EP3327762B1 - Interconnect structure and manufacturing method thereof - Google Patents
Interconnect structure and manufacturing method thereof Download PDFInfo
- Publication number
- EP3327762B1 EP3327762B1 EP17203759.0A EP17203759A EP3327762B1 EP 3327762 B1 EP3327762 B1 EP 3327762B1 EP 17203759 A EP17203759 A EP 17203759A EP 3327762 B1 EP3327762 B1 EP 3327762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- forming
- metal layer
- interconnect
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000002184 metal Substances 0.000 claims description 99
- 229910052751 metal Inorganic materials 0.000 claims description 99
- 238000000034 method Methods 0.000 claims description 60
- 230000004888 barrier function Effects 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 36
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 238000009713 electroplating Methods 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
- H01L21/76846—Layer combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/7685—Barrier, adhesion or liner layers the layer covering a conductive structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76865—Selective removal of parts of the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76885—By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
- H01L23/5283—Cross-sectional geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53238—Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/32—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32051—Deposition of metallic or metal-silicide layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/10—Applying interconnections to be used for carrying current between separate components within a device
- H01L2221/1068—Formation and after-treatment of conductors
Definitions
- the present invention relates to semiconductor technology, and more particularly to an interconnect structure and a method for manufacturing the same.
- a conventional process of manufacturing an interconnect structure may include the steps of first forming an opening in a dielectric layer on a substrate, and then depositing a barrier layer and a seed layer on the surface of the dielectric layer and on the surface of the opening. Thereafter, a metal layer is deposited using an electroplating process to fill the opening and to cover the seed layer on the dielectric layer, and then a planarization process is performed on the deposited metal layer.
- US 6 426 558 B1 discloses a method of "reverse" dual damascene processing in which portions of a damascene conductor are etched away to form self-aligned vias integral with the lower interconnect line.
- the present inventors have discovered that the rate of electroplating of the metal layer from the bottom to the top of the opening is relatively slow, thus, for filling the opening the amount of the metal to be deposited on the entire substrate is relatively large.
- the conductive structure is relatively large and requires a thick metal layer to fill the opening of the interconnect structure.
- the thick metal layer will exert a high stress in the interconnect structure.
- the high stress causes warping or even breakage in the substrate.
- a thick deposited metal layer will increase the cost of metal deposition and the cost of a subsequent planarization of the deposited metal layer.
- a method for manufactureing an interconnect structure includes providing a substrate structure including a substrate and a first dielectric layer on the substrate.
- the first dielectric layer includes an opening for a first interconnect layer extending to the substrate.
- the method also includes forming a first mask layer on a portion of the first dielectric layer spaced apart from the opening, forming a first metal layer filling the opening and covering a portion of the first dielectric layer not covered by the first mask layer, removing the first mask layer exposing a portion of the first dielectric layer, and forming a second dielectric layer on the exposed portion of the first dielectric layer and on the first metal layer.
- the method further includes removing a portion of the second dielectric layer to form a trench for a second interconnect layer, the trench exposing a portion of the first metal layer, and forming a second metal layer filling the trench and in contact with the exposed portion of the first metal layer.
- forming the second metal layer in the trench includes forming a second mask layer on a portion of a remaining second dielectric layer (i.e., the remaining second dielectric layer is the second dielectric layer having a portion being removed to form the trench), forming the second metal layer covering the trench, planarizing the second metal layer until an upper surface of the second metal layer is substantially flush with an upper surface of the remaining second dielectric layer.
- the method may further include, prior to forming the second mask layer, forming a second barrier layer on the remaining second dielectric layer, and on a bottom and sidewalls of the trench, the second mask layer is disposed on the second barrier layer.
- the method may further include, prior to forming the second mask layer, forming a second barrier layer on the remaining second dielectric layer, and on a bottom and sidewalls of the trench, and forming a second seed layer on the second barrier layer.
- the second mask layer is disposed on the second seed layer.
- each of the first mask layer and the second mask layer includes a photoresist.
- forming the second metal layer filling the trench includes forming the second metal layer covering a remaining second dielectric layer, planarizing the second metal layer until an upper surface of the second metal layer is substantially flush with an upper surface of the remaining second dielectric layer.
- the method may further include, prior to forming the first mask layer, forming a first barrier layer on the substrate structure, the first mask layer being disposed on the first barrier layer; and after removing the first mask layer, removing an exposed portion of the first barrier layer.
- the method may further include, prior to forming the first mask layer, forming a first barrier layer on the substrate structure, forming a first seed layer on the first barrier layer, the first mask layer being disposed on the first seed layer, and after removing the first mask layer, removing an exposed portion of the first seed layer and exposed portion of the first barrier layer.
- forming the first metal layer includes an electro-plating process
- forming the second metal layer includes an electro-plating process
- each of the first metal layer and the second metal layer includes copper.
- the opening includes a groove extending into the first dielectric layer and at least one through hole below the groove.
- an interconnect structure is proviced.
- the interconnect structure includes a substrate, a first dielectric layer on the substrate and having an opening for a first interconnect layer extending to the substrate, a first metal layer having a first portion in the opening and a second portion in contact with the first portion and on a portion of the first dielectric layer adjacent to the opening, a second dielectric layer on the first dielectric layer and on the first metal layer, the second dielectric layer including a trench for a second interconnect layer, the trench exposing the second portion of the first metal layer, and a second metal layer filling the trench.
- the second portion of the first metal layer forms a lower portion of the second interconnect layer.
- the interconnect structure further includes a first barrier layer on a bottom and sidewalls of the opening.
- the interconnect structure further includes a first seed layer disposed between the first barrier layer and the first metal layer.
- the interconnect structure further includes a second barrier layer on a bottom and sidewalls of the trench.
- the interconnect structure further includes a second seed layer disposed between the second barrier layer and the second metal layer.
- the first and second metal layers each include copper.
- the opening includes a groove and one or more through holes below the groove.
- An interconnect structure according to the second aspect of the present invention may be obtained by a method according to the first aspect of the present invention.
- Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “lateral” or “vertical” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
- Embodiments of the invention are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention.
- the thickness of layers and regions in the drawings may be enlarged relative to other layers and regions for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected.
- embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
- an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region.
- a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place.
- the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the invention.
- the inventors propose a novel method that does not blanket deposit a metal layer on the entire surface of the substrate, i.e., the method shields some portions of the substrate from the deposited metal layer, so that the amount of the deposited metal layer is reduced, thereby reducing the stress in the deposited metal layer.
- FIG. 1 is a simplified flowchart of a method for manufacturing an interconnect structure according to an embodiment of the present invention.
- FIGS. 2 to 11 are cross-sectional views illustrating intermediate stages of an interconnect structure in a manufacturing method according to an embodiment of the present invention. A method for manufacturing an interconnect structure according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2 to 11 .
- the substrate structure may include a substrate 201 and a dielectric layer 202 on substrate 201.
- Dielectric layer 202 includes an opening 203 for a first interconnect layer extending to substrate 201.
- Substrate 201 may include a variety of different devices, such as metal oxide semiconductor (MOS) devices, passive devices (e.g., capacitors, inductors, and the like), etc.
- Substrate 201 may include a semiconductor layer (e.g., silicon, germanium, gallium arsenide, and the like) and a device layer on the semiconductor layer.
- opening 203 may include a groove extending into first dielectric layer 202 and a via disposed below the groove and extending to substrate 201.
- the via may include one, two, or more through holes. It should be noted that opening 203 can be formed using conventional damascene processes that are compatible with existing semiconductor fabrication processes and will not be described herein for the sake of brevity.
- a first mask layer 301 (e.g., a photoresist) is formed on a region of first dielectric layer 202 spaced apart from the opening, as shown in FIG. 3 .
- a first barrier layer (not shown) may be formed on the substrate structure shown in FIG. 2 .
- First mask layer 301 is formed on the first barrier layer.
- the first barrier layer is formed on the bottom and sidewalls of opening 203 and on the surface of first dielectric layer 202.
- the first barrier layer may include TaN, Ta, or stacked layers of TaN and Ta.
- the method may also include forming a first seed layer (not shown) on the first barrier layer, so that the first mask layer is formed on the first seed layer.
- the seed layer may include copper.
- the first barrier layer and the first seed layer each may be formed using a physical vapor deposition (PVD) process.
- PVD physical vapor deposition
- a first metal layer (e.g., copper) 401 is formed filling opening 401 and covering the surface area of first dielectric layer 202 not covered by first mask layer 301, as shown in FIG. 4 .
- first metal layer 401 may be deposited using an electroplating process.
- first metal layer 401 filling opening 204 forms a first interconnect layer.
- the first interconnect layer includes a lower portion formed of a via filled with the first metal layer and an upper portion formed of a groove filled with the first metal layer.
- the region of first dielectric layer 202 not covered by first mask layer 301 includes a step-shaped structure.
- First metal layer 401 is conformally deposited on the step-shaped structure to form a conformal region 401A, which is indicated by a circle. Conformal region 401A is adjacent to first mask layer 301.
- conformal region 401A of the first metal layer adjacent to first mask layer 301 may serve as a lower portion of a second interconnect layer, which is typically formed later by filling a via of the second interconnect layer.
- first mask layer 301 covers a portion of first dielectric layer 202, the amount of electro-plated first metal layer 401 is substantially reduced with respect to the amount of a metal layer that is blanket formed on the dielectric layer, thereby reducing the stress in a subsequently formed interconnect structure, reducing the manufacturing cost, and improving the reliability of the interconnect structure.
- first mask layer 301 is removed exposing a portion of first dielectric layer 202, as shown in FIG. 5 . It should be noted that, in the case where a seed layer and/or a first barrier layer are formed below first mask layer 301, the exposed portions of the first seed layer and the first barrier layers are also removed after the removal of first mask layer 301.
- a second dielectric layer 601 is formed covering the exposed portions of first metal layer 401 and first dielectric layer 202.
- the second dielectric layer 601 includes a trench 701 for a second interconnect layer exposing a portion of conformal region 401A, conformal region 401A serves as a lower portion of a second interconnect layer.
- second dielectric layer 601 covers the exposed portions of first metal layer 401 and first dielectric layer 202.
- second dielectric layer 601 may include silicon oxide, silicon nitride, or the like. Second dielectric layer 601 may be of the same material as or different material from first dielectric layer 202.
- second dielectric layer 601 is etched to form a trench 701 for a second interconnect layer.
- a patterned hardmask layer may be formed on second dielectric layer 601 defining the shape of trench 701, an etch process is performed on second dielectric layer 601 using the patterned hardmask layer as a mask to form trench 701.
- Trench 701 exposes a surface of portion 401A of first metal layer 401. Thereafter, the patterned hardmask layer is removed.
- the method further includes forming a second metal layer (e.g., copper) filling trench 701 to form an upper portion of the second interconnect layer.
- a second metal layer e.g., copper
- the second metal layer may be deposited using an electroplating process to fill trench 701.
- the upper portion of the second interconnect layer may be formed by first depositing a second metal layer filling the trench and covering a remaining second dielectric layer (the remaining second dielectric layer is the second dielectric layer having a portion removed to form the trench). A planarization process is then performed until the upper surface of the remaining second metal layer is substantially flush with the upper surface of the second dielectric layer.
- substantially flush refers to that the lateral surfaces are flush (coplanar) with each other within the range of process variation.
- the upper portion of the second interconnect layer may be formed with reference to FIGS. 8 through 11 .
- a second mask layer 801 (e.g., a photoresist) is formed on a portion of remaining second dielectric layer 601.
- the method may include forming a second barrier layer (not shown) on remaining second dielectric layer 601, and on the bottom and sidewalls of trench 701, such that second mask layer 801 is formed on the second barrier layer.
- the second barrier layer may include TaN, Ta, or stacked layers of TaN and Ta.
- the method may also include forming a second seed layer (not shown) on the second barrier layer, so that second mask layer 801 is formed on the second seed layer.
- the second seed layer may include copper. Similar to the first barrier and seed layers, the second barrier layer and the second seed layer each may be formed using a physical vapor deposition (PVD) process.
- PVD physical vapor deposition
- the method includes depositing a second metal layer 901 filling trench 701. Since second mask layer 801 is formed on at least one portion of remaining dielectric layer 601, the amount of deposited second metal layer 901 is reduced, further reducing the stress of the second interconnect layer, facilitating a subsequent planarization process, and reducing the cost of the planarization process.
- second mask layer 801 is removed. It is noted that in the case where a second seed layer and/or a second barrier layer are formed below second mask layer 801, after the removal of second mask layer 801, exposed portions of the second seed layer and the second barrier layer are also removed.
- a planarization process is performed on second metal layer 901, so that the upper surface of a remaining second metal layer 901 is substantially flush with the upper surface of second dielectric layer 601.
- the method of manufacturing an interconnect structure provides forming a first mask layer on a portion of the first dielectric layer to reduce an amount of a first metal layer subsequently deposited on the first dielectric layer, thereby saving process costs, reducing the stress in the first metal layer, and reducing the stress in the first interconnect layer, so that the reliability and stability of the interconnect structure will be improved.
- a lower portion of a second interconnect layer may also be formed at the same time when the first metal layer is deposited, thus eliminating the need for photolithography and etch processes when forming through holes of the second interconnect structure to reduce process costs.
- portion 401A of first metal layer 401 is the lower portion of the second interconnect layer.
- the method of the present invention is particularly suitable for manufacturing integrated passive devices (IPD), but is not limited thereto.
- IPD integrated passive devices
- Embodiments of the present invention also provide an interconnect structure.
- the interconnect structure includes a substrate 201, and a first dielectric layer 202 having an opening extending to substrate 201 and configured to be used for a first interconnect layer.
- the opening may include a groove extending into the first dielectric layer and at least one through hole disposed below the groove.
- the interconnect structure also includes a first metal layer 401 (e.g., copper) filling the opening and covering a portion of first dielectric layer 202 adjacent to the opening.
- a portion 401A of first metal layer 401 covering the portion of first dielectric layer adjacent to the opening adjacent is a lower portion of a second interconnect layer.
- the portion of first metal layer 401 filling opening 203 is the first interconnect layer, and the lower portion of the second interconnect layer is integrally formed with the first interconnect layer.
- the first metal layer has a first portion in the portion and a second portion in contact with the first portion and on a portion of the first dielectric layer adjacent to the opening.
- the interconnect structure further includes a second dielectric layer 601 on first dielectric layer 202 and on first metal layer 401.
- Second dielectric layer 601 has a trench for the second interconnect layer. The trench in second dielectric layer 601 exposes an upper surface of lower portion 401A of the second interconnect layer.
- the interconnect structure also includes a second metal layer 901 (e.g., copper) filling the trench.
- a second metal layer 901 e.g., copper
- the interconnect structure may also include a first barrier layer (not shown) disposed on the bottom and sidewalls of the opening.
- the first metal layer is on the first barrier layer.
- the interconnect structure may also include a first seed layer (not shown) disposed between the first barrier layer and first metal layer 401, and the first metal layer is on the first seed layer.
- the interconnect structure may also include a second barrier layer (not shown) disposed on the bottom and sidewalls of the trench in second dielectric layer 601. In one embodiment, the interconnect structure may further include a second seed layer (not shown) disposed between the second barrier layer and second metal layer 901.
- embodiments of the present invention provide an interconnect structure and a manufacturing method thereof. In order not to obscure the teachings of the present invention, details of processes and structures known in the art are not described.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
- The present invention relates to semiconductor technology, and more particularly to an interconnect structure and a method for manufacturing the same.
- For reducing device feature sizes, current techniques generally employ Damascene processes for forming an interconnect structure. A conventional process of manufacturing an interconnect structure may include the steps of first forming an opening in a dielectric layer on a substrate, and then depositing a barrier layer and a seed layer on the surface of the dielectric layer and on the surface of the opening. Thereafter, a metal layer is deposited using an electroplating process to fill the opening and to cover the seed layer on the dielectric layer, and then a planarization process is performed on the deposited metal layer.
-
US 6 426 558 B1 discloses a method of "reverse" dual damascene processing in which portions of a damascene conductor are etched away to form self-aligned vias integral with the lower interconnect line. - The present inventors have discovered that the rate of electroplating of the metal layer from the bottom to the top of the opening is relatively slow, thus, for filling the opening the amount of the metal to be deposited on the entire substrate is relatively large. For example, in an integrated passive device (IPD) fabrication process, the conductive structure is relatively large and requires a thick metal layer to fill the opening of the interconnect structure. The thick metal layer will exert a high stress in the interconnect structure. In addition, the high stress causes warping or even breakage in the substrate. Furthermore, a thick deposited metal layer will increase the cost of metal deposition and the cost of a subsequent planarization of the deposited metal layer.
- Thus, it is an object of the present inventors to provide an interconnect structure and an improved method for manufacturing an interconnect structure having reduced stress and improved reliability.
- The object is achieved by the features of the respective independent claims. Further embodiments and developments are defined in the dependent claims.
- According to a first aspect of the present invention a method for manufactureing an interconnect structure includes providing a substrate structure including a substrate and a first dielectric layer on the substrate. The first dielectric layer includes an opening for a first interconnect layer extending to the substrate. The method also includes forming a first mask layer on a portion of the first dielectric layer spaced apart from the opening, forming a first metal layer filling the opening and covering a portion of the first dielectric layer not covered by the first mask layer, removing the first mask layer exposing a portion of the first dielectric layer, and forming a second dielectric layer on the exposed portion of the first dielectric layer and on the first metal layer. The method further includes removing a portion of the second dielectric layer to form a trench for a second interconnect layer, the trench exposing a portion of the first metal layer, and forming a second metal layer filling the trench and in contact with the exposed portion of the first metal layer.
- Preferably, forming the second metal layer in the trench includes forming a second mask layer on a portion of a remaining second dielectric layer (i.e., the remaining second dielectric layer is the second dielectric layer having a portion being removed to form the trench), forming the second metal layer covering the trench, planarizing the second metal layer until an upper surface of the second metal layer is substantially flush with an upper surface of the remaining second dielectric layer.
- Preferably, the method may further include, prior to forming the second mask layer, forming a second barrier layer on the remaining second dielectric layer, and on a bottom and sidewalls of the trench, the second mask layer is disposed on the second barrier layer.
- Preferably, the method may further include, prior to forming the second mask layer, forming a second barrier layer on the remaining second dielectric layer, and on a bottom and sidewalls of the trench, and forming a second seed layer on the second barrier layer. The second mask layer is disposed on the second seed layer.
- Preferably, each of the first mask layer and the second mask layer includes a photoresist.
- Preferably, forming the second metal layer filling the trench includes forming the second metal layer covering a remaining second dielectric layer, planarizing the second metal layer until an upper surface of the second metal layer is substantially flush with an upper surface of the remaining second dielectric layer.
- Preferably, the method may further include, prior to forming the first mask layer, forming a first barrier layer on the substrate structure, the first mask layer being disposed on the first barrier layer; and after removing the first mask layer, removing an exposed portion of the first barrier layer.
- Preferably, the method may further include, prior to forming the first mask layer, forming a first barrier layer on the substrate structure, forming a first seed layer on the first barrier layer, the first mask layer being disposed on the first seed layer, and after removing the first mask layer, removing an exposed portion of the first seed layer and exposed portion of the first barrier layer.
- Preferably, forming the first metal layer includes an electro-plating process, and forming the second metal layer includes an electro-plating process.
- Preferably, each of the first metal layer and the second metal layer includes copper.
- Preferably, the opening includes a groove extending into the first dielectric layer and at least one through hole below the groove.
- According to a second aspect of the present invention an interconnect structure is proviced. The interconnect structure includes a substrate, a first dielectric layer on the substrate and having an opening for a first interconnect layer extending to the substrate, a first metal layer having a first portion in the opening and a second portion in contact with the first portion and on a portion of the first dielectric layer adjacent to the opening, a second dielectric layer on the first dielectric layer and on the first metal layer, the second dielectric layer including a trench for a second interconnect layer, the trench exposing the second portion of the first metal layer, and a second metal layer filling the trench. The second portion of the first metal layer forms a lower portion of the second interconnect layer.
- Preferably, the interconnect structure further includes a first barrier layer on a bottom and sidewalls of the opening.
- Preferably, the interconnect structure further includes a first seed layer disposed between the first barrier layer and the first metal layer.
- Preferably, the interconnect structure further includes a second barrier layer on a bottom and sidewalls of the trench.
- Preferably, the interconnect structure further includes a second seed layer disposed between the second barrier layer and the second metal layer.
- Preferably, the first and second metal layers each include copper. In one embodiment, the opening includes a groove and one or more through holes below the groove.
- An interconnect structure according to the second aspect of the present invention may be obtained by a method according to the first aspect of the present invention.
- The following detailed description together with the accompanying drawings will provide a better understanding of the nature and advantages of the present invention.
- Embodiments of the present invention are described with reference to the accompanying drawings. In the drawings, like reference numbers may indicate identical or functionally similar elements.
-
FIG. 1 is a simplified flowchart of a method for manufacturing an interconnect structure according to an embodiment of the present invention. -
FIGS. 2 to 11 are cross-sectional views illustrating intermediate stages of an interconnect structure in a manufacturing method according to an embodiment of the present invention. - Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the invention to those skilled in the art. The features may not be drawn to scale, some details may be exaggerated relative to other elements for clarity. In the drawings, like numbers refer to like elements throughout.
- It will be understood that when an element such as a layer, region or substrate is referred to as being "on" or extending "onto" another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or extending "directly onto" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.
- Relative terms such as "below" or "above" or "upper" or "lower" or "horizontal" or "lateral" or "vertical" may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises", "comprising", "includes", and/or "including" when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- Embodiments of the invention are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. The thickness of layers and regions in the drawings may be enlarged relative to other layers and regions for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the invention.
- The embodiments described and references in the disclosure to "one embodiment," "an embodiment," "an exemplary embodiment" indicate that the embodiments described may include a particular feature, structure, or characteristic. However, every embodiment may not necessary include the particular feature, structure or characteristic. As used throughout this disclosure, the terms "depositing" and "forming" are used interchangeably. The terms "substrate" and "wafer" are used interchangeably.
- It should be noted that like reference numerals are used to denote like elements, and once an element has been defined in a drawings, it will not be further described in other drawings.
- Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
- To solve the stress problems in current interconnect structures, the inventors propose a novel method that does not blanket deposit a metal layer on the entire surface of the substrate, i.e., the method shields some portions of the substrate from the deposited metal layer, so that the amount of the deposited metal layer is reduced, thereby reducing the stress in the deposited metal layer.
-
FIG. 1 is a simplified flowchart of a method for manufacturing an interconnect structure according to an embodiment of the present invention.FIGS. 2 to 11 are cross-sectional views illustrating intermediate stages of an interconnect structure in a manufacturing method according to an embodiment of the present invention. A method for manufacturing an interconnect structure according to an embodiment of the present invention will be described below with reference toFIGS. 1 and2 to 11 . - Referring to
FIG. 1 , a substrate structure is provided instep 102. Referring toFIG. 2 , the substrate structure may include asubstrate 201 and adielectric layer 202 onsubstrate 201.Dielectric layer 202 includes anopening 203 for a first interconnect layer extending tosubstrate 201.Substrate 201 may include a variety of different devices, such as metal oxide semiconductor (MOS) devices, passive devices (e.g., capacitors, inductors, and the like), etc.Substrate 201 may include a semiconductor layer (e.g., silicon, germanium, gallium arsenide, and the like) and a device layer on the semiconductor layer. In one embodiment, opening 203 may include a groove extending into firstdielectric layer 202 and a via disposed below the groove and extending tosubstrate 201. In some embodiments, the via may include one, two, or more through holes. It should be noted that opening 203 can be formed using conventional damascene processes that are compatible with existing semiconductor fabrication processes and will not be described herein for the sake of brevity. - Next, in
step 104, a first mask layer 301 (e.g., a photoresist) is formed on a region of firstdielectric layer 202 spaced apart from the opening, as shown inFIG. 3 . - In one embodiment, prior to forming
first mask layer 301 on a region of firstdielectric layer 202 spaced apart from opening 203, a first barrier layer (not shown) may be formed on the substrate structure shown inFIG. 2 .First mask layer 301 is formed on the first barrier layer. The first barrier layer is formed on the bottom and sidewalls ofopening 203 and on the surface of firstdielectric layer 202. In one embodiment, the first barrier layer may include TaN, Ta, or stacked layers of TaN and Ta. In a specific embodiment, the method may also include forming a first seed layer (not shown) on the first barrier layer, so that the first mask layer is formed on the first seed layer. The seed layer may include copper. The first barrier layer and the first seed layer each may be formed using a physical vapor deposition (PVD) process. - Next, in
step 106, a first metal layer (e.g., copper) 401 is formed fillingopening 401 and covering the surface area of firstdielectric layer 202 not covered byfirst mask layer 301, as shown inFIG. 4 . In one embodiment,first metal layer 401 may be deposited using an electroplating process. - In the embodiment,
first metal layer 401 filling opening 204 forms a first interconnect layer. The first interconnect layer includes a lower portion formed of a via filled with the first metal layer and an upper portion formed of a groove filled with the first metal layer. The region of firstdielectric layer 202 not covered byfirst mask layer 301 includes a step-shaped structure.First metal layer 401 is conformally deposited on the step-shaped structure to form aconformal region 401A, which is indicated by a circle.Conformal region 401A is adjacent tofirst mask layer 301. In the embodiment,conformal region 401A of the first metal layer adjacent tofirst mask layer 301 may serve as a lower portion of a second interconnect layer, which is typically formed later by filling a via of the second interconnect layer. Sincefirst mask layer 301 covers a portion of firstdielectric layer 202, the amount of electro-platedfirst metal layer 401 is substantially reduced with respect to the amount of a metal layer that is blanket formed on the dielectric layer, thereby reducing the stress in a subsequently formed interconnect structure, reducing the manufacturing cost, and improving the reliability of the interconnect structure. - Next, in
step 108,first mask layer 301 is removed exposing a portion of firstdielectric layer 202, as shown inFIG. 5 . It should be noted that, in the case where a seed layer and/or a first barrier layer are formed belowfirst mask layer 301, the exposed portions of the first seed layer and the first barrier layers are also removed after the removal offirst mask layer 301. - Next, in
step 110, asecond dielectric layer 601 is formed covering the exposed portions offirst metal layer 401 and firstdielectric layer 202. Thesecond dielectric layer 601 includes atrench 701 for a second interconnect layer exposing a portion ofconformal region 401A,conformal region 401A serves as a lower portion of a second interconnect layer. - In one embodiment, referring to
FIG. 6 , deposited seconddielectric layer 601 covers the exposed portions offirst metal layer 401 and firstdielectric layer 202. In one embodiment,second dielectric layer 601 may include silicon oxide, silicon nitride, or the like.Second dielectric layer 601 may be of the same material as or different material from firstdielectric layer 202. - Next, referring to
FIG. 7 ,second dielectric layer 601 is etched to form atrench 701 for a second interconnect layer. In one embodiment, a patterned hardmask layer may be formed on seconddielectric layer 601 defining the shape oftrench 701, an etch process is performed on seconddielectric layer 601 using the patterned hardmask layer as a mask to formtrench 701.Trench 701 exposes a surface ofportion 401A offirst metal layer 401. Thereafter, the patterned hardmask layer is removed. - Next, in
step 112, the method further includes forming a second metal layer (e.g., copper) fillingtrench 701 to form an upper portion of the second interconnect layer. In one embodiment, the second metal layer may be deposited using an electroplating process to filltrench 701. - In one embodiment, the upper portion of the second interconnect layer may be formed by first depositing a second metal layer filling the trench and covering a remaining second dielectric layer (the remaining second dielectric layer is the second dielectric layer having a portion removed to form the trench). A planarization process is then performed until the upper surface of the remaining second metal layer is substantially flush with the upper surface of the second dielectric layer. Note that in this context, the term "substantially flush" refers to that the lateral surfaces are flush (coplanar) with each other within the range of process variation.
- In another embodiment, the upper portion of the second interconnect layer may be formed with reference to
FIGS. 8 through 11 . - Referring to
FIG. 8 , a second mask layer 801 (e.g., a photoresist) is formed on a portion of remainingsecond dielectric layer 601. In one embodiment, prior to formingsecond mask layer 801 on a portion of remainingsecond dielectric layer 601, the method may include forming a second barrier layer (not shown) on remainingsecond dielectric layer 601, and on the bottom and sidewalls oftrench 701, such thatsecond mask layer 801 is formed on the second barrier layer. In one embodiment, the second barrier layer may include TaN, Ta, or stacked layers of TaN and Ta. In a specific embodiment, the method may also include forming a second seed layer (not shown) on the second barrier layer, so thatsecond mask layer 801 is formed on the second seed layer. The second seed layer may include copper. Similar to the first barrier and seed layers, the second barrier layer and the second seed layer each may be formed using a physical vapor deposition (PVD) process. - Referring to
FIG. 9 , the method includes depositing asecond metal layer 901filling trench 701. Sincesecond mask layer 801 is formed on at least one portion of remainingdielectric layer 601, the amount of depositedsecond metal layer 901 is reduced, further reducing the stress of the second interconnect layer, facilitating a subsequent planarization process, and reducing the cost of the planarization process. - Referring to
FIG. 10 ,second mask layer 801 is removed. It is noted that in the case where a second seed layer and/or a second barrier layer are formed belowsecond mask layer 801, after the removal ofsecond mask layer 801, exposed portions of the second seed layer and the second barrier layer are also removed. - Referring to
FIG. 11 , a planarization process is performed onsecond metal layer 901, so that the upper surface of a remainingsecond metal layer 901 is substantially flush with the upper surface of seconddielectric layer 601. - In accordance with the present invention, the method of manufacturing an interconnect structure provides forming a first mask layer on a portion of the first dielectric layer to reduce an amount of a first metal layer subsequently deposited on the first dielectric layer, thereby saving process costs, reducing the stress in the first metal layer, and reducing the stress in the first interconnect layer, so that the reliability and stability of the interconnect structure will be improved. In addition, a lower portion of a second interconnect layer may also be formed at the same time when the first metal layer is deposited, thus eliminating the need for photolithography and etch processes when forming through holes of the second interconnect structure to reduce process costs. As used herein,
portion 401A offirst metal layer 401 is the lower portion of the second interconnect layer. - The method of the present invention is particularly suitable for manufacturing integrated passive devices (IPD), but is not limited thereto.
- Embodiments of the present invention also provide an interconnect structure. Referring to
FIG. 11 , the interconnect structure includes asubstrate 201, and a firstdielectric layer 202 having an opening extending tosubstrate 201 and configured to be used for a first interconnect layer. In one embodiment, the opening may include a groove extending into the first dielectric layer and at least one through hole disposed below the groove. - The interconnect structure also includes a first metal layer 401 (e.g., copper) filling the opening and covering a portion of first
dielectric layer 202 adjacent to the opening. Aportion 401A offirst metal layer 401 covering the portion of first dielectric layer adjacent to the opening adjacent is a lower portion of a second interconnect layer. In the embodiment, the portion offirst metal layer 401 fillingopening 203 is the first interconnect layer, and the lower portion of the second interconnect layer is integrally formed with the first interconnect layer. In one embodiment, the first metal layer has a first portion in the portion and a second portion in contact with the first portion and on a portion of the first dielectric layer adjacent to the opening. - The interconnect structure further includes a
second dielectric layer 601 on firstdielectric layer 202 and onfirst metal layer 401.Second dielectric layer 601 has a trench for the second interconnect layer. The trench in seconddielectric layer 601 exposes an upper surface oflower portion 401A of the second interconnect layer. - The interconnect structure also includes a second metal layer 901 (e.g., copper) filling the trench.
- In some embodiments, the interconnect structure may also include a first barrier layer (not shown) disposed on the bottom and sidewalls of the opening. The first metal layer is on the first barrier layer. In one embodiment, the interconnect structure may also include a first seed layer (not shown) disposed between the first barrier layer and
first metal layer 401, and the first metal layer is on the first seed layer. - In some embodiments, the interconnect structure may also include a second barrier layer (not shown) disposed on the bottom and sidewalls of the trench in second
dielectric layer 601. In one embodiment, the interconnect structure may further include a second seed layer (not shown) disposed between the second barrier layer andsecond metal layer 901. - In summary, embodiments of the present invention provide an interconnect structure and a manufacturing method thereof. In order not to obscure the teachings of the present invention, details of processes and structures known in the art are not described.
Claims (15)
- A method for manufacturing an interconnect structure, the method comprising:providing (102) a substrate structure including a substrate (201) and a first dielectric layer (202) on the substrate (201), the first dielectric layer (202) having an opening (203) for a first interconnect layer extending to the substrate (201);forming (104) a first mask layer (301) on a portion of the first dielectric layer (202) spaced apart from the opening (203);forming (106) a first metal layer (401) filling the opening (203) and covering a portion of the first dielectric layer (202) not covered by the first mask layer (301), the first metal layer (401) having a first portion in the opening (203) and a second portion (401A) in contact with the first portion and on a portion of the first dielectric layer (202) adjacent to the opening (203);removing (108) the first mask layer (301) exposing a portion of the first dielectric layer (202);forming (110) a second dielectric layer (601) on the exposed portion of the first dielectric layer (301) and on the first metal layer (401),removing a portion of the second dielectric layer (601) to form a trench (701) for a second interconnect layer; andforming (112) a second metal layer (901) filling the trench (701) to form an upper portion of the second interconnect layer,wherein forming the trench (701) comprises exposing the second portion (401A) of the first metal layer (401), wherein the first portion of the first metal layer (401) forms the first interconnect layer and the second portion (401A) of the first metal layer (401) forms a lower portion of the second interconnect layer that is in contact with the upper portion of the second interconnect layer.
- The method of claim 1, wherein forming (112) the second metal layer (901) in the trench (701) comprises:forming a second mask layer (801) on a portion of a remaining second dielectric layer (601);forming the second metal layer (901) covering the trench (701);planarizing the second metal layer (901) until an upper surface of the second metal layer (901) is substantially flush with an upper surface of the remaining second dielectric layer (601).
- The method of claim 2, further comprising, prior to forming the second mask layer (801):
forming a second barrier layer on the remaining second dielectric layer (601), and on a bottom and sidewalls of the trench (701), the second mask layer (801) is disposed on the second barrier layer. - The method of claim 2, further comprising prior to forming the second mask layer (801):
forming a second barrier layer on the remaining second dielectric layer (601), and on a bottom and sidewalls of the trench (701),
forming a second seed layer on the second barrier layer, the second mask layer (801) is disposed on the second seed layer. - The method of any one of the claim 2-4, wherein the first mask layer (301) and the second mask layer (801) each comprise a photoresist.
- The method of any one of the claims 1-5, wherein forming (112) the second metal layer (901) filling the trench (701) comprises:forming the second metal layer (901) covering a remaining second dielectric layer (601);planarizing the second metal layer (901) until an upper surface of the second metal layer (901) is substantially flush with an upper surface of the remaining second dielectric layer (601).
- The method of any one of the claims 1-6, further comprising, prior to forming the first mask layer (301):forming a first barrier layer on the substrate structure, the first mask layer (301) being disposed on the first barrier layer; andafter removing the first mask layer (301), removing an exposed portion of the first barrier layer.
- The method of any one of the claims 1-7, further comprising, prior to forming the first mask layer (301):forming a first barrier layer on the substrate structure;forming a first seed layer on the first barrier layer, the first mask layer (301) being disposed on the first seed layer; andafter removing the first mask layer (301), removing an exposed portion of the first seed layer and exposed portion of the first barrier layer.
- The method of any one of the claim 1-8, wherein forming (106) the first metal layer (401) comprises an electro-plating process, and forming (112) the second metal layer (901) comprises an electro-plating process.
- The method of any one of the claims 1-9, wherein
the first metal layer (401) and the second metal layer (901) each comprises copper; and/or
the opening (203) comprises a groove extending into the first dielectric layer (202) and at least one through hole below the groove. - An interconnect structure, comprising:a substrate (201);a first dielectric layer (202) on the substrate (201) and comprising an opening (203) for a first interconnect layer extending to the substrate (201);a first metal layer (401) having a first portion in the opening (203) and a second portion (401A) in contact with the first portion and on a portion of the first dielectric layer (202) adjacent to the opening (203);a second dielectric layer (601) on the first dielectric layer (202) and on the first metal layer (401), the second dielectric layer (601) including a trench (701) for a second interconnect layer; anda second metal layer (901) filling the trench (701) to form an upper portion of the second interconnect layer,wherein the trench (701) exposes the second portion (401A) of the first metal layer (401), wherein the first portion of the first metal layer (401) forms the first interconnect layer and the second portion (401A) of the first metal layer (401) forms a lower portion of the second interconnect layer that is in contact with the upper portion of the second interconnect layer.
- The interconnect structure of claim 11, further comprising:
a first barrier layer on a bottom and sidewalls of the opening (203). - The interconnect structure of claim 12, further comprising:
a first seed layer disposed between the first barrier layer and the first metal layer (401). - The interconnect structure of claim 12 or 13, further comprising:a second barrier layer on a bottom and sidewalls of the trench (701); and/ora second seed layer disposed between the second barrier layer and the second metal layer (901).
- The interconnect structure of any one of the claims 11-14, wherein
the first and second metal layers (401, 901) each comprise copper; and/or
the opening (203) comprises a groove and one or more through holes below the groove.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611066883.1A CN108122820B (en) | 2016-11-29 | 2016-11-29 | Interconnect structure and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3327762A1 EP3327762A1 (en) | 2018-05-30 |
EP3327762B1 true EP3327762B1 (en) | 2019-09-11 |
Family
ID=60473395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17203759.0A Active EP3327762B1 (en) | 2016-11-29 | 2017-11-27 | Interconnect structure and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
US (2) | US10553536B2 (en) |
EP (1) | EP3327762B1 (en) |
CN (1) | CN108122820B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3671821A1 (en) * | 2018-12-19 | 2020-06-24 | IMEC vzw | Interconnection system of an integrated circuit |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4687552A (en) * | 1985-12-02 | 1987-08-18 | Tektronix, Inc. | Rhodium capped gold IC metallization |
TW290731B (en) * | 1995-03-30 | 1996-11-11 | Siemens Ag | |
CN1181530C (en) * | 1996-12-16 | 2004-12-22 | 国际商业机器公司 | Electroplated interconnection structures on integrated circuit chips |
JP3228181B2 (en) * | 1997-05-12 | 2001-11-12 | ヤマハ株式会社 | Flat wiring formation method |
US5920790A (en) * | 1997-08-29 | 1999-07-06 | Motorola, Inc. | Method of forming a semiconductor device having dual inlaid structure |
US6359328B1 (en) * | 1998-12-31 | 2002-03-19 | Intel Corporation | Methods for making interconnects and diffusion barriers in integrated circuits |
US6376370B1 (en) * | 2000-01-18 | 2002-04-23 | Micron Technology, Inc. | Process for providing seed layers for using aluminum, copper, gold and silver metallurgy process for providing seed layers for using aluminum, copper, gold and silver metallurgy |
US6352917B1 (en) | 2000-06-21 | 2002-03-05 | Chartered Semiconductor Manufacturing Ltd. | Reversed damascene process for multiple level metal interconnects |
US6426558B1 (en) * | 2001-05-14 | 2002-07-30 | International Business Machines Corporation | Metallurgy for semiconductor devices |
JP3875867B2 (en) * | 2001-10-15 | 2007-01-31 | 新光電気工業株式会社 | Method for forming holes in silicon substrate |
US6670271B1 (en) * | 2002-01-17 | 2003-12-30 | Advanced Micro Devices, Inc. | Growing a dual damascene structure using a copper seed layer and a damascene resist structure |
US7026244B2 (en) * | 2003-08-08 | 2006-04-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Low resistance and reliable copper interconnects by variable doping |
US7169698B2 (en) * | 2004-01-14 | 2007-01-30 | International Business Machines Corporation | Sacrificial inorganic polymer intermetal dielectric damascene wire and via liner |
EP1756859A2 (en) * | 2004-05-06 | 2007-02-28 | ETeCH AG | Metallic air-bridges |
US7468545B2 (en) * | 2005-05-06 | 2008-12-23 | Megica Corporation | Post passivation structure for a semiconductor device and packaging process for same |
US7582556B2 (en) * | 2005-06-24 | 2009-09-01 | Megica Corporation | Circuitry component and method for forming the same |
US8569888B2 (en) * | 2011-05-24 | 2013-10-29 | International Business Machines Corporation | Wiring structure and method of forming the structure |
US9029260B2 (en) * | 2011-06-16 | 2015-05-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Gap filling method for dual damascene process |
US8735283B2 (en) * | 2011-06-23 | 2014-05-27 | International Business Machines Corporation | Method for forming small dimension openings in the organic masking layer of tri-layer lithography |
US9093164B2 (en) * | 2011-11-17 | 2015-07-28 | International Business Machines Corporation | Redundant via structure for metal fuse applications |
WO2013095396A1 (en) * | 2011-12-20 | 2013-06-27 | Intel Corporation | Conformal low temperature hermetic dielectric diffusion barriers |
US8835305B2 (en) * | 2012-07-31 | 2014-09-16 | International Business Machines Corporation | Method of fabricating a profile control in interconnect structures |
CN105789114B (en) * | 2012-09-24 | 2019-05-03 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and its manufacturing method |
US10319630B2 (en) * | 2012-09-27 | 2019-06-11 | Stmicroelectronics, Inc. | Encapsulated damascene interconnect structure for integrated circuits |
US9911623B2 (en) * | 2015-12-15 | 2018-03-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Via connection to a partially filled trench |
US9412648B1 (en) * | 2016-01-11 | 2016-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Via patterning using multiple photo multiple etch |
US9818689B1 (en) * | 2016-04-25 | 2017-11-14 | Globalfoundries Inc. | Metal-insulator-metal capacitor and methods of fabrication |
US10755972B2 (en) * | 2016-11-29 | 2020-08-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
-
2016
- 2016-11-29 CN CN201611066883.1A patent/CN108122820B/en active Active
-
2017
- 2017-09-26 US US15/716,261 patent/US10553536B2/en active Active
- 2017-11-27 EP EP17203759.0A patent/EP3327762B1/en active Active
-
2020
- 2020-01-06 US US16/734,610 patent/US11373949B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN108122820A (en) | 2018-06-05 |
CN108122820B (en) | 2020-06-02 |
US20180151488A1 (en) | 2018-05-31 |
US10553536B2 (en) | 2020-02-04 |
EP3327762A1 (en) | 2018-05-30 |
US11373949B2 (en) | 2022-06-28 |
US20200144175A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9607946B2 (en) | Reverse damascene process | |
US8896136B2 (en) | Alignment mark and method of formation | |
KR101857915B1 (en) | Interconnect structure and method for forming interconnect structure | |
US7666781B2 (en) | Interconnect structures with improved electromigration resistance and methods for forming such interconnect structures | |
US8404580B2 (en) | Methods for fabricating semiconductor devices | |
US9627256B2 (en) | Integrated circuit interconnects and methods of making same | |
US20100072579A1 (en) | Through Substrate Conductors | |
US6680542B1 (en) | Damascene structure having a metal-oxide-metal capacitor associated therewith | |
KR102274848B1 (en) | Barrier layer removal method and semiconductor structure forming method | |
US9257329B2 (en) | Methods for fabricating integrated circuits including densifying interlevel dielectric layers | |
TWI775540B (en) | Semiconductor structure and method for manufacturing the same | |
EP3327762B1 (en) | Interconnect structure and manufacturing method thereof | |
US10134580B1 (en) | Metallization levels and methods of making thereof | |
US10347530B2 (en) | Method of forming interconnect structure with partial copper plating | |
US6974770B2 (en) | Self-aligned mask to reduce cell layout area | |
CN112017967B (en) | Back-side metallized semiconductor structure and preparation method thereof | |
US7892967B2 (en) | Semiconductor device and method for manufacturing the same | |
CN110880475B (en) | Air gap forming method | |
CN102124553A (en) | Process for fabricating an integrated electronic circuit incorporating a process requiring a voltage threshold between a metal layer and a substrate | |
CA3018518A1 (en) | Method for producing at least one via in a wafer | |
US20060054997A1 (en) | Techniques for forming passive devices during semiconductor back-end processing | |
CN110767632A (en) | Capacitor structure and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHA Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181102 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190415 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1179570 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017006960 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191129 Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1179570 Country of ref document: AT Kind code of ref document: T Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200113 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017006960 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191127 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200112 |
|
26N | No opposition filed |
Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20201130 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20201201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231121 Year of fee payment: 7 |