identique audit deuxième sens de déplacement.
  • La manoeuvre de la poignée peut être intuitive de multiples manières.
  • En effet, la poignée peut se déplacer longitudinalement de manière homogène à l'ordre de poussée donné comme indiqué précédemment.
  • De manière complémentaire ou alternative, la poignée peut se déplacer en rotation de manière homogène au déplacement de l'aiguille illustrant cette poussée sur un indicateur.
  • Par exemple, une rotation de la poignée selon un sens dextrorsum peut induire un déplacement de l'aiguille selon ce même sens dextrorsum.
  • L'invention et ses avantages apparaîtront avec plus de détails dans le cadre de la description qui suit avec des exemples donnés à titre illustratif en référence aux figures annexées qui représentent :
    • les figures 1 et 2, des schémas illustrant un organe de commande selon l'invention, et
    • la figure 3, un schéma illustrant un organe de commande ayant un fonctionnement homogène au fonctionnement d'un indicateur de poussée,
    • la figure 4, une vue d'un aéronef selon l'invention,
    • les figures 5 et 6, des schémas illustrant une architecture de contrôle de systèmes moteurs dudit aéronef.
  • Les éléments présents dans plusieurs figures distinctes sont affectés d'une seule et même référence.
  • La figure 1 présente un organe de commande 40 selon l'invention en trois dimensions, et la figure 2 représente cinématiquement l'organe de commande 40. Cet organe de commande 40 est destiné à piloter un système moteur 10 exerçant une poussée, par exemple dans un aéronef 1.
  • En référence à la figure 1, l'organe de commande 40 comporte un manche 41. Ce manche 41 s'étend d'une extrémité dite « extrémité proximale 42 » vers une extrémité dite « extrémité libre 43 ». L'extrémité proximale 42 peut être articulée à un plancher par une articulation 70. Cette articulation 70 peut conférer au manche 41 un degré de liberté en rotation uniquement autour d'un axe de rotation AX2. Ainsi, le manche 41 peut représenter un levier de pas collectif, la rotation du manche commandant selon des méthodes connues une modification d'un pas collectif de pales d'un rotor. Un levier de pas collectif est dénommé par la suite « manette de pas collectif » pour ne pas être confondu avec un levier d'interface selon l'invention.
  • En outre, l'extrémité libre 43 peut porter divers boutons de commande. En particulier, cette extrémité libre 43 peut porter une interface de commande 18 avionique pilotant ladite poussée dans des conditions normales.
  • Par ailleurs, l'organe de commande présente une commande mécanique supplémentaire agencée sur le manche. Cette commande prend la forme d'un ensemble mobile 50 qui est agencé sur le manche 41 et mobile en translation le long de ce manche 41.
  • L'ensemble mobile 50 comprend une poignée 55. Une telle poignée 55 peut prendre la forme d'un cylindre entourant le manche.
  • Cette poignée 55 est liée au manche 41 par une liaison hélicoïdale 57.
  • Une telle liaison hélicoïdale 57 peut comporter au moins deux organes de guidage incluant un rail en hélice 58 présentant un pas de vis prédéterminé et un pion 59 coulissant dans le rail en hélice 58. Un desdits deux organes de guidage est alors solidaire du manche 41 et l'autre organe de guidage est solidaire de la poignée 55. Par exemple, un rail en hélice 58 est creusé dans une surface du manche 41 et un pion 59 saille d'une surface interne de la poignée 55 pour être agencé dans le rail en hélice 58. Alternativement, un rail en hélice 58 est creusé dans une surface interne de la poignée, et un pion 59 saille de la surface du manche pour être agencé dans le rail en hélice de la poignée.
  • Dès lors, une rotation de la poignée 55 autour d'un axe d'extension du manche 41 génère une translation de la poignée 55 et de l'ensemble mobile 50 le long de cet axe d'extension. Un tel axe d'extension peut représenter un axe de symétrie du tronçon du manche le long duquel se déplace l'ensemble mobile.
  • De plus, la poignée 55 est indépendante du manche 41. Une rotation du manche autour de son axe de rotation AX2 n'induit donc pas un mouvement de la poignée 55 et de l'ensemble mobile 50 par rapport au manche 41.
  • Par ailleurs, l'organe de commande 40 présenté comporte une transmission mécanique de mouvement 36. Cette transmission mécanique de mouvement 36 est fixée mécaniquement à l'ensemble mobile 50 pour transférer un ordre donné par l'ensemble mobile au travers d'un déplacement.
  • Pour faciliter l'agencement de la transmission mécanique de mouvement, l'ensemble mobile 50 peut comporter un socle 60 qui coopère avec la poignée 55. La poignée 55 est alors reliée au socle 60 par une liaison pivot 62 qui confère un degré de liberté en rotation à la poignée 55 par rapport au socle 60.
  • Par exemple, le socle prend la forme d'un boitier 61 dans lequel est disposée une extrémité de la poignée. Cette extrémité peut uniquement effectuer une rotation autour de l'axe d'extension par rapport au boitier 61, aux jeux de fonctionnement près.
  • En outre, le socle 60 est fixé sur le manche 41 par une liaison glissière 65. La liaison glissière 65 peut comporter deux moyens de guidage incluant un rail longiligne 66 et un pion 67 coulissant dans le rail longiligne 66, un des deux moyens de guidage étant solidaire du manche 41 et l'autre organe de guidage étant solidaire du socle 60. Par exemple, un rail longiligne 66 est creusé dans le manche 41 et un pion 67 est fixé au socle 60 pour coulisser dans le rail longiligne 66. Le rail longiligne 66 peut être disposé à la suite du rail en hélice 58 le cas échéant.
  • Dès lors, la poignée 55 est mobile en rotation par rapport au socle 60. Par contre, la poignée 55 et le socle 60 sont solidaires en translation le long du manche 41.
  • Par suite, un lien de la transmission mécanique de mouvement 36 est avantageusement fixé au socle 60, pour ne pas subir le mouvement rotatif de la poignée 55 et se déplacer uniquement en translation.
  • Dès lors, une rotation de la poignée 55 selon un premier sens de rotation 103 peut induire un déplacement en translation de l'ensemble mobile 50 selon un premier sens de translation 101, pour par exemple requérir une augmentation de la poussée exercée par les systèmes moteurs commandés. A l'inverse, une rotation de la poignée 55 selon un deuxième sens de rotation 104 opposé au premier sens de rotation 103 peut induire un déplacement en translation de l'ensemble mobile 50 selon un deuxième sens de translation 102 opposé au premier sens de translation, pour par exemple requérir une diminution de ladite poussée.
  • Le premier sens de translation 101 peut être dirigé sensiblement selon le sens d'avancement AV d'un aéronef et de l'extrémité proximale 42 vers l'extrémité libre 43. L'expression « sensiblement selon le sens d'avancement AV » signifie que le sens de translation est parallèle à un plan vertical passant par le sens d'avancement, et perpendiculaire à l'axe de tangage de l'aéronef par exemple.
  • Par ailleurs et en référence à la figure 3, le premier sens de rotation et le deuxième sens de rotation peuvent être homogènes au fonctionnement d'un indicateur 80.
  • En effet, l'aéronef peut comprendre un indicateur 80 qui présente une échelle 81 illustrant des valeurs de poussée. De plus, l'indicateur 80 possède une aiguille 83 mobile en rotation qui pointe sur cette échelle une valeur d'une poussée courante, à savoir la poussée développée par les systèmes moteurs. Cette aiguille 83 effectue une rotation selon un premier sens de déplacement 105 lorsque la poussée augmente, et selon un deuxième sens de déplacement 106 lorsque la poussée diminue. Le deuxième sens de déplacement 106 est opposé au premier sens de déplacement 105.
  • Dès lors et selon le procédé appliqué, un pilote peut tourner la poignée 55 selon le premier sens de rotation 103 pour la faire translater le long du manche 41 selon le premier sens de translation 101 afin d'augmenter la poussée exercée par les systèmes moteur 10 contrôlés, et fait tourner la poignée 55 selon le deuxième sens de rotation 104 pour la faire translater le long du manche selon le deuxième sens de translation 102 afin de réduire la poussée exercée par les systèmes moteur 10 contrôlés.
  • Plus précisément, le premier sens de rotation 103 peut être identique au premier sens de déplacement 105, et le deuxième sens de rotation 104 est identique au deuxième sens de déplacement 106.
  • La manoeuvre de l'ensemble mobile est ainsi fortement intuitive.
  • Par ailleurs, l'ensemble mobile peut être déplacé entre deux postions extrêmes, et par exemple entre une première butée 201 et une deuxième butée 202.
  • Lorsque l'ensemble mobile est rendu inopérant par exemple, ledit ensemble mobile 50 peut être dans une position dite « position centrée POS0 » non visible sur la figure 1. Dans cette position centrée, l'ensemble mobile 50 se trouve à égale distance de la première butée 201 et la deuxième butée 202.
  • Si cet ensemble mobile 50 est destiné à commander au moins un actionneur de commande 14 nécessitant un déplacement de l'ensemble mobile 50 sur une amplitude de commande prédéterminée pour couvrir toute la plage de fonctionnement de cet actionneur de commande 14, ladite distance est égale à ladite amplitude de commande. A partir de la position centrée POS0, la première butée 201 ou la deuxième butée 202 sont atteintes par l'ensemble mobile 50 suite à un mouvement translatif de l'ensemble mobile selon ladite amplitude de commande.
  • La figure 4 présente un aéronef 1 selon l'invention. Cet aéronef 1 est muni d'au moins un organe de commande 40 pour commander au moins un système moteur 10. Ce système moteur exerce une poussée permettant de déplacer l'aéronef 1.
  • Cet aéronef 1 comprend un fuselage 2 qui s'étend longitudinalement selon un sens d'avancement AV de l'aéronef d'une queue 3 vers un nez 4.
  • L'aéronef 1 peut être un giravion. Dès lors, l'aéronef peut comprendre au moins un rotor 3 qui participe au moins partiellement à la sustentation de l'aéronef voire à sa propulsion. Un tel rotor 3 peut être porté par le fuselage 2. Ce rotor comporte une pluralité de pales à pas variable.
  • Par ailleurs, cet aéronef comprend aussi au moins un système moteur apte à exercer, au moins selon le sens d'avancement de l'aéronef, une poussée. Par exemple, l'aéronef 1 comporte deux systèmes moteurs 10 pourvus respectivement de deux hélices 11, 12. Les deux hélices 11, 12 peuvent être agencées transversalement de part et d'autre du fuselage et portées par une aile 7.
  • Chaque hélice 11, 12 comporte une pluralité de pales 13 à pas variable.
  • Les hélices 11, 12 et le rotor 3 peuvent être mis en mouvement par une installation motrice 15 usuelle. Une telle installation motrice peut comprendre au moins un moteur ainsi que diverses boîtes de transmission de puissance par exemple.
  • Pour être pilotable par un pilote, l'aéronef comporte une commande cyclique 5 manoeuvrable par un pilote pour contrôler cycliquement de manière usuelle le pas des pales du rotor 3. La commande cyclique 5 peut prendre la forme d'un manche cyclique usuel par exemple.
  • De plus, l'aéronef comporte une commande collective 7 manoeuvrable par un pilote pour contrôler collectivement de manière usuelle le pas des pales du rotor 3. La commande collective peut prendre la forme d'une manette de pas collectif par exemple.
  • La commande collective et l'organe de commande 40 peuvent former un seul et même équipement.
  • En outre, une interface de commande 18 avionique peut permettre à un pilote de régler collectivement la poussée exercée par les hélices, par exemple en réglant un pas moyen des pales des hélices. Dès lors, un système de commande 16, éventuellement un palonnier, peut par exemple permettre de régler un pas différentiel, le pas des pales d'une hélice étant par exemple égal à la somme du pas moyen et de la moitié du pas différentiel, le pas des pales de l'autre hélice étant par exemple égal à la différence du pas moyen et de la moitié du pas différentiel.
  • Dans ce cadre, l'organe de commande 40 selon l'invention peut alors représenter un système de secours permettant de piloter le pas moyen en cas de défaillances de l'interface de commande avionique 18 ou lors d'entraînements au pilotage par exemple. La commande collective 7 peut alors comprendre le manche 41 de l'organe de commande 40. L'interface de commande avionique peut être portée par ce manche 41.
  • Néanmoins, l'organe de commande 40 selon l'invention peut aussi être agencé sur d'autres types d'aéronef, par exemple pour piloter la poussée d'un réacteur.
  • La figure 5 illustre de manière schématique une architecture de pilotage sur un aéronef du type de la figure 4.
  • Selon cette architecture, le pas des pales 13 de chaque hélice peut être modifié. Ainsi, l'aéronef comporte pour chaque hélice un actionneur dénommé par commodité « actionneur de commande 14 » qui modifie le pas des pales associées sur commande.
  • Les actionneurs de commande 14 sont pilotés par une chaine de commande usuelle dénommée « chaine de transmission d'un mouvement 20 » par commodité. Cette chaine de transmission d'un mouvement peut être pilotée par le système de commande 16 et l'interface de commande 18.
  • Cette interface de commande 18 peut être une commande avionique générant un signal transmis à au moins un actionneur 17 de la chaine de transmission d'un mouvement. Un tel actionneur est dénommé « actionneur de pilotage » par commodité.
  • Dès lors, les actionneurs de pilotage et le palonnier sont reliés mécaniquement à un combinateur 22, ce combinateur 22 étant relié à chaque actionneur de commande 14. Ce combinateur 22 peut prendre la forme d'un combinateur usuel.
  • Par ailleurs, cette architecture présente un système de secours mécanique utilisable notamment en cas de panne de l'interface de commande 18.
  • Ce système de secours inclut au moins un organe de commande 40 selon l'invention. La figure 5 illustre la présence possible d'un organe de commande 40 manoeuvrable par un pilote et d'un organe de commande 40 manoeuvrable par un copilote.
  • Chaque organe de commande 40 comporte un ensemble mobile 50 qui est mobile en translation et relié mécaniquement par une transmission mécanique de mouvement 36 à un unique levier 31. Ce levier 31 est ainsi articulé d'une part à chaque transmission mécanique de mouvement 36 et d'autre part à la chaîne de transmission d'un mouvement 20.
  • En outre, le levier coopère avec un système d'immobilisation 37 qui rend inopérant le levier 31 sur requête.
  • Lorsque le levier est inopérant dans des conditions normales de fonctionnement, le levier sert de point d'ancrage des actionneurs de pilotage 17. Un changement d'état des actionneurs de pilotage 17 induit de fait un mouvement du combinateur. L'organe de commande ne pilote alors pas les actionneurs de commande. Les ensembles mobiles de chaque organe de commande sont immobiles dans leurs référentiels.
  • Par contre, lorsque le système d'immobilisation 37 libère le levier 31, une translation d'un ensemble mobile 50 induit un mouvement du combinateur 22.
  • La figure 6 présente les divers organes de l'architecture de la figure 2.
  • Selon la figure 6, chaque ensemble mobile 50 des organes de commande 40 est relié à un levier 31 commun par une transmission mécanique de mouvement 36. Une telle transmission mécanique peut comprendre une gaine 361 en appui contre un support 362. De plus, la transmission mécanique de mouvement 36 peut comporter un câble ou une lame traversant la gaine pour être fixé(e) à l'ensemble mobile 50 et au levier 31.
  • Par ailleurs, le levier 31 est articulé à un organe immobile de l'aéronef par une articulation qui confère au levier 31 un degré de liberté en rotation autour d'un axe d'articulation AX1. Le levier s'étendant selon la longueur entre deux zones extrémales 32, 33, l'axe d'articulation AX1 est positionné entre ces zones extrémales 32, 33.
  • Dès lors, chaque transmission mécanique de mouvement 36 est éventuellement articulée au levier 31 entre l'axe d'articulation AX1 et une zone extrémale particulière.
  • Par ailleurs, un système d'immobilisation 37 éventuel permet d'immobiliser sur requête le levier 31. Ce système d'immobilisation 37 peut comporter une tige dont une extrémité représente un doigt de blocage 38. Ce doigt de blocage 38 peut être inséré dans un orifice 39 du levier 31 pour empêcher une rotation du levier 31 autour de son axe d'articulation AX1. La tige peut aussi comprendre un moyen de préhension 380. Dès lors, un pilote peut se saisir du moyen de préhension 380 pour sortir le doigt de blocage de l'orifice 39 afin de libérer le levier 31.
  • Selon un autre aspect, la chaîne de transmission d'un mouvement 20 est articulée au levier 31 entre cet axe d'articulation AX1 et cette même zone extrémale particulière. Lorsque le levier 31 est immobilisé par le doigt de blocage 38, ce levier sert ainsi de point d'ancrage de la chaîne de transmission d'un mouvement.
  • Conformément à la réalisation présentée sur la figure 6, cette chaîne de transmission d'un mouvement 20 comporte au moins un actionneur de pilotage 17 piloté par une interface de commande 18 voire par un système de pilotage automatique. De plus, cette chaîne de transmission d'un mouvement 20 peut comporter des bielles, des moyens de renvoi, un combinateur 22... Ce combinateur 22 peut être relié par des commandes à billes, voire par des bielles aux actionneurs de commande 14. Le chaîne de transmission d'un mouvement 20 est représenté de manière schématique.
  • Dès lors, lorsque le système d'immobilisation immobilise le levier 31, les actionneurs de pilotage 17 sont pilotés pour changer d'état et transmettre un ordre en déplacement par une commande mécanique reliée à chaque actionneur de commande 14. Le levier 31 isole alors la chaine de transmission d'un mouvement des organes de commande 40.
  • Lorsqu'un pilote libère le levier 31 en sollicitant le système d'immobilisation 37, un déplacement d'un ensemble mobile 50 induit un déplacement d'au moins un lien d'une transmission mécanique de mouvement 36, une rotation du levier 31, puis un déplacement d'organes de la chaine de transmission d'un mouvement 20, et enfin d'une entrée des actionneurs de commande 14.
  • Naturellement, la présente invention est sujette à de nombreuses variations quant à sa mise en oeuvre. Bien que plusieurs modes de réalisation aient été décrits, on comprend bien qu'il n'est pas concevable d'identifier de manière exhaustive tous les modes possibles. Il est bien sûr envisageable de remplacer un moyen décrit par un moyen équivalent sans sortir du cadre de la présente invention.

Claims (16)

  1. Organe de commande (40) manoeuvrable par un pilote, ledit organe de commande (40) étant destiné à piloter un système moteur (10) exerçant une poussée dans un aéronef (1), ledit organe de commande (40) comportant un manche (41) et un ensemble mobile (50), l'ensemble mobile (50) étant agencé sur le manche (41) et étant mobile par rapport à ce manche (41), ledit ensemble mobile (50) comprenant une poignée (55),
    caractérisé en ce que ladite poignée (55) est liée au manche (41) par une liaison hélicoïdale (57) afin qu'une rotation de la poignée (55) autour du manche (41) génère une translation de la poignée (55) et de l'ensemble mobile (50) le long du manche (41), ladite poignée (55) étant mobile selon une dite translation suivant un premier sens (101) de translation, ladite poignée (55) étant mobile selon une dite translation suivant un deuxième sens (102) de translation opposé au premier sens (101) de translation.
  2. Organe de commande selon la revendication 1,
    caractérisé en ce que ledit organe de commande (40) comporte une transmission mécanique de mouvement (36), ladite transmission mécanique de mouvement comprenant au moins un lien mobile fixé mécaniquement à l'ensemble mobile (50).
  3. Organe de commande selon la revendication 2,
    caractérisé en ce que ledit ensemble mobile (50) comporte un socle (60) qui coopère avec ladite poignée (55), ladite poignée (55) étant articulée au socle (60) par une liaison pivot (62) conférant un degré de liberté en rotation à la poignée (55) par rapport au socle (60) et autour du manche, ledit socle (60) étant monté sur le manche (41) par une liaison glissière (65), ledit socle (60) étant uniquement mobile en translation par rapport au manche (41), la poignée (55) étant mobile en rotation par rapport au socle (60) et étant solidaire en translation du socle (60), ladite transmission mécanique de mouvement (36) étant fixée audit socle (60).
  4. Organe de commande selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que ledit ensemble mobile (50) commandant un actionneur de commande (14) nécessitant un déplacement de l'ensemble mobile (50) sur une amplitude de commande pour couvrir toute une plage de fonctionnement de cet actionneur de commande (14), hors fonctionnement ledit ensemble mobile (50) est dans une position centrée (POSO) entre une première butée (201) et une deuxième butée (202), la première butée (201) et la deuxième butée (202) étant atteintes par ledit ensemble mobile (50) à partir de la position centrée (POSO) suite à un mouvement translatif de l'ensemble mobile selon ladite amplitude de commande.
  5. Organe de commande selon l'une quelconque des revendications 1 à 4,
    caractérisé en ce que ledit manche (41) s'étendant longitudinalement d'une extrémité proximale (42) à une extrémité libre (43), ladite extrémité proximale (42) étant munie d'une articulation (70) conférant au manche un degré de liberté en rotation autour d'un axe de rotation (AX2), ledit premier sens de translation (101) va de l'extrémité proximale (42) à l'extrémité libre (43).
  6. Organe de commande selon l'une quelconque des revendications 1 à 5,
    caractérisé en ce que ledit manche (41) s'étendant longitudinalement d'une extrémité proximale (42) à une extrémité libre (43), ladite extrémité proximale (42) étant munie d'une articulation conférant au manche un degré de liberté en rotation autour d'un axe de rotation (AX2), ladite poignée (55) est agencée entre ladite extrémité proximale (42) et ladite extrémité libre (43), ladite poignée (55) étant indépendante du manche (41) pour qu'une rotation du manche (41) autour de son axe de rotation (AX2) n'induise pas un déplacement de la poignée (55) le long du manche (41).
  7. Aéronef (1) muni d'au moins un système moteur (10) exerçant une poussée, ladite poussée étant réglée par au moins un actionneur de commande (14), ledit actionneur de commande (14) étant piloté par une chaîne de transmission d'un mouvement (20) débouchant sur ledit actionneur de commande (14),
    caractérisé en ce que ledit aéronef (1) comporte au moins un organe de commande (40) selon l'une quelconque des revendications 1 à 6, ledit organe de commande (40) étant relié mécaniquement à la chaîne de transmission d'un mouvement (20) et étant destiné à déplacer ladite chaîne de transmission d'un mouvement (20).
  8. Aéronef selon la revendication 7,
    caractérisé en ce que ladite chaîne de transmission d'un mouvement (20) comporte au moins un actionneur de pilotage (17), ledit actionneur de pilotage (17) étant piloté par une interface de commande (18) avionique manoeuvrable par un pilote.
  9. Aéronef selon l'une quelconque des revendications 7 à 8,
    caractérisé en ce que ledit aéronef (1) comprenant deux systèmes moteur (10) à hélices (11, 12), la poussée exercée par chaque hélice (11, 12) d'un système moteur étant pilotée en modifiant un pas de pales (13) de cette hélice, ledit aéronef (1) comporte un système de commande (16) manoeuvrable par un pilote pour modifier les poussées exercées par les deux hélices de manière différente, ledit organe de commande (40) permettant de modifier les poussées exercées par les deux hélices de la même manière, ladite chaîne de transmission d'un mouvement (20) comporte au moins un combinateur (22) relié à l'organe de commande (40) et au système de commande (16) ainsi qu'aux deux hélices (11, 12), ledit combinateur (22) combinant mécaniquement un déplacement généré par ledit organe de commande (40) et un déplacement généré par ledit système de commande (16).
  10. Aéronef selon l'une quelconque des revendications 7 à 9,
    caractérisé en ce que ledit organe de commande (40) comprenant une transmission mécanique de mouvement (36) fixée à l'ensemble mobile (50), un levier (31) est articulé d'une part à la transmission mécanique de mouvement (36) et d'autre part à la ladite chaîne de transmission d'un mouvement (20), ledit levier (31) étant mobile en rotation autour d'un axe d'articulation (AX1).
  11. Aéronef selon la revendication 10,
    caractérisé en ce que ledit aéronef (1) comportant plusieurs organes de commande (40) qui comprennent chacun une transmission mécanique de mouvement (36) reliée à l'ensemble mobile (50) de l'organe de commande associé, chaque transmission mécanique de mouvement (36) est articulée au levier (31).
  12. Aéronef selon l'une quelconque des revendications 10 à 11,
    caractérisé en ce que ledit axe d'articulation (AX1) s'étendant entre deux zones extrémales (32, 33) du levier (31), la transmission mécanique de mouvement (36) et la chaîne de transmission d'un mouvement (20) sont articulées au levier (31) entre ledit axe d'articulation (AX1) et la même zone extrémale (33).
  13. Aéronef selon l'une quelconque des revendications 10 à 12,
    caractérisé en ce que ledit aéronef (1) comporte un système d'immobilisation (37) manoeuvrable par un pilote pour immobiliser ledit levier (31) en fonctionnement normal.
  14. Aéronef selon la revendication 13
    caractérisé en ce que ledit système d'immobilisation (37) est muni d'un système mécanique qui comprend un doigt de blocage (38) mobile en translation et un orifice (39) du levier (31), ledit doigt de blocage (38) étant engagé dans ledit orifice (39) pour interdire une rotation du levier (31) en fonctionnement normal et étant désengagé dudit orifice (39) pour autoriser une rotation du levier (31) en fonctionnement manuel.
  15. Procédé pour commander un système moteur (10) d'un aéronef (1) selon l'une quelconque des revendications 7 à 14,
    caractérisé en ce qu'on tourne la poignée (55) selon un premier sens de rotation (103) pour la faire translater le long du manche (41) selon le premier sens de translation (101) afin d'augmenter la poussée exercée par le système moteur (10), et on tourne la poignée (55) selon un deuxième sens de rotation (104) pour la faire translater le long du manche selon le deuxième sens de translation (102) afin de réduire la poussée exercée par le système moteur (10).
  16. Procédé selon la revendication 15,
    caractérisé en ce que ledit aéronef (1) ayant un indicateur (80) présentant une échelle (81) illustrant des valeurs de poussée et une aiguille (83) pointant sur cette échelle une valeur d'une poussée courante, ladite aiguille (83) effectuant une rotation selon un premier sens de déplacement (105) lorsque la poussée augmente et selon un deuxième sens de déplacement (106) lorsque la poussée diminue, ledit premier sens de rotation (103) est identique audit premier sens de déplacement (105), ledit deuxième sens de rotation (104) est identique audit deuxième sens de déplacement (106).
EP17200291.7A 2016-11-30 2017-11-07 Organe de commande, aeronef a voilure tournante et procede Active EP3330177B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1601695A FR3059297B1 (fr) 2016-11-30 2016-11-30 Organe de commande, aeronef a voilure tournante et procede

Publications (2)

Publication Number Publication Date
EP3330177A1 EP3330177A1 (fr) 2018-06-06
EP3330177B1 true EP3330177B1 (fr) 2019-04-24

Family

ID=57796396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17200291.7A Active EP3330177B1 (fr) 2016-11-30 2017-11-07 Organe de commande, aeronef a voilure tournante et procede

Country Status (5)

Country Link
US (1) US10737775B2 (fr)
EP (1) EP3330177B1 (fr)
KR (1) KR101977153B1 (fr)
CN (1) CN108116674B (fr)
FR (1) FR3059297B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689096B2 (en) * 2018-02-26 2020-06-23 Bell Helicopter Textron Inc. Adjustable cyclic stick
CN109018431B (zh) * 2018-08-13 2020-02-18 燕山大学 一种主旋翼试验机自动倾斜器双螺旋锁紧器
CN109625247A (zh) * 2018-11-30 2019-04-16 中国航空工业集团公司沈阳飞机设计研究所 一种可调节飞机侧杆臂托
FR3093077B1 (fr) 2019-02-27 2021-01-22 Airbus Helicopters dispositif de renvoi assisté et aéronef
US20240140592A1 (en) * 2022-10-27 2024-05-02 Lockheed Martin Corporation Folding control stick and locking mechanism

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514212A (en) * 1948-08-25 1950-07-04 Firestone Tire & Rubber Co Control lever for aircraft and the like
US2788676A (en) * 1953-03-19 1957-04-16 Harley Davidson Motor Co Inc Twist grip bowden wire operator
GB790560A (en) * 1955-06-02 1958-02-12 Saunders Roe Ltd Improvements in helicopters
FR1318834A (fr) * 1961-02-01 1963-02-22 Gen Electric Co Ltd Perfectionnements aux systèmes électriques destinés à fournir une représentation numérique de la position d'un élément mobile
FR1518834A (fr) 1967-02-10 1968-03-29 Sud Aviation Agencement de contrôle d'un combiné hélicoptère-autogire à sustentation et propulsion par réaction et commandes s'y rapportant
US3936015A (en) * 1974-06-28 1976-02-03 United Technologies Corporation Retractable collective pitch stick
US4241687A (en) * 1978-11-13 1980-12-30 Outboard Marine Corporation Throttle control for a marine propulsion device
US5340342A (en) * 1993-06-02 1994-08-23 Brunswick Corporation Universal tiller handle with shift and throttle
US5370017A (en) * 1993-07-07 1994-12-06 Krauer; Alwin Handlebar cable control with biased return feature
US7770490B1 (en) * 2006-03-31 2010-08-10 Streamline Designs Inc. Motor throttle assembly
US7775136B2 (en) * 2007-08-13 2010-08-17 Schwulst Kyle E E Twist-grip handlebar controller
CN101723091B (zh) * 2009-12-16 2012-04-18 李游 旋翼直升机的旋翼变距控制装置
US9067672B2 (en) * 2012-02-10 2015-06-30 Bell Helicopter Textron Inc. Pilot control system with pendent grip
FR2991663B1 (fr) * 2012-06-07 2014-06-13 Sagem Defense Securite Minimanche de pilotage d'un aeronef
PL2979978T3 (pl) * 2014-07-31 2017-02-28 Airbus Helicopters Deutschland GmbH Układ sterowania do sterowania skokiem zbiorowym i skokiem cyklicznym łopat wirnika wielopłatowego w wiropłacie
FR3027871B1 (fr) 2014-10-30 2018-03-23 Airbus Helicopters Dispositif mecanique pour combiner au moins un premier ordre et un deuxieme ordre de commande, et aeronef muni d'un tel dispositif
CN204489183U (zh) * 2014-12-17 2015-07-22 中国航空动力机械研究所 桨距操纵杆结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3059297A1 (fr) 2018-06-01
US10737775B2 (en) 2020-08-11
CN108116674B (zh) 2020-12-29
US20180148167A1 (en) 2018-05-31
FR3059297B1 (fr) 2018-11-09
CN108116674A (zh) 2018-06-05
KR101977153B1 (ko) 2019-05-10
KR20180062430A (ko) 2018-06-08
EP3330177A1 (fr) 2018-06-06

Similar Documents

Publication Publication Date Title
EP3330177B1 (fr) Organe de commande, aeronef a voilure tournante et procede
EP2233396B1 (fr) Procédé et dispositif pour optimiser le fonctionnement d'hélices propulsives disposées de part et d'autre du fuselage d'un giravion
EP2468627B1 (fr) Aéronef muni d'un rotor arrière basculant, et procédé associé
FR3075457B1 (fr) Mecanisme de commande electrique et aeronef
EP2759473B1 (fr) Organe de commande muni d'un levier de pas collectif de pales et d'un moyen de commande en lacet, et aéronef avec un tel organe de commande
EP2502825A1 (fr) Pilotage de secours par vérin série pour chaine de commande de vol manuelle d'aéronef et Procédé
EP3882129B1 (fr) Procédé de commande d'hélices d'un hélicoptère hybride et hélicoptère hybride
EP2384969B1 (fr) Système de commandes de vol simplifiées comportant un dispositif de friction débrayable
FR2928621A1 (fr) Commande de vol d'un aeronef.
CA2988687C (fr) Organe de commande, aeronef a voilure tournante et procede
EP4143083A1 (fr) Aeronef
EP2827015B1 (fr) Mécanisme d'accouplement entre un organe de commandes de vol manuelles et un vérin de trim équipant un aéronef
EP3075652A1 (fr) Dispositif de repliage/depliage d'une poutre de queue d'un giravion, giravion associe et procede de repliage/depliage correspondant
EP3702278B1 (fr) Dispositif de renvoi assiste et aeronef
EP3170744A1 (fr) Système de commande de vol adaptative pour les commandes de vol en lacet et de poussée d'un hélicoptère hybride
FR2931132A1 (fr) Systeme de commande assiste d'un giravon
EP3162706B1 (fr) Combinateur des commandes vol en lacet et de poussee pour un helicoptere hybride
FR2946318A1 (fr) Dispositif mecanique pour combiner un premier et un deuxieme ordres de commande,et aeronef muni d'un tel dispositif.
EP3034394A1 (fr) Procede de gestion de discontinuites dans une commande de vehicule suite a une transition de commande, et vehicule
EP4080318A1 (fr) Dispositif de commande d'un ensemble de réduction d énergie mécanique d'un aéronef et procédé associé
EP4148299B1 (fr) Combinateur mécanique a gain variable et aeronef muni d'un tel combinateur
EP4063261B1 (fr) Systeme de commande pour commander au moins une helice d'un giravion hybride, giravion hybride et procede de commande associe
WO2024084156A1 (fr) Ensemble pour un aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180924

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B64D 31/04 20060101ALI20181018BHEP

Ipc: B64C 27/56 20060101AFI20181018BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1123846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017003506

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1123846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017003506

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017003506

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171107

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 7

Ref country code: FR

Payment date: 20231120

Year of fee payment: 7